1
|
Sluimer LM, Bullock E, Rätze MAK, Enserink L, Overbeeke C, Hornsveld M, Brunton VG, Derksen PWB, Tavares S. SKOR1 mediates FER kinase-dependent invasive growth of breast cancer cells. J Cell Sci 2023; 136:286925. [PMID: 36620935 DOI: 10.1242/jcs.260243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023] Open
Abstract
High expression of the non-receptor tyrosine kinase FER is an independent prognostic factor that correlates with poor survival in breast cancer patients. To investigate whether the kinase activity of FER is essential for its oncogenic properties, we developed an ATP analogue-sensitive knock-in allele (FERASKI). Specific FER kinase inhibition in MDA-MB-231 cells reduces migration and invasion, as well as metastasis when xenografted into a mouse model of breast cancer. Using the FERASKI system, we identified Ski family transcriptional corepressor 1 (SKOR1) as a direct FER kinase substrate. SKOR1 loss phenocopies FER inhibition, leading to impaired proliferation, migration and invasion, and inhibition of breast cancer growth and metastasis formation in mice. We show that SKOR1 Y234, a candidate FER phosphorylation site, is essential for FER-dependent tumor progression. Finally, our work suggests that the SKOR1 Y234 residue promotes Smad2/3 signaling through SKOR1 binding to Smad3. Our study thus identifies SKOR1 as a mediator of FER-dependent progression of high-risk breast cancers.
Collapse
Affiliation(s)
- Lilian M Sluimer
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Esme Bullock
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Max A K Rätze
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Lotte Enserink
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Celine Overbeeke
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marten Hornsveld
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sandra Tavares
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| |
Collapse
|
2
|
Zhang Y, Xiong X, Zhu Q, Zhang J, Chen S, Wang Y, Cao J, Chen L, Hou L, Zhao X, Hao P, Chen J, Zhuang M, Li D, Fan G. FER-mediated phosphorylation and PIK3R2 recruitment on IRS4 promotes AKT activation and tumorigenesis in ovarian cancer cells. eLife 2022; 11:76183. [PMID: 35550247 PMCID: PMC9098222 DOI: 10.7554/elife.76183] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Tyrosine phosphorylation, orchestrated by tyrosine kinases and phosphatases, modulates a multi-layered signaling network in a time- and space-dependent manner. Dysregulation of this post-translational modification is inevitably associated with pathological diseases. Our previous work has demonstrated that non-receptor tyrosine kinase FER is upregulated in ovarian cancer, knocking down which attenuates metastatic phenotypes. However, due to the limited number of known substrates in the ovarian cancer context, the molecular basis for its pro-proliferation activity remains enigmatic. Here, we employed mass spectrometry and biochemical approaches to identify insulin receptor substrate 4 (IRS4) as a novel substrate of FER. FER engaged its kinase domain to associate with the PH and PTB domains of IRS4. Using a proximity-based tagging system in ovarian carcinoma-derived OVCAR-5 cells, we determined that FER-mediated phosphorylation of Tyr779 enables IRS4 to recruit PIK3R2/p85β, the regulatory subunit of PI3K, and activate the PI3K-AKT pathway. Rescuing IRS4-null ovarian tumor cells with phosphorylation-defective mutant, but not WT IRS4 delayed ovarian tumor cell proliferation both in vitro and in vivo. Overall, we revealed a kinase-substrate mode between FER and IRS4, and the pharmacological inhibition of FER kinase may be beneficial for ovarian cancer patients with PI3K-AKT hyperactivation.
Collapse
Affiliation(s)
- Yanchun Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuexue Xiong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qi Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiali Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengmiao Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuetong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Cao
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Li Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linjun Hou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xi Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dake Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
3
|
Tavares S, Liv N, Pasolli M, Opdam M, Rätze MAK, Saornil M, Sluimer LM, Hengeveld RCC, van Es R, van Werkhoven E, Vos H, Rehmann H, Burgering BMT, Oosterkamp HM, Lens SMA, Klumperman J, Linn SC, Derksen PWB. FER regulates endosomal recycling and is a predictor for adjuvant taxane benefit in breast cancer. Cell Rep 2022; 39:110584. [PMID: 35385742 DOI: 10.1016/j.celrep.2022.110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/28/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Elevated expression of non-receptor tyrosine kinase FER is an independent prognosticator that correlates with poor survival of high-grade and basal/triple-negative breast cancer (TNBC) patients. Here, we show that high FER levels are also associated with improved outcomes after adjuvant taxane-based combination chemotherapy in high-risk, HER2-negative patients. In TNBC cells, we observe a causal relation between high FER levels and sensitivity to taxanes. Proteomics and mechanistic studies demonstrate that FER regulates endosomal recycling, a microtubule-dependent process that underpins breast cancer cell invasion. Using chemical genetics, we identify DCTN2 as a FER substrate. Our work indicates that the DCTN2 tyrosine 6 is essential for the development of tubular recycling domains in early endosomes and subsequent propagation of TNBC cell invasion in 3D. In conclusion, we show that high FER expression promotes endosomal recycling and represents a candidate predictive marker for the benefit of adjuvant taxane-containing chemotherapy in high-risk patients, including TNBC patients.
Collapse
Affiliation(s)
- Sandra Tavares
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Milena Pasolli
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584CH Utrecht, the Netherlands
| | - Mark Opdam
- Department of Molecular Pathology, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Max A K Rätze
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Manuel Saornil
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Lilian M Sluimer
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Rutger C C Hengeveld
- Oncode Institute, Department of Molecular Cancer Research, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Robert van Es
- Oncode Institute, Department of Molecular Cancer Research, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Erik van Werkhoven
- Department of Molecular Pathology, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Harmjan Vos
- Oncode Institute, Department of Molecular Cancer Research, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Holger Rehmann
- Flensburg University of Applied Sciences, 24943 Flensburg, Germany
| | - Boudewijn M T Burgering
- Oncode Institute, Department of Molecular Cancer Research, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Hendrika M Oosterkamp
- Department of Medical Oncology, Haaglanden Medisch Centrum, 2501 CK The Hague, the Netherlands
| | - Susanne M A Lens
- Oncode Institute, Department of Molecular Cancer Research, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Sabine C Linn
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Department of Molecular Pathology, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Department of Medical Oncology, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands.
| |
Collapse
|
4
|
Loss of Fer Jeopardizes Metabolic Plasticity and Mitochondrial Homeostasis in Lung and Breast Carcinoma Cells. Int J Mol Sci 2021; 22:ijms22073387. [PMID: 33806191 PMCID: PMC8037256 DOI: 10.3390/ijms22073387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic plasticity is a hallmark of the ability of metastatic cancer cells to survive under stressful conditions. The intracellular Fer kinase is a selective constituent of the reprogramed mitochondria and metabolic system of cancer cells. In the current work, we deciphered the modulatory roles of Fer in the reprogrammed metabolic systems of metastatic, lung (H358), non-small cell lung cancer (NSCLC), and breast (MDA-MB-231), triple-negative breast cancer (TNBC), carcinoma cells. We show that H358 cells devoid of Fer (H358ΔFer), strictly depend on glucose for their proliferation and growth, and fail to compensate for glucose withdrawal by oxidizing and metabolizing glutamine. Furthermore, glucose deficiency caused increased reactive oxygen species (ROS) production and induction of a DNA damage response (DDR), accompanied by the onset of apoptosis and attenuated cell-cycle progression. Analysis of mitochondrial function revealed impaired respiratory and electron transport chain (ETC) complex 1 (comp. I) activity in the Fer-deficient H358ΔFer cells. This was manifested by decreased levels of NAD+ and ATP and relatively low abundance of tricarboxylic acid (TCA) cycle metabolites. Impaired electron transport chain comp. I activity and dependence on glucose were also confirmed in Fer-deficient, MDA-MB-231ΔFer cells. Although both H358ΔFer and MDA-MB-231ΔFer cells showed a decreased aspartate level, this seemed to be compensated by the predominance of pyrimidines synthesis over the urea cycle progression. Notably, absence of Fer significantly impeded the growth of H358ΔFer and MDA-MB-231ΔFer xenografts in mice provided with a carb-deficient, ketogenic diet. Thus, Fer plays a key role in the sustention of metabolic plasticity of malignant cells. In compliance with this notion, targeting Fer attenuates the progression of H358 and MDA-MB-231 tumors, an effect that is potentiated by a glucose-restrictive diet.
Collapse
|
5
|
Ji R, Zhu XJ, Wang ZR, Huang LQ. Cortactin in Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2020; 8:585619. [PMID: 33195233 PMCID: PMC7606982 DOI: 10.3389/fcell.2020.585619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cortactin, a member of the actin-binding protein family, plays an important role in cell movement involving the cytoskeleton, as cell movement mediated by cortactin may induce the epithelial–mesenchymal transition. Cortactin participates in tumor proliferation, migration, and invasion and other related disease processes by binding to different proteins and participating in different pathways and mechanisms that induce the occurrence of these disease processes. Therefore, this article reviews the correlations between cortactin, the actin cytoskeleton, and the epithelial–mesenchymal transition and discusses its clinical importance in tumor therapy.
Collapse
Affiliation(s)
- Rong Ji
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Xiao-Juan Zhu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Zhi-Rong Wang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Li-Qiang Huang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| |
Collapse
|
6
|
Drexler HCA, Vockel M, Polaschegg C, Frye M, Peters K, Vestweber D. Vascular Endothelial Receptor Tyrosine Phosphatase: Identification of Novel Substrates Related to Junctions and a Ternary Complex with EPHB4 and TIE2. Mol Cell Proteomics 2019; 18:2058-2077. [PMID: 31427368 PMCID: PMC6773558 DOI: 10.1074/mcp.ra119.001716] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 12/30/2022] Open
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP, PTPRB) is a receptor type phosphatase that is crucial for the regulation of endothelial junctions and blood vessel development. We and others have shown recently that VE-PTP regulates vascular integrity by dephosphorylating substrates that are key players in endothelial junction stability, such as the angiopoietin receptor TIE2, the endothelial adherens junction protein VE-cadherin and the vascular endothelial growth factor receptor VEGFR2. Here, we have systematically searched for novel substrates of VE-PTP in endothelial cells by utilizing two approaches. First, we studied changes in the endothelial phosphoproteome on exposing cells to a highly VE-PTP-specific phosphatase inhibitor followed by affinity isolation and mass-spectrometric analysis of phosphorylated proteins by phosphotyrosine-specific antibodies. Second, we used a substrate trapping mutant of VE-PTP to pull down phosphorylated substrates in combination with SILAC-based quantitative mass spectrometry measurements. We identified a set of substrate candidates of VE-PTP, of which a remarkably large fraction (29%) is related to cell junctions. Several of those were found in both screens and displayed very high connectivity in predicted functional interaction networks. The receptor protein tyrosine kinase EPHB4 was the most prominently phosphorylated protein on VE-PTP inhibition among those VE-PTP targets that were identified by both proteomic approaches. Further analysis revealed that EPHB4 forms a ternary complex with VE-PTP and TIE2 in endothelial cells. VE-PTP controls the phosphorylation of each of these two tyrosine kinase receptors. Despite their simultaneous presence in a ternary complex, stimulating each of the receptors with their own specific ligand did not cross-activate the respective partner receptor. Our systematic approach has led to the identification of novel substrates of VE-PTP, of which many are relevant for the control of cellular junctions further promoting the importance of VE-PTP as a key player of junctional signaling.
Collapse
Affiliation(s)
- Hannes C A Drexler
- Bioanalytical Mass Spectrometry, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany.
| | - Matthias Vockel
- Department of Vascular Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany; Institute of Human Genetics, University Hospital Münster, 48149 Münster, Germany
| | - Christian Polaschegg
- Department of Vascular Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
| | - Maike Frye
- Department of Vascular Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
| | | | - Dietmar Vestweber
- Department of Vascular Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany.
| |
Collapse
|
7
|
Matsuura Y. High-resolution structural analysis shows how different crystallographic environments can induce alternative modes of binding of a phosphotyrosine peptide to the SH2 domain of Fer tyrosine kinase. Protein Sci 2019; 28:2011-2019. [PMID: 31441171 DOI: 10.1002/pro.3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 11/08/2022]
Abstract
Fes and Fes-related (Fer) protein tyrosine kinases (PTKs) comprise a subfamily of nonreceptor tyrosine kinases characterized by a unique multidomain structure composed of an N-terminal Fer/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain, a central Src homology 2 (SH2) domain, and a C-terminal PTK domain. Fer is ubiquitously expressed, and upregulation of Fer has been implicated in various human cancers. The PTK activity of Fes has been shown to be positively regulated by the binding of phosphotyrosine-containing ligands to the SH2 domain. Here, the X-ray crystal structure of human Fer SH2 domain bound to a phosphopeptide that has D-E-pY-E-N-V-D sequence is reported at 1.37 å resolution. The asymmetric unit (ASU) contains six Fer-phosphopeptide complexes, and the structure reveals three distinct binding modes for the same phosphopeptide. At four out of the six binding sites in the ASU, the phosphopeptide binds to Fer SH2 domain in a type I β-turn conformation, and this could be the optimal binding mode of this phosphopeptide. At the other two binding sites in the ASU, it appears that spatial proximity of neighboring SH2 domains in the crystal induces alternative modes of binding of this phosphopeptide.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Klomp JE, Shaaya M, Matsche J, Rebiai R, Aaron JS, Collins KB, Huyot V, Gonzalez AM, Muller WA, Chew TL, Malik AB, Karginov AV. Time-Variant SRC Kinase Activation Determines Endothelial Permeability Response. Cell Chem Biol 2019; 26:1081-1094.e6. [PMID: 31130521 DOI: 10.1016/j.chembiol.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
In the current model of endothelial barrier regulation, the tyrosine kinase SRC is purported to induce disassembly of endothelial adherens junctions (AJs) via phosphorylation of VE cadherin, and thereby increase junctional permeability. Here, using a chemical biology approach to temporally control SRC activation, we show that SRC exerts distinct time-variant effects on the endothelial barrier. We discovered that the immediate effect of SRC activation was to transiently enhance endothelial barrier function as the result of accumulation of VE cadherin at AJs and formation of morphologically distinct reticular AJs. Endothelial barrier enhancement via SRC required phosphorylation of VE cadherin at Y731. In contrast, prolonged SRC activation induced VE cadherin phosphorylation at Y685, resulting in increased endothelial permeability. Thus, time-variant SRC activation differentially phosphorylates VE cadherin and shapes AJs to fine-tune endothelial barrier function. Our work demonstrates important advantages of synthetic biology tools in dissecting complex signaling systems.
Collapse
Affiliation(s)
- Jennifer E Klomp
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Mark Shaaya
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Jacob Matsche
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Rima Rebiai
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Jesse S Aaron
- Advanced Imaging Center at Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Kerrie B Collins
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Vincent Huyot
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Annette M Gonzalez
- Department of Pathology, The Feinberg School of Medicine at Northwestern University, Chicago, IL 60611, USA
| | - William A Muller
- Department of Pathology, The Feinberg School of Medicine at Northwestern University, Chicago, IL 60611, USA
| | - Teng-Leong Chew
- Advanced Imaging Center at Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Asrar B Malik
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Andrei V Karginov
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| |
Collapse
|
9
|
Targeting FER Kinase Inhibits Melanoma Growth and Metastasis. Cancers (Basel) 2019; 11:cancers11030419. [PMID: 30909648 PMCID: PMC6468679 DOI: 10.3390/cancers11030419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/28/2022] Open
Abstract
Melanoma is one of the most aggressive types of tumors and exhibits high metastatic potential. Fes-related (FER) kinase is a non-receptor tyrosine kinase that has been implicated in growth and metastasis of various epithelial tumors. In this study, we have examined the role that FER kinase plays in melanoma at the molecular level. FER-depleted melanoma cells exhibit impaired Wnt/β-catenin pathway activity, as well as multiple proteomic changes, which include decreased abundance of L1-cell adhesion molecule (L1-CAM). Consistent with the pro-metastatic functions of these pathways, we demonstrate that depletion of FER kinase decreases melanoma growth and formation of distant metastases in a xenograft model. These findings indicate that FER is an important positive regulator of melanoma metastasis and a potential target for innovative therapies.
Collapse
|
10
|
Curto J, Del Valle-Pérez B, Villarroel A, Fuertes G, Vinyoles M, Peña R, García de Herreros A, Duñach M. CK1ε and p120-catenin control Ror2 function in noncanonical Wnt signaling. Mol Oncol 2018; 12:611-629. [PMID: 29465811 PMCID: PMC5928365 DOI: 10.1002/1878-0261.12184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/31/2022] Open
Abstract
Canonical and noncanonical Wnt pathways share some common elements but differ in the responses they evoke. Similar to Wnt ligands acting through the canonical pathway, Wnts that activate the noncanonical signaling, such as Wnt5a, promote Disheveled (Dvl) phosphorylation and its binding to the Frizzled (Fz) Wnt receptor complex. The protein kinase CK1ε is required for Dvl/Fz association in both canonical and noncanonical signaling. Here we show that differently to its binding to canonical Wnt receptor complex, CK1ε does not require p120‐catenin for the association with the Wnt5a co‐receptor Ror2. Wnt5a promotes the formation of the Ror2–Fz complex and enables the activation of Ror2‐bound CK1ε by Fz‐associated protein phosphatase 2A. Moreover, CK1ε also regulates Ror2 protein levels; CK1ε association stabilizes Ror2, which undergoes lysosomal‐dependent degradation in the absence of this kinase. Although p120‐catenin is not required for CK1ε association with Ror2, it also participates in this signaling pathway as p120‐catenin binds and maintains Ror2 at the plasma membrane; in p120‐depleted cells, Ror2 is rapidly internalized through a clathrin‐dependent mechanism. Accordingly, downregulation of p120‐catenin or CK1ε affects late responses to Wnt5a that are also sensitive to Ror2, such as SIAH2 transcription, cell invasion, or cortical actin polarization. Our results explain how CK1ε is activated by noncanonical Wnt and identify p120‐catenin and CK1ε as two critical factors controlling Ror2 function.
Collapse
Affiliation(s)
- Josué Curto
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Beatriz Del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aida Villarroel
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Guillem Fuertes
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Meritxell Vinyoles
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
11
|
Dual Roles of Fer Kinase Are Required for Proper Hematopoiesis and Vascular Endothelium Organization during Zebrafish Development. BIOLOGY 2017; 6:biology6040040. [PMID: 29168762 PMCID: PMC5745445 DOI: 10.3390/biology6040040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 11/17/2022]
Abstract
Fer kinase, a protein involved in the regulation of cell-cell adhesion and proliferation, has been shown to be required during invertebrate development and has been implicated in leukemia, gastric cancer, and liver cancer. However, in vivo roles for Fer during vertebrate development have remained elusive. In this study, we bridge the gap between the invertebrate and vertebrate realms by showing that Fer kinase is required during zebrafish embryogenesis for normal hematopoiesis and vascular organization with distinct kinase dependent and independent functions. In situ hybridization, quantitative PCR and fluorescence activated cell sorting (FACS) analyses revealed an increase in both erythrocyte numbers and gene expression patterns as well as a decrease in the organization of vasculature endothelial cells. Furthermore, rescue experiments have shown that the regulation of hematopoietic proliferation is dependent on Fer kinase activity, while vascular organizing events only require Fer in a kinase-independent manner. Our data suggest a model in which separate kinase dependent and independent functions of Fer act in conjunction with Notch activity in a divergent manner for hematopoietic determination and vascular tissue organization.
Collapse
|
12
|
Fan G, Zhang S, Gao Y, Greer PA, Tonks NK. HGF-independent regulation of MET and GAB1 by nonreceptor tyrosine kinase FER potentiates metastasis in ovarian cancer. Genes Dev 2017; 30:1542-57. [PMID: 27401557 PMCID: PMC4949327 DOI: 10.1101/gad.284166.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/07/2016] [Indexed: 12/29/2022]
Abstract
In this study, Fan et al. report a novel ligand- and autophosphorylation-independent activation of MET through the nonreceptor tyrosine kinase FER. The findings show that levels of FER were elevated in ovarian cancer cell lines and that loss of FER impaired the metastasis of ovarian cancer cells in vivo, providing new insights into signaling events that underlie metastasis in ovarian cancer cells. Ovarian cancer cells disseminate readily within the peritoneal cavity, which promotes metastasis, and are often resistant to chemotherapy. Ovarian cancer patients tend to present with advanced disease, which also limits treatment options; consequently, new therapies are required. The oncoprotein tyrosine kinase MET, which is the receptor for hepatocyte growth factor (HGF), has been implicated in ovarian tumorigenesis and has been the subject of extensive drug development efforts. Here, we report a novel ligand- and autophosphorylation-independent activation of MET through the nonreceptor tyrosine kinase feline sarcoma-related (FER). We demonstrated that the levels of FER were elevated in ovarian cancer cell lines relative to those in immortalized normal surface epithelial cells and that suppression of FER attenuated the motility and invasive properties of these cancer cells. Furthermore, loss of FER impaired the metastasis of ovarian cancer cells in vivo. Mechanistically, we demonstrated that FER phosphorylated a signaling site in MET: Tyr1349. This enhanced activation of RAC1/PAK1 and promoted a kinase-independent scaffolding function that led to recruitment and phosphorylation of GAB1 and the specific activation of the SHP2–ERK signaling pathway. Overall, this analysis provides new insights into signaling events that underlie metastasis in ovarian cancer cells, consistent with a prometastatic role of FER and highlighting its potential as a novel therapeutic target for metastatic ovarian cancer.
Collapse
Affiliation(s)
- Gaofeng Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Siwei Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Yan Gao
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Peter A Greer
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
13
|
Duñach M, Del Valle-Pérez B, García de Herreros A. p120-catenin in canonical Wnt signaling. Crit Rev Biochem Mol Biol 2017; 52:327-339. [PMID: 28276699 DOI: 10.1080/10409238.2017.1295920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Canonical Wnt signaling controls β-catenin protein stabilization, its translocation to the nucleus and the activation of β-catenin/Tcf-4-dependent transcription. In this review, we revise and discuss the recent results describing actions of p120-catenin in different phases of this pathway. More specifically, we comment its involvement in four different steps: (i) the very early activation of CK1ɛ, essential for Dvl-2 binding to the Wnt receptor complex; (ii) the internalization of GSK3 and Axin into multivesicular bodies, necessary for a complete stabilization of β-catenin; (iii) the activation of Rac1 small GTPase, required for β-catenin translocation to the nucleus; and (iv) the release of the inhibitory action caused by Kaiso transcriptional repressor. We integrate these new results with the previously known action of other elements in this pathway, giving a particular relevance to the responses of the Wnt pathway not required for β-catenin stabilization but for β-catenin transcriptional activity. Moreover, we discuss the possible future implications, suggesting that the two cellular compartments where β-catenin is localized, thus, the adherens junction complex and the Wnt signalosome, are more physically connected that previously thought.
Collapse
Affiliation(s)
- Mireia Duñach
- a Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina , Universitat Autònoma de Barcelona , Bellaterra , Spain
| | - Beatriz Del Valle-Pérez
- a Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina , Universitat Autònoma de Barcelona , Bellaterra , Spain
| | - Antonio García de Herreros
- b Programa de Recerca en Càncer , Institut Hospital del Mar d'Investigacions Mèdiques (IMIM) , Barcelona , Spain.,c Departament de Ciències Experimentals i de la Salut , Universitat Pompeu Fabra , Barcelona , Spain
| |
Collapse
|
14
|
Mitsunari K, Miyata Y, Watanabe SI, Asai A, Yasuda T, Kanda S, Sakai H. Stromal expression of Fer suppresses tumor progression in renal cell carcinoma and is a predictor of survival. Oncol Lett 2016; 13:834-840. [PMID: 28356966 DOI: 10.3892/ol.2016.5481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
Fps/Fes related (Fer) is a non-receptor tyrosine kinase that is expressed in fibroblasts, immune cells and endothelial cells. Fer serves an important pathological role in cell survival, angiogenesis and the immune system. However, the pathological role of Fer expression in the stromal cells surrounding renal cell carcinoma (RCC) has not been previously investigated. In the present study, immunohistochemical analysis of Fer was performed using the formalin-fixed tissue samples of 152 patients with RCC. The proliferative and apoptotic indices were used to represent the percentage of proliferation marker protein Ki-67- and cleaved caspase-3-positive cells, respectively. The microvessel density was defined as the number of cluster of differentiation (CD) 31-positively stained vessels/mm2. In addition, CD57+ and CD68+ cells were counted using semi-quantification of natural killer (NK) cells and macrophages. Fer expression in stromal cells was negatively associated with Fuhrman grade, pathological tumor stage and metastasis (P<0.001). Fer expression in stromal cells was negatively associated with CD68+ macrophage density, whereas it was positively associated with CD57+ NK cell density. Kaplan-Meier estimators indicated that decreased stromal Fer expression was a predictive marker of decreased cause-specific survival rate (P<0.001). Furthermore, low expression of Fer was identified as being an independent marker of decreased cause-specific survival using multivariate analysis (hazard ratio, 7.4; 95% confidence interval, 1.7-33.0; P<0.001). The results of the present study suggested that low Fer expression in stromal cells is associated with increased malignant aggressiveness and decreased survival in patients with RCC. CD57+ NK cell and CD68+ macrophage regulation in cancer-stromal tissue is considered to affect RCC pathology.
Collapse
Affiliation(s)
- Kensuke Mitsunari
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Shin-Ichi Watanabe
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Akihiro Asai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takuji Yasuda
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Shigeru Kanda
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
15
|
Abstract
As cells grow, move, and divide, they must reorganize and rearrange their membranes and cytoskeleton. The F-BAR protein family links cellular membranes with actin cytoskeletal rearrangements in processes including endocytosis, cytokinesis, and cell motility. Here we review emerging information on mechanisms of F-BAR domain oligomerization and membrane binding, and how these activities are coordinated with additional domains to accomplish scaffolding and signaling functions.
Collapse
Affiliation(s)
- Nathan A McDonald
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| | - Kathleen L Gould
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
16
|
Epelboin Y, Quintric L, Guévélou E, Boudry P, Pichereau V, Corporeau C. The Kinome of Pacific Oyster Crassostrea gigas, Its Expression during Development and in Response to Environmental Factors. PLoS One 2016; 11:e0155435. [PMID: 27231950 PMCID: PMC4883820 DOI: 10.1371/journal.pone.0155435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
Oysters play an important role in estuarine and coastal marine habitats, where the majority of humans live. In these ecosystems, environmental degradation is substantial, and oysters must cope with highly dynamic and stressful environmental constraints during their lives in the intertidal zone. The availability of the genome sequence of the Pacific oyster Crassostrea gigas represents a unique opportunity for a comprehensive assessment of the signal transduction pathways that the species has developed to deal with this unique habitat. We performed an in silico analysis to identify, annotate and classify protein kinases in C. gigas, according to their kinase domain taxonomy classification, and compared with kinome already described in other animal species. The C. gigas kinome consists of 371 protein kinases, making it closely related to the sea urchin kinome, which has 353 protein kinases. The absence of gene redundancy in some groups of the C. gigas kinome may simplify functional studies of protein kinases. Through data mining of transcriptomes in C. gigas, we identified part of the kinome which may be central during development and may play a role in response to various environmental factors. Overall, this work contributes to a better understanding of key sensing pathways that may be central for adaptation to a highly dynamic marine environment.
Collapse
Affiliation(s)
- Yanouk Epelboin
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Laure Quintric
- Ifremer, Service Ressources Informatiques et Communications, Plouzané, France
| | - Eric Guévélou
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Pierre Boudry
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Vianney Pichereau
- UBO, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Charlotte Corporeau
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| |
Collapse
|
17
|
Maiden SL, Petrova YI, Gumbiner BM. Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model. PLoS One 2016; 11:e0148574. [PMID: 26845024 PMCID: PMC4742228 DOI: 10.1371/journal.pone.0148574] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/19/2016] [Indexed: 01/06/2023] Open
Abstract
Tight regulation of cadherin-mediated intercellular adhesions is critical to both tissue morphogenesis during development and tissue homeostasis in adults. Cell surface expression of the cadherin-catenin complex is often directly correlated with the level of adhesion, however, examples exist where cadherin appears to be inactive and cells are completely non-adhesive. The state of p120-catenin phosphorylation has been implicated in regulating the adhesive activity of E-cadherin but the mechanism is currently unclear. We have found that destabilization of the microtubule cytoskeleton, independent of microtubule plus-end dynamics, dephosphorylates p120-catenin and activates E-cadherin adhesion in Colo 205 cells. Through chemical screening, we have also identified several kinases as potential regulators of E-cadherin adhesive activity. Analysis of several p120-catenin phosphomutants suggests that gross dephosphorylation of p120-catenin rather than that of specific amino acids may trigger E-cadherin adhesion. Uncoupling p120-catenin binding to E-cadherin at the membrane causes constitutive adhesion in Colo 205 cells, further supporting an inhibitory role of phosphorylated p120-catenin on E-cadherin activity.
Collapse
Affiliation(s)
- Stephanie L. Maiden
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Department of Biology, Truman State University, Kirksville, Missouri, United States of America
| | - Yuliya I. Petrova
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Barry M. Gumbiner
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Seattle Children’s Research Institute and University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
18
|
Hong JY, Oh IH, McCrea PD. Phosphorylation and isoform use in p120-catenin during development and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:102-14. [PMID: 26477567 DOI: 10.1016/j.bbamcr.2015.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
P120-catenin is essential to vertebrate development, modulating cadherin and small-GTPase functions, and growing evidence points also to roles in the nucleus. A complexity in addressing p120-catenin's functions is its many isoforms, including optional splicing events, alternative points of translational initiation, and secondary modifications. In this review, we focus upon how choices in the initiation of protein translation, or the earlier splicing of the RNA transcript, relates to primary sequences that harbor established or putative regulatory phosphorylation sites. While certain p120 phosphorylation events arise via known kinases/phosphatases and have defined outcomes, in most cases the functional consequences are still to be established. In this review, we provide examples of p120-isoforms as they relate to phosphorylation events, and thereby to isoform dependent protein-protein associations and downstream functions. We also provide a view of upstream pathways that determine p120's phosphorylation state, and that have an impact upon development and disease. Because other members of the p120 subfamily undergo similar processing and phosphorylation, as well as related catenins of the plakophilin subfamily, what is learned regarding p120 will by extension have wide relevance in vertebrates.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Il-Hoan Oh
- The Catholic University of Korea, Catholic High Performance Cell Therapy Center, 505 Banpo-dong, Seocho-Ku, Seoul 137-701, Republic of Korea
| | - Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Shostak K, Chariot A. EGFR and NF-κB: partners in cancer. Trends Mol Med 2015; 21:385-93. [DOI: 10.1016/j.molmed.2015.04.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/29/2022]
|
20
|
Oneyama C, Yoshikawa Y, Ninomiya Y, Iino T, Tsukita S, Okada M. Fer tyrosine kinase oligomer mediates and amplifies Src-induced tumor progression. Oncogene 2015; 35:501-12. [PMID: 25867068 DOI: 10.1038/onc.2015.110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/07/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
Abstract
c-Src is upregulated in various human cancers, suggesting its role in malignant progression. However, the molecular circuits of c-Src oncogenic signaling remain elusive. Here we show that Fer tyrosine kinase oligomer mediates and amplifies Src-induced tumor progression. Previously, we showed that transformation of fibroblasts is promoted by the relocation of c-Src to non-raft membranes. In this study, we identified Fer and ezrin as non-raft c-Src targets. c-Src directly activated Fer by initiating its autophosphorylation, which was further amplified by Fer oligomerization. Fer interacted with active c-Src at focal adhesion membranes and activated Fer-phosphorylated ezrin to induce cell transformation. Fer was also crucial for cell transformation induced by v-Src or epidermal growth-factor receptor activation. Furthermore, Fer activation was required for tumorigenesis and invasiveness in some cancer cells in which c-Src is upregulated. We propose that the Src-Fer axis represents a new therapeutic target for treatment of a subset of human cancers.
Collapse
Affiliation(s)
- C Oneyama
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Y Yoshikawa
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Y Ninomiya
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - T Iino
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - S Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - M Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
21
|
Sangrar W, Shi C, Mullins G, LeBrun D, Ingalls B, Greer PA. Amplified Ras-MAPK signal states correlate with accelerated EGFR internalization, cytostasis and delayed HER2 tumor onset in Fer-deficient model systems. Oncogene 2014; 34:4109-17. [DOI: 10.1038/onc.2014.340] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 12/20/2022]
|
22
|
Paardekooper Overman J, Preisinger C, Prummel K, Bonetti M, Giansanti P, Heck A, den Hertog J. Phosphoproteomics-mediated identification of Fer kinase as a target of mutant Shp2 in Noonan and LEOPARD syndrome. PLoS One 2014; 9:e106682. [PMID: 25184253 PMCID: PMC4153654 DOI: 10.1371/journal.pone.0106682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
Noonan syndrome (NS) and LEOPARD syndrome (LS) cause congenital afflictions such as short stature, hypertelorism and heart defects. More than 50% of NS and almost all of LS cases are caused by activating and inactivating mutations of the phosphatase Shp2, respectively. How these biochemically opposing mutations lead to similar clinical outcomes is not clear. Using zebrafish models of NS and LS and mass spectrometry-based phosphotyrosine proteomics, we identified a down-regulated peptide of Fer kinase in both NS and LS. Further investigation showed a role for Fer during development, where morpholino-based knockdown caused craniofacial defects, heart edema and short stature. During gastrulation, loss of Fer caused convergence and extension defects without affecting cell fate. Moreover, Fer knockdown cooperated with NS and LS, but not wild type Shp2 to induce developmental defects, suggesting a role for Fer in the pathogenesis of both NS and LS.
Collapse
Affiliation(s)
- Jeroen Paardekooper Overman
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian Preisinger
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Research, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Proteomics Facility, Interdisciplinary Centre for Clinical Research Aachen, Aachen University, Aachen, Germany
| | - Karin Prummel
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monica Bonetti
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Research, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Research, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Centre for Biomedical Genetics, Utrecht, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
- Institute Biology Leiden, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Muhlrad PJ, Clark JN, Nasri U, Sullivan NG, LaMunyon CW. SPE-8, a protein-tyrosine kinase, localizes to the spermatid cell membrane through interaction with other members of the SPE-8 group spermatid activation signaling pathway in C. elegans. BMC Genet 2014; 15:83. [PMID: 25022984 PMCID: PMC4105102 DOI: 10.1186/1471-2156-15-83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/03/2014] [Indexed: 01/04/2023] Open
Abstract
Background The SPE-8 group gene products transduce the signal for spermatid activation initiated by extracellular zinc in C. elegans. Mutations in the spe-8 group genes result in hermaphrodite-derived spermatids that cannot activate to crawling spermatozoa, although spermatids from mutant males activate through a pathway induced by extracellular TRY-5 protease present in male seminal fluid. Results Here, we identify SPE-8 as a member of a large family of sperm-expressed non-receptor-like protein-tyrosine kinases. A rescuing SPE-8::GFP translational fusion reporter localizes to the plasma membrane in all spermatogenic cells from the primary spermatocyte stage through spermatids. Once spermatids become activated to spermatozoa, the reporter moves from the plasma membrane to the cytoplasm. Mutations in the spe-8 group genes spe-12, spe-19, and spe-27 disrupt localization of the reporter to the plasma membrane, while localization appears near normal in a spe-29 mutant background. Conclusions These results suggest that the SPE-8 group proteins form a functional complex localized at the plasma membrane, and that SPE-8 is correctly positioned only when all members of the SPE-8 group are present, with the possible exception of SPE-29. Further, SPE-8 is released from the membrane when the activation signal is transduced into the spermatid.
Collapse
Affiliation(s)
| | | | | | | | - Craig W LaMunyon
- Department of Biological Science, California State Polytechnic University, 3801 W, Temple Ave, Pomona, CA 91768, USA.
| |
Collapse
|
24
|
Kawakami M, Ishikawa R, Amano Y, Sunohara M, Watanabe K, Ohishi N, Yatomi Y, Nakajima J, Fukayama M, Nagase T, Takai D. Detection of novel paraja ring finger 2-fer tyrosine kinase mRNA chimeras is associated with poor postoperative prognosis in non-small cell lung cancer. Cancer Sci 2013; 104:1447-54. [PMID: 23931849 DOI: 10.1111/cas.12250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/08/2013] [Accepted: 08/01/2013] [Indexed: 12/18/2022] Open
Abstract
Previously, we reported that the overexpression of fer tyrosine kinase (FER), a non-receptor tyrosine kinase, is correlated with poor postoperative prognosis and cancer-cell survival in non-small cell lung cancer (NSCLC). In the present study, we further analyzed FER-overexpressed NSCLC cases and identified various patterns of chimeric mRNAs, composed of paraja ring finger 2 (PJA2) and FER. We detected no genomic rearrangements between PJA2 and FER and attributed these chimeric mRNAs to alterations at the transcriptome level: i.e., trans-splicing. Several chimeric patterns were detected concurrently in each patient, and the pattern sets varied among patients, although the pattern in which PJA2 exon 1 was fused to FER exon 3 (designated as Pe1-Fe3 mRNA) was detected constantly. Therefore, in a wide screening for PJA2-FER mRNAs in NSCLC, we focused on this chimeric pattern as a representative chimera. In analyses of 167 NSCLC samples, Pe1-Fe3 mRNA was identified in about 10% of the patients, and the presence of chimeric mRNA was significantly correlated with a high expression level of parental FER mRNA. Furthermore, we found that the detection of Pe1-Fe3 mRNA was correlated with poor postoperative survival periods in NSCLC, consistent with a previous finding in which FER overexpression was correlated with poor postoperative prognosis in NSCLC. This report is the first to suggest a correlation between chimeric mRNA and the expression level of parental mRNA. Furthermore, our findings may be clinically beneficial, suggesting that PJA2-FER mRNAs might serve as a novel prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Masanori Kawakami
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan; Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ivanova IA, Vermeulen JF, Ercan C, Houthuijzen JM, Saig FA, Vlug EJ, van der Wall E, van Diest PJ, Vooijs M, Derksen PWB. FER kinase promotes breast cancer metastasis by regulating α6- and β1-integrin-dependent cell adhesion and anoikis resistance. Oncogene 2013; 32:5582-92. [PMID: 23873028 PMCID: PMC3898493 DOI: 10.1038/onc.2013.277] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
Metastatic breast cancer cannot be treated successfully. Currently, the targeted therapies for metastatic disease are limited to human epidermal growth factor receptor 2 and hormone receptor antagonists. Understanding the mechanisms of breast cancer growth and metastasis is therefore crucial for the development of new intervention strategies. Here, we show that FER kinase (FER) controls migration and metastasis of invasive human breast cancer cell lines by regulating α6- and β1-integrin-dependent adhesion. Conversely, the overexpression of FER in non-metastatic breast cancer cells induces pro-invasive features. FER drives anoikis resistance, regulates tumour growth and is necessary for metastasis in a mouse model of human breast cancer. In human invasive breast cancer, high FER expression is an independent prognostic factor that correlates with high-grade basal/triple-negative tumours and worse overall survival, especially in lymph node-negative patients. These findings establish FER as a promising target for the prevention and inhibition of metastatic breast cancer.
Collapse
Affiliation(s)
- I A Ivanova
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J F Vermeulen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Ercan
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J M Houthuijzen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F A Saig
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E J Vlug
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E van der Wall
- 1] Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands [2] Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Vooijs
- 1] Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands [2] Department of Radiation Oncology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - P W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Ahn J, Truesdell P, Meens J, Kadish C, Yang X, Boag AH, Craig AWB. Fer protein-tyrosine kinase promotes lung adenocarcinoma cell invasion and tumor metastasis. Mol Cancer Res 2013; 11:952-63. [PMID: 23699534 DOI: 10.1158/1541-7786.mcr-13-0003-t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Epidermal growth factor receptor (EGFR) is frequently amplified or mutated in non-small cell lung cancer (NSCLC). Although Fer protein-tyrosine kinase signals downstream of EGFR, its role in NSCLC tumor progression has not been reported. Here, Fer kinase was elevated in NSCLC tumors compared to normal lung epithelium. EGFR signaling in NSCLC cells fosters rapid Fer activation and increased localization to lamellipodia. Stable silencing of Fer in H1299 lung adenocarcinoma cells (Fer KD) caused impaired EGFR-induced lamellipodia formation compared to control cells. Fer KD NSCLC cells showed reduced Vav2 tyrosine phosphorylation that was correlated with direct Fer-mediated phosphorylation of Vav2 on tyrosine-172, which was previously reported to increase the guanine nucleotide exchange factor activity of Vav2. Indeed, Fer KD cells displayed defects in Rac-GTP localization to lamellipodia, cell migration, and cell invasion in vitro. To test the role of Fer in NSCLC progression and metastasis, control and Fer KD cells were grown as subcutaneous tumors in mice. Although Fer was not required for tumor growth, Fer KD tumor-bearing mice had significantly fewer numbers of spontaneous metastases. Combined, these data demonstrate that Fer kinase is elevated in NSCLC tumors and is important for cellular invasion and metastasis. IMPLICATIONS Fer protein-tyrosine kinase is a potential therapeutic target in metastatic lung cancer. Mol Cancer Res; 11(8); 952-63. ©2013 AACR.
Collapse
Affiliation(s)
- Joseph Ahn
- Division of Cancer Biology & Genetics, Queen's University, Botterell Hall, 3rd Fl, CRI315, 18 Stuart St., Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Lennartsson J, Ma H, Wardega P, Pelka K, Engström U, Hellberg C, Heldin CH. The Fer tyrosine kinase is important for platelet-derived growth factor-BB-induced signal transducer and activator of transcription 3 (STAT3) protein phosphorylation, colony formation in soft agar, and tumor growth in vivo. J Biol Chem 2013; 288:15736-44. [PMID: 23589302 DOI: 10.1074/jbc.m113.476424] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fer is a cytoplasmic tyrosine kinase that is activated in response to platelet-derived growth factor (PDGF) stimulation. In the present report, we show that Fer associates with the activated PDGF β-receptor (PDGFRβ) through multiple autophosphorylation sites, i.e. Tyr-579, Tyr-581, Tyr-740, and Tyr-1021. Using low molecular weight inhibitors, we found that PDGF-BB-induced Fer activation is dependent on PDGFRβ kinase activity, but not on the enzymatic activity of Src or Jak kinases. In cells in which Fer was down-regulated using siRNA, PDGF-BB was unable to induce phosphorylation of STAT3, whereas phosphorylations of STAT5, ERK1/2, and Akt were unaffected. PDGF-BB-induced activation of STAT3 occurred also in cells expressing kinase-dead Fer, suggesting a kinase-independent adaptor role of Fer. Expression of Fer was dispensable for PDGF-BB-induced proliferation and migration but essential for colony formation in soft agar. Tumor growth in vivo was delayed in cells depleted of Fer expression. Our data suggest a critical role of Fer in PDGF-BB-induced STAT3 activation and cell transformation.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-75124, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Kawakami M, Morita S, Sunohara M, Amano Y, Ishikawa R, Watanabe K, Hamano E, Ohishi N, Nakajima J, Yatomi Y, Nagase T, Fukayama M, Takai D. FER overexpression is associated with poor postoperative prognosis and cancer-cell survival in non-small cell lung cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:598-612. [PMID: 23573306 PMCID: PMC3606849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/16/2013] [Indexed: 06/02/2023]
Abstract
Here, we show that overexpression of fer tyrosine kinase (FER), a non-receptor tyrosine kinase, predicts poor postoperative outcome and might be involved in cancer-cell survival in non-small cell lung cancer (NSCLC). Systematic screening using in silico analyses and quantitative RT-PCR revealed that FER was overexpressed in about 10% of NSCLC patients. Evaluation of FER expression using immunohistochemistry (IHC) on tissue microarrays was consistent with the mRNA level detected using quantitative RT-PCR. In analyses of 135 NSCLC patients who had undergone potential curative resection, we found that FER overexpression detected using IHC had no association with clinicopathological features such as age, sex, smoking history, histological type, disease stage, T factor, N factor, adjuvant chemotherapy history, or EGFR mutation, but was correlated with poor postoperative survival periods. A multivariate Cox regression analysis showed that this prognostic impact was independent of other clinicopathological features. In functional analyses of FER in vitro, FER exhibited a transforming activity, suggesting that it possesses oncogenic functions. We also found that human lung cancer NCI-H661 cells, which exhibited FER-outlier expression, were led to apoptosis by the knockdown of FER using RNA interference. FER overexpression might serve as a prognostic biomarker and be involved in cancer-cell survival in NSCLC.
Collapse
Affiliation(s)
- Masanori Kawakami
- Department of Respiratory Medicine, The University of Tokyo HospitalTokyo 113-8655, Japan
- Department of Clinical Laboratory, The University of Tokyo HospitalTokyo 113-8655, Japan
| | - Shigeki Morita
- Department of Pathology, The University of Tokyo HospitalTokyo 113-8655, Japan
| | - Mitsuhiro Sunohara
- Department of Respiratory Medicine, The University of Tokyo HospitalTokyo 113-8655, Japan
| | - Yosuke Amano
- Department of Respiratory Medicine, The University of Tokyo HospitalTokyo 113-8655, Japan
| | - Rie Ishikawa
- Department of Respiratory Medicine, The University of Tokyo HospitalTokyo 113-8655, Japan
| | - Kousuke Watanabe
- Department of Respiratory Medicine, The University of Tokyo HospitalTokyo 113-8655, Japan
| | - Emi Hamano
- Department of Respiratory Medicine, The University of Tokyo HospitalTokyo 113-8655, Japan
| | - Nobuya Ohishi
- Department of Respiratory Medicine, The University of Tokyo HospitalTokyo 113-8655, Japan
| | - Jun Nakajima
- Department of Cardiothoracic Surgery, The University of Tokyo HospitalTokyo 113-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo HospitalTokyo 113-8655, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, The University of Tokyo HospitalTokyo 113-8655, Japan
| | - Masashi Fukayama
- Department of Pathology, The University of Tokyo HospitalTokyo 113-8655, Japan
| | - Daiya Takai
- Department of Clinical Laboratory, The University of Tokyo HospitalTokyo 113-8655, Japan
| |
Collapse
|
29
|
Khajah M, Andonegui G, Chan R, Craig AW, Greer PA, McCafferty DM. Fer kinase limits neutrophil chemotaxis toward end target chemoattractants. THE JOURNAL OF IMMUNOLOGY 2013; 190:2208-16. [PMID: 23355730 DOI: 10.4049/jimmunol.1200322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophil recruitment and directional movement toward chemotactic stimuli are important processes in innate immune responses. This study examines the role of Fer kinase in neutrophil recruitment and chemotaxis to various chemoattractants in vitro and in vivo. Mice targeted with a kinase-inactivating mutation (Fer(DR/DR)) or wild type (WT) were studied using time-lapse intravital microscopy to examine leukocyte recruitment and chemotaxis in vivo. In response to keratinocyte-derived cytokine, no difference in leukocyte chemotaxis was observed between WT and Fer(DR/DR) mice. However, in response to the chemotactic peptide WKYMVm, a selective agonist of the formyl peptide receptor, a 2-fold increase in leukocyte emigration was noted in Fer(DR/DR) mice (p < 0.05). To determine whether these defects were due to Fer signaling in the endothelium or other nonhematopoietic cells, bone marrow chimeras were generated. WKYMVm-induced leukocyte recruitment in chimeric mice (WT bone marrow to Fer(DR/DR) recipients or vice versa) was similar to WT mice, suggesting that Fer kinase signaling in both leukocytes and endothelial cells serves to limit chemotaxis. Purified Fer(DR/DR) neutrophils demonstrated enhanced chemotaxis toward end target chemoattractants (WKYMVm and C5a) compared with WT using an under-agarose gel chemotaxis assay. These defects were not observed in response to intermediate chemoattractants (keratinocyte-derived cytokine, MIP-2, or LTB(4)). Increased WKYMVm-induced chemotaxis of Fer(DR/DR) neutrophils correlated with sustained PI3K activity and reduced reliance on the p38 MAPK pathway compared with WT neutrophils. Together, these data identify Fer as a novel inhibitory kinase for neutrophil chemotaxis toward end target chemoattractants through modulation of PI3K activity.
Collapse
Affiliation(s)
- Maitham Khajah
- Department of Physiology and Pharmacology, Gastrointestinal Research Group, Institute of Inflammation, Immunity, and Infection, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
30
|
Zhao X, Yu H, Kong L, Li Q. Transcriptomic responses to salinity stress in the Pacific oyster Crassostrea gigas. PLoS One 2012; 7:e46244. [PMID: 23029449 PMCID: PMC3459877 DOI: 10.1371/journal.pone.0046244] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low salinity is one of the main factors limiting the distribution and survival of marine species. As a euryhaline species, the Pacific oyster Crassostrea gigas is considered to be tolerant to relative low salinity. The genes that regulate C. gigas responses to osmotic stress were monitored using the next-generation sequencing of whole transcriptome with samples taken from gills. By RNAseq technology, transcript catalogs of up- and down-regulated genes were generated from the oysters exposed to low and optimal salinity seawater. METHODOLOGY/PRINCIPAL FINDINGS Through Illumina sequencing, we reported 1665 up-regulated transcripts and 1815 down-regulated transcripts. A total of 45771 protein-coding contigs were identified from two groups based on sequence similarities with known proteins. As determined by GO annotation and KEGG pathway mapping, functional annotation of the genes recovered diverse biological functions and processes. The genes that changed expression significantly were highly represented in cellular process and regulation of biological process, intracellular and cell, binding and protein binding according to GO annotation. The results highlighted genes related to osmoregulation, signaling and interactions of osmotic stress response, anti-apoptotic reactions as well as immune response, cell adhesion and communication, cytoskeleton and cell cycle. CONCLUSIONS/SIGNIFICANCE Through more than 1.5 million sequence reads and the expression data of the two libraries, the study provided some useful insights into signal transduction pathways in oysters and offered a number of candidate genes as potential markers of tolerance to hypoosmotic stress for oysters. In addition, the characterization of C. gigas transcriptome will not only provide a better understanding of the molecular mechanisms about the response to osmotic stress of the oysters, but also facilitate research into biological processes to find underlying physiological adaptations to hypoosmotic shock for marine invertebrates.
Collapse
Affiliation(s)
| | | | | | - Qi Li
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
31
|
Iqbal S, Zhang S, Driss A, Liu ZR, Kim HRC, Wang Y, Ritenour C, Zhau HE, Kucuk O, Chung LWK, Wu D. PDGF upregulates Mcl-1 through activation of β-catenin and HIF-1α-dependent signaling in human prostate cancer cells. PLoS One 2012; 7:e30764. [PMID: 22276222 PMCID: PMC3262835 DOI: 10.1371/journal.pone.0030764] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 12/20/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aberrant platelet derived growth factor (PDGF) signaling has been associated with prostate cancer (PCa) progression. However, its role in the regulation of PCa cell growth and survival has not been well characterized. METHODOLOGY/PRINCIPAL FINDINGS Using experimental models that closely mimic clinical pathophysiology of PCa progression, we demonstrated that PDGF is a survival factor in PCa cells through upregulation of myeloid cell leukemia-1 (Mcl-1). PDGF treatment induced rapid nuclear translocation of β-catenin, presumably mediated by c-Abl and p68 signaling. Intriguingly, PDGF promoted formation of a nuclear transcriptional complex consisting of β-catenin and hypoxia-inducible factor (HIF)-1α, and its binding to Mcl-1 promoter. Deletion of a putative hypoxia response element (HRE) within the Mcl-1 promoter attenuated PDGF effects on Mcl-1 expression. Blockade of PDGF receptor (PDGFR) signaling with a pharmacological inhibitor AG-17 abrogated PDGF induction of Mcl-1, and induced apoptosis in metastatic PCa cells. CONCLUSIONS/SIGNIFICANCE Our study elucidated a crucial survival mechanism in PCa cells, indicating that interruption of the PDGF-Mcl-1 survival signal may provide a novel strategy for treating PCa metastasis.
Collapse
Affiliation(s)
- Shareen Iqbal
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shumin Zhang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Adel Driss
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Hyeong-Reh Choi Kim
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Yanru Wang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Chad Ritenour
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Haiyen E. Zhau
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Omer Kucuk
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Leland W. K. Chung
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail: (DW); (LWKC)
| | - Daqing Wu
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (DW); (LWKC)
| |
Collapse
|
32
|
Abstract
p120-Catenin is the prototypic member of a subfamily of armadillo repeat domain proteins. Like its structural homologues, β- and γ-catenin, p120-catenin is an essential component of adherens junctions in endothelial cells and other polarized adherent cells. p120-Catenin binds directly to the cytoplasmic domain of cadherin and contributes to the regulation of cell-cell junctional integrity. Studies have demonstrated that p120-catenin plays important roles in cell-cell adhesion, embryonic development, cell proliferation and polarity, tumor cell migration, and cancer progression. However, recent insights have generated an entirely new perspective, suggesting that p120-catenin is implicated in the anti-inflammatory responses in the absence and presence of infection. This review summarizes the present knowledge and recent progress toward elucidating the novel role of p120-catenin in the regulation of innate immunity and inflammation.
Collapse
Affiliation(s)
- Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, 835 South Wolcott Avenue, Chicago, Illinois 60612, USA.
| |
Collapse
|
33
|
del Valle-Pérez B, Casagolda D, Lugilde E, Valls G, Codina M, Dave N, de Herreros AG, Duñach M. Wnt controls the transcriptional activity of Kaiso through CK1ε-dependent phosphorylation of p120-catenin. J Cell Sci 2011; 124:2298-309. [DOI: 10.1242/jcs.082693] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
p120-catenin is an E-cadherin-associated protein that modulates E-cadherin function and stability. In response to Wnt3a, p120-catenin is phosphorylated at Ser268 and Ser269, disrupting its interaction with E-cadherin. Here, we describe that Wnt-induced p120-catenin phosphorylation at Ser268 and Ser269 also enhances its binding to the transcriptional factor Kaiso, preventing Kaiso-mediated inhibition of the β-catenin–Tcf-4 transcriptional complex. Kaiso-mediated repression of this complex is due to its association not only with Tcf-4 but also with β-catenin. Disruption of Tcf-4–Kaiso and β-catenin–Kaiso interactions by p120-catenin not only releases Tcf-4 and β-catenin enabling its mutual association and the formation of the transcriptional complex but also permits Kaiso binding to methylated CpG islands, an interaction that is weakly inhibited by p120-catenin. Consequently, Wnt stimulates Kaiso association to the CDKN2A promoter, which contains CpG sequences, in cells where these sequences are extensively methylated, such as HT-29 M6, an effect accompanied by decreased expression of its gene product. These results indicate that, when released from E-cadherin by Wnt3a-stimulated phosphorylation, p120-catenin controls the activity of the Kaiso transcriptional factor, enhancing its binding to repressed promoters and relieving its inhibition of the β-catenin–Tcf-4 transcriptional complex.
Collapse
Affiliation(s)
- Beatriz del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain
| | - David Casagolda
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain
- Programa de Recerca en Càncer, IMIM-Hospital del Mar, Doctor Aiguader 88, Barcelona E-08003, Spain
| | - Ero Lugilde
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain
| | - Gabriela Valls
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain
| | - Montserrat Codina
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain
- Programa de Recerca en Càncer, IMIM-Hospital del Mar, Doctor Aiguader 88, Barcelona E-08003, Spain
| | - Natàlia Dave
- Programa de Recerca en Càncer, IMIM-Hospital del Mar, Doctor Aiguader 88, Barcelona E-08003, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, IMIM-Hospital del Mar, Doctor Aiguader 88, Barcelona E-08003, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona E-08003, Spain
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain
| |
Collapse
|
34
|
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691-731. [PMID: 21527735 DOI: 10.1152/physrev.00004.2010] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.
Collapse
Affiliation(s)
- Carien M Niessen
- Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
35
|
McGinnis LK, Hong X, Christenson LK, Kinsey WH. Fer tyrosine kinase is required for germinal vesicle breakdown and meiosis-I in mouse oocytes. Mol Reprod Dev 2011; 78:33-47. [PMID: 21268181 DOI: 10.1002/mrd.21264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The control of microtubule and actin-mediated events that direct the physical arrangement and separation of chromosomes during meiosis is critical since failure to maintain chromosome organization can lead to germ cell aneuploidy. Our previous studies demonstrated a role for FYN tyrosine kinase in chromosome and spindle organization and in cortical polarity of the mature mammalian oocyte. In addition to Fyn, mammalian oocytes express the protein tyrosine kinase Fer at high levels relative to other tissues. The objective of the present study was to determine the function of this kinase in the oocyte. Feline encephalitis virus (FES)-related kinase (FER) protein was uniformly distributed in the ooplasm of small oocytes, but became concentrated in the germinal vesicle (GV) during oocyte growth. After germinal vesicle breakdown (GVBD), FER associated with the metaphase-I (MI) and metaphase-II (MII) spindles. Suppression of Fer expression by siRNA knockdown in GV stage oocytes did not prevent activation of cyclin dependent kinase 1 activity or chromosome condensation during in vitro maturation, but did arrest oocytes prior to GVBD or during MI. The resultant phenotype displayed condensed chromosomes trapped in the GV, or condensed chromosomes poorly arranged in a metaphase plate but with an underdeveloped spindle microtubule structure or chromosomes compacted into a tight sphere. The results demonstrate that FER kinase plays a critical role in oocyte meiotic spindle microtubule dynamics and may have an additional function in GVBD.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Anatomy and Cell Biology, University of Kansas Medical School, Kansas City, Kansas 66160, USA.
| | | | | | | |
Collapse
|
36
|
FER tyrosine kinase (FER) overexpression mediates resistance to quinacrine through EGF-dependent activation of NF-kappaB. Proc Natl Acad Sci U S A 2011; 108:7968-73. [PMID: 21518868 DOI: 10.1073/pnas.1105369108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quinacrine, a drug with antimalarial and anticancer activities that inhibits NF-κB and activates p53, has progressed into phase II clinical trials in cancer. To further elucidate its mechanism of action and identify pathways of drug resistance, we used an unbiased method for validation-based insertional mutagenesis to isolate a quinacrine-resistant cell line in which an inserted CMV promoter drives overexpression of the FER tyrosine kinase (FER). Overexpression of FER from a cDNA confers quinacrine resistance to several different types of cancer cell lines. We show that quinacrine kills cancer cells primarily by inhibiting the activation of NF-κB and that increased activation of NF-κB through FER overexpression mediates resistance. EGF activates NF-κB and stimulates phosphorylation of FER, EGF receptor (EGFR), and ERK p42/p44, and decreased expression of FER or inhibition of ERK phosphorylation inhibits the EGF-induced activation of NF-κB. FER binds to EGFR, and overexpression of FER in cells untreated with EGF increases this association, leading to increased phosphorylation of EGFR and ERK. We conclude that FER is on a pathway connecting EGFR to NF-κB activation and that this function is responsible for FER-dependent resistance to quinacrine.
Collapse
|
37
|
Herron CR, Lowery AM, Hollister PR, Reynolds AB, Vincent PA. p120 regulates endothelial permeability independently of its NH2 terminus and Rho binding. Am J Physiol Heart Circ Physiol 2010; 300:H36-48. [PMID: 20971762 DOI: 10.1152/ajpheart.00812.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The association of p120-catenin (p120) with the juxtamembrane domain (JMD) of vascular endothelial (VE)-cadherin is required to maintain VE-cadherin levels and transendothelial resistance (TEER) of endothelial cell monolayers. To distinguish whether decreased TEER was due to a loss of p120 and not to the decrease in VE-cadherin, we established a system in which p120 was depleted by short hairpin RNA delivered by lentivirus and VE-cadherin was restored via expression of VE-cadherin fused to green fluorescent protein (GFP). Loss of p120 resulted in decreased TEER, which was associated with decreased expression of VE-cadherin, β-catenin, plakoglobin, and α-catenin. Decreased TEER was rescued by restoration of p120 but not by the expression of VE-cadherin-GFP, despite localization of VE-cadherin-GFP at cell-cell borders. Expression of VE-cadherin-GFP restored levels of β-catenin and α-catenin but not plakoglobin, indicating that p120 may be important for recruitment of plakoglobin to the VE-cadherin complex. To evaluate the role of p120 interaction with Rho GTPase in regulating endothelial permeability, we expressed a recombinant form of p120, lacking the NH(2) terminus and containing alanine substitutions, that eliminates binding of Rho to p120. Expression of this isoform restored expression of the adherens junction complex and rescued permeability as measured by TEER. These results demonstrate that p120 is required for maintaining VE-cadherin expression and TEER independently of its NH(2) terminus and its role in regulating Rho.
Collapse
Affiliation(s)
- Crystal R Herron
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA
| | | | | | | | | |
Collapse
|
38
|
Casagolda D, Del Valle-Pérez B, Valls G, Lugilde E, Vinyoles M, Casado-Vela J, Solanas G, Batlle E, Reynolds AB, Casal JI, de Herreros AG, Duñach M. A p120-catenin-CK1epsilon complex regulates Wnt signaling. J Cell Sci 2010; 123:2621-31. [PMID: 20940130 DOI: 10.1242/jcs.067512] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
p120-catenin is an E-cadherin-associated protein that modulates E-cadherin function and stability. We describe here that p120-catenin is required for Wnt pathway signaling. p120-catenin binds and is phosphorylated by CK1ε in response to Wnt3a. p120-catenin also associates to the Wnt co-receptor LRP5/6, an interaction mediated by E-cadherin, showing an unexpected physical link between adherens junctions and a Wnt receptor. Depletion of p120-catenin abolishes CK1ε binding to LRP5/6 and prevents CK1ε activation upon Wnt3a stimulation. Elimination of p120-catenin also inhibits early responses to Wnt, such as LRP5/6 and Dvl-2 phosphorylation and axin recruitment to the signalosome, as well as later effects, such as β-catenin stabilization. Moreover, since CK1ε is also required for E-cadherin phosphorylation, a modification that decreases the affinity for β-catenin, p120-catenin depletion prevents the increase in β-catenin transcriptional activity even in the absence of β-catenin degradation. Therefore, these results demonstrate a novel and crucial function of p120-catenin in Wnt signaling and unveil additional points of regulation by this factor of β-catenin transcriptional activity different of β-catenin stability.
Collapse
Affiliation(s)
- David Casagolda
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 2010; 72:463-93. [PMID: 20148685 DOI: 10.1146/annurev-physiol-021909-135833] [Citation(s) in RCA: 488] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endothelium functions as a semipermeable barrier regulating tissue fluid homeostasis and transmigration of leukocytes and providing essential nutrients across the vessel wall. Transport of plasma proteins and solutes across the endothelium involves two different routes: one transcellular, via caveolae-mediated vesicular transport, and the other paracellular, through interendothelial junctions. The permeability of the endothelial barrier is an exquisitely regulated process in the resting state and in response to extracellular stimuli and mediators. The focus of this review is to provide a comprehensive overview of molecular and signaling mechanisms regulating endothelial barrier permeability with emphasis on the cross-talk between paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Yulia Komarova
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | |
Collapse
|
40
|
fps/fes knockout mice display a lactation defect and the fps/fes tyrosine kinase is a component of E-cadherin-based adherens junctions in breast epithelial cells during lactation. Exp Cell Res 2009; 315:2929-40. [PMID: 19732771 DOI: 10.1016/j.yexcr.2009.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 12/18/2022]
Abstract
The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase implicated in vesicular trafficking and cytokine and growth factor signaling in hematopoietic, neuronal, vascular endothelial and epithelial lineages. Genetic evidence has suggested a tumor suppressor role for Fps/Fes in breast and colon. Here we used fps/fes knockout mice to investigate potential roles for this kinase in development and function of the mammary gland. Fps/Fes expression was induced during pregnancy and lactation, and its kinase activity was dramatically enhanced. Milk protein and fat composition from nursing fps/fes-null mothers was normal; however, pups reared by them gained weight more slowly than pups reared by wild-type mothers. Fps/Fes displayed a predominantly dispersed punctate intracellular distribution which was consistent with vesicles within the luminal epithelial cells of lactating breast, while a small fraction co-localized with beta-catenin and E-cadherin on their basolateral surfaces. Fps/Fes was found to be a component of the E-cadherin adherens junction (AJ) complex; however, the phosphotyrosine status of beta-catenin and core AJ components in fps/fes-null breast tissue was unaltered, and epithelial cell AJs and gland morphology were intact. We conclude that Fps/Fes is not essential for the maintenance of epithelial cell AJs in the lactating breast but may instead play important roles in vesicular trafficking and milk secretion.
Collapse
|
41
|
Abstract
The metastatic process, i.e. the dissemination of cancer cells throughout the body to seed secondary tumors at distant sites, requires cancer cells to leave the primary tumor and to acquire migratory and invasive capabilities. In a process of epithelial-mesenchymal transition (EMT), besides changing their adhesive repertoire, cancer cells employ developmental processes to gain migratory and invasive properties that involve a dramatic reorganization of the actin cytoskeleton and the concomitant formation of membrane protrusions required for invasive growth. The molecular processes underlying such cellular changes are still only poorly understood, and the various migratory organelles, including lamellipodia, filopodia, invadopodia and podosomes, still require a better functional and molecular characterization. Notably, direct experimental evidence linking the formation of migratory membrane protrusions and the process of EMT and tumor metastasis is still lacking. In this review, we have summarized recent novel insights into the molecular processes and players underlying EMT on one side and the formation of invasive membrane protrusions on the other side.
Collapse
Affiliation(s)
- Mahmut Yilmaz
- Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
42
|
Oh MA, Choi S, Lee MJ, Choi MC, Lee SA, Ko W, Cance WG, Oh ES, Buday L, Kim SH, Lee JW. Specific tyrosine phosphorylation of focal adhesion kinase mediated by Fer tyrosine kinase in suspended hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:781-91. [PMID: 19339212 DOI: 10.1016/j.bbamcr.2009.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 01/03/2009] [Accepted: 01/23/2009] [Indexed: 11/26/2022]
Abstract
Cell adhesion to the extracellular matrix (ECM) can activate signaling via focal adhesion kinase (FAK) leading to dynamic regulation of cellular morphology. Mechanistic basis for the lack of effective intracellular signaling by non-attached epithelial cells is poorly understood. To examine whether signaling in suspended cells is regulated by Fer cytoplasmic tyrosine kinase, we investigated the effect of ectopic Fer expression on signaling in suspended or adherent hepatocytes. We found that ectopic Fer expression in Huh7 hepatocytes in suspension or on non-permissive poly-lysine caused significant phosphorylation of FAK Tyr577, Tyr861, or Tyr925, but not Tyr397 or Tyr576. Fer-mediated FAK phosphorylation in suspended cells was independent of c-Src activity or growth factor stimulation, but dependent of cortactin expression. Consistent with these results, complex formation between FAK, Fer, and cortactin was observed in suspended cells. The Fer-mediated effect correlated with multiple membrane protrusions, even on poly-lysine. Together, these observations suggest that Fer may allow a bypass of anchorage-dependency for intracellular signal transduction in hepatocytes.
Collapse
Affiliation(s)
- Min-A Oh
- Cancer Research Institute, Cell Dynamics Research Center, Department of Tumor Biology, College of Medicine, Seoul National University, 101, Daehangro, Jongno-gu, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Protein kinase C-Fyn kinase cascade mediates the oleic acid-induced disassembly of neonatal rat cardiomyocyte adherens junctions. Int J Biochem Cell Biol 2009; 41:1536-46. [PMID: 19166962 DOI: 10.1016/j.biocel.2008.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/19/2008] [Accepted: 12/30/2008] [Indexed: 12/24/2022]
Abstract
Oleic acid (OA) affects assembly of gap junctions in neonatal cardiomyocytes. Adherens junction (AJ) regulates the stability of gap junction integrity; however, the effect of OA on AJ remains largely unexplored. The distribution of N-cadherin and catenins at cell-cell junction was decreased by OA. OA induced activation of protein kinase C(PKC)-alpha and -epsilon and Src family kinase, and all three kinases were involved in the oleic acid-induced disassembly of the adherens junction, since it was blocked by pretreatment with Gö6976 (a PKCalpha inhibitor), epsilonV1-2 (a PKCepsilon inhibitor), or PP2 (a Src family kinase inhibitor). Src family kinase appeared to be the downstream of PKC-alpha and -epsilon, as blockade of either PKC-alpha or -epsilon activity prevented the OA-induced activation of Src family kinase. Immunoprecipitation analyses showed that OA activated Fyn and Fer. OA promoted the association of p120 catenin/beta-catenin with Fyn and Fer and caused increased tyrosine phosphorylation of p120 catenin and beta-catenin, resulting in decreased binding of the former to N-cadherin and of the latter to alpha-catenin. Pretreatment with PP2 abrogated this OA-induced tyrosine phosphorylation of p120 catenin and beta-catenin and restored the association of N-cadherin with p120 catenin and that of beta-catenin with alpha-catenin. In conclusion, these results show that OA activates the PKC-Fyn signaling pathway, leading to the disassembly of the AJ. Therefore, inhibitors of PKC-alpha/-epsilon and Src family kinase are potential candidates as cardioprotection agents against OA-induced heart injury during ischemia-reperfusion.
Collapse
|
44
|
Contributions of F-BAR and SH2 domains of Fes protein tyrosine kinase for coupling to the FcepsilonRI pathway in mast cells. Mol Cell Biol 2008; 29:389-401. [PMID: 19001085 DOI: 10.1128/mcb.00904-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study investigates the roles of Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) and SH2 domains of Fes protein tyrosine kinase in regulating its activation and signaling downstream of the high-affinity immunoglobulin G (IgE) receptor (FcepsilonRI) in mast cells. Homology modeling of the Fes F-BAR domain revealed conservation of some basic residues implicated in phosphoinositide binding (R113/K114). The Fes F-BAR can bind phosphoinositides and induce tubulation of liposomes in vitro. Mutation of R113/K114 to uncharged residues (RK/QQ) caused a significant reduction in phosphoinositide binding in vitro and a more diffuse cytoplasmic localization in transfected COS-7 cells. RBL-2H3 mast cells expressing full-length Fes carrying the RK/QQ mutation show defects in FcepsilonRI-induced Fes tyrosine phosphorylation and degranulation compared to cells expressing wild-type Fes. This correlated with reduced localization to Lyn kinase-containing membrane fractions for the RK/QQ mutant compared to wild-type Fes in mast cells. The Fes SH2 domain also contributes to Fes signaling in mast cells, via interactions with the phosphorylated FcepsilonRI beta chain and the actin regulatory protein HS1. We show that Fes phosphorylates C-terminal tyrosine residues in HS1 implicated in actin stabilization. Thus, coordinated actions of the F-BAR and SH2 domains of Fes allow for coupling to FcepsilonRI signaling and potential regulation the actin reorganization in mast cells.
Collapse
|
45
|
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have served as prototypes for growth factor and receptor tyrosine kinase function for more than 25 years. Studies of PDGFs and PDGFRs in animal development have revealed roles for PDGFR-alpha signaling in gastrulation and in the development of the cranial and cardiac neural crest, gonads, lung, intestine, skin, CNS, and skeleton. Similarly, roles for PDGFR-beta signaling have been established in blood vessel formation and early hematopoiesis. PDGF signaling is implicated in a range of diseases. Autocrine activation of PDGF signaling pathways is involved in certain gliomas, sarcomas, and leukemias. Paracrine PDGF signaling is commonly observed in epithelial cancers, where it triggers stromal recruitment and may be involved in epithelial-mesenchymal transition, thereby affecting tumor growth, angiogenesis, invasion, and metastasis. PDGFs drive pathological mesenchymal responses in vascular disorders such as atherosclerosis, restenosis, pulmonary hypertension, and retinal diseases, as well as in fibrotic diseases, including pulmonary fibrosis, liver cirrhosis, scleroderma, glomerulosclerosis, and cardiac fibrosis. We review basic aspects of the PDGF ligands and receptors, their developmental and pathological functions, principles of their pharmacological inhibition, and results using PDGF pathway-inhibitory or stimulatory drugs in preclinical and clinical contexts.
Collapse
|
46
|
Mruk DD, Silvestrini B, Cheng CY. Anchoring junctions as drug targets: role in contraceptive development. Pharmacol Rev 2008; 60:146-80. [PMID: 18483144 PMCID: PMC3023124 DOI: 10.1124/pr.107.07105] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In multicellular organisms, cell-cell interactions are mediated in part by cell junctions, which underlie tissue architecture. Throughout spermatogenesis, for instance, preleptotene leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier to enter the adluminal compartment for continued development. At the same time, germ cells must also remain attached to Sertoli cells, and numerous studies have reported extensive restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface during germ cell movement across the seminiferous epithelium. Furthermore, the proteins and signaling cascades that regulate adhesion between testicular cells have been largely delineated. These findings have unveiled a number of potential "druggable" targets that can be used to induce premature release of germ cells from the seminiferous epithelium, resulting in transient infertility. Herein, we discuss a novel approach with the aim of developing a nonhormonal male contraceptive for future human use, one that involves perturbing adhesion between Sertoli and germ cells in the testis.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, The Mary M Wohlford Laboratory for Male Contraceptive Research, 1230 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
47
|
Huang RYJ, Wang SM, Hsieh CY, Wu JC. Lysophosphatidic acid induces ovarian cancer cell dispersal by activating Fyn kinase associated with p120-catenin. Int J Cancer 2008; 123:801-9. [DOI: 10.1002/ijc.23579] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Götz R. Inter-cellular adhesion disruption and the RAS/RAF and beta-catenin signalling in lung cancer progression. Cancer Cell Int 2008; 8:7. [PMID: 18492263 PMCID: PMC2427011 DOI: 10.1186/1475-2867-8-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/20/2008] [Indexed: 12/30/2022] Open
Abstract
Cadherin cell adhesion molecules play an essential role in creating tight intercellular association and their loss has been correlated with poor prognosis in human cancer. Mutational activation of protein kinases and loss of cell adhesion occur together in human lung adenocarcinoma but how these two pathways interconnect is only poorly understood. Mouse models of human lung adenocarcinoma with oncogene expression targeted to subtypes of lung epithelial cells led to formation of adenomas or adenocarcinomas that lacked metastatic potential. Conditional genetic abrogation of epithelial tumour cell adhesion in mice with benign lung tumours induced by oncogenic RAF kinase has been demonstrated to induce intratumourous vascularization (angiogenic switch), progression to invasive adenocarcinoma and micrometastasis. Importantly, breaking cell adhesion in benign oncogene-driven lung tumour cells activated beta-catenin signalling and induced the expression of several genes that are normally expressed in intestine rather than the lung. I will discuss potential routes to nuclear beta-catenin signalling in cancer and how nuclear beta-catenin may epigenetically alter the plasticity of tumour cells during malignant progression.
Collapse
Affiliation(s)
- Rudolf Götz
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, Germany.
| |
Collapse
|
49
|
Aspenström P. Roles of F-BAR/PCH proteins in the regulation of membrane dynamics and actin reorganization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:1-31. [PMID: 19121815 DOI: 10.1016/s1937-6448(08)01601-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Pombe Cdc15 Homology (PCH) proteins have emerged in many species as important coordinators of signaling pathways that regulate actomyosin assembly and membrane dynamics. The hallmark of the PCH proteins is the presence of a Fes/CIP4 homology-Bin/Amphiphysin/Rvsp (F-BAR) domain; therefore they are commonly referred to as F-BAR proteins. The prototype F-BAR protein, Cdc15p of Schizosaccharomyces pombe, has a role in the formation of the contractile actomyosin ring during cytokinesis. Vertebrate F-BAR proteins have an established role in binding phospholipids and they participate in membrane deformations, for instance, during the internalization of transmembrane receptors. This way the F-BAR proteins will function as linkers between the actin polymerization apparatus and the machinery regulating membrane dynamics. Interestingly, some members of the F-BAR proteins are implicated in inflammatory or neurodegenerative disorders and the observations can be expected to have clinical implications for the treatment of the diseases.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
50
|
Ushio-Fukai M, Frey RS, Fukai T, Malik AB. Chapter 8 Reactive Oxygen Species and Endothelial Permeability. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|