1
|
Joshua IM, Lin M, Mardjuki A, Mazzola A, Höfken T. A Protein-Protein Interaction Analysis Suggests a Wide Range of New Functions for the p21-Activated Kinase (PAK) Ste20. Int J Mol Sci 2023; 24:15916. [PMID: 37958899 PMCID: PMC10647699 DOI: 10.3390/ijms242115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The p21-activated kinases (PAKs) are important signaling proteins. They contribute to a surprisingly wide range of cellular processes and play critical roles in a number of human diseases including cancer, neurological disorders and cardiac diseases. To get a better understanding of PAK functions, mechanisms and integration of various cellular activities, we screened for proteins that bind to the budding yeast PAK Ste20 as an example, using the split-ubiquitin technique. We identified 56 proteins, most of them not described previously as Ste20 interactors. The proteins fall into a small number of functional categories such as vesicle transport and translation. We analyzed the roles of Ste20 in glucose metabolism and gene expression further. Ste20 has a well-established role in the adaptation to changing environmental conditions through the stimulation of mitogen-activated protein kinase (MAPK) pathways which eventually leads to transcription factor activation. This includes filamentous growth, an adaptation to nutrient depletion. Here we show that Ste20 also induces filamentous growth through interaction with nuclear proteins such as Sac3, Ctk1 and Hmt1, key regulators of gene expression. Combining our observations and the data published by others, we suggest that Ste20 has several new and unexpected functions.
Collapse
Affiliation(s)
| | - Meng Lin
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Ariestia Mardjuki
- Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, UK; (I.M.J.)
| | - Alessandra Mazzola
- Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, UK; (I.M.J.)
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, 90133 Palermo, Italy
| | - Thomas Höfken
- Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, UK; (I.M.J.)
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
2
|
González B, Mirzaei M, Basu S, Pujari AN, Vandermeulen MD, Prabhakar A, Cullen PJ. Turnover and bypass of p21-activated kinase during Cdc42-dependent MAPK signaling in yeast. J Biol Chem 2023; 299:105297. [PMID: 37774975 PMCID: PMC10641623 DOI: 10.1016/j.jbc.2023.105297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 10/01/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular behaviors, including the response to stress and cell differentiation, and are highly conserved across eukaryotes. MAPK pathways can be activated by the interaction between the small GTPase Cdc42p and the p21-activated kinase (Ste20p in yeast). By studying MAPK pathway regulation in yeast, we recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is regulated in a similar manner and is turned over by the 26S proteasome. This turnover did not occur when Ste20p was bound to Cdc42p, which presumably stabilized the protein to sustain MAPK pathway signaling. Although Ste20p is a major component of the fMAPK pathway, genetic approaches here identified a Ste20p-independent branch of signaling. Ste20p-independent signaling partially required the fMAPK pathway scaffold and Cdc42p-interacting protein, Bem4p, while Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p. Interestingly, Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p, Rga1p, which unexpectedly dampened basal but not active fMAPK pathway activity. These new regulatory features of the Rho GTPase and p21-activated kinase module may extend to related pathways in other systems.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Mahnoosh Mirzaei
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Sukanya Basu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Atindra N Pujari
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Matthew D Vandermeulen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Aditi Prabhakar
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Paul J Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
3
|
Farley FW, McCully RR, Maslo PB, Yu L, Sheff MA, Sadeghi H, Elion EA. Effects of HSP70 chaperones Ssa1 and Ssa2 on Ste5 scaffold and the mating mitogen-activated protein kinase (MAPK) pathway in Saccharomyces cerevisiae. PLoS One 2023; 18:e0289339. [PMID: 37851593 PMCID: PMC10584130 DOI: 10.1371/journal.pone.0289339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/17/2023] [Indexed: 10/20/2023] Open
Abstract
Ste5 is a prototype of scaffold proteins that regulate activation of mitogen-activated protein kinase (MAPK) cascades in all eukaryotes. Ste5 associates with many proteins including Gβγ (Ste4), Ste11 MAPKKK, Ste7 MAPKK, Fus3 and Kss1 MAPKs, Bem1, Cdc24. Here we show that Ste5 also associates with heat shock protein 70 chaperone (Hsp70) Ssa1 and that Ssa1 and its ortholog Ssa2 are together important for Ste5 function and efficient mating responses. The majority of purified overexpressed Ste5 associates with Ssa1. Loss of Ssa1 and Ssa2 has deleterious effects on Ste5 abundance, integrity, and localization particularly when Ste5 is expressed at native levels. The status of Ssa1 and Ssa2 influences Ste5 electrophoresis mobility and formation of high molecular weight species thought to be phosphorylated, ubiquitinylated and aggregated and lower molecular weight fragments. A Ste5 VWA domain mutant with greater propensity to form punctate foci has reduced predicted propensity to bind Ssa1 near the mutation sites and forms more punctate foci when Ssa1 Is overexpressed, supporting a dynamic protein quality control relationship between Ste5 and Ssa1. Loss of Ssa1 and Ssa2 reduces activation of Fus3 and Kss1 MAPKs and FUS1 gene expression and impairs mating shmoo morphogenesis. Surprisingly, ssa1, ssa2, ssa3 and ssa4 single, double and triple mutants can still mate, suggesting compensatory mechanisms exist for folding. Additional analysis suggests Ssa1 is the major Hsp70 chaperone for the mating and invasive growth pathways and reveals several Hsp70-Hsp90 chaperone-network proteins required for mating morphogenesis.
Collapse
Affiliation(s)
- Francis W. Farley
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Ryan R. McCully
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Paul B. Maslo
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Lu Yu
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Mark A. Sheff
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Homayoun Sadeghi
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Elaine A. Elion
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
4
|
Su X, Pang YT, Li W, Gumbart JC, Kelley J, Torres M. N-terminal intrinsic disorder is an ancestral feature of Gγ subunits that influences the balance between different Gβγ signaling axes in yeast. J Biol Chem 2023; 299:104947. [PMID: 37354971 PMCID: PMC10393545 DOI: 10.1016/j.jbc.2023.104947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Activated G protein-coupled receptors promote the dissociation of heterotrimeric G proteins into Gα and Gβγ subunits that bind to effector proteins to drive intracellular signaling responses. In yeast, Gβγ subunits coordinate the simultaneous activation of multiple signaling axes in response to mating pheromones, including MAP kinase (MAPK)-dependent transcription, cell polarization, and cell cycle arrest responses. The Gγ subunit in this complex contains an N-terminal intrinsically disordered region that governs Gβγ-dependent signal transduction in yeast and mammals. Here, we demonstrate that N-terminal intrinsic disorder is likely an ancestral feature that has been conserved across different Gγ subtypes and organisms. To understand the functional contribution of structural disorder in this region, we introduced precise point mutations that produce a stepwise disorder-to-order transition in the N-terminal tail of the canonical yeast Gγ subunit, Ste18. Mutant tail structures were confirmed using circular dichroism and molecular dynamics and then substituted for the wildtype gene in yeast. We find that increasing the number of helix-stabilizing mutations, but not isometric mutation controls, has a negative and proteasome-independent effect on Ste18 protein levels as well as a differential effect on pheromone-induced levels of active MAPK/Fus3, but not MAPK/Kss1. When expressed at wildtype levels, we further show that mutants with an alpha-helical N terminus exhibit a counterintuitive shift in Gβγ signaling that reduces active MAPK/Fus3 levels whilst increasing cell polarization and cell cycle arrest. These data reveal a role for Gγ subunit intrinsically disordered regions in governing the balance between multiple Gβγ signaling axes.
Collapse
Affiliation(s)
- Xinya Su
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Wei Li
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA; Southeast Center for Mathematics and Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - J C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Joshua Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Matthew Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA; Southeast Center for Mathematics and Biology, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
5
|
Gonz Lez B, Mirzaei M, Basu S, Prabhakar A, Cullen PJ. New Features Surrounding the Cdc42-Ste20 Module that Regulates MAP Kinase Signaling in Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530426. [PMID: 36909494 PMCID: PMC10002611 DOI: 10.1101/2023.02.28.530426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular responses, including the response to stress and cell differentiation, and are highly conserved across eukaryotes from yeast to humans. In yeast, the canonical activation of several MAPK pathways includes the interaction of the small GTPase Cdc42p with the p21-activated kinase (PAK) Ste20p. We recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is turned over by the 26S proteasome. Ste20p was stabilized when bound to Cdc42p, presumably to sustain MAPK pathway signaling. Ste20p is a major conduit by which signals flow through the fMAPK pathway; however, by genetic approaches we also identified a Ste20p-independent branch of the fMAPK pathway. Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p, while Ste20p-independent signaling required the fMAPK pathway adaptor and Cdc42p-interacting protein, Bem4p. Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p in the fMAPK pathway, Rga1p, which also dampened basal but not active fMAPK pathway activity. Finally, the polarity adaptor and Cdc42p-interacting protein, Bem1p, which also regulates the fMAPK pathway, interacts with the tetra-span protein Sho1p, connecting a sensor at the plasma membrane to a protein that regulates the GTPase module. Collectively, these data reveal new regulatory features surrounding a Rho-PAK module that may extend to other pathways that control cell differentiation.
Collapse
|
6
|
The Paxillin MoPax1 Activates Mitogen-Activated Protein (MAP) Kinase Signaling Pathways and Autophagy through MAP Kinase Activator MoMka1 during Appressorium-Mediated Plant Infection by the Rice Blast Fungus Magnaporthe oryzae. mBio 2022; 13:e0221822. [PMID: 36314807 PMCID: PMC9765475 DOI: 10.1128/mbio.02218-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Paxillin is a focal adhesion-associated protein that functions as an adaptor to recruit diverse cytoskeleton and signaling molecules into a complex and plays a crucial role in several signaling pathways in mammal cells. However, paxillin-mediated signal pathways are largely unknown in phytopathogenic fungi. Previously, Pax1 of Magnaporthe oryzae (MoPax1), a paxillin-like protein, has been identified as a crucial pathogenicity determinant. Here, we report the identification of a mitogen-activated protein (MAP) kinase (MAPK) activator, Mka1 of M. oryzae (MoMka1), that physically interacts with MoPax1. Targeted gene deletion of MoMKA1 resulted in pleiotropic defects in aerial hyphal growth, conidiation, appressorium formation, and pathogenicity in M. oryzae. MoMka1 interacts with Mst50, an adaptor protein of the Mst11-Mst7-Pmk1 and Mck1-Mkk2-Mps1 cascades. Moreover, the phosphorylation levels of both Pmk1 and Mps1 in aerial hyphae of the ΔMomka1 mutant were significantly reduced, indicating that MoMka1 acts upstream from the MAPK pathways. Interestingly, we found that MoMka1 interacts with MoAtg6 and MoAtg13. Deletion of MoMKA1 led to impaired MoAtg13 phosphorylation and enhanced autophagic flux under nutrient-rich conditions, indicating that MoMka1 is required for regulation of autophagy in M. oryzae. Taken together, the paxillin MoPax1 may activate MAP kinase signaling pathways and autophagy through MAP kinase activator MoMka1 and play important roles during appressorium-mediated plant infection by the rice blast fungus. IMPORTANCE Paxillin, as an adaptor recruiting diverse cytoskeleton and signaling molecules into a complex, plays a crucial role in several signaling pathways in mammal cells. However, paxillin-mediated signal pathways are largely unknown in phytopathogenic fungi. Here, we identified that MoMka1 physically interacts with MoPax1. Furthermore, MoMka1 acts upstream from the MAPK pathways through interacting with Mst50, a key protein of the Mst11-Mst7-Pmk1 and Mck1-Mkk2-Mps1 cascades. Meanwhile, MoMka1 interacts with both MoAtg6 and MoAtg13 and controls autophagy initiation by influencing the phosphorylation level of MoAtg13. In summary, we describe a model in which MoPax1 activates MAP kinase signaling pathways and autophagy through MoMka1 during appressorium-mediated plant infection by M. oryzae.
Collapse
|
7
|
Yang H, Zheng Z, Zhou H, Qu H, Gao H. Proteomics Reveals the Mechanism Underlying the Autolysis of Postharvest Coprinus comatus Fruiting Bodies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1346-1357. [PMID: 35076245 DOI: 10.1021/acs.jafc.1c07007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Autolysis occurs widely in edible mushroom fruiting bodies after harvest, but the mechanism is still unclear. In this study, quantitative proteomics and bioinformatics analyses have been applied for revealing the autolysis mechanism of postharvest Coprinus comatus fruiting bodies. The results indicated that the autolysis mechanism of postharvest C. comatus was complicated. Before pileus opening, the carbohydrate metabolism including cell wall hydrolysis and energy biosynthesis, which were probably regulated by the ribosome, was involved in mushroom autolysis, whereas after pileus opening, the autolysis mechanism was related to the accumulated reactive oxygen species (ROS) and activated mitogen-activated protein kinase (MAPK) signaling pathway based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Furthermore, the changes in cell wall components and hydrolases, along with the production of ROS and the activities of oxidoreductase in C. comatus, were also verified to confirm the proteomic analysis results.
Collapse
Affiliation(s)
- Hailong Yang
- School of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihan Zheng
- School of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huabin Zhou
- School of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hang Qu
- School of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyan Gao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
8
|
Genome-Wide Characterization of PX Domain-Containing Proteins Involved in Membrane Trafficking-Dependent Growth and Pathogenicity of Fusarium graminearum. mBio 2021; 12:e0232421. [PMID: 34933449 PMCID: PMC8689521 DOI: 10.1128/mbio.02324-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Phox homology (PX) domain is a membrane recruitment module that binds to phosphoinositides (PI) mediating the selective sorting and transport of transmembrane proteins, lipids, and other critical cargo molecules via membrane trafficking processes. However, the mechanism of vesicular trafficking mediated by PX domain-containing proteins in phytopathogenic fungi and how this relates to the fungal development and pathogenicity remain unclear. Here, we systematically identified and characterized the functions of PX domain-containing proteins in the plant fungal pathogen Fusarium graminearum. Our data identified 14 PX domain-containing proteins in F. graminearum, all of which were required for plant infection and deoxynivalenol (DON) production, with the exception of FgMvp1 and FgYkr078. Furthermore, all the PX domain-containing proteins showed distinct localization patterns that were limited to the endosomes, vacuolar membrane, endoplasmic reticulum, cytoplasm, and hyphal septa/tips. Remarkably, among these proteins, FgBem1 targeted to surface crescent and septal pores and was retained at the septum pores even after actin constriction during septum development. Further analyses demonstrated that the surface crescent targeting of FgBem1 solely depended on its SH3 domains, while its septum and apex anchoring localization relied on its PX domain, which was also indispensable for reactive oxygen species (ROS) production, sexual development, and pathogenicity in F. graminearum. In summary, our study is the first detailed and comprehensive functional analysis of PX domain-containing proteins in filamentous fungi, and it provides new insight into the mechanism of FgBem1 involved in septum and apex anchorage mediated by its PX domain, which is necessary for sexual development and pathogenicity of F. graminearum.
Collapse
|
9
|
The Path towards Predicting Evolution as Illustrated in Yeast Cell Polarity. Cells 2020; 9:cells9122534. [PMID: 33255231 PMCID: PMC7760196 DOI: 10.3390/cells9122534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 01/14/2023] Open
Abstract
A bottom-up route towards predicting evolution relies on a deep understanding of the complex network that proteins form inside cells. In a rapidly expanding panorama of experimental possibilities, the most difficult question is how to conceptually approach the disentangling of such complex networks. These can exhibit varying degrees of hierarchy and modularity, which obfuscate certain protein functions that may prove pivotal for adaptation. Using the well-established polarity network in budding yeast as a case study, we first organize current literature to highlight protein entrenchments inside polarity. Following three examples, we see how alternating between experimental novelties and subsequent emerging design strategies can construct a layered understanding, potent enough to reveal evolutionary targets. We show that if you want to understand a cell’s evolutionary capacity, such as possible future evolutionary paths, seemingly unimportant proteins need to be mapped and studied. Finally, we generalize this research structure to be applicable to other systems of interest.
Collapse
|
10
|
Grinhagens S, Dünkler A, Wu Y, Rieger L, Brenner P, Gronemeyer T, Mulaw MA, Johnsson N. A time-resolved interaction analysis of Bem1 reconstructs the flow of Cdc42 during polar growth. Life Sci Alliance 2020; 3:e202000813. [PMID: 32737079 PMCID: PMC7409549 DOI: 10.26508/lsa.202000813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Cdc42 organizes cellular polarity and directs the formation of cellular structures in many organisms. By locating Cdc24, the source of active Cdc42, to the growing front of the yeast cell, the scaffold protein Bem1, is instrumental in shaping the cellular gradient of Cdc42. This gradient instructs bud formation, bud growth, or cytokinesis through the actions of a diverse set of effector proteins. To address how Bem1 participates in these transformations, we systematically tracked its protein interactions during one cell cycle to define the ensemble of Bem1 interaction states for each cell cycle stage. Mutants of Bem1 that interact with only a discrete subset of the interaction partners allowed to assign specific functions to different interaction states and identified the determinants for their cellular distributions. The analysis characterizes Bem1 as a cell cycle-specific shuttle that distributes active Cdc42 from its source to its effectors. It further suggests that Bem1 might convert the PAKs Cla4 and Ste20 into their active conformations.
Collapse
Affiliation(s)
- Sören Grinhagens
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Alexander Dünkler
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Yehui Wu
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Lucia Rieger
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Philipp Brenner
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Medhanie A Mulaw
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, Ulm University, Ulm, Germany
| | - Nils Johnsson
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
11
|
Basu S, González B, Li B, Kimble G, Kozminski KG, Cullen PJ. Functions for Cdc42p BEM adaptors in regulating a differentiation-type MAP kinase pathway. Mol Biol Cell 2020; 31:491-510. [PMID: 31940256 PMCID: PMC7185891 DOI: 10.1091/mbc.e19-08-0441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ras homology (Rho) GTPases regulate cell polarity and signal transduction pathways to control morphogenetic responses in different settings. In yeast, the Rho GTPase Cdc42p regulates cell polarity, and through the p21-activated kinase Ste20p, Cdc42p also regulates mitogen-activated protein kinase (MAPK) pathways (mating, filamentous growth or fMAPK, and HOG). Although much is known about how Cdc42p regulates cell polarity and the mating pathway, how Cdc42p regulates the fMAPK pathway is not clear. To address this question, Cdc42p-dependent MAPK pathways were compared in the filamentous (Σ1278b) strain background. Each MAPK pathway showed a unique activation profile, with the fMAPK pathway exhibiting slow activation kinetics compared with the mating and HOG pathways. A previously characterized version of Cdc42p, Cdc42pE100A, that is specifically defective for fMAPK pathway signaling, was defective for interaction with Bem4p, the pathway-specific adaptor for the fMAPK pathway. Corresponding residues in Bem4p were identified that were required for interaction with Cdc42p and fMAPK pathway signaling. The polarity adaptor Bem1p also regulated the fMAPK pathway. Versions of Bem1p defective for recruitment of Ste20p to the plasma membrane, intramolecular interactions, and interaction with the GEF, Cdc24p, were defective for fMAPK pathway signaling. Bem1p also regulated effector pathways in different ways. In some pathways, multiple domains of the protein were required for its function, whereas in other pathways, a single domain or function was needed. Genetic suppression tests showed that Bem4p and Bem1p regulate the fMAPK pathway in an ordered sequence. Collectively, the study demonstrates unique and sequential functions for Rho GTPase adaptors in regulating MAPK pathways.
Collapse
Affiliation(s)
- Sukanya Basu
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Beatriz González
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Boyang Li
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Garrett Kimble
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Keith G Kozminski
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| |
Collapse
|
12
|
Soong YHV, Liu N, Yoon S, Lawton C, Xie D. Cellular and metabolic engineering of oleaginous yeast Yarrowia lipolytica for bioconversion of hydrophobic substrates into high-value products. Eng Life Sci 2019; 19:423-443. [PMID: 32625020 DOI: 10.1002/elsc.201800147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/12/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
The non-conventional oleaginous yeast Yarrowia lipolytica is able to utilize both hydrophilic and hydrophobic carbon sources as substrates and convert them into value-added bioproducts such as organic acids, extracellular proteins, wax esters, long-chain diacids, fatty acid ethyl esters, carotenoids and omega-3 fatty acids. Metabolic pathway analysis and previous research results show that hydrophobic substrates are potentially more preferred by Y. lipolytica than hydrophilic substrates to make high-value products at higher productivity, titer, rate, and yield. Hence, Y. lipolytica is becoming an efficient and promising biomanufacturing platform due to its capabilities in biosynthesis of extracellular lipases and directly converting the extracellular triacylglycerol oils and fats into high-value products. It is believed that the cell size and morphology of the Y. lipolytica is related to the cell growth, nutrient uptake, and product formation. Dimorphic Y. lipolytica demonstrates the yeast-to-hypha transition in response to the extracellular environments and genetic background. Yeast-to-hyphal transition regulating genes, such as YlBEM1, YlMHY1 and YlZNC1 and so forth, have been identified to involve as major transcriptional factors that control morphology transition in Y. lipolytica. The connection of the cell polarization including cell cycle and the dimorphic transition with the cell size and morphology in Y. lipolytica adapting to new growth are reviewed and discussed. This review also summarizes the general and advanced genetic tools that are used to build a Y. lipolytica biomanufacturing platform.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Na Liu
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Seongkyu Yoon
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Carl Lawton
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Dongming Xie
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| |
Collapse
|
13
|
Serrano A, Illgen J, Brandt U, Thieme N, Letz A, Lichius A, Read ND, Fleißner A. Spatio-temporal MAPK dynamics mediate cell behavior coordination during fungal somatic cell fusion. J Cell Sci 2018; 131:jcs.213462. [PMID: 29592970 DOI: 10.1242/jcs.213462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/20/2018] [Indexed: 01/17/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are conserved regulators of proliferation, differentiation and adaptation in eukaryotic cells. Their activity often involves changes in their subcellular localization, indicating an important role for these spatio-temporal dynamics in signal transmission. A striking model illustrating these dynamics is somatic cell fusion in Neurospora crassa Germinating spores of this fungus rapidly alternate between signal sending and receiving, thereby establishing a cell-cell dialog, which involves the alternating membrane recruitment of the MAPK MAK-2 in both fusion partners. Here, we show that the dynamic translocation of MAK-2 is essential for coordinating the behavior of the fusion partners before physical contact. The activation and function of the kinase strongly correlate with its subcellular localization, indicating a crucial contribution of the MAPK dynamics in establishing regulatory feedback loops, which establish the oscillatory signaling mode. In addition, we provide evidence that MAK-2 not only contributes to cell-cell communication, but also mediates cell-cell fusion. The MAK-2 dynamics significantly differ between these two processes, suggesting a role for the MAPK in switching of the cellular program between communication and fusion.
Collapse
Affiliation(s)
- Antonio Serrano
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Julia Illgen
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Nils Thieme
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Anja Letz
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Alexander Lichius
- Institute of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Nick D Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
14
|
Abstract
Cdk1 (Cdc28 in yeast) is a cyclin-dependent kinase (CDK) essential for cell cycle progression and cell division in normal cells. However, CDK activity also underpins proliferation of tumor cells, making it a relevant study subject. While numerous targets and processes regulated by Cdc28 have been identified, the exact functions of Cdc28 are only partially understood. To further explore the functions of Cdc28, we systematically overexpressed ∼4800 genes in wild-type (WT) cells and in cells with artificially reduced Cdc28 activity. This screen identified 366 genes that, when overexpressed, specifically compromised cell viability under conditions of reduced Cdc28 activity. Consistent with the crucial functions of Cdc28 in cell cycle regulation and chromosome metabolism, most of these genes have functions in the cell cycle, DNA replication, and transcription. However, a substantial number of genes control processes not directly associated with the cell cycle, indicating that Cdc28 may also regulate these processes. Finally, because the dataset was enriched for direct Cdc28 targets, the results from this screen will aid in identifying novel targets and process regulated by Cdc28.
Collapse
|
15
|
Jain S, Bader GD. Predicting physiologically relevant SH3 domain mediated protein-protein interactions in yeast. Bioinformatics 2016; 32:1865-72. [PMID: 26861823 PMCID: PMC4908317 DOI: 10.1093/bioinformatics/btw045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/05/2015] [Accepted: 01/20/2016] [Indexed: 12/02/2022] Open
Abstract
MOTIVATION Many intracellular signaling processes are mediated by interactions involving peptide recognition modules such as SH3 domains. These domains bind to small, linear protein sequence motifs which can be identified using high-throughput experimental screens such as phage display. Binding motif patterns can then be used to computationally predict protein interactions mediated by these domains. While many protein-protein interaction prediction methods exist, most do not work with peptide recognition module mediated interactions or do not consider many of the known constraints governing physiologically relevant interactions between two proteins. RESULTS A novel method for predicting physiologically relevant SH3 domain-peptide mediated protein-protein interactions in S. cerevisae using phage display data is presented. Like some previous similar methods, this method uses position weight matrix models of protein linear motif preference for individual SH3 domains to scan the proteome for potential hits and then filters these hits using a range of evidence sources related to sequence-based and cellular constraints on protein interactions. The novelty of this approach is the large number of evidence sources used and the method of combination of sequence based and protein pair based evidence sources. By combining different peptide and protein features using multiple Bayesian models we are able to predict high confidence interactions with an overall accuracy of 0.97. AVAILABILITY AND IMPLEMENTATION Domain-Motif Mediated Interaction Prediction (DoMo-Pred) command line tool and all relevant datasets are available under GNU LGPL license for download from http://www.baderlab.org/Software/DoMo-Pred The DoMo-Pred command line tool is implemented using Python 2.7 and C ++. CONTACT gary.bader@utoronto.ca SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shobhit Jain
- Department of Computer Science and The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Computer Science and The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Tanaka K, Tatebayashi K, Nishimura A, Yamamoto K, Yang HY, Saito H. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms. Sci Signal 2014; 7:ra21. [PMID: 24570489 DOI: 10.1126/scisignal.2004780] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To cope with environmental high osmolarity, the budding yeast Saccharomyces cerevisiae activates the mitogen-activated protein kinase (MAPK) Hog1, which controls an array of osmoadaptive responses. Two independent, but functionally redundant, osmosensing systems involving the transmembrane sensor histidine kinase Sln1 or the tetraspanning membrane protein Sho1 stimulate the Hog1 MAPK cascade. Furthermore, the Sho1 signaling branch itself also involves the two functionally redundant osmosensors Hkr1 and Msb2. However, any single osmosensor (Sln1, Hkr1, or Msb2) is sufficient for osmoadaptation. We found that the signaling mechanism by which Hkr1 or Msb2 stimulated the Hog1 cascade was specific to each osmosensor. Specifically, activation of Hog1 by Msb2 required the scaffold protein Bem1 and the actin cytoskeleton. Bem1 bound to the cytoplasmic domain of Msb2 and thus recruited the kinases Ste20 and Cla4 to the membrane, where either of them can activate the kinase Ste11. The cytoplasmic domain of Hkr1 also contributed to the activation of Ste11 by Ste20, but through a mechanism that involved neither Bem1 nor the actin cytoskeleton. Furthermore, we found a PXXP motif in Ste20 that specifically bound to the Sho1 SH3 (Src homology 3) domain. This interaction between Ste20 and Sho1 contributed to the activation of Hog1 by Hkr1, but not by Msb2. These differences between Hkr1 and Msb2 may enable differential regulation of these two proteins and provide a mechanism through Msb2 to connect regulation of the cytoskeleton with the response to osmotic stress.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- 1Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Quantitative measurement of protein relocalization in live cells. Biophys J 2013; 104:727-36. [PMID: 23442923 DOI: 10.1016/j.bpj.2012.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/07/2012] [Accepted: 12/13/2012] [Indexed: 11/24/2022] Open
Abstract
Microscope cytometry provides a powerful means to study signaling in live cells. Here we present a quantitative method to measure protein relocalization over time, which reports the absolute fraction of a tagged protein in each compartment. Using this method, we studied an essential step in the early propagation of the pheromone signal in Saccharomyces cerevisiae: recruitment to the membrane of the scaffold Ste5 by activated Gβγ dimers. We found that the dose response of Ste5 recruitment is graded (EC50 = 0.44 ± 0.08 nM, Hill coefficient = 0.8 ± 0.1). Then, we determined the effective dissociation constant (K(de)) between Ste5 and membrane sites during the first few minutes when the negative feedback from the MAPK Fus3 is first activated. K(de) changed during the first minutes from a high affinity of < 0.65 nM to a steady-state value of 17 ± 9 nM. During the same period, the total number of binding sites decreased slightly, from 1940 ± 150 to 1400 ± 200. This work shows how careful quantification of a protein relocalization dynamic can give insight into the regulation mechanisms of a biological system.
Collapse
|
18
|
Abstract
Many cells are able to orient themselves in a non-uniform environment by responding to localized cues. This leads to a polarized cellular response, where the cell can either grow or move towards the cue source. Fungal haploid cells secrete pheromones to signal mating, and respond by growing a mating projection towards a potential mate. Upon contact of the two partner cells, these fuse to form a diploid zygote. In this review, we present our current knowledge on the processes of mating signalling, pheromone-dependent polarized growth and cell fusion in Saccharomyces cerevisiae and Schizosaccharomyces pombe, two highly divergent ascomycete yeast models. While the global architecture of the mating response is very similar between these two species, they differ significantly both in their mating physiologies and in the molecular connections between pheromone perception and downstream responses. The use of both yeast models helps enlighten both conserved solutions and species-specific adaptations to a general biological problem.
Collapse
Affiliation(s)
- Laura Merlini
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | | | | |
Collapse
|
19
|
Schürg T, Brandt U, Adis C, Fleissner A. The Saccharomyces cerevisiae BEM1 homologue in Neurospora crassa promotes co-ordinated cell behaviour resulting in cell fusion. Mol Microbiol 2012; 86:349-66. [PMID: 22906237 DOI: 10.1111/j.1365-2958.2012.08197.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 12/24/2022]
Abstract
Directed growth or movement is a common feature of microbial development and propagation. In polar growing filamentous fungi, directed growth requires the interaction of signal sensing machineries with factors controlling polarity and cell tip extension. In Neurospora crassa an unusual mode of cell-cell signalling mediates mutual attraction of germinating spores, which subsequently fuse. During directed growth of the two fusion partners, the cells co-ordinately alternate between two physiological stages, probably associated with signal sending and receiving. Here, we show that the Saccharomyces cerevisiae BEM1 homologue in N. crassa is essential for the robust and efficient functioning of this MAP kinase-based signalling system. BEM1 localizes to growing hyphal tips suggesting a conserved function as a polarity component. In the absence of BEM1, activation of MAK-2, a MAP kinase essential for germling fusion, is strongly reduced and delayed. Germling interactions become highly instable and successful fusion is greatly reduced. In addition, BEM1 is actively recruited around the forming fusion pore, suggesting potential functions after cell-cell contact has been established. By genetically dissecting the contribution of BEM1 to additional various polarization events, we also obtained first hints that BEM1 might function in different protein complexes controlling polarity and growth direction.
Collapse
Affiliation(s)
- Timo Schürg
- Institut für Genetik, Technische Universität, Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | | | | | | |
Collapse
|
20
|
Zalatan JG, Coyle SM, Rajan S, Sidhu SS, Lim WA. Conformational control of the Ste5 scaffold protein insulates against MAP kinase misactivation. Science 2012; 337:1218-22. [PMID: 22878499 DOI: 10.1126/science.1220683] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cells reuse signaling proteins in multiple pathways, raising the potential for improper cross talk. Scaffold proteins are thought to insulate against such miscommunication by sequestering proteins into distinct physical complexes. We show that the scaffold protein Ste5, which organizes the yeast mating mitogen-activated protein kinase (MAPK) pathway, does not use sequestration to prevent misactivation of the mating response. Instead, Ste5 appears to use a conformation mechanism: Under basal conditions, an intramolecular interaction of the pleckstrin homology (PH) domain with the von Willebrand type A (VWA) domain blocks the ability to coactivate the mating-specific MAPK Fus3. Pheromone-induced membrane binding of Ste5 triggers release of this autoinhibition. Thus, in addition to serving as a conduit guiding kinase communication, Ste5 directly receives input information to decide if and when signal can be transmitted to mating output.
Collapse
Affiliation(s)
- Jesse G Zalatan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
21
|
Evolutionary reshaping of fungal mating pathway scaffold proteins. mBio 2011; 2:e00230-10. [PMID: 21249169 PMCID: PMC3023161 DOI: 10.1128/mbio.00230-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/03/2010] [Indexed: 02/08/2023] Open
Abstract
Scaffold proteins play central roles in the function of many signaling pathways. Among the best-studied examples are the Ste5 and Far1 proteins of the yeast Saccharomyces cerevisiae. These proteins contain three conserved modules, the RING and PH domains, characteristic of some ubiquitin-ligating enzymes, and a vWA domain implicated in protein-protein interactions. In yeast, Ste5p regulates the mating pathway kinases while Far1p coordinates the cellular polarity machinery. Within the fungal lineage, the Basidiomycetes and the Pezizomycetes contain a single Far1-like protein, while several Saccharomycotina species, belonging to the CTG (Candida) clade, contain both a classic Far1-like protein and a Ste5-like protein that lacks the vWA domain. We analyzed the function of C. albicans Ste5p (Cst5p), a member of this class of structurally distinct Ste5 proteins. CST5 is essential for mating and still coordinates the mitogen-activated protein (MAP) kinase (MAPK) cascade elements in the absence of the vWA domain; Cst5p interacts with the MEK kinase (MEKK) C. albicans Ste11p (CaSte11p) and the MAPK Cek1 as well as with the MEK Hst7 in a vWA domain-independent manner. Cst5p can homodimerize, similar to Ste5p, but can also heterodimerize with Far1p, potentially forming heteromeric signaling scaffolds. We found direct binding between the MEKK CaSte11p and the MEK Hst7p that depends on a mobile acidic loop absent from S. cerevisiae Ste11p but related to the Ste7-binding region within the vWA domain of Ste5p. Thus, the fungal lineage has restructured specific scaffolding modules to coordinate the proteins required to direct the gene expression, polarity, and cell cycle regulation essential for mating. The mitogen-activated protein (MAP) kinase cascade is an extensively used signaling module in eukaryotic cells, and the ability to regulate these modules is critical for ensuring proper responses to a wide variety of stimuli. One way that cells regulate this signaling module is through scaffold proteins that insulate related pathways against cross talk, improve signaling efficiency, and ensure that signals are connected to the correct response. The Ste5 scaffold of the S. cerevisiae mating response is a well-studied representative of this class of proteins. Using bioinformatics, structural modeling, and molecular genetic approaches, we have investigated the equivalent scaffold in the pathogenic yeast Candida albicans. We show that the C. albicans protein is structurally distinct from that of Saccharomyces cerevisiae but still provides similar functions. Increases in pathway complexity have been associated with changes in scaffold connectivity, and overall, the tethering capacity of the scaffolds has been more conserved than their structural organization.
Collapse
|
22
|
Abstract
Mitogen-activated protein (MAP) kinases play central roles in transmitting extracellular and intracellular information in a wide variety of situations in eukaryotic cells. Their activities are perturbed in a large number of diseases, and their activating kinases are currently therapeutic targets in cancer. MAPKs are highly conserved among all eukaryotes. MAPKs were first cloned from the yeast Saccharomyces cerevisiae. Yeast has five MAPKs and one MAPK-like kinase. The mating MAPK Fus3 is the best characterized yeast MAPK. Members of all subfamilies of human MAPKs can functionally substitute S. cerevisiae MAPKs, providing systems to use genetic approaches to study the functions of either yeast or human MAPKs and to identify functionally relevant amino acid residues that enhance or reduce the effects of therapeutically relevant inhibitors and regulatory proteins. Here, we describe an assay to measure Fus3 activity in immune complexes prepared from S. cerevisiae extracts. The assay conditions are applicable to other MAPKs, as well.
Collapse
Affiliation(s)
- Elaine A Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
23
|
Slaughter BD, Smith SE, Li R. Symmetry breaking in the life cycle of the budding yeast. Cold Spring Harb Perspect Biol 2009; 1:a003384. [PMID: 20066112 PMCID: PMC2773630 DOI: 10.1101/cshperspect.a003384] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The budding yeast Saccharomyces cerevisiae has been an invaluable model system for the study of the establishment of cellular asymmetry and growth polarity in response to specific physiological cues. A large body of experimental observations has shown that yeast cells are able to break symmetry and establish polarity through two coupled and partially redundant intrinsic mechanisms, even in the absence of any pre-existing external asymmetry. One of these mechanisms is dependent upon interplay between the actin cytoskeleton and the Rho family GTPase Cdc42, whereas the other relies on a Cdc42 GTPase signaling network. Integral to these mechanisms appear to be positive feedback loops capable of amplifying small and stochastic asymmetries. Spatial cues, such as bud scars and pheromone gradients, orient cell polarity by modulating the regulation of the Cdc42 GTPase cycle, thereby biasing the site of asymmetry amplification.
Collapse
Affiliation(s)
- Brian D Slaughter
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA.
| | | | | |
Collapse
|
24
|
Rispail N, Soanes DM, Ant C, Czajkowski R, Grünler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage AA, Gow NAR, Kahmann R, Lebrun MH, Lenasi H, Perez-Martin J, Talbot NJ, Wendland J, Di Pietro A. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet Biol 2009; 46:287-98. [PMID: 19570501 DOI: 10.1016/j.fgb.2009.01.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/16/2009] [Accepted: 01/17/2009] [Indexed: 01/22/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades and the calcium-calcineurin pathway control fundamental aspects of fungal growth, development and reproduction. Core elements of these signalling pathways are required for virulence in a wide array of fungal pathogens of plants and mammals. In this review, we have used the available genome databases to explore the structural conservation of three MAPK cascades and the calcium-calcineurin pathway in ten different fungal species, including model organisms, plant pathogens and human pathogens. While most known pathway components from the model yeast Saccharomyces cerevisiae appear to be widely conserved among taxonomically and biologically diverse fungi, some of them were found to be restricted to the Saccharomycotina. The presence of multiple paralogues in certain species such as the zygomycete Rhizopus oryzae and the incorporation of new functional domains that are lacking in S. cerevisiae signalling proteins, most likely reflect functional diversification or adaptation as filamentous fungi have evolved to occupy distinct ecological niches.
Collapse
Affiliation(s)
- Nicolas Rispail
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kozubowski L, Saito K, Johnson JM, Howell AS, Zyla TR, Lew DJ. Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr Biol 2008; 18:1719-26. [PMID: 19013066 PMCID: PMC2803100 DOI: 10.1016/j.cub.2008.09.060] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/05/2008] [Accepted: 09/18/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND In 1952, Alan Turing suggested that spatial patterns could arise from homogeneous starting conditions by feedback amplification of stochastic fluctuations. One example of such self-organization, called symmetry breaking, involves spontaneous cell polarization in the absence of spatial cues. The conserved GTPase Cdc42p is essential for both guided and spontaneous polarization, and in budding yeast cells Cdc42p concentrates at a single site (the presumptive bud site) at the cortex. Cdc42p concentrates at a random cortical site during symmetry breaking in a manner that requires the scaffold protein Bem1p. The mechanism whereby Bem1p promotes this polarization was unknown. RESULTS Here we show that Bem1p promotes symmetry breaking by assembling a complex in which both a Cdc42p-directed guanine nucleotide exchange factor (GEF) and a Cdc42p effector p21-activated kinase (PAK) associate with Bem1p. Analysis of Bem1p mutants indicates that both GEF and PAK must bind to the same molecule of Bem1p, and a protein fusion linking the yeast GEF and PAK bypasses the need for Bem1p. Although mammalian cells lack a Bem1p ortholog, they contain more complex multidomain GEFs that in some cases can directly interact with PAKs, and we show that yeast containing an artificial GEF with similar architecture can break symmetry even without Bem1p. CONCLUSIONS Yeast symmetry-breaking polarization involves a GEF-PAK complex that binds GTP-Cdc42p via the PAK and promotes local Cdc42p GTP-loading via the GEF. By generating fresh GTP-Cdc42p near pre-existing GTP-Cdc42p, the complex amplifies clusters of GTP-Cdc42p at the cortex. Our findings provide mechanistic insight into an evolutionarily conserved pattern-forming positive-feedback pathway.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Koji Saito
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jayme M. Johnson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Audrey S. Howell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Trevin R. Zyla
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
26
|
Park HO, Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 2007; 71:48-96. [PMID: 17347519 PMCID: PMC1847380 DOI: 10.1128/mmbr.00028-06] [Citation(s) in RCA: 329] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SUMMARY The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.
Collapse
Affiliation(s)
- Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA.
| | | |
Collapse
|
27
|
Slessareva JE, Dohlman HG. G protein signaling in yeast: new components, new connections, new compartments. Science 2006; 314:1412-3. [PMID: 17138892 DOI: 10.1126/science.1134041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Signaling by cell surface receptors and heterotrimeric guanine nucleotide-binding proteins (G proteins) is one of the most exhaustively studied processes in the cell but remains a major focus of molecular pharmacology research. The pheromone-response system in yeast (see the Connections Map at Science's Signal Transduction Knowledge Environment) has provided numerous major advances in our understanding of G protein signaling and regulation. However, the basic features of this prototypical pathway have remained largely unchanged since the mid-1990s. New tools available in yeast are beginning to uncover new pathway components and interactions and have revealed signaling in unexpected locations within the cell.
Collapse
Affiliation(s)
- Janna E Slessareva
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | |
Collapse
|
28
|
Xu H, Wickner W. Bem1p Is a Positive Regulator of the Homotypic Fusion of Yeast Vacuoles. J Biol Chem 2006; 281:27158-66. [PMID: 16854988 DOI: 10.1074/jbc.m605592200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Docked vacuoles are believed to undergo rapid lipid mixing during hemifusion and then a slow, rate-limiting completion of fusion and mixing of lumenal contents. Previous genomic analysis has suggested that Bem1p, a scaffold protein critical for cell polarity, may support vacuole fusion. We now report that bem1Delta strains have fragmented vacuoles (vps class B and C). During in vitro fusion reactions, vacuoles from bem1Delta strains showed a strong reduction in the rate of lipid mixing when compared with vacuoles from the BEM1 parent. The reduction in the overall rate of fusion with bem1Delta vacuoles was modest, consistent with lipid mixing as a non-rate-limiting step in the pathway. Although the fusion of either BEM1 (wild-type) or bem1Delta vacuoles is stimulated by recombinant Bem1p, the lipid mixing of docked bem1Delta vacuoles is highly dependent on rBem1p under certain reaction conditions. Bem1p-stimulated lipid mixing is blocked by well characterized fusion inhibitors including lipid ligands and antibodies to Ypt7p, Vps33p, and Vam3p. Although full-length Bem1p is required for maximal stimulation, a truncation mutant comprising the SH3 domains and the Phox homology (PX) domain retains modest stimulatory activity. In contrast to an earlier report (Han, B. K., Bogomolnaya, L. M., Totten, J. M., Blank, H. M., Dangott, L. J., and Polymenis, M. (2005) Genes Dev. 19, 2606-2618), we did not find phosphorylation of Bem1p at Ser-72 to be required for Bem1p-stimulated fusion. Taken together, Bem1p is a positive regulator of lipid mixing during vacuole hemifusion and fusion.
Collapse
Affiliation(s)
- Hao Xu
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA
| | | |
Collapse
|
29
|
Garrenton LS, Young SL, Thorner J. Function of the MAPK scaffold protein, Ste5, requires a cryptic PH domain. Genes Dev 2006; 20:1946-58. [PMID: 16847350 PMCID: PMC1522084 DOI: 10.1101/gad.1413706] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ste5, the prototypic mitogen-activated protein kinase (MAPK) scaffold protein, associates with plasma membrane-tethered Gbetagamma freed upon pheromone receptor occupancy, thereby initiating downstream signaling. We demonstrate that this interaction and membrane binding of an N-terminal amphipathic alpha-helix (PM motif) are not sufficient for Ste5 action. Rather, Ste5 contains a pleckstrin-homology (PH) domain (residues 388-518) that is essential for its membrane recruitment and function. Altering residues (R407S K411S) equivalent to those that mediate phosphoinositide binding in other PH domains abolishes Ste5 function. The isolated PH domain, but not a R407S K411S derivative, binds phosphoinositides in vitro. Ste5(R407S K411S) is expressed normally, retains Gbetagamma and Ste11 binding, and oligomerizes, yet is not recruited to the membrane in response to pheromone. Artificial membrane tethering of Ste5(R407S K411S) restores signaling. R407S K411S loss-of-function mutations abrogate the constitutive activity of gain-of-function Ste5 alleles, including one (P44L) that increases membrane affinity of the PM motif. Thus, the PH domain is essential for stable membrane recruitment of Ste5, and this association is critical for initiation of downstream signaling because it allows Ste5-bound Ste11 (MAPKKK) to be activated by membrane-bound Ste20 (MAPKKKK).
Collapse
Affiliation(s)
- Lindsay S Garrenton
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, 94720, USA
| | | | | |
Collapse
|
30
|
Lamson RE, Takahashi S, Winters MJ, Pryciak PM. Dual role for membrane localization in yeast MAP kinase cascade activation and its contribution to signaling fidelity. Curr Biol 2006; 16:618-23. [PMID: 16546088 DOI: 10.1016/j.cub.2006.02.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/23/2005] [Accepted: 02/10/2006] [Indexed: 11/15/2022]
Abstract
Distinct MAP kinase pathways in yeast share several signaling components , including the PAK Ste20 and the MAPKKK Ste11, yet signaling is specific. Mating pheromones trigger an initial step in which Ste20 activates Ste11 , and this requires plasma membrane recruitment of the MAP kinase cascade scaffold protein, Ste5 . Here, we demonstrate an additional role for Ste5 membrane localization. Once Ste11 is activated, signaling through the mating pathway remains minimal but is substantially amplified when Ste5 is recruited to the membrane either by the Gbetagamma dimer or by direct membrane targeting, even to internal membranes. Ste11 signaling is also amplified by Ste5 oligomerization and by a hyperactivating mutation in the Ste7 binding region of Ste5. We suggest a model in which membrane recruitment of Ste5 concentrates its binding partners and thereby amplifies signaling through the kinase cascade. We find similar behavior in the osmotically responsive HOG pathway. Remarkably, while both pheromone and hyperosmotic stimuli amplify signaling from constitutively active Ste11, the resulting signaling output remains pathway specific. These findings suggest a common mode of regulation in which pathway stimuli both initiate and amplify MAP kinase cascade signaling. The regulation of rate-limiting steps that lie after a branchpoint from shared components helps ensure signaling specificity.
Collapse
Affiliation(s)
- Rachel E Lamson
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
31
|
France YE, Boyd C, Coleman J, Novick PJ. The polarity-establishment component Bem1p interacts with the exocyst complex through the Sec15p subunit. J Cell Sci 2006; 119:876-88. [PMID: 16478783 DOI: 10.1242/jcs.02849] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Spatial regulation of the secretory machinery is essential for the formation of a new bud in Saccharomyces cerevisiae. Yet, the mechanisms underlying cross-talk between the secretory and the cell-polarity-establishment machineries have not been fully elucidated. Here, we report that Sec15p, a subunit of the exocyst complex, might provide one line of communication. Not only is Sec15p an effector of the rab protein Sec4p, the master regulator of post-Golgi trafficking, but it also interacts with components of the polarity-establishment machinery. We have demonstrated a direct physical interaction between Sec15p and Bem1p, a protein involved in the Cdc42p-mediated polarity-establishment pathway, confirming a prior two-hybrid study. When this interaction is compromised, as in the case of cells lacking the N-terminal 138 residues of Bem1p, including the first Src-homology 3 (SH3) domain, the localization of green fluorescent protein (GFP)-tagged Sec15 is affected, especially in the early stage of bud growth. In addition, Sec15-1p, which is defective in Bem1p binding, mislocalizes along with Sec8p, another exocyst subunit. Overall, our evidence suggests that the interaction of Sec15p with Bem1p is important for Sec15p localization at the early stage of bud growth and, through this interaction, Sec15p might play a crucial role in integrating the signals between Sec4p and the components of the early-polarity-establishment machinery. This, in turn, helps to coordinate the secretory pathway and polarized bud growth.
Collapse
Affiliation(s)
- Y Ellen France
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
32
|
Pullikuth A, McKinnon E, Schaeffer HJ, Catling AD. The MEK1 scaffolding protein MP1 regulates cell spreading by integrating PAK1 and Rho signals. Mol Cell Biol 2005; 25:5119-33. [PMID: 15923628 PMCID: PMC1140582 DOI: 10.1128/mcb.25.12.5119-5133.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
How the extracellular signal-regulated kinase (ERK) cascade regulates diverse cellular functions, including cell proliferation, survival, and motility, in a context-dependent manner remains poorly understood. Compelling evidence indicates that scaffolding molecules function in yeast to channel specific signals through common components to appropriate targets. Although a number of putative ERK scaffolding proteins have been identified in mammalian systems, none has been linked to a specific biological response. Here we show that the putative scaffold protein MEK partner 1 (MP1) and its partner p14 regulate PAK1-dependent ERK activation during adhesion and cell spreading but are not required for ERK activation by platelet-derived growth factor. MP1 associates with active but not inactive PAK1 and controls PAK1 phosphorylation of MEK1. Our data further show that MP1, p14, and MEK1 serve to inhibit Rho/Rho kinase functions necessary for the turnover of adhesion structures and cell spreading and reveal a signal-channeling function for a MEK1/ERK scaffold in orchestrating cytoskeletal rearrangements important for cell motility.
Collapse
Affiliation(s)
- Ashok Pullikuth
- Department of Pharmacology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
33
|
Qi M, Elion EA. Formin-induced actin cables are required for polarized recruitment of the Ste5 scaffold and high level activation of MAPK Fus3. J Cell Sci 2005; 118:2837-48. [PMID: 15961405 DOI: 10.1242/jcs.02418] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about how a mitogen-activated protein kinase (MAPK) cascade is targeted to specific sites at the plasma membrane during receptor stimulation. In budding yeast, the Ste5 scaffold is recruited to a receptor-coupled G protein during mating pheromone stimulation, allowing the tethered MAPK cascade to be activated by Ste20, a Cdc42-anchored kinase. Here we show that stable recruitment of Ste5 at cortical sites requires the formin Bni1, Bni1-induced actin cables, Rho1 and Myo2. Rho1 directs recruitment of Bni1 via the Rho-binding domain, and Bni1 mediates localization of Ste5 through actin cables and Myo2, which co-immunoprecipitates with Ste5 during receptor stimulation. Bni1 is also required for polarized recruitment and full activation of MAPK Fus3, which must bind Ste5 to be activated, and polarized recruitment of Cdc24, the guanine exchange factor that binds Ste5 and promotes its recruitment to the G protein. In contrast, Bni1 is not important for activation of MAPK Kss1, which can be activated while not bound to Ste5 and does not accumulate at cortical sites. These findings reveal that Bni1 mediates the formation of a Ste5 scaffold/Fus3 MAPK signaling complex at polarized sites, and suggests that a pool of Ste5 may translocate along formin-induced actin cables to the cell cortex.
Collapse
Affiliation(s)
- Maosong Qi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, MA 02115, USA
| | | |
Collapse
|
34
|
Winters MJ, Pryciak PM. Interaction with the SH3 domain protein Bem1 regulates signaling by the Saccharomyces cerevisiae p21-activated kinase Ste20. Mol Cell Biol 2005; 25:2177-90. [PMID: 15743816 PMCID: PMC1061602 DOI: 10.1128/mcb.25.6.2177-2190.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae PAK (p21-activated kinase) family kinase Ste20 functions in several signal transduction pathways, including pheromone response, filamentous growth, and hyperosmotic resistance. The GTPase Cdc42 localizes and activates Ste20 by binding to an autoinhibitory motif within Ste20 called the CRIB domain. Another factor that functions with Ste20 and Cdc42 is the protein Bem1. Bem1 has two SH3 domains, but target ligands for these domains have not been described. Here we identify an evolutionarily conserved binding site for Bem1 between the CRIB and kinase domains of Ste20. Mutation of tandem proline-rich (PxxP) motifs in this region disrupts Bem1 binding, suggesting that it serves as a ligand for a Bem1 SH3 domain. These PxxP motif mutations affect signaling additively with CRIB domain mutations, indicating that Bem1 and Cdc42 make separable contributions to Ste20 function, which cooperate to promote optimal signaling. This PxxP region also binds another SH3 domain protein, Nbp2, but analysis of bem1Delta versus nbp2Delta strains shows that the signaling defects of PxxP mutants result from impaired binding to Bem1 rather than from impaired binding to Nbp2. Finally, the PxxP mutations also reduce signaling by constitutively active Ste20, suggesting that postactivation functions of PAKs can be promoted by SH3 domain proteins, possibly by colocalizing PAKs with their substrates. The overall results also illustrate how the final signaling function of a protein can be governed by combinatorial addition of multiple, independent protein-protein interaction modules.
Collapse
Affiliation(s)
- Matthew J Winters
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 377 Plantation St., Four Biotech, Rm. 330, Worcester, MA 01605, USA
| | | |
Collapse
|
35
|
Fitch PG, Gammie AE, Lee DJ, de Candal VB, Rose MD. Lrg1p Is a Rho1 GTPase-activating protein required for efficient cell fusion in yeast. Genetics 2005; 168:733-46. [PMID: 15514049 PMCID: PMC1448843 DOI: 10.1534/genetics.104.028027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To identify additional cell fusion genes in Saccharomyces cerevisiae, we performed a high-copy suppressor screen of fus2Delta. Higher dosage of three genes, BEM1, LRG1, and FUS1, partially suppressed the fus2Delta cell fusion defect. BEM1 and FUS1 were high-copy suppressors of many cell-fusion-defective mutations, whereas LRG1 suppressed only fus2Delta and rvs161Delta. Lrg1p contains a Rho-GAP homologous region. Complete deletion of LRG1, as well as deletion of the Rho-GAP coding region, caused decreased rates of cell fusion and diploid formation comparable to that of fus2Delta. Furthermore, lrg1Delta caused a more severe mating defect in combination with other cell fusion mutations. Consistent with an involvement in cell fusion, Lrg1p localized to the tip of the mating projection. Lrg1p-GAP domain strongly and specifically stimulated the GTPase activity of Rho1p, a regulator of beta(1-3)-glucan synthase in vitro. beta(1-3)-glucan deposition was increased in lrg1Delta strains and mislocalized to the tip of the mating projection in fus2Delta strains. High-copy LRG1 suppressed the mislocalization of beta(1-3) glucan in fus2Delta strains. We conclude that Lrg1p is a Rho1p-GAP involved in cell fusion and speculate that it acts to locally inhibit cell wall synthesis to aid in the close apposition of the plasma membranes of mating cells.
Collapse
Affiliation(s)
- Pamela G Fitch
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
The intracellular signal transduction pathway by which the yeast Saccharomyces cerevisiae responds to the presence of peptide mating pheromone in its surroundings is one of the best understood signaling pathways in eukaryotes, yet continues to generate new surprises and insights. In this review, we take a brief walk down the pathway, focusing on how the signal is transmitted from the cell-surface receptor-coupled G protein, via a MAP kinase cascade, to the nucleus.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, 2208 Natural Sciences I, University of California, Irvine, CA 92697-2300, USA.
| |
Collapse
|
37
|
Wang Y, Chen W, Simpson DM, Elion EA. Cdc24 regulates nuclear shuttling and recruitment of the Ste5 scaffold to a heterotrimeric G protein in Saccharomyces cerevisiae. J Biol Chem 2005; 280:13084-96. [PMID: 15657049 DOI: 10.1074/jbc.m410461200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae guanine nucleotide exchange factor Cdc24 regulates polarized growth by binding to Cdc42, a Rho-type GTPase that has many effectors, including Ste20 kinase, which activates multiple MAPK cascades. Here, we show that Cdc24 promotes MAPK signaling during mating through interactions with Ste5, a scaffold that must shuttle through the nucleus and bind to the beta subunit (Ste4) of a G protein for Ste20 to activate the tethered MAPK cascade. Ste5 was basally recruited to growth sites of G1 phase cells independently of Ste4. Loss of Cdc24 inhibited nuclear import and blocked basal and pheromone-induced recruitment of Ste5. Ste5 was not basally recruited and the MAPK Fus3 was not basally activated in the presence of a Cdc24 mutant (G168D) that still activates Cdc42, suggesting that Cdc24 regulates Ste5 and the associated MAPK cascade through a function that is not dependent on its guanine nucleotide exchange factor activity. Consistent with this, Cdc24 bound Ste5 and coprecipitated with Ste4 independently of Far1 and Ste5. Loss of Cdc24 decreased Ste5-Ste4 complex formation, and loss of Ste4 stimulated Cdc24-Ste5 complex formation. Collectively, these findings suggest that Cdc24 mediates site-specific localization of Ste5 to a heterotrimeric G protein and may therefore ensure localized activation of the associated MAPK cascade.
Collapse
Affiliation(s)
- Yunmei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
38
|
Abstract
The intracellular signal transduction pathway by which the yeast Saccharomyces cerevisiae responds to the presence of peptide mating pheromone in its surroundings is one of the best understood signaling pathways in eukaryotes, yet continues to generate new surprises and insights. In this review, we take a brief walk down the pathway, focusing on how the signal is transmitted from the cell-surface receptor-coupled G protein, via a MAP kinase cascade, to the nucleus.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, 2208 Natural Sciences I, University of California, Irvine, CA 92697-2300, USA.
| |
Collapse
|
39
|
Flotho A, Simpson DM, Qi M, Elion EA. Localized feedback phosphorylation of Ste5p scaffold by associated MAPK cascade. J Biol Chem 2004; 279:47391-401. [PMID: 15322134 DOI: 10.1074/jbc.m405681200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scaffold proteins play pivotal roles during signal transduction. In Saccharomyces cerevisiae, the Ste5p scaffold protein is required for activation of the mating MAPK cascade in response to mating pheromone and assembles a G protein-MAPK cascade complex at the plasma membrane. To serve this function, Ste5p undergoes a regulated localization event involving nuclear shuttling and recruitment to the cell cortex. Here, we show that Ste5p is also subject to two types of phosphorylation and increases in abundance as a result of MAPK activation. During vegetative growth, Ste5p is basally phosphorylated through a process regulated by the CDK Cdc28p. During mating pheromone signaling, Ste5p undergoes increased phosphorylation by the mating MAPK cascade. Multiple kinases of the mating MAPK cascade contribute to pheromone-induced phosphorylation of Ste5p, with the mating MAPKs contributing the most. Pheromone induction or overexpression of the Ste4p Gbeta subunit increases the abundance of Ste5p at a post-translational step, as long as the mating MAPKs are present. Increasing the level of MAPK activation increases the amount of Ste5p at the cell cortex. Analysis of Ste5p localization mutants reveals a strict requirement for Ste5p recruitment to the plasma membrane for the pheromone-induced phosphorylation. These results suggest that the pool of Ste5p that is recruited to the plasma membrane selectively undergoes feedback phosphorylation by the associated MAPKs, leading to an increased pool of Ste5p at the site of polarized growth. These findings provide evidence of a spatially regulated mechanism for post-activation control of a signaling scaffold that potentiates pathway activation.
Collapse
Affiliation(s)
- Annette Flotho
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
40
|
Levchenko A. Dynamical and integrative cell signaling: challenges for the new biology. Biotechnol Bioeng 2003; 84:773-82. [PMID: 14708118 DOI: 10.1002/bit.10854] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Years of careful experimental analysis have revealed that signaling molecules are organized into complex networks of biochemical reactions exquisitely regulated in time and space to provide a cell with high-fidelity information about an extremely noisy and volatile environment. A new view of signaling networks as systems consisting of multiple complex elements interacting in a multifarious fashion is emerging, a view that conflicts with the single-gene or protein-centric approach common in biological research. The postgenomic era has brought about a different, network-centric methodology of analysis, suddenly forcing researchers toward the opposite extreme of complexity, where the networks being explored are, to a certain extent, intractable and uninterpretable. Both the cartoons of simple pathways and the very large "hair-ball" diagrams of large intracellular networks are also representations of static worlds, superficially devoid of dynamics and chemistry. These representations are often viewed as being analogous to stably linked computer and neural networks rather than dynamically changing networks of chemical interactions, where the notions of concentration, compartmentalization, and diffusion may be the primary determinants of connectivity. Arguably, the systems biology approach, relying on computational modeling coupled with various experimental techniques and methodologies, will be an essential component of analysis of the behavior of signal transduction pathways. Combining the dynamical view of rapidly evolving responses and the structural view arising from high-throughput analyses of the interacting species will be the best approach toward efforts toward greater understanding of intracellular signaling processes.
Collapse
Affiliation(s)
- Andre Levchenko
- The Whitaker Institute for Biomedical Engineering, The Johns Hopkins University, 208C Clark Hall, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| |
Collapse
|
41
|
Irazoqui JE, Gladfelter AS, Lew DJ. Scaffold-mediated symmetry breaking by Cdc42p. Nat Cell Biol 2003; 5:1062-70. [PMID: 14625559 DOI: 10.1038/ncb1068] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 10/23/2003] [Indexed: 01/26/2023]
Abstract
Cell polarization generally occurs along a single well-defined axis that is frequently determined by environmental cues such as chemoattractant gradients or cell-cell contacts, but polarization can also occur spontaneously in the apparent absence of such cues, through a process called symmetry breaking. In Saccharomyces cerevisiae, cells are born with positional landmarks that mark the poles of the cell and guide subsequent polarization and bud emergence to those sites, but cells lacking such landmarks polarize towards a random cortical site and proliferate normally. The landmarks employ a Ras-family GTPase, Rsr1p, to communicate with the conserved Rho-family GTPase Cdc42p, which is itself polarized and essential for cytoskeletal polarization. We found that yeast Cdc42p was effectively polarized to a single random cortical site even in the combined absence of landmarks, microtubules and microfilaments. Among a panel of Cdc42p effectors and interacting proteins, we found that the scaffold protein Bem1p was uniquely required for this symmetry-breaking behaviour. Moreover, polarization was dependent on GTP hydrolysis by Cdc42p, suggesting that assembly of a polarization site involves cycling of Cdc42p between GTP- and GDP-bound forms, rather than functioning as a simple on/off switch.
Collapse
Affiliation(s)
- Javier E Irazoqui
- Department of Pharmacology and Cancer Biology Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
42
|
Cullen PJ, Sprague GF. The Glc7p-interacting protein Bud14p attenuates polarized growth, pheromone response, and filamentous growth in Saccharomyces cerevisiae. EUKARYOTIC CELL 2002; 1:884-94. [PMID: 12477789 PMCID: PMC138766 DOI: 10.1128/ec.1.6.884-894.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A genetic selection in Saccharomyces cerevisiae for mutants that stimulate the mating pathway uncovered a mutant that had a hyperactive pheromone response pathway and also had hyperpolarized growth. Cloning and segregation analysis demonstrated that BUD14 was the affected gene. Disruption of BUD14 in wild-type cells caused mild stimulation of pheromone response pathway reporters, an increase in sensitivity to mating factor, and a hyperelongated shmoo morphology. The bud14 mutant also had hyperfilamentous growth. Consistent with a role in the control of cell polarity, a Bud14p-green fluorescent protein fusion was localized to sites of polarized growth in the cell. Bud14p shared morphogenetic functions with the Ste20p and Bni1p proteins as well as with the type 1 phosphatase Glc7p. The genetic interactions between BUD14 and GLC7 suggested a role for Glc7p in filamentous growth, and Glc7p was found to have a positive function in filamentous growth in yeast.
Collapse
Affiliation(s)
- Paul J Cullen
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
43
|
Hurtado CAR, Rachubinski RA. Isolation and characterization of YlBEM1, a gene required for cell polarization and differentiation in the dimorphic yeast Yarrowia lipolytica. EUKARYOTIC CELL 2002; 1:526-37. [PMID: 12456001 PMCID: PMC118001 DOI: 10.1128/ec.1.4.526-537.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Accepted: 05/17/2002] [Indexed: 11/20/2022]
Abstract
The ability to switch between a unicellular yeast form and different filamentous forms (fungal dimorphism) is an important attribute of most pathogenic fungi. Dimorphism involves a series of events that ultimately result in dramatic changes in the polarity of cell growth in response to environmental factors. We have isolated and characterized YlBEM1, a gene encoding a protein of 639 amino acids that is essential for the yeast-to-hypha transition in the yeast Yarrowia lipolytica and whose transcription is significantly increased during this event. Cells with deletions of YlBEM1 are viable but show substantial alterations in morphology, disorganization of the actin cytoskeleton, delocalization of cortical actin and chitin deposition, multinucleation, and loss of mating ability, thus pointing to a major role for YlBEM1 in the regulation of cell polarity and morphogenesis in this fungus. This role is further supported by the localization of YlBemlp, which, like cortical actin, appears to be particularly abundant at sites of growth of yeast, hyphal, and pseudohyphal cells. In addition, the potential involvement of YlBem1p in septum formation and/or cytokinesis is suggested by the concentration of a green fluorescent protein-tagged version of this protein at the mother-bud neck during the last stages of cell division. Interestingly, overexpression of MHY1, YlRAC1, or YlSEC31, three genes involved in filamentous growth of Y. lipolytica, induced hyphal growth of bem1 null mutant cells.
Collapse
Affiliation(s)
- Cleofe A R Hurtado
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
44
|
Butty AC, Perrinjaquet N, Petit A, Jaquenoud M, Segall JE, Hofmann K, Zwahlen C, Peter M. A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO J 2002; 21:1565-76. [PMID: 11927541 PMCID: PMC125953 DOI: 10.1093/emboj/21.7.1565] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Saccharomyces cerevisiae, activation of Cdc42 by its guanine-nucleotide exchange factor Cdc24 triggers polarization of the actin cytoskeleton at bud emergence and in response to mating pheromones. The adaptor protein Bem1 localizes to sites of polarized growth where it interacts with Cdc42, Cdc24 and the PAK-like kinase Cla4. We have isolated Bem1 mutants (Bem1-m), which are specifically defective for binding to Cdc24. The mutations map within the conserved PB1 domain, which is necessary and sufficient to interact with the octicos peptide repeat (OPR) motif of Cdc24. Although Bem1-m mutant proteins localize normally, bem1-m cells are unable to maintain Cdc24 at sites of polarized growth. As a consequence, they are defective for apical bud growth and the formation of mating projections. Localization of Bem1 to the incipient bud site requires activated Cdc42, and conversely, expression of Cdc42-GTP is sufficient to accumulate Bem1 at the plasma membrane. Thus, our results suggest that Bem1 functions in a positive feedback loop: local activation of Cdc24 produces Cdc42-GTP, which recruits Bem1. In turn, Bem1 stabilizes Cdc24 at the site of polarization, leading to apical growth.
Collapse
Affiliation(s)
| | | | - Audrey Petit
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges/VD,
Institute of Organic Chemistry, University of Lausanne, CH-1015 Lausanne, Switzerland, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA and Bioinformatics Group, Memorec Stoffel GmbH, Stöckheimerweg 1, D-50829 Köln, Germany Corresponding author e-mail:
| | | | - Jeffrey E. Segall
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges/VD,
Institute of Organic Chemistry, University of Lausanne, CH-1015 Lausanne, Switzerland, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA and Bioinformatics Group, Memorec Stoffel GmbH, Stöckheimerweg 1, D-50829 Köln, Germany Corresponding author e-mail:
| | - Kay Hofmann
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges/VD,
Institute of Organic Chemistry, University of Lausanne, CH-1015 Lausanne, Switzerland, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA and Bioinformatics Group, Memorec Stoffel GmbH, Stöckheimerweg 1, D-50829 Köln, Germany Corresponding author e-mail:
| | - Catherine Zwahlen
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges/VD,
Institute of Organic Chemistry, University of Lausanne, CH-1015 Lausanne, Switzerland, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA and Bioinformatics Group, Memorec Stoffel GmbH, Stöckheimerweg 1, D-50829 Köln, Germany Corresponding author e-mail:
| | - Matthias Peter
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges/VD,
Institute of Organic Chemistry, University of Lausanne, CH-1015 Lausanne, Switzerland, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA and Bioinformatics Group, Memorec Stoffel GmbH, Stöckheimerweg 1, D-50829 Köln, Germany Corresponding author e-mail:
| |
Collapse
|
45
|
Dohlman HG, Thorner JW. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 2002; 70:703-54. [PMID: 11395421 DOI: 10.1146/annurev.biochem.70.1.703] [Citation(s) in RCA: 366] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All cells have the capacity to evoke appropriate and measured responses to signal molecules (such as peptide hormones), environmental changes, and other external stimuli. Tremendous progress has been made in identifying the proteins that mediate cellular response to such signals and in elucidating how events at the cell surface are linked to subsequent biochemical changes in the cytoplasm and nucleus. An emerging area of investigation concerns how signaling components are assembled and regulated (both spatially and temporally), so as to control properly the specificity and intensity of a given signaling pathway. A related question under intensive study is how the action of an individual signaling pathway is integrated with (or insulated from) other pathways to constitute larger networks that control overall cell behavior appropriately. This review describes the signal transduction pathway used by budding yeast (Saccharomyces cerevisiae) to respond to its peptide mating pheromones. This pathway is comprised by receptors, a heterotrimeric G protein, and a protein kinase cascade all remarkably similar to counterparts in multicellular organisms. The primary focus of this review, however, is recent advances that have been made, using primarily genetic methods, in identifying molecules responsible for regulation of the action of the components of this signaling pathway. Just as many of the constituent proteins of this pathway and their interrelationships were first identified in yeast, the functions of some of these regulators have clearly been conserved in metazoans, and others will likely serve as additional models for molecules that carry out analogous roles in higher organisms.
Collapse
Affiliation(s)
- H G Dohlman
- Department of Pharmacology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA.
| | | |
Collapse
|
46
|
Xu Y, Seet LF, Hanson B, Hong W. The Phox homology (PX) domain, a new player in phosphoinositide signalling. Biochem J 2001; 360:513-30. [PMID: 11736640 PMCID: PMC1222253 DOI: 10.1042/0264-6021:3600513] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphoinositides are key regulators of diverse cellular processes. The pleckstrin homology (PH) domain mediates the action of PtdIns(3,4)P(2), PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), while the FYVE domain relays the pulse of PtdIns3P. The recent establishment that the Phox homology (PX) domain interacts with PtdIns3P and other phosphoinositides suggests another mechanism by which phosphoinositides can regulate/integrate multiple cellular events via a spectrum of PX domain-containing proteins. Together with the recent discovery that the epsin N-terminal homologue (ENTH) domain interacts with PtdIns(4,5)P(2), it is becoming clear that phosphoinositides regulate diverse cellular events through interactions with several distinct structural motifs present in many different proteins.
Collapse
Affiliation(s)
- Y Xu
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
47
|
Sato TK, Overduin M, Emr SD. Location, location, location: membrane targeting directed by PX domains. Science 2001; 294:1881-5. [PMID: 11729306 DOI: 10.1126/science.1065763] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phosphoinositide (PI)-binding domains play critical roles in the intracellular localization of a variety of cell-signaling proteins. The 120-amino acid Phox homology (PX) domain targets proteins to organelle membranes through interactions between two conserved basic motifs within the PX domain and specific PIs. The combination of protein-lipid and protein-protein interactions ensures the proper localization and regulation of PX domain-containing proteins. Upon proper localization, PX domain-containing proteins can then bind to additional proteins and execute their functions in a diverse set of biological pathways, including intracellular protein transport, cell growth and survival, cytoskeletal organization, and neutrophil defense.
Collapse
Affiliation(s)
- T K Sato
- Department of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California at San Diego School of Medicine, La Jolla, CA 92093-0668, USA
| | | | | |
Collapse
|
48
|
Abstract
An emerging theme of mitogen-activated protein kinase (MAPK) cascades is that they form molecular assemblies within cells; the spatial organization of which is provided by scaffold proteins. Yeast Ste5p was the first MAPK cascade scaffold to be described. Early work demonstrated that Ste5p selectively tethers the MAPKKK, MAPKK and MAPK of the yeast mating pathway and is essential for efficient activation of the MAPK by the pheromone stimulus. Recent work indicates that Ste5p is not a passive scaffold but plays a direct role in the activation of the MAPKKK by a heterotrimeric G protein and PAK-type kinase. This activation event requires the formation of an active Ste5p oligomer and proper recruitment of Ste5p to a Gβγ dimer at the submembrane of the cell cortex, which suggests that Ste5p forms a stable Ste5p signalosome linked to a G protein. Additional studies underscore the importance of regulated localization of Ste5p to the plasma membrane and have revealed nuclear shuttling as a regulatory device that controls the access of Ste5p to the plasma membrane. A model that links Ste5p oligomerization with stable membrane recruitment is presented. In this model, pathway activation is coordinated with the conversion of a less active closed form of Ste5 containing a protected RING-H2 domain into an active Ste5p dimer that can bind to Gβγ and form a multimeric scaffold lattice upon which the MAPK cascade can assemble.
Collapse
Affiliation(s)
- E A Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Ito T, Matsui Y, Ago T, Ota K, Sumimoto H. Novel modular domain PB1 recognizes PC motif to mediate functional protein-protein interactions. EMBO J 2001; 20:3938-46. [PMID: 11483497 PMCID: PMC149144 DOI: 10.1093/emboj/20.15.3938] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modular domains mediating specific protein-protein interactions play central roles in the formation of complex regulatory networks to execute various cellular activities. Here we identify a novel domain PB1 in the budding yeast protein Bem1p, which functions in polarity establishment, and mammalian p67(phox), which activates the microbicidal phagocyte NADPH oxidase. Each of these specifically recognizes an evolutionarily conserved PC motif to interact directly with Cdc24p (an essential protein for cell polarization) and p40(phox) (a component of the signaling complex for the oxidase), respectively. Swapping the PB1 domain of Bem1p with that of p67(phox), which abolishes its interaction with Cdc24p, confers on cells temperature- sensitive growth and a bilateral mating defect. These phenotypes are suppressed by a mutant Cdc24p harboring the PC motif-containing region of p40(phox), which restores the interaction with the altered Bem1p. This domain-swapping experiment demonstrates that Bem1p function requires interaction with Cdc24p, in which the PB1 domain and the PC motif participate as responsible modules.
Collapse
Affiliation(s)
- Takashi Ito
- Division of Genome Biology, Cancer Research Institute, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-0934,
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 and Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Corresponding authors e-mail: or
| | - Yasushi Matsui
- Division of Genome Biology, Cancer Research Institute, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-0934,
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 and Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Corresponding authors e-mail: or
| | - Tetsuro Ago
- Division of Genome Biology, Cancer Research Institute, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-0934,
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 and Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Corresponding authors e-mail: or
| | | | - Hideki Sumimoto
- Division of Genome Biology, Cancer Research Institute, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-0934,
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 and Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Corresponding authors e-mail: or
| |
Collapse
|
50
|
Catling AD, Eblen ST, Schaeffer HJ, Weber MJ. Scaffold protein regulation of mitogen-activated protein kinase cascade. Methods Enzymol 2001; 332:368-87. [PMID: 11305112 DOI: 10.1016/s0076-6879(01)32216-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- A D Catling
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908-0734, USA
| | | | | | | |
Collapse
|