1
|
Fernandes P, Waldron N, Chatzilygeroudi T, Naji NS, Karantanos T. Acute Erythroid Leukemia: From Molecular Biology to Clinical Outcomes. Int J Mol Sci 2024; 25:6256. [PMID: 38892446 PMCID: PMC11172574 DOI: 10.3390/ijms25116256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Acute Erythroid Leukemia (AEL) is a rare and aggressive subtype of Acute Myeloid Leukemia (AML). In 2022, the World Health Organization (WHO) defined AEL as a biopsy with ≥30% proerythroblasts and erythroid precursors that account for ≥80% of cellularity. The International Consensus Classification refers to this neoplasm as "AML with mutated TP53". Classification entails ≥20% blasts in blood or bone marrow biopsy and a somatic TP53 mutation (VAF > 10%). This type of leukemia is typically associated with biallelic TP53 mutations and a complex karyotype, specifically 5q and 7q deletions. Transgenic mouse models have implicated several molecules in the pathogenesis of AEL, including transcriptional master regulator GATA1 (involved in erythroid differentiation), master oncogenes, and CDX4. Recent studies have also characterized AEL by epigenetic regulator mutations and transcriptome subgroups. AEL patients have overall poor clinical outcomes, mostly related to their poor response to the standard therapies, which include hypomethylating agents and intensive chemotherapy. Allogeneic bone marrow transplantation (AlloBMT) is the only potentially curative approach but requires deep remission, which is very challenging for these patients. Age, AlloBMT, and a history of antecedent myeloid neoplasms further affect the outcomes of these patients. In this review, we will summarize the diagnostic criteria of AEL, review the current insights into the biology of AEL, and describe the treatment options and outcomes of patients with this disease.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (P.F.); (N.W.)
| | - Natalie Waldron
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (P.F.); (N.W.)
| | - Theodora Chatzilygeroudi
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (T.C.); (N.S.N.)
| | - Nour Sabiha Naji
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (T.C.); (N.S.N.)
| | - Theodoros Karantanos
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (P.F.); (N.W.)
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (T.C.); (N.S.N.)
| |
Collapse
|
2
|
Korczmar EA, Bookstaver AK, Ober E, Goldfarb AN, Tenen DG, Trinh BQ. Transcriptional Regulation of the Lineage-Determining Gene PU.1 in Normal and Malignant Hematopoiesis: Current Understanding and Therapeutic Perspective. Front Biosci (Schol Ed) 2024; 16:10. [PMID: 38939973 DOI: 10.31083/j.fbs1602010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 06/29/2024]
Abstract
The ETS transcription factor PU.1 plays an essential role in blood cell development. Its precise expression pattern is governed by cis-regulatory elements (CRE) acting at the chromatin level. CREs mediate the fine-tuning of graded levels of PU.1, deviations of which can cause acute myeloid leukemia. In this review, we perform an in-depth analysis of the regulation of PU.1 expression in normal and malignant hematopoiesis. We elaborate on the role of trans-acting factors and the biomolecular interplays in mediating local chromatin dynamics. Moreover, we discuss the current understanding of CRE bifunctionality exhibiting enhancer or silencer activities in different blood cell lineages and future directions toward gene-specific chromatin-targeted therapeutic development.
Collapse
Affiliation(s)
- Emilia A Korczmar
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Anna K Bookstaver
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ellison Ober
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Adam N Goldfarb
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, 117599 Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bon Q Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Pawlikowska P, Delestré L, Gregoricchio S, Oppezzo A, Esposito M, Diop MB, Rosselli F, Guillouf C. FANCA deficiency promotes leukaemic progression by allowing the emergence of cells carrying oncogenic driver mutations. Oncogene 2023; 42:2764-2775. [PMID: 37573408 PMCID: PMC10491493 DOI: 10.1038/s41388-023-02800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Leukaemia is caused by the clonal evolution of a cell that accumulates mutations/genomic rearrangements, allowing unrestrained cell growth. However, recent identification of leukaemic mutations in the blood cells of healthy individuals revealed that additional events are required to expand the mutated clones for overt leukaemia. Here, we assessed the functional consequences of deleting the Fanconi anaemia A (Fanca) gene, which encodes a DNA damage response protein, in Spi1 transgenic mice that develop preleukaemic syndrome. FANCA loss increases SPI1-associated disease penetrance and leukaemic progression without increasing the global mutation load of leukaemic clones. However, a high frequency of leukaemic FANCA-depleted cells display heterozygous activating mutations in known oncogenes, such as Kit or Nras, also identified but at low frequency in FANCA-WT mice with preleukaemic syndrome, indicating that FANCA counteracts the emergence of oncogene mutated leukaemic cells. A unique transcriptional signature is associated with the leukaemic status of FANCA-depleted cells, leading to activation of MDM4, NOTCH and Wnt/β-catenin pathways. We show that NOTCH signalling improves the proliferation capacity of FANCA-deficient leukaemic cells. Collectively, our observations indicate that loss of the FANC pathway, known to control genetic instability, fosters the expansion of leukaemic cells carrying oncogenic mutations rather than mutation formation. FANCA loss may contribute to this leukaemogenic progression by reprogramming transcriptomic landscape of the cells.
Collapse
Affiliation(s)
- Patrycja Pawlikowska
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
- Inserm U981, Gustave Roussy Cancer Campus, CNRS UMS3655, Inserm US23AMMICA, Villejuif, France
| | - Laure Delestré
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
- Inserm UMR1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sebastian Gregoricchio
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
- Inserm UMR1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alessia Oppezzo
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Michela Esposito
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
- Inserm UMR1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - M' Boyba Diop
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
- Inserm UMR1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Filippo Rosselli
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France.
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France.
| | - Christel Guillouf
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France.
- Inserm UMR1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
4
|
Song S, Lin Z, Zhao C, Wen J, Chen J, Xie S, Qi H, Wang J, Su X. Vagal-mAChR4 signaling promotes Friend virus complex (FV)-induced acute erythroleukemia. Virol Sin 2023:S1995-820X(23)00053-6. [PMID: 37172825 DOI: 10.1016/j.virs.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Erythroleukemia belongs to acute myeloid leukemia (AML) type 6 (M6), and treatment remains difficult due to the poor prognosis of the disease. Friend virus (FV) is a complex of two viruses: Friend murine leukemia virus (F-MuLV) strain along with a defective spleen focus forming virus (SFFV), which can induce acute erythroleukemia in mice. We have previously reported that activation of vagal α7 nicotinic acetylcholine receptor (nAChR) signaling promotes HIV-1 transcription. Whether vagal muscarinic signaling mediates FV-induced erythroleukemia and the underlying mechanisms remain unclear. In this study, sham and vagotomized mice were intraperitoneally injected with FV. FV infection caused anemia in sham mice, and vagotomy reversed this change. FV infection increased erythroblasts ProE, EryA, and EryB cells in the spleen, and these changes were blocked by vagotomy. In bone marrow, FV infection reduced EryC cells in sham mice, an effect that was counteracted by vagotomy. FV infection increased choline acetyltransferase (ChAT) expression in splenic CD4+ and CD8+ T cells, and this change was reversed by vagotomy. Furthermore, the increase of EryA and EryB cells in spleen of FV-infected wild-type mice was reversed after deletion of ChAT in CD4+ T cells. In bone marrow, FV infection reduced EryB and EryC cells in sham mice, whereas lack of ChAT in CD4+ T cells did not affect this change. Activation of muscarinic acetylcholine receptor 4 (mAChR4) by clozapine N-oxide (CNO) significantly increased EryB in the spleen but decreased the EryC cell population in the bone marrow of FV-infected mice. Thus, vagal-mAChR4 signaling in the spleen and bone marrow synergistically promotes the pathogenesis of acute erythroleukemia. We uncover an unrecognized mechanism of neuromodulation in erythroleukemia.
Collapse
Affiliation(s)
- Shuting Song
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhekai Lin
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Caiqi Zhao
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jing Wen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shitao Xie
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Huaxin Qi
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianhua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, 200031, China.
| |
Collapse
|
5
|
Gregoricchio S, Polit L, Esposito M, Berthelet J, Delestré L, Evanno E, Diop M, Gallais I, Aleth H, Poplineau M, Zwart W, Rosenbauer F, Rodrigues-Lima F, Duprez E, Boeva V, Guillouf C. HDAC1 and PRC2 mediate combinatorial control in SPI1/PU.1-dependent gene repression in murine erythroleukaemia. Nucleic Acids Res 2022; 50:7938-7958. [PMID: 35871293 PMCID: PMC9371914 DOI: 10.1093/nar/gkac613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Although originally described as transcriptional activator, SPI1/PU.1, a major player in haematopoiesis whose alterations are associated with haematological malignancies, has the ability to repress transcription. Here, we investigated the mechanisms underlying gene repression in the erythroid lineage, in which SPI1 exerts an oncogenic function by blocking differentiation. We show that SPI1 represses genes by binding active enhancers that are located in intergenic or gene body regions. HDAC1 acts as a cooperative mediator of SPI1-induced transcriptional repression by deacetylating SPI1-bound enhancers in a subset of genes, including those involved in erythroid differentiation. Enhancer deacetylation impacts on promoter acetylation, chromatin accessibility and RNA pol II occupancy. In addition to the activities of HDAC1, polycomb repressive complex 2 (PRC2) reinforces gene repression by depositing H3K27me3 at promoter sequences when SPI1 is located at enhancer sequences. Moreover, our study identified a synergistic relationship between PRC2 and HDAC1 complexes in mediating the transcriptional repression activity of SPI1, ultimately inducing synergistic adverse effects on leukaemic cell survival. Our results highlight the importance of the mechanism underlying transcriptional repression in leukemic cells, involving complex functional connections between SPI1 and the epigenetic regulators PRC2 and HDAC1.
Collapse
Affiliation(s)
- Sebastian Gregoricchio
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Lélia Polit
- CNRS UMR8104, Inserm U1016, Université Paris Cité, Cochin Institute , F-75014 Paris , France
| | - Michela Esposito
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | | | - Laure Delestré
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Emilie Evanno
- Curie Institute , Inserm U830, F- 75005 Paris, France
| | - M’Boyba Diop
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | | | - Hanna Aleth
- Institute of Molecular Tumor Biology, University of Münster , Münster, Germany
| | - Mathilde Poplineau
- CNRS UMR7258, Inserm U1068, Université Aix Marseille, Paoli-Calmettes Institute , CRCM, F-13009 Marseille , France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Münster , Münster, Germany
| | | | - Estelle Duprez
- CNRS UMR7258, Inserm U1068, Université Aix Marseille, Paoli-Calmettes Institute , CRCM, F-13009 Marseille , France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Valentina Boeva
- CNRS UMR8104, Inserm U1016, Université Paris Cité, Cochin Institute , F-75014 Paris , France
- Department of Computer Science and Department of Biology , ETH Zurich, 8092 Zurich , Switzerland
| | - Christel Guillouf
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| |
Collapse
|
6
|
Yan B, Yang J, Kim MY, Luo H, Cesari N, Yang T, Strouboulis J, Zhang J, Hardison R, Huang S, Qiu Y. HDAC1 is required for GATA-1 transcription activity, global chromatin occupancy and hematopoiesis. Nucleic Acids Res 2021; 49:9783-9798. [PMID: 34450641 PMCID: PMC8464053 DOI: 10.1093/nar/gkab737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
The activity of hematopoietic factor GATA-1 is modulated through p300/CBP-mediated acetylation and FOG-1 mediated indirect interaction with HDAC1/2 containing NuRD complex. Although GATA-1 acetylation is implicated in GATA-1 activation, the role of deacetylation is not studied. Here, we found that the FOG-1/NuRD does not deacetylate GATA-1. However, HDAC1/2 can directly bind and deacetylate GATA-1. Two arginine residues within the GATA-1 linker region mediates direct interaction with HDAC1. The arginine to alanine mutation (2RA) blocks GATA-1 deacetylation and fails to induce erythroid differentiation. Gene expression profiling and ChIP-seq analysis further demonstrate the importance of GATA-1 deacetylation for gene activation and chromatin recruitment. GATA-12RA knock-in (KI) mice suffer mild anemia and thrombocytopenia with accumulation of immature erythrocytes and megakaryocytes in bone marrow and spleen. Single cell RNA-seq analysis of Lin- cKit+ (LK) cells further reveal a profound change in cell subpopulations and signature gene expression patterns in HSC, myeloid progenitors, and erythroid/megakaryocyte clusters in KI mice. Thus, GATA-1 deacetylation and its interaction with HDAC1 modulates GATA-1 chromatin binding and transcriptional activity that control erythroid/megakaryocyte commitment and differentiation.
Collapse
Affiliation(s)
- Bowen Yan
- Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA
| | - Jennifer Yang
- Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA
| | - Min Young Kim
- Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA
| | - Huacheng Luo
- Department of Pediatrics, Hershey, PA 17033, USA
| | | | - Tao Yang
- Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA
| | - John Strouboulis
- Comprehensive Cancer Center, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE5 9NU, UK
| | - Jiwang Zhang
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Ross Hardison
- Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Suming Huang
- Department of Pediatrics, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yi Qiu
- To whom correspondence should be addressed. Tel: +1 717 531 0003 (Ext 321489); Fax: +1 717 531 7667;
| |
Collapse
|
7
|
Abstract
Malignancies of the erythroid lineage are rare but aggressive diseases. Notably, the first insights into their biology emerged over half a century ago from avian and murine tumor viruses-induced erythroleukemia models providing the rationale for several transgenic mouse models that unraveled the transforming potential of signaling effectors and transcription factors in the erythroid lineage. More recently, genetic roadmaps have fueled efforts to establish models that are based on the epigenomic lesions observed in patients with erythroid malignancies. These models, together with often unexpected erythroid phenotypes in genetically modified mice, provided further insights into the molecular mechanisms of disease initiation and maintenance. Here, we review how the increasing knowledge of human erythroleukemia genetics combined with those from various mouse models indicate that the pathogenesis of the disease is based on the interplay between signaling mutations, impaired TP53 function, and altered chromatin organization. These alterations lead to aberrant activity of erythroid transcriptional master regulators like GATA1, indicating that erythroleukemia will most likely require combinatorial targeting for efficient therapeutic interventions.
Collapse
|
8
|
Iacobucci I, Qu C, Varotto E, Janke LJ, Yang X, Seth A, Shelat A, Friske JD, Fukano R, Yu J, Freeman BB, Kennedy JA, Sperling AS, Zheng R, Wang Y, Jogiraju H, Dickerson KM, Payne-Turner D, Morris SM, Hollis ES, Ghosn N, Haggard GE, Lindsley RC, Ebert BL, Mullighan CG. Modeling and targeting of erythroleukemia by hematopoietic genome editing. Blood 2021; 137:1628-1640. [PMID: 33512458 PMCID: PMC7995291 DOI: 10.1182/blood.2020009103] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Acute erythroid leukemia (AEL) is characterized by a distinct morphology, mutational spectrum, lack of preclinical models, and poor prognosis. Here, using multiplexed genome editing of mouse hematopoietic stem and progenitor cells and transplant assays, we developed preclinical models of AEL and non-erythroid acute leukemia and describe the central role of mutational cooperativity in determining leukemia lineage. Different combination of mutations in Trp53, Bcor, Dnmt3a, Rb1, and Nfix resulted in the development of leukemia with an erythroid phenotype, accompanied by the acquisition of alterations in signaling and transcription factor genes that recapitulate human AEL by cross-species genomic analysis. Clonal expansion during tumor evolution was driven by mutational cooccurrence, with clones harboring a higher number of founder and secondary lesions (eg, mutations in signaling genes) showing greater evolutionary fitness. Mouse and human AEL exhibited deregulation of genes regulating erythroid development, notably Gata1, Klf1, and Nfe2, driven by the interaction of mutations of the epigenetic modifiers Dnmt3a and Tet2 that perturbed methylation and thus expression of lineage-specific transcription factors. The established mouse leukemias were used as a platform for drug screening. Drug sensitivity was associated with the leukemia genotype, with the poly (ADP-ribose) polymerase inhibitor talazoparib and the demethylating agent decitabine efficacious in Trp53/Bcor-mutant AEL, CDK7/9 inhibitors in Trp53/Bcor/Dnmt3a-mutant AEL, and gemcitabine and bromodomain inhibitors in NUP98-KDM5A leukemia. In conclusion, combinatorial genome editing has shown the interplay of founding and secondary genetic alterations in phenotype and clonal evolution, epigenetic regulation of lineage-specific transcription factors, and therapeutic tractability in erythroid leukemogenesis.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Chunxu Qu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Elena Varotto
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
- Pediatric Hematology-Oncology, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Laura J Janke
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Xu Yang
- Department of Computational Biology
| | - Aman Seth
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Anang Shelat
- Department of Chemical Biology and Therapeutics, and
| | - Jake D Friske
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Reiji Fukano
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | | | - Burgess B Freeman
- Preclinical Pharmacokinetics Shared Resource, St Jude Children's Research Hospital, Memphis, TN
| | - James A Kennedy
- Brigham and Women's Hospital, Boston, MA
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Adam S Sperling
- Brigham and Women's Hospital, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Rena Zheng
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University Medical Center, Boston MA
| | - Yingzhe Wang
- Preclinical Pharmacokinetics Shared Resource, St Jude Children's Research Hospital, Memphis, TN
| | - Harini Jogiraju
- Preclinical Pharmacokinetics Shared Resource, St Jude Children's Research Hospital, Memphis, TN
| | | | | | - Sarah M Morris
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Emily S Hollis
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Nina Ghosn
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Georgia E Haggard
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA; and
| | - Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
- Hematological Malignancies Program, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
9
|
Regulating the Regulators: The Role of Histone Deacetylase 1 (HDAC1) in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21228460. [PMID: 33187090 PMCID: PMC7696854 DOI: 10.3390/ijms21228460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.
Collapse
|
10
|
The ParaHox gene Cdx4 induces acute erythroid leukemia in mice. Blood Adv 2020; 3:3729-3739. [PMID: 31770439 DOI: 10.1182/bloodadvances.2019000761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
Acute erythroid leukemia (AEL) is a rare and aggressive form of acute leukemia, the biology of which remains poorly understood. Here we demonstrate that the ParaHox gene CDX4 is expressed in patients with acute erythroid leukemia, and that aberrant expression of Cdx4 induced homogenously a transplantable acute erythroid leukemia in mice. Gene expression analyses demonstrated upregulation of genes involved in stemness and leukemogenesis, with parallel downregulation of target genes of Gata1 and Gata2 responsible for erythroid differentiation. Cdx4 induced a proteomic profile that overlapped with a cluster of proteins previously defined to represent the most primitive human erythroid progenitors. Whole-exome sequencing of diseased mice identified recurrent mutations significantly enriched for transcription factors involved in erythroid lineage specification, as well as TP53 target genes partly identical to the ones reported in patients with AEL. In summary, our data indicate that Cdx4 is able to induce stemness and inhibit terminal erythroid differentiation, leading to the development of AEL in association with co-occurring mutations.
Collapse
|
11
|
Moreau-Gachelin F, Camonis J, de Gunzburg J, Goud B. [Armand Tavitian (1931-2020): from oncogenes to the Ras superfamily]. Med Sci (Paris) 2020; 36:810-812. [PMID: 32821056 DOI: 10.1051/medsci/2020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Jean de Gunzburg
- Directeur scientifique de la société biopharmaceutique DaVolterra, Paris, France
| | - Bruno Goud
- Directeur de recherche au CNRS, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex, France
| |
Collapse
|
12
|
Leonards K, Almosailleakh M, Tauchmann S, Bagger FO, Thirant C, Juge S, Bock T, Méreau H, Bezerra MF, Tzankov A, Ivanek R, Losson R, Peters AHFM, Mercher T, Schwaller J. Nuclear interacting SET domain protein 1 inactivation impairs GATA1-regulated erythroid differentiation and causes erythroleukemia. Nat Commun 2020; 11:2807. [PMID: 32533074 PMCID: PMC7293310 DOI: 10.1038/s41467-020-16179-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
The nuclear receptor binding SET domain protein 1 (NSD1) is recurrently mutated in human cancers including acute leukemia. We show that NSD1 knockdown alters erythroid clonogenic growth of human CD34+ hematopoietic cells. Ablation of Nsd1 in the hematopoietic system of mice induces a transplantable erythroleukemia. In vitro differentiation of Nsd1−/− erythroblasts is majorly impaired despite abundant expression of GATA1, the transcriptional master regulator of erythropoiesis, and associated with an impaired activation of GATA1-induced targets. Retroviral expression of wildtype NSD1, but not a catalytically-inactive NSD1N1918Q SET-domain mutant induces terminal maturation of Nsd1−/− erythroblasts. Despite similar GATA1 protein levels, exogenous NSD1 but not NSDN1918Q significantly increases the occupancy of GATA1 at target genes and their expression. Notably, exogenous NSD1 reduces the association of GATA1 with the co-repressor SKI, and knockdown of SKI induces differentiation of Nsd1−/− erythroblasts. Collectively, we identify the NSD1 methyltransferase as a regulator of GATA1-controlled erythroid differentiation and leukemogenesis. Loss of function mutations of NSD1 occur in blood cancers. Here, the authors report that NSD1 loss blocks erythroid differentiation which leads to an erythroleukemia-like disease in mice by impairing GATA1-induced target gene activation.
Collapse
Affiliation(s)
- Katharina Leonards
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Marwa Almosailleakh
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Samantha Tauchmann
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Frederik Otzen Bagger
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.,Swiss Institute of Bioinfomatics, 4031, Basel, Switzerland.,Genomic Medicine, Righospitalet, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Cécile Thirant
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, Université Paris Diderot, Université Paris-Sud, Villejuif, 94800, France
| | - Sabine Juge
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Thomas Bock
- Proteomics Core Facility, Biozentrum University of Basel, Basel, Switzerland
| | - Hélène Méreau
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Matheus F Bezerra
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.,Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Alexandar Tzankov
- Institute for Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.,Swiss Institute of Bioinfomatics, 4031, Basel, Switzerland
| | - Régine Losson
- Institute de Génétique et de Biologie Moléculaire et Cellulaire (I.G.B.M.C.), CNRS/INSERM Université de Strasbourg, BP10142, 67404, Illkirch Cedex, France
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland.,Faculty of Sciences, University of Basel, 4056, Basel, Switzerland
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, Université Paris Diderot, Université Paris-Sud, Villejuif, 94800, France
| | - Juerg Schwaller
- University Children's Hospital Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.
| |
Collapse
|
13
|
Wang H, Morse HC, Bolland S. Transcriptional Control of Mature B Cell Fates. Trends Immunol 2020; 41:601-613. [PMID: 32446878 DOI: 10.1016/j.it.2020.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023]
Abstract
The mature naïve B cell repertoire consists of three well-defined populations: B1, B2 (follicular B, FOB), and marginal zone B (MZB) cells. FOB cells are the dominant mature B cell population in the secondary lymphoid organs and blood of both humans and mice. The driving forces behind mature B lineage selection have been linked to B cell receptor (BCR) signaling strength and environmental cues, but how these fate-determination factors are transcriptionally regulated remains poorly understood. We summarize emerging data on the role of transcription factors (TFs) - particularly the ETS and IRF families - in regulating MZB and FOB lineage selection. Indeed, genomic analyses have identified four major groups of target genes that are crucial for FOB differentiation, revealing previously unrecognized pathways that ultimately determine biological responses specific to this lineage.
Collapse
Affiliation(s)
- Hongsheng Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA.
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA.
| |
Collapse
|
14
|
Abo Elwafa R, Gamaleldin M, Ghallab O. The clinical and prognostic significance of FIS1, SPI1, PDCD7 and Ang2 expression levels in acute myeloid leukemia. Cancer Genet 2018; 233-234:84-95. [PMID: 30555023 DOI: 10.1016/j.cancergen.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The marked heterogeneity of acute myeloid leukemia (AML) renders precisely predicting patient prognosis extremely difficult. Genetic alterations, fusions and mutations, may result in misexpression of key genes in AML. We aimed to investigate the expression patterns of 4 novel genes; FIS1, SPI1, PDCD7 and Ang2 to determine their potential prognostic role in AML patients. METHODS Bone marrow mononuclear cells were analyzed for of FIS1, SPI1, PDCD7 and Ang2 expression levels by real-time quantitative PCR as well as of FLT3/ITD and NPM1 mutations in 100 newly diagnosed cytogenetically normal (CN-AML) patients, and 100 non-malignant controls. RESULTS FIS1, SPI1, PDCD7 and Ang2 were significantly overexpressed in CN-AML patients (p < 0.001). Their high expression levels were significantly associated with lower complete remission (CR) rate, shorter relapse-free survival (RFS) and overall survival (OS). On multivariate analysis, high FIS1 expression showed a significant impact on CR response after induction therapy (OR = 88.777, 95% C.I: 2.85-2765.78, p = 0.011) while high PDCD7 appeared to be an independent risk factor for RFS (HR = 5.107, 95% C.I: 1.731-15.066, p = 0.003) and OS (HR = 7.353, 95% C.I: 1.859-29.079, p = 0.004) in CN-AML patients. CONCLUSIONS FIS1 and PDCD7 expression are considered independent risk factors and should be integrated into the current AML stratification system.
Collapse
Affiliation(s)
- Reham Abo Elwafa
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Marwa Gamaleldin
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omar Ghallab
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Temporal autoregulation during human PU.1 locus SubTAD formation. Blood 2018; 132:2643-2655. [PMID: 30315124 DOI: 10.1182/blood-2018-02-834721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/06/2018] [Indexed: 12/20/2022] Open
Abstract
Epigenetic control of gene expression occurs within discrete spatial chromosomal units called topologically associating domains (TADs), but the exact spatial requirements of most genes are unknown; this is of particular interest for genes involved in cancer. We therefore applied high-resolution chromosomal conformation capture sequencing to map the three-dimensional (3D) organization of the human locus encoding the key myeloid transcription factor PU.1 in healthy monocytes and acute myeloid leukemia (AML) cells. We identified a dynamic ∼75-kb unit (SubTAD) as the genomic region in which spatial interactions between PU.1 gene regulatory elements occur during myeloid differentiation and are interrupted in AML. Within this SubTAD, proper initiation of the spatial chromosomal interactions requires PU.1 autoregulation and recruitment of the chromatin-adaptor protein LDB1 (LIM domain-binding protein 1). However, once these spatial interactions have occurred, LDB1 stabilizes them independently of PU.1 autoregulation. Thus, our data support that PU.1 autoregulates its expression in a "hit-and-run" manner by initiating stable chromosomal loops that result in a transcriptionally active chromatin architecture.
Collapse
|
16
|
Rimmelé P, Esposito M, Delestré L, Guervilly JH, Ridinger-Saison M, Despras E, Moreau-Gachelin F, Rosselli F, Guillouf C. The Spi1/PU.1 transcription factor accelerates replication fork progression by increasing PP1 phosphatase in leukemia. Oncotarget 2018; 8:37104-37114. [PMID: 28415748 PMCID: PMC5514894 DOI: 10.18632/oncotarget.16183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
Oncogenes trigger replicative stress that can lead to genetic instability, which participates in cancer progression. Thus, determining how cells cope with replicative stress can help our understanding of oncogenesis and lead to the identification of new antitumor treatment targets. We previously showed that constitutive overexpression of the oncogenic transcription factor Spi1/PU.1 leads to pre-leukemic cells that have a shortened S phase duration with an increased replication fork speed and increased mutability in the absence of DNA breaks. Here, we demonstrate that the S phase checkpoint protein CHK1 is maintained in a low phosphorylation state in Spi1/PU.1-overexpressing cells and provide evidence that this is not due to negative control of its primary kinase ATR. Notably, we found that the expression of the CHK1 phosphatase PP1α is increased in Spi1/PU.1-overexpressing cells. By exogenously modulating its activity, we demonstrate that PP1α is required to maintain CHK1 in a dephosphorylated state and, more importantly, that it is responsible for the accelerated replication fork progression in Spi1/PU.1-overexpressing cells. These results identify a novel pathway by which an oncogene influences replication in the absence of DNA damage.
Collapse
Affiliation(s)
| | - Michela Esposito
- Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Inserm U1170, Villejuif, France
| | - Laure Delestré
- Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Inserm U1170, Villejuif, France
| | - Jean-Hugues Guervilly
- Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,CNRS UMR8200, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | | | - Emmanuelle Despras
- Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,CNRS UMR8200, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | | | - Filippo Rosselli
- Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,CNRS UMR8200, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | - Christel Guillouf
- Institut Curie, Paris, France.,Inserm U830, Paris, France.,Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Inserm U1170, Villejuif, France.,CNRS, Paris, France
| |
Collapse
|
17
|
Nikkhah H, Safarzadeh E, Shamsasenjan K, Yousefi M, Lotfinejad P, Talebi M, Mohammadian M, Golafshan F, Movassaghpour A. The Effect of Bone Marrow Mesenchymal Stem Cells on the Granulocytic Differentiation of HL-60 Cells. Turk J Haematol 2018; 35:42-48. [PMID: 28611013 PMCID: PMC5843773 DOI: 10.4274/tjh.2016.0498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a variety of cell types. They control the process of hematopoiesis by secreting regulatory cytokines and growth factors and by the expression of important cell adhesion molecules for cell-to-cell interactions. This investigation was intended to examine the effect of bone marrow (BM)-derived MSCs on the differentiation of HL-60 cells according to morphological evaluation, flow cytometry analysis, and gene expression profile. Materials and Methods: The BM-MSCs were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum (FBS). After the third passage, the BM-MSCs were irradiated at 30 Gy. To compare how the HL-60 cells differentiated in groups treated differently, HL-60 cells were cultured in RPMI-1640 and supplemented with 10% FBS. The HL-60 cells were seeded into six-well culture plates and treated with all-trans-retinoic acid (ATRA), BM-MSCs, or BM-MSCs in combination with ATRA, while one well remained as untreated HL-60 cells. The expression levels of the granulocyte subset-specific genes in the HL-60 cells were assayed by real-time polymerase chain reaction. Results: Our results revealed that BM-MSCs support the granulocytic differentiation of the human promyelocytic leukemia cell line HL-60. Conclusion: Based on the results of this study, we concluded that BM-MSCs may be an effective resource in reducing or even preventing ATRA’s side effects and may promote differentiation for short medication periods. Though BM-MSCs are effective resources, more complementary studies are necessary to improve this differentiation mechanism in clinical cases.
Collapse
Affiliation(s)
- Hossein Nikkhah
- Tabriz University Faculty of Medicine, Hematology and Oncology Research Center, Tabriz, Iran
| | - Elham Safarzadeh
- Tabriz University Faculty of Medicine, Drug Applied Research Center, Tabriz, Iran.,Tabriz University Faculty of Medicine, Department of Immunology, Tabriz, Iran
| | - Karim Shamsasenjan
- Tabriz University Faculty of Medicine, Hematology and Oncology Research Center, Tabriz, Iran
| | - Mehdi Yousefi
- Tabriz University Faculty of Medicine, Drug Applied Research Center, Tabriz, Iran.,Tabriz University Faculty of Medicine, Department of Immunology, Tabriz, Iran
| | - Parisa Lotfinejad
- Tabriz University Faculty of Medicine, Hematology and Oncology Research Center, Tabriz, Iran.,Tabriz University Faculty of Medicine, Department of Immunology, Tabriz, Iran
| | - Mehdi Talebi
- Tabriz University Faculty of Medicine, Hematology and Oncology Research Center, Tabriz, Iran
| | - Mozhde Mohammadian
- Mazandaran University Faculty of Medicine, Amol Faculty of Paramedical Sciences, Sari, Iran
| | - Farhoud Golafshan
- Hamline University Faculty of Medicine, Department of Biology, Minnesota, USA
| | - Aliakbar Movassaghpour
- Tabriz University Faculty of Medicine, Hematology and Oncology Research Center, Tabriz, Iran
| |
Collapse
|
18
|
Boddu P, Benton CB, Wang W, Borthakur G, Khoury JD, Pemmaraju N. Erythroleukemia-historical perspectives and recent advances in diagnosis and management. Blood Rev 2017; 32:96-105. [PMID: 28965757 DOI: 10.1016/j.blre.2017.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/03/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
Acute erythroleukemia is a rare form of acute myeloid leukemia recognized by its distinct phenotypic attribute of erythroblastic proliferation. After a century of its descriptive history, many diagnostic, prognostic, and therapeutic implications relating to this unique leukemia subset remain uncertain. The rarity of the disease and the simultaneous involvement of its associated myeloid compartment have complicated in vitro studies of human erythroleukemia cell lines. Although murine and cell line erythroleukemia models have provided valuable insights into pathophysiology, translation of these concepts into treatment are not forthcoming. Integration of knowledge gained through a careful study of these models with more recent data emerging from molecular characterization will help elucidate key mechanistic pathways and provide a much needed framework that accounts for erythroid lineage-specific attributes. In this article, we discuss the evolving diagnostic concept of erythroleukemia, translational aspects of its pathophysiology, and promising therapeutic targets through an appraisal of the current literature.
Collapse
Affiliation(s)
- Prajwal Boddu
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher B Benton
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Delestré L, Cui H, Esposito M, Quiveron C, Mylonas E, Penard-Lacronique V, Bischof O, Guillouf C. Senescence is a Spi1-induced anti-proliferative mechanism in primary hematopoietic cells. Haematologica 2017; 102:1850-1860. [PMID: 28912174 PMCID: PMC5664389 DOI: 10.3324/haematol.2016.157636] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 09/06/2017] [Indexed: 01/08/2023] Open
Abstract
Transcriptional deregulation caused by epigenetic or genetic alterations is a major cause of leukemic transformation. The Spi1/PU.1 transcription factor is a key regulator of many steps of hematopoiesis, and limits self-renewal of hematopoietic stem cells. The deregulation of its expression or activity contributes to leukemia, in which Spi1 can be either an oncogene or a tumor suppressor. Herein we explored whether cellular senescence, an anti-tumoral pathway that restrains cell proliferation, is a mechanism by which Spi1 limits hematopoietic cell expansion, and thus prevents the development of leukemia. We show that Spi1 overexpression triggers cellular senescence both in primary fibroblasts and hematopoietic cells. Erythroid and myeloid lineages are both prone to Spi1-induced senescence. In hematopoietic cells, Spi1-induced senescence requires its DNA-binding activity and a functional p38MAPK14 pathway but is independent of a DNA-damage response. In contrast, in fibroblasts, Spi1-induced senescence is triggered by a DNA-damage response. Importantly, using our well-established Spi1 transgenic leukemia mouse model, we demonstrate that Spi1 overexpression also induces senescence in erythroid progenitors of the bone marrow in vivo before the onset of the pre-leukemic phase of erythroleukemia. Remarkably, the senescence response is lost during the progression of the disease and erythroid blasts do not display a higher expression of Dec1 and CDKN1A, two of the induced senescence markers in young animals. These results bring indirect evidence that leukemia develops from cells which have bypassed Spi1-induced senescence. Overall, our results reveal senescence as a Spi1-induced anti-proliferative mechanism that may be a safeguard against the development of acute myeloid leukemia.
Collapse
Affiliation(s)
- Laure Delestré
- Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France.,INSERM U1170, Villejuif, France
| | - Hengxiang Cui
- Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France.,INSERM U1170, Villejuif, France.,Previous address: Institut Curie, Paris, France
| | - Michela Esposito
- Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France.,INSERM U1170, Villejuif, France
| | - Cyril Quiveron
- Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France.,INSERM U1170, Villejuif, France
| | - Elena Mylonas
- Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France.,INSERM U1170, Villejuif, France
| | | | - Oliver Bischof
- Institut Pasteur, Unit of Nuclear Organization and Oncogenesis, Paris, France.,INSERM U993, Paris, France.,Centre national de la recherche scientifique (CNRS), Paris, France
| | - Christel Guillouf
- Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France .,INSERM U1170, Villejuif, France.,Previous address: Institut Curie, Paris, France.,Centre national de la recherche scientifique (CNRS), Paris, France
| |
Collapse
|
20
|
Abstract
Macrophages play essential roles in the response to injury and infection and contribute to the development and/or homeostasis of the various tissues they reside in. Conversely, macrophages also influence the pathogenesis of metabolic, neurodegenerative, and neoplastic diseases. Mechanisms that contribute to the phenotypic diversity of macrophages in health and disease remain poorly understood. Here we review the recent application of genome-wide approaches to characterize the transcriptomes and epigenetic landscapes of tissue-resident macrophages. These studies are beginning to provide insights into how distinct tissue environments are interpreted by transcriptional regulatory elements to drive specialized programs of gene expression.
Collapse
|
21
|
Caulier A, Guyonneau Harmand L, Garçon L. [Immortalization of erythroid progenitors for in vitro large-scale red cell production]. Transfus Clin Biol 2017; 24:263-267. [PMID: 28736161 DOI: 10.1016/j.tracli.2017.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Population ageing and increase in cancer incidence may lead to a decreased availability of red blood cell units. Thus, finding an alternative source of red blood cells is a highly relevant challenge. The possibility to reproduce in vitro the human erythropoiesis opens a new era, particularly since the improvement in the culture systems allows to produce erythrocytes from induced-Pluripotent Stem Cells (iPSCs), or CD34+ Hematopoietic Stem Cells (HSCs). iPSCs have the advantage of in vitro self-renewal, but lead to poor amplification and maturation defects (high persistence of nucleated erythroid precursors). Erythroid differentiation from HSC allows a far better amplification and adult-like hemoglobin synthesis. But the inability of these progenitors to self-renew in vitro remains a limit in their use as a source of stem cells. A major improvement would consist in immortalizing these erythroid progenitors so that they could expand indefinitively. Inducible transgenesis is the first way to achieve this goal. To date, the best immortalized-cell models involve strong oncogenes induction, such as c-Myc, Bcl-xL, and mostly E6/E7 HPV16 viral oncoproteins. However, the quality of terminal differentiation of erythroid progenitors generated by these oncogenes is not optimal yet and the long-term stability of such systems is unknown. Moreover, viral transgenesis and inducible expression of oncogenes raise important problems in term of safety, since the enucleation rate is not 100% and no nucleated cells having replicative capacities should be present in the final product.
Collapse
Affiliation(s)
- A Caulier
- EA4666, CURS, université Picardie-Jules-Verne, 1, chemin du Thil, 80025 Amiens, France
| | - L Guyonneau Harmand
- Établissement français du sang, 20, avenue du Stade-de-France, 93218 La Plaine Saint-Denis cedex, France; UMRS938, université Pierre-et-Marie-Curie Paris 6, 4, place Jussieu, 75005 Paris, France
| | - L Garçon
- EA4666, CURS, université Picardie-Jules-Verne, 1, chemin du Thil, 80025 Amiens, France; D408, service d'hématologie biologique, CHU Amiens-Picardie, 80054 Amiens cedex 1, France.
| |
Collapse
|
22
|
Jian W, Yan B, Huang S, Qiu Y. Histone deacetylase 1 activates PU.1 gene transcription through regulating TAF9 deacetylation and transcription factor IID assembly. FASEB J 2017; 31:4104-4116. [PMID: 28572446 DOI: 10.1096/fj.201700022r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/15/2017] [Indexed: 11/11/2022]
Abstract
Histone acetyltransferases and histone deacetylases (HDACs) are important epigenetic coregulators. It has been thought that HDACs associate with corepressor complexes and repress gene transcription; however, in this study, we have found that PU.1-a key master regulator for hematopoietic self-renewal and lineage specification-requires HDAC activity for gene activation. Deregulated PU.1 gene expression is linked to dysregulated hematopoiesis and the development of leukemia. In this study, we used erythroid differentiation as a model to analyze how the PU.1 gene is regulated. We found that active HDAC1 is directly recruited to active PU.1 promoter in progenitor cells, whereas acetylated HDAC1, which is inactive, is on the silenced PU.1 promoter in differentiated erythroid cells. We then studied the mechanism of HDAC1-mediated activation. We discovered that HDAC1 activates PU.1 gene transcription via deacetylation of TATA-binding protein-associated factor 9 (TAF9), a component in the transcription factor IID (TFIID) complex. Treatment with HDAC inhibitor results in an increase in TAF9 acetylation. Acetylated TAF9 does not bind to the PU.1 gene promoter and subsequently leads to the disassociation of the TFIID complex and transcription repression. Thus, these results demonstrate a key role for HDAC1 in PU.1 gene transcription and, more importantly, uncover a novel mechanism of TFIID recruitment and gene activation.-Jian, W., Yan, B., Huang, S., Qiu, Y. Histone deacetylase 1 activates PU.1 gene transcription through regulating TAF9 deacetylation and transcription factor IID assembly.
Collapse
Affiliation(s)
- Wei Jian
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Bowen Yan
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA; and.,Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Yi Qiu
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
23
|
Anguita E, Candel FJ, Chaparro A, Roldán-Etcheverry JJ. Transcription Factor GFI1B in Health and Disease. Front Oncol 2017; 7:54. [PMID: 28401061 PMCID: PMC5368270 DOI: 10.3389/fonc.2017.00054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Many human diseases arise through dysregulation of genes that control key cell fate pathways. Transcription factors (TFs) are major cell fate regulators frequently involved in cancer, particularly in leukemia. The GFI1B gene, coding a TF, was identified by sequence homology with the oncogene growth factor independence 1 (GFI1). Both GFI1 and GFI1B have six C-terminal C2H2 zinc fingers and an N-terminal SNAG (SNAIL/GFI1) transcriptional repression domain. Gfi1 is essential for neutrophil differentiation in mice. In humans, GFI1 mutations are associated with severe congenital neutropenia. Gfi1 is also required for B and T lymphopoiesis. However, knockout mice have demonstrated that Gfi1b is required for development of both erythroid and megakaryocytic lineages. Consistent with this, human mutations of GFI1B produce bleeding disorders with low platelet count and abnormal function. Loss of Gfi1b in adult mice increases the absolute numbers of hematopoietic stem cells (HSCs) that are less quiescent than wild-type HSCs. In keeping with this key role in cell fate, GFI1B is emerging as a gene involved in cancer, which also includes solid tumors. In fact, abnormal activation of GFI1B and GFI1 has been related to human medulloblastoma and is also likely to be relevant in blood malignancies. Several pieces of evidence supporting this statement will be detailed in this mini review.
Collapse
Affiliation(s)
- Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Francisco J Candel
- Microbiology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC) , Madrid , Spain
| | - Alberto Chaparro
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Juan J Roldán-Etcheverry
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
24
|
Li C, Tao Y, Li C, Liu B, Liu J, Wang G, Liu H. PU.1-Bim axis is involved in Trichostatin A-induced apoptosis in murine pro-B lymphoma FL5.12 cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:850-5. [PMID: 27451443 DOI: 10.1093/abbs/gmw067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/29/2016] [Indexed: 11/13/2022] Open
Abstract
Trichostatin A (TSA) is a well-known histone deacetylases (HDACs) inhibitor that has been reported to show potent anti-tumor capabilities in some types of cancer cell lines. However, detailed mechanism of TSA action on lymphoma remains to be described. In the present study, anti-proliferative effects of TSA were investigated using a murine pro-B lymphoma cell line FL5.12. MTT assay revealed that TSA potently inhibited the proliferation of FL5.12 cells in a time- and dose-dependent manner. Bright-field microscopy of FL5.12 cells showed apoptotic morphology at 24 h after TSA treatment. Consistently, TSA treatment led to DNA fragmentation and increased the protein levels of cleaved caspase 3 and PARP as revealed by western blot analysis. To explore the underlying mechanism of TSA-induced apoptosis of FL5.12 cells, we further analyzed the hematopoietic transcription factor Purine Rich Box-1 (PU.1) by western blot analysis. TSA treatment resulted in the inhibition of PU.1 in FL5.12 cells. In contrast, apoptotic protein Bim was induced by TSA, which was inversely correlated with the survival of FL5.12 cells. These results suggest the possible mechanism of TSA-induced apoptosis in murine pro-B lymphoma FL5.12 cells via the PU.1-Bim axis.
Collapse
Affiliation(s)
- Chao Li
- Infection and Immunity Laboratory, Kunming National High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China
| | - Yufen Tao
- Infection and Immunity Laboratory, Kunming National High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China
| | - Chao Li
- Infection and Immunity Laboratory, Kunming National High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China
| | - Bo Liu
- Infection and Immunity Laboratory, Kunming National High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China
| | - Jiansheng Liu
- Infection and Immunity Laboratory, Kunming National High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China
| | - Guanlin Wang
- Kunming University of Science and Technology, Kunming 650118, China
| | - Hongqi Liu
- Infection and Immunity Laboratory, Kunming National High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
25
|
Abstract
Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model.
Collapse
|
26
|
Geiler C, Andrade I, Clayton A, Greenwald D. Genetically Engineered In Vitro Erythropoiesis. Int J Stem Cells 2016; 9:53-9. [PMID: 27426086 PMCID: PMC4961104 DOI: 10.15283/ijsc.2016.9.1.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2016] [Indexed: 01/13/2023] Open
Abstract
Background Engineered blood has the greatest potential to combat a predicted future shortfall in the US blood supply for transfusion treatments. Engineered blood produced from hematopoietic stem cell (HSC) derived red blood cells in a laboratory is possible, but critical barriers exist to the production of clinically relevant quantities of red blood cells required to create a unit of blood. Erythroblasts have a finite expansion capacity and there are many negative regulatory mechanisms that inhibit in vitro erythropoiesis. In order to overcome these barriers and enable mass production, the expansion capacity of erythroblasts in culture will need to be exponentially improved over the current state of art. This work focused on the hypothesis that genetic engineering of HSC derived erythroblasts can overcome these obstacles. Objectives The objective of this research effort was to improve in vitro erythropoiesis efficiency from human adult stem cell derived erythroblasts utilizing genetic engineering. The ultimate goal is to enable the mass production of engineered blood. Methods HSCs were isolated from blood samples and cultured in a liquid media containing growth factors. Cells were transfected using a Piggybac plasmid transposon. Results Cells transfected with SPI-1 continued to proliferate in a liquid culture media. Fluorescence-activated cell sorting (FACS) analysis on culture day 45 revealed a single population of CD71+CD117+ proerythroblast cells. The results of this study suggest that genetically modified erythroblasts could be immortalized in vitro by way of a system modeling murine erythroleukemia. Conclusion Genetic modification can increase erythroblast expansion capacity and potentially enable mass production of red blood cells.
Collapse
Affiliation(s)
- Cristopher Geiler
- Department of Basic Science Research, Cellologi, LLC, California, USA.,Santa Barbara Cottage Hospital, Santa Barbara, California, USA
| | - Inez Andrade
- Department of Basic Science Research, Cellologi, LLC, California, USA
| | - Alexandra Clayton
- Department of Basic Science Research, Cellologi, LLC, California, USA
| | - Daniel Greenwald
- Department of Basic Science Research, Cellologi, LLC, California, USA.,Santa Barbara Cottage Hospital, Santa Barbara, California, USA
| |
Collapse
|
27
|
Hoppe PS, Schwarzfischer M, Loeffler D, Kokkaliaris KD, Hilsenbeck O, Moritz N, Endele M, Filipczyk A, Gambardella A, Ahmed N, Etzrodt M, Coutu DL, Rieger MA, Marr C, Strasser MK, Schauberger B, Burtscher I, Ermakova O, Bürger A, Lickert H, Nerlov C, Theis FJ, Schroeder T. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature 2016; 535:299-302. [DOI: 10.1038/nature18320] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 05/13/2016] [Indexed: 12/20/2022]
|
28
|
Burda P, Vargova J, Curik N, Salek C, Papadopoulos GL, Strouboulis J, Stopka T. GATA-1 Inhibits PU.1 Gene via DNA and Histone H3K9 Methylation of Its Distal Enhancer in Erythroleukemia. PLoS One 2016; 11:e0152234. [PMID: 27010793 PMCID: PMC4807078 DOI: 10.1371/journal.pone.0152234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/10/2016] [Indexed: 01/17/2023] Open
Abstract
GATA-1 and PU.1 are two important hematopoietic transcription factors that mutually inhibit each other in progenitor cells to guide entrance into the erythroid or myeloid lineage, respectively. PU.1 controls its own expression during myelopoiesis by binding to the distal URE enhancer, whose deletion leads to acute myeloid leukemia (AML). We herein present evidence that GATA-1 binds to the PU.1 gene and inhibits its expression in human AML-erythroleukemias (EL). Furthermore, GATA-1 together with DNA methyl Transferase I (DNMT1) mediate repression of the PU.1 gene through the URE. Repression of the PU.1 gene involves both DNA methylation at the URE and its histone H3 lysine-K9 methylation and deacetylation as well as the H3K27 methylation at additional DNA elements and the promoter. The GATA-1-mediated inhibition of PU.1 gene transcription in human AML-EL mediated through the URE represents important mechanism that contributes to PU.1 downregulation and leukemogenesis that is sensitive to DNA demethylation therapy.
Collapse
MESH Headings
- Cell Differentiation/genetics
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/genetics
- Enhancer Elements, Genetic
- GATA1 Transcription Factor/genetics
- GATA1 Transcription Factor/metabolism
- Gene Expression Regulation, Leukemic
- Histones/genetics
- Humans
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Pavel Burda
- Biocev and Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jarmila Vargova
- Biocev and Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Nikola Curik
- Biocev and Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Cyril Salek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Giorgio Lucio Papadopoulos
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - John Strouboulis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Tomas Stopka
- Biocev and Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
- 1st Medical Department–Hematology, General Faculty Hospital, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
29
|
Anguita E, Gupta R, Olariu V, Valk PJ, Peterson C, Delwel R, Enver T. A somatic mutation of GFI1B identified in leukemia alters cell fate via a SPI1 (PU.1) centered genetic regulatory network. Dev Biol 2016; 411:277-286. [PMID: 26851695 DOI: 10.1016/j.ydbio.2016.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/22/2023]
Abstract
We identify a mutation (D262N) in the erythroid-affiliated transcriptional repressor GFI1B, in an acute myeloid leukemia (AML) patient with antecedent myelodysplastic syndrome (MDS). The GFI1B-D262N mutant functionally antagonizes the transcriptional activity of wild-type GFI1B. GFI1B-D262N promoted myelomonocytic versus erythroid output from primary human hematopoietic precursors and enhanced cell survival of both normal and MDS derived precursors. Re-analysis of AML transcriptome data identifies a distinct group of patients in whom expression of wild-type GFI1B and SPI1 (PU.1) have an inverse pattern. In delineating this GFI1B-SPI1 relationship we show that (i) SPI1 is a direct target of GFI1B, (ii) expression of GFI1B-D262N produces elevated expression of SPI1, and (iii) SPI1-knockdown restores balanced lineage output from GFI1B-D262N-expressing precursors. These results table the SPI1-GFI1B transcriptional network as an important regulatory axis in AML as well as in the development of erythroid versus myelomonocytic cell fate.
Collapse
Affiliation(s)
- Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos (IdISSC), Prof. Martín Lagos s/n, 28040 Madrid, Spain.
| | - Rajeev Gupta
- UCL Cancer Institute, Paul O'Gorman Building 72 Huntley St., London WC1E6BT, United Kingdom.
| | - Victor Olariu
- Computational Biology and Biological Physics Division, Lund University, Lund, Sweden.
| | - Peter J Valk
- Department of Hematology Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Carsten Peterson
- Computational Biology and Biological Physics Division, Lund University, Lund, Sweden.
| | - Ruud Delwel
- Department of Hematology Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Tariq Enver
- UCL Cancer Institute, Paul O'Gorman Building 72 Huntley St., London WC1E6BT, United Kingdom.
| |
Collapse
|
30
|
Morceau F, Chateauvieux S, Orsini M, Trécul A, Dicato M, Diederich M. Natural compounds and pharmaceuticals reprogram leukemia cell differentiation pathways. Biotechnol Adv 2015; 33:785-97. [PMID: 25886879 DOI: 10.1016/j.biotechadv.2015.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/18/2015] [Accepted: 03/29/2015] [Indexed: 12/22/2022]
Abstract
In addition to apoptosis resistance and cell proliferation capacities, the undifferentiated state also characterizes most cancer cells, especially leukemia cells. Cell differentiation is a multifaceted process that depends on complex regulatory networks that involve transcriptional, post-transcriptional and epigenetic regulation of gene expression. The time- and spatially-dependent expression of lineage-specific genes and genes that control cell growth and cell death is implicated in the process of maturation. The induction of cancer cell differentiation is considered an alternative approach to elicit cell death and proliferation arrest. Differentiation therapy has mainly been developed to treat acute myeloid leukemia, notably with all-trans retinoic acid (ATRA). Numerous molecules from diverse natural or synthetic origins are effective alone or in association with ATRA in both in vitro and in vivo experiments. During the last two decades, pharmaceuticals and natural compounds with various chemical structures, including alkaloids, flavonoids and polyphenols, were identified as potential differentiating agents of hematopoietic pathways and osteogenesis.
Collapse
Affiliation(s)
- Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Sébastien Chateauvieux
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marion Orsini
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Anne Trécul
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
31
|
Collin JF, Wells JW, Czepulkowski B, Lyne L, Duriez PJ, Banham AH, Mufti GJ, Guinn BA. A novel zinc finger gene, ZNF465, is inappropriately expressed in acute myeloid leukaemia cells. Genes Chromosomes Cancer 2015; 54:288-302. [PMID: 25706801 DOI: 10.1002/gcc.22242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/12/2015] [Indexed: 11/08/2022] Open
Abstract
To increase our knowledge of leukaemia-associated antigens, especially in acute myeloid leukaemia (AML) M4, we prepared a phage display cDNA library using mRNA from the bone marrow cells of a patient with AML M4 at diagnosis. We immunoscreened 10(6) pfu with autologous sera and identified an antigen which we named GKT-AML8. The cDNA showed more than 99% similarity to a sequence on 2q21.2 and 95% sequence similarity to a sequence on 19q13.3. These genes were named ZNF465 and ZNF466, respectively, following HUGO Gene Nomenclature Committee (HGNC) guidelines. Expressed sequence tag data suggests that both genes are transcriptionally active. ZNF465 and ZNF466 encode a 5' krüppel associated box domain typical of negative regulators of gene transcription. We have confirmed the translational start site in the +1 frame in a near-Kozak sequence that produces a 102 amino acid polypeptide from ZNF465. The high level of sequence similarity between ZNF465 and ZNF466 makes their transcripts almost indistinguishable by real-time polymerase chain reaction (RT-PCR). However, GKT-AML8 showed most sequence similarity to ZNF465 and no transcript matching the 3' ZNF466 sequence could be detected in patient samples or healthy volunteers. ZNF465/466 expression was detectable in 12/13 AML and 10/14 chronic myeloid leukaemia patients' samples but not in normal donor peripheral blood (0/8) or 0/3 bone marrow samples which had been separated into CD34(+) and CD34(-) samples. The altered expression of ZNF465/466 in patients' samples and its absence in healthy donor haematopoietic samples indicate that ZNF465 is overexpressed in early myeloid disease and as such may represent a promising target for immunotherapy.
Collapse
Affiliation(s)
- Joseph F Collin
- Department of Haematological Medicine, Guy's, King's and St. Thomas' School of Medicine, King's College London, The Rayne Institute, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Runx transcription factors contribute to hematopoiesis and are frequently implicated in hematologic malignancies. All three Runx isoforms are expressed at the earliest stages of hematopoiesis; however, their function in hematopoietic stem cells (HSCs) is not fully elucidated. Here, we show that Runx factors are essential in HSCs by driving the expression of the hematopoietic transcription factor PU.1. Mechanistically, by using a knockin mouse model in which all three Runx binding sites in the -14kb enhancer of PU.1 are disrupted, we observed failure to form chromosomal interactions between the PU.1 enhancer and its proximal promoter. Consequently, decreased PU.1 levels resulted in diminished long-term HSC function through HSC exhaustion, which could be rescued by reintroducing a PU.1 transgene. Similarly, in a mouse model of AML/ETO9a leukemia, disrupting the Runx binding sites resulted in decreased PU.1 levels. Leukemia onset was delayed, and limiting dilution transplantation experiments demonstrated functional loss of leukemia-initiating cells. This is surprising, because low PU.1 levels have been considered a hallmark of AML/ETO leukemia, as indicated in mouse models and as shown here in samples from leukemic patients. Our data demonstrate that Runx-dependent PU.1 chromatin interaction and transcription of PU.1 are essential for both normal and leukemia stem cells.
Collapse
|
33
|
Rivina L, Davoren M, Schiestl RH. Radiation-induced myeloid leukemia in murine models. Hum Genomics 2014; 8:13. [PMID: 25062865 PMCID: PMC4128013 DOI: 10.1186/1479-7364-8-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/26/2014] [Indexed: 12/18/2022] Open
Abstract
The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included.
Collapse
Affiliation(s)
| | - Michael Davoren
- Department of Environmental Health Sciences, University of California, Los Angeles, 650 Charles E, Young Dr, South, CHS 71-295, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
34
|
Wolff L, Humeniuk R. Concise review: erythroid versus myeloid lineage commitment: regulating the master regulators. Stem Cells 2014; 31:1237-44. [PMID: 23559316 DOI: 10.1002/stem.1379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/18/2013] [Indexed: 12/26/2022]
Abstract
Developmental processes, like blood formation, are orchestrated by transcriptional networks. Those transcriptional networks are highly responsive to various environmental stimuli and affect common precursors resulting in increased production of cells of the erythroid lineage or myeloid lineage (granulocytes, neutrophils, and macrophages). A significant body of knowledge has accumulated describing transcription factors that drive differentiation of these two major cellular pathways, in particular the antagonistic master regulators such as GATA-1 and PU.1. However, little is known about factors that work upstream of master regulators to enhance differentiation toward one lineage. These functions become especially important under various stress conditions like sudden loss of red blood cells or pathogen infection. This review describes recent studies that begin to provide evidence for such factors. An increased understanding of factors regulating cellular commitment will advance our understanding of the etiology of diseases like anemia, cancer, and possibly other blood related disorders.
Collapse
Affiliation(s)
- Linda Wolff
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | |
Collapse
|
35
|
ISLAM RABIA, YOON WONJOON, WOO KYUNGMI, BAEK JEONGHWA, RYOO HYUNMO. Pin1-Mediated Prolyl Isomerization of Runx1 Affects PU.1 Expression in Pre-Monocytes. J Cell Physiol 2013; 229:443-52. [DOI: 10.1002/jcp.24462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/27/2013] [Indexed: 01/08/2023]
Affiliation(s)
- RABIA ISLAM
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - WON-JOON YOON
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - KYUNG-MI WOO
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - JEONG-HWA BAEK
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - HYUN-MO RYOO
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| |
Collapse
|
36
|
DNA methylation-mediated silencing of PU.1 in leukemia cells resistant to cell differentiation. SPRINGERPLUS 2013; 2:392. [PMID: 24010046 PMCID: PMC3758488 DOI: 10.1186/2193-1801-2-392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/13/2013] [Indexed: 11/20/2022]
Abstract
In mice, the proviral integration of the Friend Spleen Focus Forming Virus (SFFV) within the PU.1 locus of erythroid precursors results in the development of erythroleukemia. SFFV integrates several kilobases upstream of the PU.1 transcription initiation start site leading to the constitutive activation of the gene which in turn results in a block of erythroid differentiation. In this study we have mapped and sequenced the exact location of the retroviral integration site. We have shown that SFFV integrates downstream of a previously described upstream regulatory element (URE), precisely 2,976 bp downstream of the URE-distal element. We have also found that SFFV persists integrated within the same location in resistant cell lines that have lost their differentiation capacity and in which case PU.1 remains silent. We have examined the methylation status of PU.1 and found that in resistant cells the nearby CpG islands remained methylated in contrast to a non-methylated status of the parental cell lines. Treatment with 5-aza-2′-deoxycytidine caused resistant cells to differentiate yet only when combined with HMBA. Altogether these results strongly suggest that methylation plays a crucial role with regard to PU.1 silencing. However, although demethylation is required, it is not sufficient to overcome the differentiation impasse. We have also showed that activation blockage of the Epo/Epo-R pathway remains despite of the absence of PU.1.
Collapse
|
37
|
Epigenetic silencing of Bim transcription by Spi-1/PU.1 promotes apoptosis resistance in leukaemia. Cell Death Differ 2013; 20:1268-78. [PMID: 23852375 DOI: 10.1038/cdd.2013.88] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 06/07/2013] [Indexed: 12/17/2022] Open
Abstract
Deregulation of transcriptional networks contributes to haematopoietic malignancies. The transcription factor Spi-1/PU.1 is a master regulator of haematopoiesis and its alteration leads to leukaemia. Spi-1 overexpression inhibits differentiation and promotes resistance to apoptosis in erythroleukaemia. Here, we show that Spi-1 inhibits mitochondrial apoptosis in vitro and in vivo through the transcriptional repression of Bim, a proapoptotic factor. BIM interacts with MCL-1 that behaves as a major player in the survival of the preleukaemic cells. The repression of BIM expression reduces the amount of BIM-MCL-1 complexes, thus increasing the fraction of potentially active antiapoptotic MCL-1. We then demonstrate that Spi-1 represses Bim transcription by binding to the Bim promoter and by promoting the trimethylation of histone 3 on lysine 27 (H3K27me3, a repressive histone mark) on the Bim promoter. The PRC2 repressive complex of Polycomb is directly responsible for the deposit of H3K27me3 mark at the Bim promoter. SUZ12 and the histone methyltransferase EZH2, two PRC2 subunits bind to the Bim promoter at the same location than H3K27me3, distinct of the Spi-1 DNA binding site. As Spi-1 interacts with SUZ12 and EZH2, these results indicate that Spi-1 modulates the activity of PRC2 without directly recruiting the complex to the site of its activity on the chromatin. Our results identify a new mechanism whereby Spi-1 represses transcription and provide mechanistic insights on the antiapoptotic function of a transcription factor mediated by the epigenetic control of gene expression.
Collapse
|
38
|
Haeri M, Li Y, Li Y, Li Q, Spaner DE, Ben-David Y. Insertional activation of myb by F-MuLV in SCID mice induces myeloid leukemia. Int J Oncol 2013; 43:169-76. [PMID: 23677281 DOI: 10.3892/ijo.2013.1943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 04/18/2013] [Indexed: 11/06/2022] Open
Abstract
Identification of retrovirus integration sites is a powerful method to identify cancer-related genes. This approach led to the discovery of the Friend murine leukemia virus (F-MuLV) integration site-1 (fli-1). Viral insertion at the fli-1 locus induces erythroleukemia in susceptible strains of mice. Our recent data demonstrated that, F-MuLV-infected SCID mice, in contrast to wt CB17 controls, developed a non‑erythroleukemic leukemia without viral integration at the fli-1 locus. Using ligation-mediated polymerase chain reaction (LM-PCR) approach we identified a total of 15 viral integration sites in F-MuLV-infected SCID mice. One of the identified insertion sites was located about 62 kb upstream of the myeloblastosis (myb) gene. While integration within or surrounding the myb gene has been reported before for murine leukemia viruses, the location of the viral integration site identified in F-MuLV‑infected SCID mice is novel and has never been reported. Using PCR analysis we showed that viral integration at the myb locus occurs with a frequency of 35% and therefore is considered as a common integration site. Integration of F-MuLV in this locus resulted in upregulation of the MYB protein. Flow cytometry analysis and methylcellulose culture of leukemic cells isolated from tumors with viral integration close to the myb indicated tumors of myeloid origin. Our findings indicate that, in contrast to wt CB17 mice, F-MuLV-infected SCID mice display viral integration within myeloid specific gene loci that result in the development of myelogenous leukemia.
Collapse
Affiliation(s)
- Mehran Haeri
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Mizutani N, Kobayashi M, Sobue S, Ichihara M, Ito H, Tanaka K, Iwaki S, Fujii S, Ito Y, Tamiya-Koizumi K, Takagi A, Kojima T, Naoe T, Suzuki M, Nakamura M, Banno Y, Nozawa Y, Murate T. Sphingosine kinase 1 expression is downregulated during differentiation of Friend cells due to decreased c-MYB. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1006-16. [DOI: 10.1016/j.bbamcr.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 12/23/2012] [Accepted: 01/02/2013] [Indexed: 12/19/2022]
|
40
|
Selimoglu-Buet D, Gallais I, Denis N, Guillouf C, Moreau-Gachelin F. Oncogenic kit triggers Shp2/Erk1/2 pathway to down-regulate the pro-apoptotic protein Bim and to promote apoptosis resistance in leukemic cells. PLoS One 2012; 7:e49052. [PMID: 23145067 PMCID: PMC3492180 DOI: 10.1371/journal.pone.0049052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/03/2012] [Indexed: 01/21/2023] Open
Abstract
Oncogenic mutations leading to persistent kinase activities are implicated in various human malignancies. Thereby, signaling pathway-targeted therapies are powerful customized treatment to eradicate cancer cells. In murine and human leukemia cells harboring mutations in Kit, we previously showed that distinct and independent pathways controlled resistance to apoptosis or cell cycle. A treatment with PI3Kinase inhibitors to reduce cell proliferation combined with inhibitors of Erk1/2 activity to promote apoptosis had synergistic effects allowing eradication of leukemia cell growth. We reported here that BimEL, a pro-apoptotic member of the Bcl2 family proteins, is the target of Erk1/2 signaling and that its down-regulation is responsible for the apoptosis resistance of murine and human leukemic cells. Downstream of Kit mutant, the tyrosine phosphatase Shp2 maintains BimEL expression at a low level, through Erk/2 activation and proteosomal BimEL degradation. This process is controlled by Shp2 independently of other signaling pathways activated downstream of oncogenic Kit, demonstrating that Shp2 is a key regulator of Bim expression in the context of an oncogenic signaling. The increase in BimEL expression is associated to an increased apoptosis. Moreover, the depletion of Bim overcomes apoptosis associated with Erk1/2 inactivation in UO126-treated leukemic cells, thereby establishing the contribution of Bim to drug-induced apoptosis. These data provide a molecular rationale for using BH3 mimetics in combination with PI3K inhibitors to treat leukemia, especially in the case of an oncogenic signaling refractory to Tyrosine Kinase inhibitors.
Collapse
|
41
|
Ridinger-Saison M, Boeva V, Rimmelé P, Kulakovskiy I, Gallais I, Levavasseur B, Paccard C, Legoix-Né P, Morlé F, Nicolas A, Hupé P, Barillot E, Moreau-Gachelin F, Guillouf C. Spi-1/PU.1 activates transcription through clustered DNA occupancy in erythroleukemia. Nucleic Acids Res 2012; 40:8927-41. [PMID: 22790984 PMCID: PMC3467057 DOI: 10.1093/nar/gks659] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acute leukemias are characterized by deregulation of transcriptional networks that control the lineage specificity of gene expression. The aberrant overexpression of the Spi-1/PU.1 transcription factor leads to erythroleukemia. To determine how Spi-1 mechanistically influences the transcriptional program, we combined a ChIP-seq analysis with transcriptional profiling in cells from an erythroleukemic mouse model. We show that Spi-1 displays a selective DNA-binding that does not often cause transcriptional modulation. We report that Spi-1 controls transcriptional activation and repression partially through distinct Spi-1 recruitment to chromatin. We revealed several parameters impacting on Spi-1-mediated transcriptional activation. Gene activation is facilitated by Spi-1 occupancy close to transcriptional starting site of genes devoid of CGIs. Moreover, in those regions Spi-1 acts by binding to multiple motifs tightly clustered and with similar orientation. Finally, in contrast to the myeloid and lymphoid B cells in which Spi-1 exerts a physiological activity, in the erythroleukemic cells, lineage-specific cooperating factors do not play a prevalent role in Spi-1-mediated transcriptional activation. Thus, our work describes a new mechanism of gene activation through clustered site occupancy of Spi-1 particularly relevant in regard to the strong expression of Spi-1 in the erythroleukemic cells.
Collapse
|
42
|
The miR-17-92 cluster expands multipotent hematopoietic progenitors whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in mice. Blood 2012; 119:4486-98. [PMID: 22451425 DOI: 10.1182/blood-2011-09-378687] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The miR-17-92 cluster and its 6 encoded miRNAs are frequently amplified and aberrantly expressed in various malignancies. This study demonstrates that retroviral-mediated miR-17-92 overexpression promotes expansion of multipotent hematopoietic progenitors in mice. Cell lines derived from these miR-17-92-overexpressing mice are capable of myeloid and lymphoid lineage differentiation, and recapitulate the normal lymphoid phenotype when transplanted to nonobese diabetic/severe combined immunodeficiency mice. However, overexpression of individual miRNAs from this locus, miR-19a or miR-92a, results in B-cell hyperplasia and erythroleukemia, respectively. Coexpression of another member of this cluster miR-17, with miR-92a, abrogates miR-92a-induced erythroleukemogenesis. Accordingly, we identified several novel miR-92a and miR-17 target genes regulating erythroid survival and proliferation, including p53. Expression of this critical target results in marked growth inhibition of miR-92a erythroleukemic cells. In both murine and human leukemias, p53 inactivation contributed to the selective overexpression of oncogenic miR-92a and miR-19a, and down-regulation of tumor-suppressive miR-17. This miR-17-92 expression signature was also detected in p53- B-cell chronic lymphocytic leukemia patients displaying an aggressive clinical phenotype. These results revealed that imbalanced miR-17-92 expression, also mediated by p53, directly transforms the hematopoietic compartment. Thus examination of such miRNA expression signatures should aid in the diagnosis and treatment of cancers displaying miR-17-92 gene amplification.
Collapse
|
43
|
Cotargeting signaling pathways driving survival and cell cycle circumvents resistance to Kit inhibitors in leukemia. Blood 2012; 119:4228-41. [PMID: 22438255 DOI: 10.1182/blood-2011-07-368316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oncogenic mutations leading to persistent kinase activities are associated with malignancies. Therefore, deciphering the signaling networks downstream of these oncogenic stimuli remains a challenge to gather insights into targeted therapy. To elucidate the biochemical networks connecting the Kit mutant to leukemogenesis, in the present study, we performed a global profiling of tyrosine-phosphorylated proteins from mutant Kit-driven murine leukemia proerythroblasts and identified Shp2 and Stat5 as proximal effectors of Kit. Shp2 or Stat5 gene depletion by sh-RNA, combined with pharmacologic inhibition of PI3kinase or Mek/Erk activities, revealed 2 distinct and independent signaling pathways contributing to malignancy. We demonstrate that cell survival is driven by the Kit/Shp2/Ras/Mek/Erk1/2 pathway, whereas the G(1)/S transition during the cell cycle is accelerated by both the Kit/Stat5 and Kit/PI3K/Akt pathways. The combined use of the clinically relevant drugs NVP-BEZ235, which targets the cell cycle, and Obatoclax, which targets survival, demonstrated synergistic effects to inhibit leukemia cell growth. This synergy was confirmed with a human mast leukemia cell line (HMC-1.2) that expresses mutant Kit. The results of the present study using liquid chromatography/tandem mass spectrometry analysis have elucidated signaling networks downstream of an oncogenic kinase, providing a molecular rationale for pathway-targeted therapy to treat cancer cells refractory to tyrosine kinase inhibitors.
Collapse
|
44
|
|
45
|
The Transcription Factor PU.1 is a Critical Regulator of Cellular Communication in the Immune System. Arch Immunol Ther Exp (Warsz) 2011; 59:431-40. [DOI: 10.1007/s00005-011-0147-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/25/2011] [Indexed: 12/22/2022]
|
46
|
PU.1 and Haematopoietic Cell Fate: Dosage Matters. Int J Cell Biol 2011; 2011:808524. [PMID: 21845190 PMCID: PMC3154517 DOI: 10.1155/2011/808524] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/22/2011] [Indexed: 11/17/2022] Open
Abstract
The ETS family transcription factor PU.1 is a key regulator of haematopoietic differentiation. Its expression is dynamically controlled throughout haematopoiesis in order to direct appropriate lineage specification. Elucidating the biological role of PU.1 has proved challenging. This paper will discuss how a range of experiments in cell lines and mutant and transgenic mouse models have enhanced our knowledge of the mechanisms by which PU.1 drives lineage-specific differentiation during haematopoiesis.
Collapse
|
47
|
Irino T, Uemura M, Yamane H, Umemura S, Utsumi T, Kakazu N, Shirakawa T, Ito M, Suzuki T, Kinoshita K. JAK2 V617F-dependent upregulation of PU.1 expression in the peripheral blood of myeloproliferative neoplasm patients. PLoS One 2011; 6:e22148. [PMID: 21789226 PMCID: PMC3138766 DOI: 10.1371/journal.pone.0022148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 06/20/2011] [Indexed: 01/28/2023] Open
Abstract
Myeloproliferative neoplasms (MPN) are multiple disease entities characterized by clonal expansion of one or more of the myeloid lineages (i.e. granulocytic, erythroid, megakaryocytic and mast cell). JAK2 mutations, such as the common V617F substitution and the less common exon 12 mutations, are frequently detected in such tumor cells and have been incorporated into the diagnostic criteria published by the World Health Organization since 2008. However, the mechanism by which these mutations contribute to MPN development is poorly understood. We examined gene expression profiles of MPN patients focusing on genes in the JAK–STAT signaling pathway using low-density real-time PCR arrays. We identified the following 2 upregulated genes in MPN patients: a known target of the JAK–STAT axis, SOCS3, and a potentially novel target, SPI1, encoding PU.1. Induction of PU.1 expression by JAK2 V617F in JAK2-wildtype K562 cells and its downregulation by JAK2 siRNA transfection in JAK2 V617F-positive HEL cells supported this possibility. We also found that the ABL1 kinase inhibitor imatinib was very effective in suppressing PU.1 expression in BCR-ABL1-positive K562 cells but not in HEL cells. This suggests that PU.1 expression is regulated by both JAK2 and ABL1. The contribution of the two kinases in driving PU.1 expression was dominant for JAK2 and ABL1 in HEL and K562 cells, respectively. Therefore, PU.1 may be a common transcription factor upregulated in MPN. PU.1 is a transcription factor required for myeloid differentiation and is implicated in erythroid leukemia. Therefore, expression of PU.1 downstream of activated JAK2 may explain why JAK2 mutations are frequently observed in MPN patients.
Collapse
Affiliation(s)
- Tamotsu Irino
- Shiga Medical Center for Adults, Moriyama, Japan
- Division of Medical Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | | | - Humitsugu Yamane
- Department of Environmental and Preventive Medicine, Shimane University School of Medicine, Izumo, Japan
| | | | | | - Naoki Kakazu
- Department of Environmental and Preventive Medicine, Shimane University School of Medicine, Izumo, Japan
| | - Taku Shirakawa
- Division of Medical Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Mitsuhiro Ito
- Division of Medical Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | | | - Kazuo Kinoshita
- Shiga Medical Center Research Institute, Moriyama, Japan
- * E-mail:
| |
Collapse
|
48
|
PU.1 directly regulates retinoic acid-induced expression of RIG-G in leukemia cells. FEBS Lett 2010; 585:375-80. [DOI: 10.1016/j.febslet.2010.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/10/2010] [Accepted: 12/14/2010] [Indexed: 11/18/2022]
|
49
|
A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression. PLoS Biol 2010; 8. [PMID: 20877475 PMCID: PMC2943437 DOI: 10.1371/journal.pbio.1000484] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 08/04/2010] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic progenitors undergo differentiation while navigating several cell division cycles, but it is unknown whether these two processes are coupled. We addressed this question by studying erythropoiesis in mouse fetal liver in vivo. We found that the initial upregulation of cell surface CD71 identifies developmentally matched erythroblasts that are tightly synchronized in S-phase. We show that DNA replication within this but not subsequent cycles is required for a differentiation switch comprising rapid and simultaneous committal transitions whose precise timing was previously unknown. These include the onset of erythropoietin dependence, activation of the erythroid master transcriptional regulator GATA-1, and a switch to an active chromatin conformation at the β-globin locus. Specifically, S-phase progression is required for the formation of DNase I hypersensitive sites and for DNA demethylation at this locus. Mechanistically, we show that S-phase progression during this key committal step is dependent on downregulation of the cyclin-dependent kinase p57(KIP2) and in turn causes the downregulation of PU.1, an antagonist of GATA-1 function. These findings therefore highlight a novel role for a cyclin-dependent kinase inhibitor in differentiation, distinct to their known function in cell cycle exit. Furthermore, we show that a novel, mutual inhibition between PU.1 expression and S-phase progression provides a "synchromesh" mechanism that "locks" the erythroid differentiation program to the cell cycle clock, ensuring precise coordination of critical differentiation events.
Collapse
|
50
|
Rimmelé P, Komatsu J, Hupé P, Roulin C, Barillot E, Dutreix M, Conseiller E, Bensimon A, Moreau-Gachelin F, Guillouf C. Spi-1/PU.1 oncogene accelerates DNA replication fork elongation and promotes genetic instability in the absence of DNA breakage. Cancer Res 2010; 70:6757-66. [PMID: 20660370 DOI: 10.1158/0008-5472.can-09-4691] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The multistage process of cancer formation is driven by the progressive acquisition of somatic mutations. Replication stress creates genomic instability in mammals. Using a well-defined multistep leukemia model driven by Spi-1/PU.1 overexpression in the mouse and Spi-1/PU.1-overexpressing human leukemic cells, we investigated the relationship between DNA replication and cancer progression. Here, using DNA molecular combing and flow cytometry methods, we show that Spi-1 increases the speed of replication by acting specifically on elongation rather than enhancing origin firing. This shortens the S-phase duration. Combining data from Spi-1 knockdown in murine cells with Spi-1 overexpression in human cells, we provide evidence that inappropriate Spi-1 expression is directly responsible for the replication alteration observed. Importantly, the acceleration of replication progression coincides with an increase in the frequency of genomic mutations without inducing DNA breakage. Thus, we propose that the hitherto unsuspected role for spi-1 oncogene in promoting replication elongation and genomic mutation promotes blastic progression during leukemic development.
Collapse
|