1
|
Carlström A, Bridgers JB, Couvillion M, Singh A, Forné I, Imhof A, Churchman LS, Ott M. A molecular switch at the yeast mitoribosomal tunnel exit controls cytochrome b synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635641. [PMID: 39975335 PMCID: PMC11838262 DOI: 10.1101/2025.01.30.635641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mitochondrial gene expression needs to be balanced with cytosolic translation to produce oxidative phosphorylation complexes. In yeast, translational feedback loops involving lowly expressed proteins called translational activators help to achieve this balance. Synthesis of cytochrome b (Cytb or COB), a core subunit of complex III in the respiratory chain, is controlled by three translational activators and the assembly factor Cbp3-Cbp6. However, the molecular interface between the COB translational feedback loop and complex III assembly is yet unknown. Here, using protein-proximity mapping combined with selective mitoribosome profiling, we reveal the components and dynamics of the molecular switch controlling COB translation. Specifically, we demonstrate that Mrx4, a previously uncharacterized ligand of the mitoribosomal polypeptide tunnel exit, interacts with either the assembly factor Cbp3-Cbp6 or with the translational activator Cbs2. These reciprocal interactions determine whether the translational activator complex with bound COB mRNA can interact with the mRNA channel exit on the small ribosomal subunit for translation initiation. Organization of the feedback loop at the tunnel exit therefore orchestrates mitochondrial translation with respiratory chain biogenesis.
Collapse
Affiliation(s)
- Andreas Carlström
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Joseph B. Bridgers
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mary Couvillion
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Abeer Singh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ignasi Forné
- Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - L. Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
2
|
Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev Biol 2021; 9:675465. [PMID: 34277617 PMCID: PMC8280776 DOI: 10.3389/fcell.2021.675465] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deyu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
3
|
Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol 2021; 22:307-325. [PMID: 33594280 DOI: 10.1038/s41580-021-00332-2] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are cellular organelles responsible for generation of chemical energy in the process called oxidative phosphorylation. They originate from a bacterial ancestor and maintain their own genome, which is expressed by designated, mitochondrial transcription and translation machineries that differ from those operating for nuclear gene expression. In particular, the mitochondrial protein synthesis machinery is structurally and functionally very different from that governing eukaryotic, cytosolic translation. Despite harbouring their own genetic information, mitochondria are far from being independent of the rest of the cell and, conversely, cellular fitness is closely linked to mitochondrial function. Mitochondria depend heavily on the import of nuclear-encoded proteins for gene expression and function, and hence engage in extensive inter-compartmental crosstalk to regulate their proteome. This connectivity allows mitochondria to adapt to changes in cellular conditions and also mediates responses to stress and mitochondrial dysfunction. With a focus on mammals and yeast, we review fundamental insights that have been made into the biogenesis, architecture and mechanisms of the mitochondrial translation apparatus in the past years owing to the emergence of numerous near-atomic structures and a considerable amount of biochemical work. Moreover, we discuss how cellular mitochondrial protein expression is regulated, including aspects of mRNA and tRNA maturation and stability, roles of auxiliary factors, such as translation regulators, that adapt mitochondrial translation rates, and the importance of inter-compartmental crosstalk with nuclear gene expression and cytosolic translation and how it enables integration of mitochondrial translation into the cellular context.
Collapse
|
4
|
Salvatori R, Kehrein K, Singh AP, Aftab W, Möller-Hergt BV, Forne I, Imhof A, Ott M. Molecular Wiring of a Mitochondrial Translational Feedback Loop. Mol Cell 2020; 77:887-900.e5. [DOI: 10.1016/j.molcel.2019.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/03/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022]
|
5
|
Ndi M, Masuyer G, Dawitz H, Carlström A, Michel M, Elofsson A, Rapp M, Stenmark P, Ott M. Structural basis for the interaction of the chaperone Cbp3 with newly synthesized cytochrome b during mitochondrial respiratory chain assembly. J Biol Chem 2019; 294:16663-16671. [PMID: 31537648 DOI: 10.1074/jbc.ra119.010483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/04/2019] [Indexed: 11/06/2022] Open
Abstract
Assembly of the mitochondrial respiratory chain requires the coordinated synthesis of mitochondrial and nuclear encoded subunits, redox co-factor acquisition, and correct joining of the subunits to form functional complexes. The conserved Cbp3-Cbp6 chaperone complex binds newly synthesized cytochrome b and supports the ordered acquisition of the heme co-factors. Moreover, it functions as a translational activator by interacting with the mitoribosome. Cbp3 consists of two distinct domains: an N-terminal domain present in mitochondrial Cbp3 homologs and a highly conserved C-terminal domain comprising a ubiquinol-cytochrome c chaperone region. Here, we solved the crystal structure of this C-terminal domain from a bacterial homolog at 1.4 Å resolution, revealing a unique all-helical fold. This structure allowed mapping of the interaction sites of yeast Cbp3 with Cbp6 and cytochrome b via site-specific photo-cross-linking. We propose that mitochondrial Cbp3 homologs carry an N-terminal extension that positions the conserved C-terminal domain at the ribosomal tunnel exit for an efficient interaction with its substrate, the newly synthesized cytochrome b protein.
Collapse
Affiliation(s)
- Mama Ndi
- Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden.,Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Hannah Dawitz
- Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden
| | - Andreas Carlström
- Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden
| | - Mirco Michel
- Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden.,Science for Life Laboratories, Stockholm University, SE-171 21 Solna, Sweden
| | - Arne Elofsson
- Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden.,Science for Life Laboratories, Stockholm University, SE-171 21 Solna, Sweden
| | - Mikaela Rapp
- Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden .,Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden
| |
Collapse
|
6
|
Derbikova KS, Levitsky SA, Chicherin IV, Vinogradova EN, Kamenski PA. Activation of Yeast Mitochondrial Translation: Who Is in Charge? BIOCHEMISTRY (MOSCOW) 2018; 83:87-97. [DOI: 10.1134/s0006297918020013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Kursu VAS, Pietikäinen LP, Fontanesi F, Aaltonen MJ, Suomi F, Raghavan Nair R, Schonauer MS, Dieckmann CL, Barrientos A, Hiltunen JK, Kastaniotis AJ. Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae. Mol Microbiol 2013; 90:824-40. [PMID: 24102902 DOI: 10.1111/mmi.12402] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2013] [Indexed: 01/05/2023]
Abstract
Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild haem deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a co-ordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell.
Collapse
Affiliation(s)
- V A Samuli Kursu
- Department of Biochemistry and Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kuzmenko A, Atkinson GC, Levitskii S, Zenkin N, Tenson T, Hauryliuk V, Kamenski P. Mitochondrial translation initiation machinery: conservation and diversification. Biochimie 2013; 100:132-40. [PMID: 23954798 PMCID: PMC3978653 DOI: 10.1016/j.biochi.2013.07.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this review we describe the proteins orchestrating mitochondrial translation initiation: bacterial-like general initiation factors mIF2 and mIF3, as well as mitochondria-specific components – mRNA-specific translational activators and mRNA-nonspecific accessory initiation factors. We consider how the fast rate of evolution in these organelles has not only created a system that is divergent from that of its bacterial ancestors, but has led to a huge diversity in lineage specific mechanistic features of mitochondrial translation initiation among eukaryotes. Mitochondrially-encoded proteins are mostly respiratory chain components. The mitochondrial translation system is thus organized in a very specific way. Initiation involves mRNA-specific activators and bacteria-like initiation factors. We show that Saccharomyces cerevisiae Aim23p is a functional ortholog of bacterial IF3. We review the lineage specific features of mitochondrial translation initiation.
Collapse
Affiliation(s)
- Anton Kuzmenko
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Gemma C Atkinson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Sergey Levitskii
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Department of Molecular Biology, Umeå University, Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
| | - Piotr Kamenski
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia.
| |
Collapse
|
9
|
Fontanesi F. Mechanisms of mitochondrial translational regulation. IUBMB Life 2013; 65:397-408. [PMID: 23554047 DOI: 10.1002/iub.1156] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/31/2013] [Indexed: 11/11/2022]
Abstract
The mitochondrial oxidative phosphorylation system is formed by multimeric enzymes. In the yeast Saccharomyces cerevisiae, the bc1 complex, cytochrome c oxidase and the F1 FO ATP synthase contain subunits of dual genetic origin. It has been recently established that key subunits of these enzymes, translated on mitochondrial ribosomes, are the subjects of assembly-dependent translational regulation. This type of control of gene expression plays a pivotal role in optimizing the biogenesis of mitochondrial respiratory membranes by coordinating protein synthesis and complex assembly and by limiting the accumulation of potentially harmful assembly intermediates. Here, the author will discuss the mechanisms governing translational regulation in yeast mitochondria in the light of the most recent discoveries in the field.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
10
|
Herrmann JM, Woellhaf MW, Bonnefoy N. Control of protein synthesis in yeast mitochondria: the concept of translational activators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:286-94. [PMID: 22450032 DOI: 10.1016/j.bbamcr.2012.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/01/2012] [Accepted: 03/08/2012] [Indexed: 12/18/2022]
Abstract
Mitochondria contain their own genome which codes for a small number of proteins. Most mitochondrial translation products are part of the membrane-embedded reaction centers of the respiratory chain complexes. In the yeast Saccharomyces cerevisiae, the expression of these proteins is regulated by translational activators that bind mitochondrial mRNAs, in most cases to their 5'-untranslated regions, and each mitochondrial mRNA appears to have its own translational activator(s). Recent studies showed that these translational activators can be part of feedback control loops which only permit translation if the downstream assembly of nascent translation products can occur. In several cases, the accumulation of a non-assembled protein prevents further synthesis of this protein but not translation in general. These control loops prevent the synthesis of potentially harmful assembly intermediates of the reaction centers of mitochondrial enzymes. Since such regulatory feedback loops only work if translation occurs in the compartment in which the complexes of the respiratory chain are assembled, these control mechanisms require the presence of a translation machinery in mitochondria. This might explain why eukaryotic cells maintained DNA in mitochondria during the last two billion years of evolution. This review gives an overview of the mitochondrial translation system and summarizes the current knowledge on translational activators and their role in the regulation of mitochondrial protein synthesis. This article is part of a Special Issue entitled: Protein import and quality control in mitochondria and plastids.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Cell Biology, Erwin-Schrödinger-Strasse 13, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| | | | | |
Collapse
|
11
|
Staley CA, Huang A, Nattestad M, Oshiro KT, Ray LE, Mulye T, Li ZH, Le T, Stephens JJ, Gomez SR, Moy AD, Nguyen JC, Franz AH, Lin-Cereghino J, Lin-Cereghino GP. Analysis of the 5' untranslated region (5'UTR) of the alcohol oxidase 1 (AOX1) gene in recombinant protein expression in Pichia pastoris. Gene 2012; 496:118-27. [PMID: 22285974 DOI: 10.1016/j.gene.2012.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/31/2011] [Accepted: 01/05/2012] [Indexed: 11/17/2022]
Abstract
Pichia pastoris is a methylotrophic yeast that has been genetically engineered to express over one thousand heterologous proteins valued for industrial, pharmaceutical and basic research purposes. In most cases, the 5' untranslated region (UTR) of the alcohol oxidase 1 (AOX1) gene is fused to the coding sequence of the recombinant gene for protein expression in this yeast. Because the effect of the AOX1 5'UTR on protein expression is not known, site-directed mutagenesis was performed in order to decrease or increase the length of this region. Both of these types of changes were shown to affect translational efficiency, not transcript stability. While increasing the length of the 5'UTR clearly decreased expression of a β-galactosidase reporter in a proportional manner, a deletion analysis demonstrated that the AOX1 5'UTR contains a complex mixture of both positive and negative cis-acting elements, suggesting that the construction of a synthetic 5'UTR optimized for a higher level of expression may be challenging.
Collapse
Affiliation(s)
- Chris A Staley
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Matsunaga M, Nagano H, Mikami T, Kubo T. Large 3' UTR of sugar beet rps3 is truncated in cytoplasmic male-sterile mitochondria. PLANT CELL REPORTS 2011; 30:231-238. [PMID: 20711727 DOI: 10.1007/s00299-010-0912-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/13/2010] [Accepted: 08/05/2010] [Indexed: 05/29/2023]
Abstract
Genomic alteration near or within mitochondrial gene is often associated with cytoplasmic male sterility (CMS). Its influence on the expression of the mitochondrial gene was proposed as one of the possible causes of CMS. In sugar beet mitochondrial rps3, whose downstream 1,056-bp region contains Norf246, an apparently non-functional open reading frame (ORF), was deleted in CMS mitochondria. In our previous study, normal rps3 (3.8 kb), CMS rps3 (2.7 kb), and Norf246 (3.8 and 0.9 kb) were shown to be transcribed. The present study was conducted to determine whether the deletion affected gene expression. Reverse transcription (RT)-PCR analysis revealed the co-transcription of rps3 and Norf246. By circularized RNA (CR) RT-PCR analysis, the 5' and 3' termini of the 3.8- and the 0.9-kb transcripts were determined. The results suggested that the 3.8-kb transcripts were the rps3 mRNA bearing ~464-base 5' untranslated region (UTR) and ~1,508-base 3' UTR, whereas no functional ORF was observed in the 0.9-kb transcripts. CR-RT-PCR revealed that the 3' UTR of the 2.7-kb transcripts was reduced to ~460 bases. However, no difference in the accumulation of RPS3 polypeptide and RNA editing was detected by protein gel blot analysis and cDNA sequencing. Although the deleted region encoded the truncated-atp9 that was edited, no influence on the pattern and frequency of RNA editing of genuine atp9 was evident. The results eliminated rps3 as a candidate for the CMS gene, making preSatp6, a unique ORF fused with CMS atp6, the sole CMS-associated region in sugar beet.
Collapse
Affiliation(s)
- Muneyuki Matsunaga
- Laboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | |
Collapse
|
13
|
Koc EC, Spremulli LL. RNA-binding proteins of mammalian mitochondria. Mitochondrion 2005; 2:277-91. [PMID: 16120328 DOI: 10.1016/s1567-7249(03)00005-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Revised: 12/04/2002] [Accepted: 12/16/2002] [Indexed: 11/18/2022]
Abstract
A UV-cross-linking assay was used to identify RNA-binding proteins in mammalian mitochondria. A number of these proteins were detected ranging in molecular mass from 15 to 120 kDa. All of the mRNA-binding activities were localized to the matrix except for two proteins which are primarily associated with the inner membrane. None of the polypeptides is specific for binding mitochondrial mRNAs since all bound mRNAs from other sources with comparable efficiency. Some preference for binding mRNA over tRNA or homoribopolymers was observed with several of the proteins. A protein with characteristic pentatricopeptide repeat motifs found in many RNA binding proteins was identified associated with the small subunit of the mitochondrial ribosome.
Collapse
Affiliation(s)
- Emine Cavdar Koc
- Department of Chemistry, Campus Box 3290, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
14
|
Krause-Buchholz U, Schöbel K, Lauffer S, Rödel G. Saccharomyces cerevisiae translational activator Cbs1p is associated with translationally active mitochondrial ribosomes. Biol Chem 2005; 386:407-15. [PMID: 15927884 DOI: 10.1515/bc.2005.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the yeast Saccharomyces cerevisiae, mitochondrial translation of most, if not all, mitochondrially encoded genes is regulated by an individual set of gene-specific activators. Translation of the COB mRNA encoding cytochrome b requires the function of two nuclearly encoded proteins, Cbs1p and Cbs2p. Genetic data revealed that the 5'-untranslated region of COB mRNA is the target of both proteins. Recently, we provided evidence for an interaction of Cbs2p with mitochondrial ribosomes. We demonstrate here by means of blue native gel electrophoresis, density gradient centrifugation and tandem affinity purification that a portion of Cbs1p is also associated with mitochondrial ribosomes. In addition, we demonstrate that the amount of ribosome-associated Cbs1p is elevated in the presence of chloramphenicol, which is known to stall ribosomes on mRNAs. In the presence of puromycin, which strips off the mRNA and nascent protein chains from ribosomes, Cbs1p is no longer associated with ribosomes. Our data indicate that the observed interaction is mediated by ribosome-bound mRNA, thus restricting the association to ribosomes actively translating cytochrome b.
Collapse
Affiliation(s)
- Udo Krause-Buchholz
- Institut für Genetik, Technische Universität Dresden, D-01062 Dresden, Germany.
| | | | | | | |
Collapse
|
15
|
Krause K, Dieckmann CL. Analysis of transcription asymmetries along the tRNAE-COB operon: evidence for transcription attenuation and rapid RNA degradation between coding sequences. Nucleic Acids Res 2004; 32:6276-83. [PMID: 15576354 PMCID: PMC535675 DOI: 10.1093/nar/gkh966] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial gene expression in yeast is believed to be regulated predominantly at the post-transcriptional level. However, the contribution of mitochondrial transcription and RNA-turnover rates to differential gene regulation is still largely unknown. Mitochondrial run-on transcription and hybrid selection assays showed that some of the multigenic transcription units of the mitochondrial genome are transcribed evenly, whereas others are transcribed asymmetrically, with higher transcription rates for promoter-proximal genes, than for promoter-distal genes. The tRNA(E)-cytochrome b (COB) operon was analyzed in detail to investigate the mechanisms underlying transcription rate asymmetries in yeast mitochondria. We showed that a drop in transcription rates occurs in a particular region between the coding sequences and is independent of the coding sequence of the downstream COB gene. Deletion of the region between tRNA(E) and COB coding sequences decreases the drop in transcription rates. Deletion of the nuclear gene encoding the Pet 127 protein, which is involved in mitochondrial RNA 5' processing and degradation, also partially relieves transcriptional asymmetry. Therefore, asymmetry is probably due to a combination of attenuated transcription at specific sites between the coding sequences and very rapid RNA degradation.
Collapse
Affiliation(s)
- Kirsten Krause
- Department of Biochemistry and Molecular Biophysics, University of Arizona, 1007 E. Lowell Street, LSS Building, Room 454, Tucson, AZ 85721-0106, USA
| | | |
Collapse
|
16
|
Islas-Osuna MA, Ellis TP, Mittelmeier TM, Dieckmann CL. Suppressor mutations define two regions in the Cbp1 protein important for mitochondrial cytochrome b mRNA stability in Saccharomyces cerevisiae. Curr Genet 2003; 43:327-36. [PMID: 12764667 DOI: 10.1007/s00294-003-0405-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 04/11/2003] [Accepted: 04/16/2003] [Indexed: 11/24/2022]
Abstract
Nuclear-encoded Cbp1 stabilizes and promotes translation of mitochondrial cytochrome b (COB) mRNA. A CCG triplet within the 5'UTR of COB mRNA is essential for Cbp1-dependent stability. Like cbp1 mutations, mutation of any nucleotide in CCG results in degradation of COB transcripts. In this study, CBP1-linked pseudorevertants of the temperature-sensitive CCU strain were isolated. The suppressors are missense mutations within a central cluster or a carboxyl cluster in the linear sequence of Cbp1. Strains with mutations in the carboxyl half of the central cluster or the carboxyl cluster respire better than those with mutations in the amino half of the central cluster. COB mRNA levels in the suppressor strains were increased compared with that in the CCU strain and were positively correlated with respiratory capability. This correlation supports a model in which the primary role of Cbp1 is to protect COB mRNAs and deliver them to the mitochondrial translational apparatus.
Collapse
Affiliation(s)
- Maria A Islas-Osuna
- Department of Molecular and Cellular Biology, Life Sciences South 454, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85721-0106, USA
| | | | | | | |
Collapse
|
17
|
Islas-Osuna MA, Ellis TP, Marnell LL, Mittelmeier TM, Dieckmann CL. Cbp1 is required for translation of the mitochondrial cytochrome b mRNA of Saccharomyces cerevisiae. J Biol Chem 2002; 277:37987-90. [PMID: 12149267 DOI: 10.1074/jbc.m206132200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the yeast mitochondrial cytochrome b gene (COB) is controlled by at least 15 nuclear-encoded proteins. One of these proteins, Cbp1, is required for COB mRNA stability. Delta cbp1 null strains fail to accumulate mature COB mRNA and cannot respire. Since Delta cbp1 null strains lack mature COB transcripts, the hypothesis that Cbp1 also plays a role in translation of these mRNAs could not be tested previously. 5'-End trimming of precursor COB RNA and other mitochondrial transcripts is dependent on Pet127. pet127 mutants accumulate high levels of precursor COB mRNA and have no mature mRNA. pet127 mutants respire well; this phenotype implies that COB precursor RNA is translated efficiently. With the expectation that a Delta cbp1 Delta pet127 strain might accumulate substantial levels of COB RNA, the double null strain was constructed and analyzed to test the hypothesis that Cbp1 is required for translation of COB RNA. The Delta cbp1 Delta pet127 strain does accumulate levels of COB precursor mRNA that are approximately 60% of the level of COB mRNA in the wild-type strain. However, cytochrome b protein is not synthesized, and thus the Delta cbp1 Delta pet127 strain does not respire. These results suggest that Cbp1 is required for translation of COB RNAs.
Collapse
Affiliation(s)
- Maria A Islas-Osuna
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
18
|
Higgs DC, Shapiro RS, Kindle KL, Stern DB. Small cis-acting sequences that specify secondary structures in a chloroplast mRNA are essential for RNA stability and translation. Mol Cell Biol 1999; 19:8479-91. [PMID: 10567573 PMCID: PMC84957 DOI: 10.1128/mcb.19.12.8479] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleus-encoded proteins interact with cis-acting elements in chloroplast transcripts to promote RNA stability and translation. We have analyzed the structure and function of three such elements within the Chlamydomonas petD 5' untranslated region; petD encodes subunit IV of the cytochrome b(6)/f complex. These elements were delineated by linker-scanning mutagenesis, and RNA secondary structures were investigated by mapping nuclease-sensitive sites in vitro and by in vivo dimethyl sulfate RNA modification. Element I spans a maximum of 8 nucleotides (nt) at the 5' end of the mRNA; it is essential for RNA stability and plays a role in translation. This element appears to form a small stem-loop that may interact with a previously described nucleus-encoded factor to block 5'-->3' exoribonucleolytic degradation. Elements II and III, located in the center and near the 3' end of the 5' untranslated region, respectively, are essential for translation, but mutations in these elements do not affect mRNA stability. Element II is a maximum of 16 nt in length, does not form an obvious secondary structure, and appears to bind proteins that protect it from dimethyl sulfate modification. Element III spans a maximum of 14 nt and appears to form a stem-loop in vivo, based on dimethyl sulfate modification and the sequences of intragenic suppressors of element III mutations. Furthermore, mutations in element II result in changes in the RNA structure near element III, consistent with a long-range interaction that may promote translation.
Collapse
Affiliation(s)
- D C Higgs
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
19
|
Brown LM, Burbach BJ, McKenzie BA, Connell GJ. A cis-acting A-U sequence element induces kinetoplastid U-insertions. J Biol Chem 1999; 274:6295-304. [PMID: 10037718 DOI: 10.1074/jbc.274.10.6295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 34-nucleotide A-U sequence located immediately upstream of the editing sites of the Leishmania tarentolae cytochrome b mRNA induces a mitochondrial extract to insert U nucleotides independent of guide RNA. Insertions are localized to positions immediately 5' and 3' of the A-U sequence. When placed within an unedited mammalian transcript, the A-U sequence is sufficient to induce U-insertions. The sequence has a high degree of similarity with the templating nucleotides of a cytochrome b guide RNA and with a sequence adjacent to the editing sites in ND7 mRNA, the other characterized kinetoplastid mRNA supporting guide RNA-independent U-insertions. At least one protein specifically interacts with the A-U sequence. The reaction is consistent with a mechanism proposed for guide RNA-directed editing.
Collapse
Affiliation(s)
- L M Brown
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455-0347, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
21
|
Grossman LI, Seelan RS, Jaradat SA. Transcriptional regulation of mammalian cytochrome c oxidase genes. Electrophoresis 1998; 19:1254-9. [PMID: 9694260 DOI: 10.1002/elps.1150190805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytochrome c oxidase (COX) holoenzyme is a 13-subunit complex that carries out the terminal step in the electron transport chain. Three of the subunits, which contain the electron transfer function, are coded by mitochondrial DNA and the other ten subunits by nuclear DNA. Since the holoenzyme contains equivalent amounts of each subunit, we and others have examined transcriptional regulation of COX nuclear subunits to explore whether there is a common basis for co-regulation. Each gene is seen to have a unique pattern of recognition by regulatory factors; although some factors bind to more than one gene, not all COX genes seem to be regulated by the same set of factors. Current information about the COX promoters that have been examined is summarized, and the relation of promoter regulation to coordinate gene expression is discussed.
Collapse
Affiliation(s)
- L I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
22
|
Chen W, Dieckmann CL. Genetic evidence for interaction between Cbp1 and specific nucleotides in the 5' untranslated region of mitochondrial cytochrome b mRNA in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:6203-11. [PMID: 9343381 PMCID: PMC232471 DOI: 10.1128/mcb.17.11.6203] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cytochrome b (COB) gene is encoded by the mitochondrial genome; however, its expression requires the participation of several nuclearly encoded protein factors. The yeast Cbp1 protein, which is encoded by the nuclear CBP1 gene, is required for the stabilization of COB mRNA. A previous deletion analysis identified an 11-nucleotide-long sequence within the 5' untranslated region of COB mRNA that is important for Cbp1-dependent COB mRNA stability. In the present study, site-directed mutagenesis experiments were carried out to define further the features of this cis element. The CCG sequence within this region was shown to be necessary for stability. A change in residue 533 of Cbp1 from aspartate to tyrosine suppresses the effects of a single-base change in the CCG element. This is strong genetic evidence that the nuclearly encoded Cbp1 protein recognizes and binds directly to the sequence containing CCG and thus protects COB mRNA from degradation.
Collapse
MESH Headings
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Cytochrome b Group/genetics
- DNA-Binding Proteins/metabolism
- Fungal Proteins/metabolism
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Mitochondria/genetics
- Models, Genetic
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Oxygen Consumption/genetics
- Polymerase Chain Reaction
- Protein Binding
- Protein Biosynthesis
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Analysis, DNA
- Suppression, Genetic
Collapse
Affiliation(s)
- W Chen
- Department of Biochemistry, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
23
|
Dunstan HM, Green-Willms NS, Fox TD. In vivo analysis of Saccharomyces cerevisiae COX2 mRNA 5'-untranslated leader functions in mitochondrial translation initiation and translational activation. Genetics 1997; 147:87-100. [PMID: 9286670 PMCID: PMC1208125 DOI: 10.1093/genetics/147.1.87] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have used mutational and revertant analysis to study the elements of the 54-nucleotide COX2 5'-untranslated leader involved in translation initiation in yeast mitochondria and in activation by the COX2 translational activator. Pet111p. We generated a collection of mutants with substitutions spanning the entire COX2 5'-UTL by in vitro mutagenesis followed by mitochondrial transformation and gene replacement. The phenotypes of these mutants delimit a 31-nucleotide segment, from -16 to -46, that contains several short sequence elements necessary for COX2 5'-UTL function in translation. The sequences from -16 to -47 were shown to be partially sufficient to promote translation in a foreign context. Analysis of revertants of both the series of linker-scanning alleles and two short deletion/ insertion alleles has refined the positions of several possible functional elements of the COX2 5'-untranslated leader, including a putative RNA stem-loop structure that functionally interacts with Pet111p and an octanucleotide sequence present in all S. cerevisiae mitochondrial mRNA 5'-UTLs that is a potential rRNA binding site.
Collapse
Affiliation(s)
- H M Dunstan
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|
24
|
Sparks KA, Mayer SA, Dieckmann CL. Premature 3'-end formation of CBP1 mRNA results in the downregulation of cytochrome b mRNA during the induction of respiration in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:4199-207. [PMID: 9234677 PMCID: PMC232273 DOI: 10.1128/mcb.17.8.4199] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The yeast mitochondrial genome encodes only seven major components of the respiratory chain and ATP synthase; more than 200 other mitochondrial proteins are encoded by nuclear genes. Thus, assembly of functional mitochondria requires coordinate expression of nuclear and mitochondrial genes. One example of coordinate regulation is the stabilization of mitochondrial COB (cytochrome b) mRNA by Cbp1, the product of the nuclear gene CBP1 (cytochrome b processing). CBP1 produces two types of transcripts with different 3' ends: full-length 2.2-kb transcripts and 1.2-kb transcripts truncated within the coding sequence of Cbp1. Upon induction of respiration, the steady-state level of the long transcripts decreases while that of the short transcripts increases reciprocally, an unexpected result since the product of the long transcripts is required for COB mRNA stability and thus for respiration. Here we have tested the hypothesis that the short transcripts, or proteins translated from the short transcripts, are also required for respiration. A protein translated from the short transcripts was not detected by Western analysis, although polysome gradient fractions were shown to contain both long and short CBP1 transcripts. A mutant strain in which production of the short transcripts was abolished showed wild-type growth properties, indicating that the short transcripts are not required for respiration. Due to mutation of the carbon source-responsive element, the long transcript level in the mutant strain did not decrease during induction of respiration. The mutant strain had increased levels of COB RNA, suggestive that production of short CBP1 transcripts is a mechanism for downregulation of the levels of long CBP1 transcripts, Cbp1, and COB mRNA during the induction of respiration.
Collapse
Affiliation(s)
- K A Sparks
- Department of Biochemistry, University of Arizona, Tucson 85721, USA
| | | | | |
Collapse
|
25
|
Zerges W, Girard-Bascou J, Rochaix JD. Translation of the chloroplast psbC mRNA is controlled by interactions between its 5' leader and the nuclear loci TBC1 and TBC3 in Chlamydomonas reinhardtii. Mol Cell Biol 1997; 17:3440-8. [PMID: 9154843 PMCID: PMC232197 DOI: 10.1128/mcb.17.6.3440] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Translation of the chloroplast psbC mRNA in Chlamydomonas reinhardtii has been shown previously to require interactions between its 5' untranslated region (5' UTR) and the functions encoded by two nuclear loci, which we name here TBC1 and TBC2. We show that a 97-nucleotide (nt) region located in the middle of the psbC 5' UTR is required for translation initiation. Unlike most procaryotic cis-acting translational control elements, this region has a translational activation function and is located 236 nt upstream from the GUG translation initiation codon. In vivo pulse-labeling of chloroplast-encoded proteins and analyses of the expression of chimeric reporter genes in vivo reveal that a mutation of a newly described locus, TBC3, restores translation from the psbC 5' UTR in the absence of either this cis-acting element or the wild-type trans-acting TBC1 function. These data demonstrate that sequences located in the middle of the psbC 5' UTR, TBC1, and TBC3 functionally interact to control the translation of the psbC mRNA.
Collapse
Affiliation(s)
- W Zerges
- Department of Molecular Biology, University of Geneva, Switzerland.
| | | | | |
Collapse
|
26
|
Fox TD. Translational control of endogenous and recoded nuclear genes in yeast mitochondria: regulation and membrane targeting. EXPERIENTIA 1996; 52:1130-5. [PMID: 8988256 DOI: 10.1007/bf01952112] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mitochondrial gene expression in yeast, Saccharomyces cerevisiae, depends on translational activation of individual mRNAs by distinct proteins encoded in the nucleus. These unclearly coded mRNA-specific translational activators are bound to the inner membrane and function to mediate the interaction between mRNAs and mitochondrial ribosomes. This complex system, found to date only in organelles, appears to be an adaptation for targeting the synthesis of mitochondrially coded integral membrane proteins to the membrane. In addition, mRNA-specific translational activation is a rate-limiting step used to modulate expression of at least one mitochondrial gene in response to environmental conditions. Direct study of mitochondrial gene regulation and the targeting of mitochondrially coded proteins in vivo will now be possible using synthetic genes inserted into mtDNA that encode soluble reporter/passenger proteins.
Collapse
Affiliation(s)
- T D Fox
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA.
| |
Collapse
|
27
|
Wiesenberger G, Costanzo MC, Fox TD. Analysis of the Saccharomyces cerevisiae mitochondrial COX3 mRNA 5' untranslated leader: translational activation and mRNA processing. Mol Cell Biol 1995; 15:3291-300. [PMID: 7539105 PMCID: PMC230562 DOI: 10.1128/mcb.15.6.3291] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We used transformation of yeast mitochondria and homologous gene replacement to study features of the 613-base COX3 mRNA 5' untranslated leader (5'-UTL) required for translational activation by the protein products of the nuclear genes PET54, PET122, and PET494 in vivo. Elimination of the single AUG triplet in the 5'-UTL had no detectable effect on expression, indicating that activator proteins do not work by allowing ribosomes to bypass that AUG. Deletion of the entire 5'-UTL completely prevented translation, suggesting that the activator proteins do not function by antagonizing any other negative element in the 5'-UTL. Removal of the 15 terminal bases from the 5' end of the 5'-UTL did not block activator-dependent translation. The largest internal deletion that did not interfere with translation removed 125 bases from the upstream portion of the leader. However, two large deletions that blocked translation could be reverted to activator-dependent expression by secondary changes in the remaining 5'-UTL sequences, indicating that the original deletions had not removed the translational activator target but only deformed it. Taken together, the deletion mutations and revertants define a region of 151 bases (between positions -480 and -330 relative to the start codon) containing sequences that are sufficient for translational activation when modified slightly. Suppression of the respiratory phenotypes of two 5'-UTL mutations by overexpression of PET54, PET122, and PET494 indicated functional interactions between the leader and the three activator proteins. The mature COX3 mRNA is cleaved from a precursor immediately downstream of the preceding tRNAVal in a fashion resembling mRNA processing in vertebrate mitochondria. Our results indicate that the site of this cleavage in Saccharomyces cerevisiae is determined solely by the position of the tRNA.
Collapse
Affiliation(s)
- G Wiesenberger
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|