1
|
Zídková L, Krijt J, Sládková J, Hlobilková A, Magner M, Zikánová M, Kmoch S, Friedecký D, Zeman J, Elleder M, Adam T. Oligodendroglia from ADSL-deficient patient produce SAICAribotide and SAMP. Mol Genet Metab 2010; 101:286-8. [PMID: 20674424 DOI: 10.1016/j.ymgme.2010.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/18/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
Abstract
Succinylpurines accumulate in the body fluids of patients with adenylosuccinate lyase (ADSL) deficiency but their source in the cerebrospinal fluid remains obscure. Study based on the incorporation of 13C-stable isotope-labeled glycine into cultured oligodendroglia from ADSL-deficient patient and the measurement of labeled products by LC/MS/MS showed total intracellular concentrations of succinylpurines from 45 to 99μmol/l and so these results suggest that these cells can be the source of the compounds in vivo.
Collapse
Affiliation(s)
- L Zídková
- Laboratory for Inherited Metabolic Disorders, University Hospital and Medical Faculty, Palacký University, I.P. Pavlova 6, 775 20 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Chen C, Yang TP. Nucleosomes are translationally positioned on the active allele and rotationally positioned on the inactive allele of the HPRT promoter. Mol Cell Biol 2001; 21:7682-95. [PMID: 11604504 PMCID: PMC99939 DOI: 10.1128/mcb.21.22.7682-7695.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2001] [Accepted: 08/20/2001] [Indexed: 11/20/2022] Open
Abstract
Differential chromatin structure is one of the hallmarks distinguishing active and inactive genes. For the X-linked human hypoxanthine phosphoribosyltransferase gene (HPRT), this difference in chromatin structure is evident in the differential general DNase I sensitivity and hypersensitivity of the promoter regions on active versus inactive X chromosomes. Here we characterize the nucleosomal organization responsible for the differential chromatin structure of the active and inactive HPRT promoters. The micrococcal nuclease digestion pattern of chromatin from the active allele in permeabilized cells reveals an ordered array of translationally positioned nucleosomes in the promoter region except over a 350-bp region that is either nucleosome free or contains structurally altered nucleosomes. This 350-bp region includes the entire minimal promoter and all of the multiple transcription initiation sites of the HPRT gene. It also encompasses all of the transcription factor binding sites identified by either dimethyl sulfate or DNase I in vivo footprinting of the active allele. In contrast, analysis of the inactive HPRT promoter reveals no hypersensitivity to either DNase I or a micrococcal nuclease and no translational positioning of nucleosomes. Although nucleosomes on the inactive promoter are not translationally positioned, high-resolution DNase I cleavage analysis of permeabilized cells indicates that nucleosomes are rotationally positioned over a region of at least 210 bp on the inactive promoter, which coincides with the 350-bp nuclease-hypersensitive region on the active allele, including the entire minimal promoter. This rotational positioning of nucleosomes is not observed on the active promoter. These results suggest a model in which the silencing of the HPRT promoter during X chromosome inactivation involves remodeling a transcriptionally competent, translationally positioned nucleosomal array into a transcriptionally repressed architecture consisting of rotationally but not translationally positioned nucleosomal arrays.
Collapse
Affiliation(s)
- C Chen
- Department of Biochemistry and Molecular Biology, Center for Mammalian Genetics, University of Florida, Gainesville, 32610, USA
| | | |
Collapse
|
3
|
Moe TK, Ziliang J, Barathi A, Beuerman RW. Differential expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta actin and hypoxanthine phosphoribosyltransferase (HPRT) in postnatal rabbit sclera. Curr Eye Res 2001; 23:44-50. [PMID: 11821985 DOI: 10.1076/ceyr.23.1.44.5420] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE GAPDH, beta-actin, HPRT and 18S rRNA are constitutively expressed in all mammalian cells. In accordance with the nature of invariant control, these genes have been used to standardize genes of interest in expression studies. Recent studies have suggested that GAPDH, beta-actin and HPRT in special situations may come under temporary regulatory control, but that 18S rRNA may be more likely to remain constitutive. However, little is known about the quantitative expression of these genes in fibroblasts and in particular during early postnatal development, a time of rapid changes in cell metabolism. In this study we have examined the differential expression of these genes in association with scleral development from an early postnatal age up to young adult status. METHODS GAPDH, beta-actin, HPRT, and 18S rRNA gene expression were analyzed in the rabbit sclera from 1 day to 8 weeks postnatally by real-time, comparative PCR. RESULTS Real-time PCR analysis showed that the expression levels of GAPDH, beta-actin, and HPRT were higher in the first postnatal week and then declined. However, from 2 to 8 weeks, the mRNA levels of these three genes underwent significant variations (P < 0.01) in their levels of expression. In contrast, the expression level of 18S rRNA showed no significant variation (P >or= 0.5) over this time period. Conclusions. The present study shows that GAPDH, beta actin and HPRT gene were differentially expressed in early postnatal scleral development. It also suggests that these gene products could be implicated in the developmental process and have a crucial role in the early postnatal period. This study demonstrates that 18S rRNA may be preferable to normalize genes of interest in studies of early development.
Collapse
Affiliation(s)
- T K Moe
- Singapore Eye Research Institute, Singapore
| | | | | | | |
Collapse
|
4
|
Chen T, Mittelstaedt RA, Heflich RH. DNA sequence flanking the protein coding regions of the rat Hprt gene. Mutat Res 1998; 382:79-80. [PMID: 9691986 DOI: 10.1016/s1383-5726(97)00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- T Chen
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | | | |
Collapse
|
5
|
Girgis S, Nasrallah IM, Suh JR, Oppenheim E, Zanetti KA, Mastri MG, Stover PJ. Molecular cloning, characterization and alternative splicing of the human cytoplasmic serine hydroxymethyltransferase gene. Gene 1998; 210:315-24. [PMID: 9573390 DOI: 10.1016/s0378-1119(98)00085-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human cytoplasmic serine hydroxymethyltransferase (CSHMT) gene was isolated, sequenced and its expression characterized in human MCF-7 mammary carcinoma and SH_5Y5Y neuroblastoma cells. The 23-kb gene contains 12 introns and 13 exons; all splice junctions conform to the gt/ag rule. The open reading frame is interrupted by 10 introns, two of which are positionally conserved within the human mitochondrial SHMT gene. The gene is expressed with 330 nucleotides of 5' untranslated message within three exons. The 5' promoter region does not contain a consensus TATA, and primer extension and 5'-RACE studies suggest that transcription initiation occurs at multiple sites. Consensus motifs for several regulatory proteins, including SP1, mammary and neuronal-specific elements, NF1, a Y-box, and two steroid hormone response elements, are present within the first 408 nucleotides of the 5' promoter region. The human gene is expressed as multiple splice variants in both the 5' untranslated region and within the open reading frame, all due to exon excision. The splicing pattern is cell-specific. At least six CSHMT mRNA splice forms are present in MCF-7 cells; the gene is expressed as a full-length message as well as splice forms that lack exon(s) 2, 9 and 10. In 5Y cells, the predominant form of the message lacks exon 2, which encodes part of the 5' untranslated region, but does not contain deletions within the open reading frame. Western analysis suggests that the CSHMT gene is expressed as a single full-length protein in 5Y cells, but as multiple forms in MCF-7 cells. Multiple tissue Northern blots suggest that the CSHMT message levels and alternative splicing patterns display tissue-specific variations.
Collapse
Affiliation(s)
- S Girgis
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Ogbourne S, Antalis TM. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem J 1998; 331 ( Pt 1):1-14. [PMID: 9512455 PMCID: PMC1219314 DOI: 10.1042/bj3310001] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanisms controlling transcription and its regulation are fundamental to our understanding of molecular biology and, ultimately, cellular biology. Our knowledge of transcription initiation and integral factors such as RNA polymerase is considerable, and more recently our understanding of the involvement of enhancers and complexes such as holoenzyme and mediator has increased dramatically. However, an understanding of transcriptional repression is also essential for a complete understanding of promoter structure and the regulation of gene expression. Transcriptional repression in eukaryotes is achieved through 'silencers', of which there are two types, namely 'silencer elements' and 'negative regulatory elements' (NREs). Silencer elements are classical, position-independent elements that direct an active repression mechanism, and NREs are position-dependent elements that direct a passive repression mechanism. In addition, 'repressors' are DNA-binding trasncription factors that interact directly with silencers. A review of the recent literature reveals that it is the silencer itself and its context within a given promoter, rather than the interacting repressor, that determines the mechanism of repression. Silencers form an intrinsic part of many eukaryotic promoters and, consequently, knowledge of their interactive role with enchancers and other transcriptional elements is essential for our understanding of gene regulation in eukaryotes.
Collapse
Affiliation(s)
- S Ogbourne
- Queensland Cancer Fund Experimental Oncology Program, The Queensland Institute of Medical Research, Brisbane, 4029 Queensland, Australia
| | | |
Collapse
|
7
|
Dhar M, Mascareno EM, Siddiqui MA. Two distinct factor-binding DNA elements in cardiac myosin light chain 2 gene are essential for repression of its expression in skeletal muscle. Isolation of a cDNA clone for repressor protein Nished. J Biol Chem 1997; 272:18490-7. [PMID: 9218494 DOI: 10.1074/jbc.272.29.18490] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of the cardiac myosin light chain 2 (MLC2) gene is repressed in skeletal muscle as a result of the negative regulation of its transcription. Two regulatory elements, the cardiac specific sequence (CSS) located upstream (-360 base pairs) and a downstream negative modulatory sequence (NMS), which function in concert with each other, are required for repression of the MLC2 promoter activity in skeletal muscle. Individually, CSS and NMS have no effect. Transient transfection analysis with recombinant plasmids indicated that CSS- and NMS-mediated repression of transcription is position- and orientation-dependent and is transferable to heterologous promoters. A minimal conserved motif, GAAG/CTTC, present in both CSS and NMS, is responsible for repression as the mutation in the core CTTC sequence alone was sufficient to abrogate its repressor activity. The DNA binding assay by gel mobility shift analysis revealed that one of the two complexes, CSSBP2, is significantly enriched in embryonic skeletal muscle relative to cardiac muscle. In extracts from adult skeletal muscle, where the cardiac MLC2 expression is suppressed, both complexes, CSSBP1 and CSSBP2, were present, whereas the cardiac muscle extracts contained CSSBP1 alone, suggesting that the protein(s) in the CSSBP2 complex accounts for the negative regulation of cardiac MLC2 in skeletal muscle. A partial cDNA clone (Nished) specific for the candidate repressor factor was isolated by expression screening of the skeletal muscle cDNA library by multimerized CSS-DNA as probe. The recombinant Nished protein binds to the CSS-DNA, but not to DeltaCSS-DNA where the core CTTC sequence was mutated. The amino acid sequence of Nished showed a significant structural similarity to the sequence of transcription factor "runt," a known repressor of gap and pair-rule gene expression in Drosophila.
Collapse
Affiliation(s)
- M Dhar
- Center for Cardiovascular and Muscle Research, Department of Anatomy and Cell Biology, State University of New York, Brooklyn, New York 11203, USA
| | | | | |
Collapse
|
8
|
Domashenko AD, Latham KE, Hatton KS. Expression of myc-family, myc-interacting, and myc-target genes during preimplantation mouse development. Mol Reprod Dev 1997; 47:57-65. [PMID: 9110315 DOI: 10.1002/(sici)1098-2795(199705)47:1<57::aid-mrd8>3.0.co;2-p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies indicated that members of the myc gene family may be essential for preimplantation development. Other studies revealed that preimplantation embryos lacking c-myc, N-myc, or L-myc are viable, indicating that these genes are either not essential for preimplantation development or can be substituted for functionally by other myc gene family members. To investigate the possible role of these genes during preimplantation development, we determined the temporal patterns of expression of four members of the myc gene family, genes encoding myc-associated proteins, and four putative MYC target genes. We observed a sequential pattern of myc gene expression, with the L-myc mRNA expressed as a maternal transcript, the c-myc mRNA expressed during the 4-cell through morula stages, and the B-myc mRNA expressed highly at the morula and blastocysts stages. B-myc was the predominant family member expressed during preimplantation development. The mxi mRNA was not detectable and the mad mRNA was detectable only as a maternal transcript. The max mRNA, however, was expressed both as a maternal mRNA and as an embryonic message throughout most of preimplantation development. Three putative MYC target genes (Odc, cyclin E, and prothymosin-alpha) were transcriptionally induced during the 2-cell stage, and their mRNAs increased sharply in abundance during development to the morula and blastocyst stages. Another putative MYC target gene, cyclin A, was expressed both as a maternal mRNA and as an embryonic transcript. These data support the view that the expression of myc target genes may be supported initially through the expression of maternally inherited MYC proteins and corresponding mRNAs and that subsequent stage-specific changes in expression of myc genes, myc-associated genes, and myc target genes may control early differentiative events around the time of implantation.
Collapse
Affiliation(s)
- A D Domashenko
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
9
|
Litt MD, Hornstra IK, Yang TP. In vivo footprinting and high-resolution methylation analysis of the mouse hypoxanthine phosphoribosyltransferase gene 5' region on the active and inactive X chromosomes. Mol Cell Biol 1996; 16:6190-9. [PMID: 8887649 PMCID: PMC231622 DOI: 10.1128/mcb.16.11.6190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To investigate potential mechanisms regulating the hypoxanthine phosphoribosyltransferase (HPRT) gene by X-chromosome inactivation, we performed in vivo footprinting and high-resolution DNA methylation analysis on the 5' region of the active and inactive mouse HPRT alleles and compared these results with those from the human HPRT gene. We found multiple footprinted sites on the active mouse HPRT allele and no footprints on the inactive allele. Comparison of the footprint patterns of the mouse and human HPRT genes demonstrated that the in vivo binding of regulatory proteins between these species is generally conserved but not identical. Detailed nucleotide sequence comparison of footprinted regions in the mouse and human genes revealed a novel 9-bp sequence associated with transcription factor binding near the transcription sites of both genes, suggesting the identification of a new conserved initiator element. Ligation-mediated PCR genomic sequencing showed that all CpG dinucleotides examined on the active allele are unmethylated, while the majority of CpGs on the inactive allele are methylated and interspersed with a few hypomethylated sites. This pattern of methylation on the inactive mouse allele is notably different from the unusual methylation pattern of the inactive human gene, which exhibited strong hypomethylation specifically at GC boxes. These studies, in conjunction with other genomic sequencing studies of X-linked genes, demonstrate that (i) the active alleles are essentially unmethylated, (ii) the inactive alleles are hypermethylated, and (iii) the high-resolution methylation patterns of the hypermethylated inactive alleles are not strictly conserved. There is no obvious correlation between the pattern of methylated sites on the inactive alleles and the pattern of binding sites for transcription factors on the active alleles. These results are discussed in relationship to potential mechanisms of transcriptional regulation by X-chromosome inactivation.
Collapse
Affiliation(s)
- M D Litt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610, USA
| | | | | |
Collapse
|