1
|
Tumor cell-secreted PLD increases tumor stemness by senescence-mediated communication with microenvironment. Oncogene 2018; 38:1309-1323. [PMID: 30305726 DOI: 10.1038/s41388-018-0527-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/21/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022]
Abstract
Cancer cells are in continuous communication with the surrounding microenvironment and this communication can affect tumor evolution. In this work, we show that phospholipase D2 (PLD2) was overexpressed in colon tumors and is secreted by cancer cells, inducing senescence in neighboring fibroblasts. This occurs through its lipase domain. Senescence induced by its product, phosphatidic acid, leads to a senescence-associated secretory phenotype (SASP) able to increase the stem properties of cancer cells. This increase in stemness occurs by Wnt pathway activacion. This closes a feedback loop in which senescence acts as a crosspoint for the generation of CSCs mediated by phospholipid metabolism. We also demonstrate the connexion of both phenomena in mouse models in vivo showing that a high PLD2 expression increased stemness and tumorigenesis. Thus, the patients with colon cancer show high levels of PLD2 and SASP factor genes expression correlating with Wnt pathway activation. Therefore, we demonstrate that tumor cell-secreted PLD2 contributes to tumor development by modifying the microenvironment, making it a possible therapeutic target for cancer treatment. This mechanism may also explain the high levels of Wnt pathway activation in colon cancer.
Collapse
|
2
|
Paz-Ares L, Blanco-Aparicio C, García-Carbonero R, Carnero A. Inhibiting PI3K as a therapeutic strategy against cancer. Clin Transl Oncol 2009; 11:572-9. [PMID: 19775996 DOI: 10.1007/s12094-009-0407-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Class I PI3K is composed of heterodimeric lipid kinases regulating essential cellular functions including proliferation, apoptosis and metabolism. Class I PI3K isoforms are commonly amplified in different cancer types and the PI3Kalpha catalytic subunit, PIK3CA, has been found mutated in a variable proportion of tumours of different origin. Furthermore, PI3K has been shown to mediate oncogenic signalling induced by several oncogenes such as HER2 or Ras. These facts suggest that PI3K might be a good target for anticancer drug discovery. Today, the rise of PI3K inhibitors and their first in vivo results have cleared much of the path for the development of PI3K inhibitors for anticancer therapy. Here we will review the PI3K pathway and the pharmacological results of PI3K inhibition.
Collapse
Affiliation(s)
- Luis Paz-Ares
- Medical Oncology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | | | | |
Collapse
|
3
|
Ramírez de Molina A, Rodríguez-González A, Penalva V, Lucas L, Lacal JC. Inhibition of ChoK is an efficient antitumor strategy for Harvey-, Kirsten-, and N-ras-transformed cells. Biochem Biophys Res Commun 2001; 285:873-9. [PMID: 11467831 DOI: 10.1006/bbrc.2001.5250] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increasing amount of evidence suggests that elevated PCho levels are related to the transforming properties of the H-Ras oncoprotein. Based on these observations, we have designed an antitumor strategy using choline kinase, the enzyme responsible of PCho production, as a novel target for drug discovery. However, little relationship between this lipid-related pathway and the other two Ras members, N- and K-ras, has been established. Since N- and K-ras are the most frequently mutated ras genes in human tumors, we have analyzed the PC-PLD/ChoK pathway and the sensitivity to ChoK inhibition of all three ras-transformed cells. Here we demonstrate that transformation by the three Ras oncoproteins results in increased levels of PCho to a similar extent, resulting from a similar constitutive increase of ChoK activity. As well, sensitivity to choline kinase inhibitors as antiproliferative drugs is similar in cell lines transformed by each of the three ras oncogenes, being in all cases higher than parental, nontransformed cells. In addition, H, K and N-ras-induced alterations in PC metabolism is discussed. These results indicate that ChoK can be used as a general target for anticancer drug design against Ras-dependent tumorigenesis.
Collapse
|
4
|
Lucas L, Hernández-Alcoceba R, Penalva V, Lacal JC. Modulation of phospholipase D by hexadecylphosphorylcholine: a putative novel mechanism for its antitumoral activity. Oncogene 2001; 20:1110-7. [PMID: 11314048 DOI: 10.1038/sj.onc.1204216] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2000] [Revised: 12/28/2000] [Accepted: 01/03/2001] [Indexed: 11/08/2022]
Abstract
Hexadecylphosphorylcholine (HePC, D-18506, INN: Mitelfosine) belongs to the family of alkylphosphocholines with anticancer activity. Previous reports have related its antitumoral activity to their ability to interfere with phospholipid metabolism. However a clear mechanism of action has not been established yet. We have investigated the effect of HePC on two enzymes recently reported to play a role in cell growth proliferation, phospholipase D (PLD) and choline kinase (ChoK). Our results demonstrate that treatment with HePC induces a rapid stimulation of PLD, that may be achieved by PKC dependent or independent mechanisms, depending on the cell line investigated. Both PLD1 and PLD2 isoenzymes are sensitive to HePC activation. By contrast, no effect was observed by HePC on ChoK, a new target for anticancer drug development. Furthermore, in all cell lines tested, a chronic exposure of the cells to HePC abrogates PLD activation by either phorbol esters or HePC itself with no effect on total cellular PLD levels. This is reflected in a strong inhibition of PLD activity. We suggest that the inhibitory effects on PLD by HePC may be related to its antitumoral action.
Collapse
Affiliation(s)
- L Lucas
- Instituto de Investigaciones Biomédicas, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
5
|
Lucas L, del Peso L, Rodríguez P, Penalva V, Lacal JC. Ras protein is involved in the physiological regulation of phospholipase D by platelet derived growth factor. Oncogene 2000; 19:431-7. [PMID: 10656691 DOI: 10.1038/sj.onc.1203323] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lipid-derived metabolites play an important role in the regulation of cell responses to external stimuli, including cell growth control, transformation and apoptosis. Phospholipase D (PLD) is one of the critical elements in the regulation of lipid metabolism and the generation of second messengers, some of them involved in cell growth control. Oncogenic Ras proteins affect the activity of PLD by two alternate mechanisms, involving a positive activation and a feedback negative loop. Here we investigate the involvement of the proto-oncogenic Ras protein in the physiological activation of PLD induced by platelet-derived growth factor (PDGF). Over-expression of the wild type Ras protein or some of its regulatory components, such as Shc or Grb2, induces an amplification of PLD activation by PDGF challenge. Furthermore, blocking the endogenous Ras by expression of the dominant negative mutant, H-Ras-Asn17 completely eliminated the activation of PLD by PDGF. Thus, PDGF requires a complex system for PLD regulation implying the existence of at least two positive regulatory pathways, a Ras-dependent and a PKC-dependent mechanism. These results imply that PLD is an important element in signaling by Ras proteins that is altered after ras-induced transformation.
Collapse
Affiliation(s)
- L Lucas
- Instituto de Investigaciones Biomédicas, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
6
|
Rime H, Talbi N, Popoff MR, Suziedelis K, Jessus C, Ozon R. Inhibition of small G proteins by clostridium sordellii lethal toxin activates cdc2 and MAP kinase in Xenopus oocytes. Dev Biol 1998; 204:592-602. [PMID: 9882492 DOI: 10.1006/dbio.1998.9069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lethal toxin (LT) from Clostridium sordellii is a glucosyltransferase that modifies and inhibits small G proteins of the Ras family, Ras and Rap, as well as Rac proteins. LT induces cdc2 kinase activation and germinal vesicle breakdown (GVBD) when microinjected into full-grown Xenopus oocytes. Toxin B from Clostridium difficile, that glucosylates and inactivates Rac proteins, does not induce cdc2 activation, indicating that proteins of the Ras family, Ras and/or Rap, negatively regulate cdc2 kinase activation in Xenopus oocyte. In oocyte extracts, LT catalyzes the incorporation of [14C]glucose into a group of proteins of 23 kDa and into one protein of 27 kDa. The 23-kDa proteins are recognized by anti-Rap1 and anti-Rap2 antibodies, whereas the 27-kDa protein is recognized by several anti-Ras antibodies and probably corresponds to K-Ras. Microinjection of LT into oocytes together with UDP-[14C]glucose results in a glucosylation pattern similar to the in vitro glucosylation, indicating that the 23- and 27-kDa proteins are in vivo substrates of LT. In vivo time-course analysis reveals that the 27-kDa protein glucosylation is completed within 2 h, well before cdc2 kinase activation, whereas the 23-kDa proteins are partially glucosylated at GVBD. This observation suggests that the 27-kDa Ras protein could be the in vivo target of LT allowing cdc2 kinase activation. Interestingly, inactivation of Ras proteins does not prevent the phosphorylation of c-Raf1 and the activation of MAP kinase that occurs normally around GVBD.
Collapse
Affiliation(s)
- H Rime
- INRA/ESA-CNRS 7080, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cédex 05, France
| | | | | | | | | | | |
Collapse
|
7
|
Lacal JC. Regulation of proliferation and apoptosis by Ras and Rho GTPases through specific phospholipid-dependent signaling. FEBS Lett 1997; 410:73-7. [PMID: 9247126 DOI: 10.1016/s0014-5793(97)00444-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Small GTPases are molecular switches that control signaling pathways critical for diverse cellular functions. Recent evidence indicates that multiple effector molecules can be activated by small GTPases. As a result, complex biological processes such as cell proliferation and apoptosis are turned on. Thus, rather than a single linear pathway from the membrane to the nucleus, the integration of complementary signals is required for these events to occur. In fact, the coordinated activation of small GTPases may constitute some of the critical modulators of those signals triggering either proliferation or cell death. In addition to the activation of specific kinases cascades, phospholipid-derived messengers are candidates to compose some of the most critical elements associated to regulation of signaling cascades capable of discerning among life and death. Both proliferation and apoptosis needs competence and progression signals. Phospholipase D and sphingomyelinase may be important players in this decision-maker step.
Collapse
Affiliation(s)
- J C Lacal
- Instituto de Investigaciones Biomédicas, CSIC, Madrid, Spain.
| |
Collapse
|
8
|
del Peso L, Lucas L, Esteve P, Lacal JC. Activation of phospholipase D by growth factors and oncogenes in murine fibroblasts follow alternative but cross-talking pathways. Biochem J 1997; 322 ( Pt 2):519-28. [PMID: 9065772 PMCID: PMC1218221 DOI: 10.1042/bj3220519] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phospholipase D (PLD) is activated by a variety of stimuli, including mitogenic stimulation by growth factors and oncogene transformation. Activation of PLD by growth factors requires protein kinase C (PKC) since depletion of the enzyme by down-regulation or direct inhibition by specific drugs completely abrogates this effect. Transformation by the ras and src oncogenes is also associated with an increase in basal PLD activity. However, this effect is not dependent on PKC, suggesting that growth factors and oncogenes may activate PLD by two independent mechanisms. Here we demonstrate that activation of PLD by phorbol esters is greatly enhanced in ras-transformed cells, suggesting synergistic activation of PLD by ras oncogenes and PKC. Also, ras-transformed cells showed a dramatic attenuation of the PLD activation induced by growth factors, although receptor function was still detectable. This attenuation paralleled the specific uncoupling of the phosphatidylinositol-specific phospholipase C (PI-PLC) pathway, indicating that activation of PLD by growth factors may be mediated by PI-PLC and PKC activation. Attenuation of PLD activation by platelet-derived growth factor was also observed in several oncogene-transformed cells, as well as the uncoupling of the PI-PLC pathway. Neither the co-operation with PKC activation nor the attenuation of the PLD response to growth factors in ras-transformed cells was a general consequence of cell transformation, since cells transformed by other oncogenes showed a normal response to either treatment. These results support the existence of at least two alternative signalling routes for the activation of PLD, one mediated by the PI-PLC/diacylglycerol/PKC pathway and a second one mediated by several oncogenes, independent of the PKC pathway, which synergizes with the PI-PLC/PKC-dependent pathway.
Collapse
Affiliation(s)
- L del Peso
- Instituto de Investigaciones Biomédicas, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
9
|
Abstract
Growth factors activate phospholipases, causing the generation of diverse lipid metabolites with second messenger function. Among them, the phosphatidylcholine-preferring phospholipase D (PLD) has attracted great interest, since in addition to the transient activation by growth factors stimulation, it is constitutively activated in some of the src- and ras-transformed cells investigated. To establish further the functional relationship of ras oncogenes with PLD, we have investigated its mechanism of regulation. Growth factors such as PDGF or FGF activate the PC-PLD enzyme by a common, PKC-dependent mechanism. By contrast, ras oncogenes activate the PC-PLD enzyme by a PKC-independent mechanism. These results suggest that existence of at least two mechanisms for PLD activation, and ras oncogenes contribute to one of them.
Collapse
Affiliation(s)
- L del Peso
- Instituto de Investigaciones Biomédicas, Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Pomerance M, Thang MN, Tocque B, Pierre M. The Ras-GTPase-activating protein SH3 domain is required for Cdc2 activation and mos induction by oncogenic Ras in Xenopus oocytes independently of mitogen-activated protein kinase activation. Mol Cell Biol 1996; 16:3179-86. [PMID: 8649428 PMCID: PMC231311 DOI: 10.1128/mcb.16.6.3179] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Ras-GTPase-activating protein (RasGAP) is an important modulator of p21ras - dependent signal transduction in Xenopus oocytes and in mammalian cells. We investigated the role of the RasGAP SH3 domain in signal transduction with a monoclonal antibody against the SH3 domain of RasGaP. This antibody prevented the activation of the maturation-promoting factor complex (cyclin B-p34cdc2) by oncogenic Ras. The antibody appears to be specific because as little as 5 ng injected per oocyte reduced the level of Cdc2 activation by 50% whereas 100 ng of nonspecific immunoglobulin G did not affect Cdc2 activation. The antibody blocked the Cdc2 activation induced by oncogenic Ras but not that induced by progesterone, which acts independently of Ras. A peptide corresponding to positions 317 to 326 of a sequence in the SH3 domain of human RasGAP blocked Cdc2 activation, whereas a peptide corresponding to positions 273 to 305 of a sequence in the N-terminal moiety of the SH3 domain of RasGAP had no effect. The antibody did not block the mitogen-activated protein (MAP) kinase cascade (activation of MAPK/ERK kinase [MEK], MAP kinase, and S6 kinase p90rsk). Surprisingly, injection of the negative MAP kinase mutant protein ERK2 K52R (containing a K-to-R mutation at position 52) blocked the Cdc2 activation induced by oncogenic Ras as well as blocking the activation of MAP kinase. Thus, MAP kinase is also implicated in the regulation of Cdc2 activity. In this study, we further investigated the regulation of the synthesis of the c-mos oncogene product, which is necessary for the activation of Cdc2. We report that the synthesis of the c-mos oncogene product, which is necessary for the activation antibody to the SH3 domain of RasGAP and by injecting the negative MAP kinase mutant protein ERK2 K52R. These results suggest that oncogenic Ras activates two signaling mechanisms: the MAP kinase cascade and a signaling pathway implicating the SH3 domain of RasGAP. These mechanisms might control Mos protein expression implicated in Cdc2 activation.
Collapse
Affiliation(s)
- M Pomerance
- Unité de Recherche sur la Glande Thyroïde et la Régulation Hormonale, U96 Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France
| | | | | | | |
Collapse
|
11
|
Abstract
In nearly all mammalian cells and tissues examined, protein kinase C (PKC) has been shown to serve as a major regulator of a phosphatidylcholine-specific phospholipase D (PLD) activity. At least 12 distinct isoforms of PKC have been described so far; of these enzymes only the alpha- and beta-isoforms were found to regulate PLD activity. While the mechanism of this regulation has remained unknown, available evidence suggests that both phosphorylating and non-phosphorylating mechanisms may be involved. A phosphatidylcholine-specific PLD activity was recently purified from pig lung, but its possible regulation by PKC has not been reported yet. Several cell types and tissues appear to express additional forms of PLD which can hydrolyze either phosphatidylethanolamine or phosphatidylinositol. It has also been reported that at least one form of PLD can be activated by oncogenes, but not by PKC activators. Similar to activated PKC, some of the primary and secondary products of PLD-mediated phospholipid hydrolysis, including phosphatidic acid, 1,2-diacylglycerol, choline phosphate and ethanolamine, also exhibit mitogenic/co-mitogenic effects in cultured cells. Furthermore, both the PLD and PKC systems have been implicated in the regulation of vesicle transport and exocytosis. Recently the PLD enzyme has been cloned and the tools of molecular biology to study its biological roles will soon be available. Using specific inhibitors of growth regulating signals and vesicle transport, so far no convincing evidence has been reported to support the role of PLD in the mediation of any of the above cellular effects of activated PKC.
Collapse
Affiliation(s)
- Z Kiss
- Hormel Institute, University of Minnesota, Austin 55912, USA
| |
Collapse
|
12
|
DePaolo D, Reusch JE, Carel K, Bhuripanyo P, Leitner JW, Draznin B. Functional interactions of phosphatidylinositol 3-kinase with GTPase-activating protein in 3T3-L1 adipocytes. Mol Cell Biol 1996; 16:1450-7. [PMID: 8657118 PMCID: PMC231129 DOI: 10.1128/mcb.16.4.1450] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The role of phosphatidylinositol (PI) 3-kinase in specific aspects of insulin signaling was explored in 3T3-L1 adipocytes. Inhibition of PI 3-kinase activity by LY294002 or wortmannin significantly enhanced basal and insulin-stimulated GTPase-activating protein (GAP) activity in 3T3-L1 adipocytes. Furthermore, removal of the inhibitory influence of PI 3-kinase on GAP resulted in dose-dependent decreases in the ability of insulin to stimulate p21ras. This effect was specific to adipocytes, as inhibition of PI 3-kinase did not influence GAP in either 3T3-L1 fibroblasts, Rat-1 fibroblasts, or CHO cells. Immunodepletion of either of the two subunits of the PI 3-kinase (p85 or p110) yielded similar activation of GAP, suggesting that catalytic activity of p110 plays an important role in controlling GAP activity in 3T3-L1 adipocytes. Inhibition of PI 3-kinase activity in 3T3-L1 adipocytes resulted in abrogation of insulin-stimulated glucose uptake and thymidine incorporation. In contrast, effects of insulin on glycogen synthase and mitogen-activated protein kinase activity were inhibited only at higher concentrations of LY294002. It appears that in adipocytes, P1 3-kinase prevents activation of GAP. Inhibition of PI 3-kinase activity or immunodepletion of either one of its subunits results in activation of GAP and decreases in GTP loading of p21ras.
Collapse
Affiliation(s)
- D DePaolo
- Medical Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220, USA
| | | | | | | | | | | |
Collapse
|
13
|
Basu-Modak S, Lüscher P, Tyrrell RM. Lipid metabolite involvement in the activation of the human heme oxygenase-1 gene. Free Radic Biol Med 1996; 20:887-97. [PMID: 8743975 DOI: 10.1016/0891-5849(95)02182-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellular effects of ultraviolet A (UVA) radiation include peroxidation of membrane lipids as well as a decrease in intracellular glutathione. We have investigated whether damage to membrane lipids is involved in the activation of the human heme oxygenase-1 gene by UVA. Irradiation of human skin fibroblasts in the presence of the lipophilic antioxidants, butylated hydroxytoluene and alpha-tocopherol, enhances the UVA-induced HO-1 mRNA accumulation, suggesting that peroxidation of plasma membrane lipids is not involved. Furthermore, sodium ascorbate, which induces lipid peroxidation mainly in the plasma membrane, induces HO-1 mRNA to low levels only. The decrease in GSH by UVA radiation is not affected by the presence of the lipophilic antioxidants while ascorbate treatment increases the intracellular GSH by twofold above controls. These results indicate that peroxidation of internal membrane lipids, a decrease in the intracellular GSH levels and the integrity of the plasma membrane are all important for the UVA-induction of heme oxygenase-1. Both nonenzymatic as well as enzymatic lipid peroxidation metabolites are inducers of heme oxygenase-1. The nonenzymatic lipid peroxidation product 4-hydroxynonenal induces heme oxygenase-1 mRNA up to 40-fold and the phospholipase metabolites diacylglycerol and arachidonic acid induce this mRNA by three-to sixfold above basal levels. We also demonstrate that the cyclooxygenase metabolites of arachidonic acid are important for the UVA-activation of the heme oxygenase-1 gene.
Collapse
Affiliation(s)
- S Basu-Modak
- Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland
| | | | | |
Collapse
|
14
|
Chapter 17 Muscarinic receptors and cell signalling. PROGRESS IN BRAIN RESEARCH 1996. [DOI: 10.1016/s0079-6123(08)62101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
15
|
Dent P, Reardon DB, Morrison DK, Sturgill TW. Regulation of Raf-1 and Raf-1 mutants by Ras-dependent and Ras-independent mechanisms in vitro. Mol Cell Biol 1995; 15:4125-35. [PMID: 7623807 PMCID: PMC230651 DOI: 10.1128/mcb.15.8.4125] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The serine/threonine kinase Raf-1 functions downstream from Ras to activate mitogen-activated protein kinase kinase, but the mechanisms of Raf-1 activation are incompletely understood. To dissect these mechanisms, wild-type and mutant Raf-1 proteins were studied in an in vitro system with purified plasma membranes from v-Ras- and v-Src-transformed cells (transformed membranes). Wild-type (His)6- and FLAG-Raf-1 were activated in a Ras- and ATP-dependent manner by transformed membranes; however, Raf-1 proteins that are kinase defective (K375M), that lack an in vivo site(s) of regulatory tyrosine (YY340/341FF) or constitutive serine (S621A) phosphorylation, that do not bind Ras (R89L), or that lack an intact zinc finger (CC165/168SS) were not. Raf-1 proteins lacking putative regulatory sites for an unidentified kinase (S259A) or protein kinase C (S499A) were activated but with apparently reduced efficiency. The kinase(s) responsible for activation by Ras or Src may reside in the plasma membrane, since GTP loading of plasma membranes from quiescent NIH 3T3 cells (parental membranes) induced de novo capacity to activate Raf-1. Wild-type Raf-1, possessing only basal activity, was not activated by parental membranes in the absence of GTP loading. In contrast, Raf-1 Y340D, possessing significant activity, was, surprisingly, stimulated by parental membranes in a Ras-independent manner. The results suggest that activation of Raf-1 by phosphorylation may be permissive for further modulation by another membrane factor, such as a lipid. A factor(s) extracted with methanol-chloroform from transformed membranes or membranes from Sf9 cells coexpressing Ras and SrcY527F significantly enhanced the activity of Raf-1 Y340D or active Raf-1 but not that of inactive Raf-1. Our findings suggest a model for activation of Raf-1, wherein (i) Raf-1 associates with Ras-GTP, (ii) Raf-1 is activated by tyrosine and/or serine phosphorylation, and (iii) Raf-1 activity is further increased by a membrane cofactor.
Collapse
Affiliation(s)
- P Dent
- Howard Hughes Medical Institute, University of Virginia, Charlottesville 22908, USA
| | | | | | | |
Collapse
|