1
|
Tra-2 Mediates Cross-Talk Between Sex Determination and Wing Polyphenism in Female Nilaparvata lugens. Genetics 2017; 207:1067-1078. [PMID: 28951528 DOI: 10.1534/genetics.117.300328] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/24/2017] [Indexed: 12/31/2022] Open
Abstract
Sexual dimorphism and wing polyphenism are important and evolutionarily conserved features of many insect species. In this article, we found a cross-talk linking sexual differentiation with wing polyphenism in the brown planthopper (BPH) Nilaparvata lugens (order: Hemiptera). Knockdown of the sex determination gene Transformer-2 in N. lugens (NlTra-2) in nymph caused females to develop into infertile pseudomales containing undeveloped ovaries. Whereas males treated with dsNlTra-2 exhibited normal morphology, but lost fertility. Knockdown of NlTra-2 in adult females (maternal RNAi) resulted in long-winged female offspring, indicating that maternal RNAi changed the wing morphs in female offspring. In addition, silencing of NlTra-2 down-regulated the expression of the forkhead transcription factor FoxO (NlFoxO), and simultaneously up-regulated the expression of phosphatidylinositol-3-OH kinase (PI(3)K)-protein kinase B (NlAkt), the two critical genes in the insulin signaling pathway. Furthermore, the long-winged effect caused by maternal dsNlTra-2 RNAi could be reversed by silencing of NlInR1 and NlAkt, leading to short-winged morphs. We propose that there is a cross-talk between the sexual differentiation and wing polyphenism pathways mediated by NlTra-2 during embryonic stages.
Collapse
|
2
|
Sawanth SK, Gopinath G, Sambrani N, Arunkumar KP. The autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects. J Biosci 2017; 41:283-94. [PMID: 27240989 DOI: 10.1007/s12038-016-9609-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sex determination in most insects is structured as a gene cascade, wherein a primary signal is passed through a series of sex-determining genes, culminating in a downstream double-switch known as doublesex that decides the sexual fate of the embryo. From the literature available on sex determination cascades, it becomes apparent that sex determination mechanisms have evolved rapidly. The primary signal that provides the cue to determine the sex of the embryo varies remarkably, not only among taxa, but also within taxa. Furthermore, the upstream key gene in the cascade also varies between species and even among closely related species. The order Insecta alone provides examples of astoundingly complex diversity of upstream key genes in sex determination mechanisms. Besides, unlike key upstream genes, the downstream double-switch gene is alternatively spliced to form functional sex-specific isoforms. This sex-specific splicing is conserved across insect taxa. The genes involved in the sex determination cascade such as Sex-lethal (Sxl) in Drosophila melanogaster, transformer (tra) in many other dipterans, coleopterans and hymenopterans, Feminizer (fem) in Apis mellifera, and IGF-II mRNA-binding protein (Bmimp) in Bombyx mori are reported to be regulated by an autoregulatory positive feedback loop. In this review, by taking examples from various insects, we propose the hypothesis that autoregulatory loop mechanisms of sex determination might be a general strategy. We also discuss the possible reasons for the evolution of autoregulatory loops in sex determination cascades and their impact on binary developmental choices.
Collapse
Affiliation(s)
- Suresh Kumar Sawanth
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| | | | | | | |
Collapse
|
3
|
Vozza A, De Leonardis F, Paradies E, De Grassi A, Pierri CL, Parisi G, Marobbio CMT, Lasorsa FM, Muto L, Capobianco L, Dolce V, Raho S, Fiermonte G. Biochemical characterization of a new mitochondrial transporter of dephosphocoenzyme A in Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:137-146. [PMID: 27836698 DOI: 10.1016/j.bbabio.2016.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/16/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
Abstract
CoA is an essential cofactor that holds a central role in cell metabolism. Although its biosynthetic pathway is conserved across the three domains of life, the subcellular localization of the eukaryotic biosynthetic enzymes and the mechanism behind the cytosolic and mitochondrial CoA pools compartmentalization are still under debate. In humans, the transport of CoA across the inner mitochondrial membrane has been ascribed to two related genes, SLC25A16 and SLC25A42 whereas in D. melanogaster genome only one gene is present, CG4241, phylogenetically closer to SLC25A42. CG4241 encodes two alternatively spliced isoforms, dPCoAC-A and dPCoAC-B. Both isoforms were expressed in Escherichia coli, but only dPCoAC-A was successfully reconstituted into liposomes, where transported dPCoA and, to a lesser extent, ADP and dADP but not CoA, which was a powerful competitive inhibitor. The expression of both isoforms in a Saccharomyces cerevisiae strain lacking the endogenous putative mitochondrial CoA carrier restored the growth on respiratory carbon sources and the mitochondrial levels of CoA. The results reported here and the proposed subcellular localization of some of the enzymes of the fruit fly CoA biosynthetic pathway, suggest that dPCoA may be synthesized and phosphorylated to CoA in the matrix, but it can also be transported by dPCoAC to the cytosol, where it may be phosphorylated to CoA by the monofunctional dPCoA kinase. Thus, dPCoAC may connect the cytosolic and mitochondrial reactions of the CoA biosynthetic pathway without allowing the two CoA pools to get in contact.
Collapse
Affiliation(s)
- Angelo Vozza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.
| | - Francesco De Leonardis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.
| | - Eleonora Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari, Italy.
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.
| | - Giovanni Parisi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.
| | - Carlo Marya Thomas Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.
| | - Francesco Massimo Lasorsa
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari, Italy.
| | - Luigina Muto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Susanna Raho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
4
|
Gopinath G, Arunkumar KP, Mita K, Nagaraju J. Role of Bmznf-2, a Bombyx mori CCCH zinc finger gene, in masculinisation and differential splicing of Bmtra-2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:32-44. [PMID: 27260399 DOI: 10.1016/j.ibmb.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 06/05/2023]
Abstract
Deciphering the regulatory factors involved in Bombyx mori sex determination has been a puzzle, challenging researchers for nearly a century now. The pre-mRNA of B. mori doublesex (Bmdsx), a master regulator gene of sexual differentiation, is differentially spliced, producing Bmdsxm and Bmdsxf transcripts in males and females respectively. The putative proteins encoded by these differential transcripts orchestrate antagonistic functions, which lead to sexual differentiation. A recent study in B. mori illustrated the role of a W-derived fem piRNA in conferring femaleness. In females, the fem piRNA was shown to suppress the activity of a Z-linked CCCH type zinc finger (znf) gene, Masculiniser (masc), which indirectly promotes the Bmdsxm type of splicing. In this study, we report a novel autosomal (Chr 25) CCCH type znf motif encoding gene Bmznf-2 as one of the potential factors in the Bmdsx sex specific differential splicing, and we also provide insights into its role in the alternative splicing of Bmtra2 by using ovary derived BmN cells. Over-expression of Bmznf-2 induced Bmdsxm type of splicing (masculinisation) with a correspondingly reduced expression of Bmdsxf type isoform in BmN cells. Further, the site-directed mutational studies targeting the tandem CCCH znf motifs revealed their indispensability in the observed phenotype of masculinisation. Additionally, the dual luciferase assays in BmN cells using 5' UTR region of the Bmznf-2 strongly implied the existence of a translational repression over this gene. From these findings, we propose Bmznf-2 to be one of the potential factors of masculinisation similar to Masc. From the growing number of Bmdsx splicing regulators, we assume that the sex determination cascade of B. mori is quite intricate in nature; hence, it has to be further investigated for its comprehensive understanding.
Collapse
Affiliation(s)
- Gajula Gopinath
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India.
| | - Kallare P Arunkumar
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Javaregowda Nagaraju
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India
| |
Collapse
|
5
|
Abstract
In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads.
Collapse
|
6
|
Abstract
Tra2 proteins regulate pre-mRNA splicing in vertebrates and invertebrates, and are involved in important processes ranging from brain development in mice to sex determination in fruitflies. In structure Tra2 proteins contain two RS domains (domains enriched in arginine and serine residues) flanking a central RRM (RNA recognition motif). Understanding the mechanisms of how Tra2 proteins work to control splicing is one of the key requirements to understand their biology. In the present article, we review what is known about how Tra2 proteins regulate splicing decisions in mammals and fruitflies.
Collapse
|
7
|
The Am-tra2 gene is an essential regulator of female splice regulation at two levels of the sex determination hierarchy of the honeybee. Genetics 2012; 192:1015-26. [PMID: 22942126 PMCID: PMC3522149 DOI: 10.1534/genetics.112.143925] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Heteroallelic and homo- or hemiallelic Complementary sex determiner (Csd) proteins determine sexual fate in the honeybee (Apis mellifera) by controlling the alternative splicing of the downstream gene fem (feminizer). Thus far, we have little understanding of how heteroallelic Csd proteins mediate the splicing of female fem messenger RNAs (mRNAs) or how Fem proteins direct the splicing of honeybee dsx (Am-dsx) pre-mRNAs. Here, we report that Am-tra2, which is an ortholog of Drosophila melanogaster tra2, is an essential component of female splicing of the fem and Am-dsx transcripts in the honeybee. The Am-tra2 transcripts are alternatively (but non-sex-specifically) spliced, and they are translated into six protein isoforms that all share the basic RNA-binding domain/RS (arginine/serine) domain structure. Knockdown studies showed that the Am-tra2 gene is required to splice fem mRNAs into the productive female and nonproductive male forms. We suggest that the Am-Tra2 proteins are essential regulators of fem pre-mRNA splicing that, together with heteroallelic Csd proteins and/or Fem proteins, implement the female pathway. In males, the Am-Tra2 proteins may enhance the switch of fem transcripts into the nonproductive male form when heteroallelic Csd proteins are absent. This dual function of Am-Tra2 proteins possibly enhances and stabilizes the binary decision process of male/female splicing. Our knockdown studies also imply that the Am-Tra2 protein is an essential regulator for Am-dsx female splice regulation, suggesting an ancestral role in holometabolous insects. We also provide evidence that the Am-tra2 gene has an essential function in honeybee embryogenesis that is unrelated to sex determination.
Collapse
|
8
|
Grellscheid S, Dalgliesh C, Storbeck M, Best A, Liu Y, Jakubik M, Mende Y, Ehrmann I, Curk T, Rossbach K, Bourgeois CF, Stévenin J, Grellscheid D, Jackson MS, Wirth B, Elliott DJ. Identification of evolutionarily conserved exons as regulated targets for the splicing activator tra2β in development. PLoS Genet 2011; 7:e1002390. [PMID: 22194695 PMCID: PMC3240583 DOI: 10.1371/journal.pgen.1002390] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/05/2011] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes. The evolutionarily conserved splicing activator Tra2β (Sfrs10) is essential for mouse embryogenesis and implicated in spermatogenesis. Here we find that Tra2β is up-regulated as the mitotic stem cell containing population of male germ cells differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2β binds a high frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse (Sfrs10(fl/fl); Nestin-Cre(tg/+)). This mouse has defects in brain development and allowed correlation of genuine physiologically Tra2β regulated exons. These belonged to a novel class which were longer than average size and importantly needed multiple cooperative Tra2β binding sites for efficient splicing activation, thus explaining the observed splicing defects in the knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily conserved, suggesting they might control fundamental developmental processes. Tra2β protein isoforms lacking the RRM were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2β. Versions of Tra2β lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length Tra2β protein.
Collapse
Affiliation(s)
- Sushma Grellscheid
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Caroline Dalgliesh
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Markus Storbeck
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Andrew Best
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Yilei Liu
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Miriam Jakubik
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Ylva Mende
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Ingrid Ehrmann
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Tomaz Curk
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia
| | - Kristina Rossbach
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Cyril F. Bourgeois
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 964, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - James Stévenin
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 964, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - David Grellscheid
- Institute for Particle Physics Phenomenology, Durham University, Durham, United Kingdom
| | - Michael S. Jackson
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - David J. Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
9
|
Lee YCG, Reinhardt JA. Widespread polymorphism in the positions of stop codons in Drosophila melanogaster. Genome Biol Evol 2011; 4:533-49. [PMID: 22051795 PMCID: PMC3342867 DOI: 10.1093/gbe/evr113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2011] [Indexed: 12/19/2022] Open
Abstract
The mechanisms underlying evolutionary changes in protein length are poorly understood. Protein domains are lost and gained between species and must have arisen first as within-species polymorphisms. Here, we use Drosophila melanogaster population genomic data combined with between species divergence information to understand the evolutionary forces that generate and maintain polymorphisms causing changes in protein length in D. melanogaster. Specifically, we looked for protein length variations resulting from premature termination codons (PTCs) and stop codon losses (SCLs). We discovered that 438 genes contained polymorphisms resulting in truncation of the translated region (PTCs) and 119 genes contained polymorphisms predicted to lengthen the translated region (SCLs). Stop codon polymorphisms (SCPs) (especially PTCs) appear to be more deleterious than other polymorphisms, including protein amino acid changes. Genes harboring SCPs are in general less selectively constrained, more narrowly expressed, and enriched for dispensable biological functions. However, we also observed exceptional cases such as genes that have multiple independent SCPs, alleles that are shared between D. melanogaster and Drosophila simulans, and high-frequency alleles that cause extreme changes in gene length. SCPs likely have an important role in the evolution of these genes.
Collapse
Affiliation(s)
- Yuh Chwen G. Lee
- Department of Evolution and Ecology, The University of California at Davis
| | | |
Collapse
|
10
|
Ho O, Green WR. Alternative translational products and cryptic T cell epitopes: expecting the unexpected. THE JOURNAL OF IMMUNOLOGY 2007; 177:8283-9. [PMID: 17142722 DOI: 10.4049/jimmunol.177.12.8283] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CD8 T cell epitopes have been studied extensively, often overlooked are unconventional cryptic epitopes generated from nontraditional sources of peptides/proteins and/or mechanisms of translation. In this review, we discuss alternative reading frame epitopes, both mechanistically and also in terms of their physiologic importance in the induction of antiviral and antitumor CTL responses. Issues of the influence of cryptic translational products on foreign and self-Ag diversity, thymic selection, and the T cell repertoire; disease pathogenesis; and approaches to vaccine design are discussed in context of the potentially large impact of unconventional epitopes on T cell immunity.
Collapse
Affiliation(s)
- On Ho
- Department of Microbiology and Immunology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA
| | | |
Collapse
|
11
|
Burghardt G, Hediger M, Siegenthaler C, Moser M, Dübendorfer A, Bopp D. The transformer2 gene in Musca domestica is required for selecting and maintaining the female pathway of development. Dev Genes Evol 2005; 215:165-76. [PMID: 15662529 DOI: 10.1007/s00427-004-0464-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 12/08/2004] [Indexed: 11/28/2022]
Abstract
We present the isolation and functional analysis of a transformer2 homologue Mdtra2 in the housefly Musca domestica. Compromising the activity of this gene by injecting dsRNA into embryos causes complete sex reversal of genotypically female individuals into fertile males, revealing an essential function of Mdtra2 in female development of the housefly. Mdtra2 is required for female-specific splicing of Musca doublesex (Mddsx) which structurally and functionally corresponds to Drosophila dsx, the bottom-most regulator in the sex-determining pathway. Since Mdtra2 is expressed in males and females, we propose that Mdtra2 serves as an essential co-factor of F, the key sex-determining switch upstream of Mddsx. We also provide evidence that Mdtra2 acts upstream as a positive regulator of F supporting genetic data which suggest that F relies on an autocatalytic activity to select and maintain the female path of development. We further show that repression of male courtship behavior by F requires Mdtra2. This function of F and Mdtra2 appears not to be mediated by Mddsx, suggesting that bifurcation of the pathway at this level is a conserved feature in the genetic architecture of Musca and Drosophila.
Collapse
Affiliation(s)
- Géza Burghardt
- Zoological Institute, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Unni E, Su S, Zraly CB, Mattox W. Analysis of a null mutation in the Drosophila splicing regulator Tra2 suggests its function is restricted to sexual differentiation. Genesis 2004; 37:76-83. [PMID: 14595843 DOI: 10.1002/gene.10234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tra2 is a regulator of pre-mRNA splicing and a key component of the Drosophila somatic sex determination pathway. Functional orthologs of this protein are thought to perform nonsex-specific functions essential for viability in both vertebrates and nematodes. Although Drosophila Tra2 is expressed throughout the soma of both sexes, studies on it have focused only on the sex-specific phenotypes of known viable alleles. Here we show that that widely used tra2 mutant alleles have residual activity and are not suitable for evaluating its effect on viability. To test whether Tra2 has an essential role in development, we generated a transposon-induced deletion in critical coding sequences. We find that tra2 deletion adults can survive as well as their heterozygous siblings. Thus, in contrast to other organisms, Tra2 is not required in Drosophila for general viability under laboratory conditions.
Collapse
Affiliation(s)
- Emmanual Unni
- Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | |
Collapse
|
13
|
Chandler DS, McGuffin ME, Mattox W. Functionally antagonistic sequences are required for normal autoregulation of Drosophila tra-2 pre-mRNA splicing. Nucleic Acids Res 2001; 29:3012-9. [PMID: 11452026 PMCID: PMC55796 DOI: 10.1093/nar/29.14.3012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Expression of functional TRA-2 protein in the male germline of Drosophila is regulated through a negative feedback mechanism in which a specific TRA-2 isoform represses splicing of the M1 intron in the TRA-2 pre-mRNA. We have previously shown that the mechanism of M1 splicing repression is conserved between distantly related Drosophila species. Using transgenic fly strains, we have examined the effects on regulation of mutations in two conserved features of the M1 intron. Our results show that TRA-2-dependent repression of M1 splicing depends on the presence of a suboptimal non-consensus 3' splice site. Substitution of this 3' splice site with a strong splice site resulted in TRA-2 independent splicing, while substitution with an unrelated weak 3' splice site was compatible with repression, implying that reduced basal splicing efficiency is important for regulation. A second conserved element internal to the intron was found to be essential for efficient M1 splicing in the soma where the intron is not normally retained. We show that the role of this element is to enhance splicing and overcome the reduction in efficiency caused by the intron's suboptimal 3' splice site. Our results indicate that antagonistic elements in the M1 intron act together to establish a context that is permissive for repression of splicing by TRA-2 while allowing efficient splicing in the absence of a repressor.
Collapse
Affiliation(s)
- D S Chandler
- Department of Molecular Genetics, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 45, Houston, TX 77030-4009, USA
| | | | | |
Collapse
|
14
|
He Y, Armanious MK, Thomas MJ, Cress WD. Identification of E2F-3B, an alternative form of E2F-3 lacking a conserved N-terminal region. Oncogene 2000; 19:3422-33. [PMID: 10918599 DOI: 10.1038/sj.onc.1203682] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have identified a novel form of the full-length E2F-3 protein that we term E2F-3B. In contrast to full-length E2F-3, which is expressed only at the G1/S boundary, E2F-3B is detected throughout the cell cycle with peak levels in GO where it is associated with Rb. Transfection and in vitro translation experiments demonstrate that a protein identical to E2F-3B in size and iso-electric point is produced from the E2F-3 mRNA via the use of an alternative translational start site. This alternative initiation codon was mapped by mutagenesis to codon 102, an ACG codon. Mutation of the ACG codon at position 102 abolished E2F-3B expression, whereas the conversion of ACG 102 to a consensus ATG led to the expression of a protein indistinguishable from E2F-3B. Given these results, E2F-3B is missing 101 N-terminal amino acids relative to full-length E2F-3. This region includes a moderately conserved sequence of unknown function that is present only in the growth-promoting E2F family members, including E2F-1, 2 and full-length E2F-3. These observations make E2F-3B the first example of an E2F gene giving rise to two different protein species and also suggest that E2F-3 and E2F-3B may have opposing roles in cell cycle control.
Collapse
Affiliation(s)
- Y He
- H. Lee Moffitt Cancer Center and Research Institute, Department of Biochemistry and Molecular Biology, University of South Florida, College of Medicine, Tampa 33612, USA
| | | | | | | |
Collapse
|
15
|
Venables JP, Eperon I. The roles of RNA-binding proteins in spermatogenesis and male infertility. Curr Opin Genet Dev 1999; 9:346-54. [PMID: 10377282 DOI: 10.1016/s0959-437x(99)80052-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
RNA-binding proteins are essential for spermatogenesis: they are required in the nucleus of germ cells, for the production of specific mRNA isoforms, and in the cytoplasm - where proteins required for chromatin condensation and for changes in cell morphology are translated long after transcription ceases. Some of the RNA targets and the RNA-binding proteins themselves have been identified recently. Both nuclear and cytoplasmic proteins are affected in examples of azoospermia in men.
Collapse
Affiliation(s)
- J P Venables
- Department of Biochemistry University of Leicester University Road, Leicester, LE1 7RH, UK.
| | | |
Collapse
|
16
|
Daoud R, Da Penha Berzaghi M, Siedler F, Hübener M, Stamm S. Activity-dependent regulation of alternative splicing patterns in the rat brain. Eur J Neurosci 1999; 11:788-802. [PMID: 10103073 DOI: 10.1046/j.1460-9568.1999.00486.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alternative splicing plays an important role in the expression of genetic information. Among the best understood alternative splicing factors are transformer and transformer-2, which regulate sexual differentiation in Drosophila. Like the Drosophila genes, the recently identified mammalian homologues are subject to alternative splicing. Using an antibody directed against the major human transformer-2 beta isoform, we show that it has a widespread expression in the rat brain. Pilocarpine-induced neuronal activity changes the alternative splicing pattern of the human transformer-2-beta gene in the brain. After neuronal stimulation, a variant bearing high similarity to a male-specific Drosophila tra-2179 isoform is switched off in the hippocampus and is detectable in the cortex. In addition, the ratio of another short RNA isoform (htra2-beta2) to htra2-beta1 is changed. Htra2-beta2 is not translated into protein, and probably helps to regulate the relative amounts of htra2-beta1 to beta3. We also observe activity-dependent changes in alternative splicing of the clathrin light chain B, c-src and NMDAR1 genes, indicating that the coordinated change of alternative splicing patterns might contribute to molecular plasticity in the brain.
Collapse
Affiliation(s)
- R Daoud
- Max-Planck Institute of Neurobiology, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
17
|
Abstract
A number of splicing factors contain extensive regions that are rich in arginine and serine (RS domains). These domains are thought to facilitate protein-protein interactions that are critical in the regulation of alternative splicing. Using a domain swap strategy, we have tested the ability of RS domains from several proteins to substitute in vivo for an essential RS domain in the Drosophila splicing regulator TRA-2. By several criteria, RS domains were found to vary significantly in their ability to support the splicing regulation functions of TRA-2. The RS domain of dU2AF50 functioned efficiently, while that of the dSRp55 protein did not. Moreover, we find similar differences in the ability of RS domains to direct fusion proteins to discrete subnuclear sites at which TRA-2 associates with spermatocyte chromosomes. These results indicate that RS domains are not all functionally equivalent in vivo.
Collapse
Affiliation(s)
- B Dauwalder
- Department of Molecular Genetics, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 45, Houston, TX 77030, USA
| | | |
Collapse
|
18
|
Nayler O, Cap C, Stamm S. Human transformer-2-beta gene (SFRS10): complete nucleotide sequence, chromosomal localization, and generation of a tissue-specific isoform. Genomics 1998; 53:191-202. [PMID: 9790768 DOI: 10.1006/geno.1998.5471] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Htra2-beta is a human homologue of Drosophila transformer-2 and a member of the SR-like protein family. Here we report the isolation and characterization of the complete htra2-beta gene (HGMW-approved symbol SFRS10). The gene spans 21,232 bp and is composed of 10 exons and 9 introns. Radiation hybrid mapping localized the gene to chromosome 3q. The region upstream of the transcription initiation codon contains an Alu element and several potential transcription factor binding sites. RT-PCR and comparison with EST clones revealed five different RNA isoforms generated by alternative splicing. These isoforms encode three diverging open reading frames, and two of these, htra2-beta3 and htra2-beta4, lack the first SR domain. Htra2-beta3 is developmentally regulated and expressed predominantly in brain, liver testis, and weakly in kidney. Furthermore, the domain structure of htra2-beta3 resembles a variant found in the Drosophila male germline, indicating a remarkable conservation of alternative transformer-2 variants. Finally, we show that htra2-beta3 is expressed in the nucleus and interacts with a subset of SR proteins in a yeast two-hybrid system and in vivo.
Collapse
Affiliation(s)
- O Nayler
- Max-Planck Institute of Neurobiology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18a, Martinsried, D-82152, Germany
| | | | | |
Collapse
|
19
|
Brunel CA, Madigan SJ, Cassill JA, Edeen PT, McKeown M. pcdr, a novel gene with sexually dimorphic expression in the pigment cells of the Drosophila eye. Dev Genes Evol 1998; 208:327-35. [PMID: 9716723 PMCID: PMC1975815 DOI: 10.1007/s004270050188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report the molecular cloning and characterization of pcdr (pigment cell dehydrogenase reductase), a Drosophila visual system-specific gene with novel properties of spatial, temporal and sexual regulation. Short chain dehydrogenase/reductases are a family of proteins that catalyze mechanistically conserved dehydrogenase/reductase reactions in a wide range of cells and tissues. These enzymes are required in a variety of reactions ranging from steroid metabolism and prostaglandin synthesis to alcohol detoxification. The Drosophila pcdr gene encodes a new member of this family, displaying 42% amino acid sequence identity to the mammalian prostaglandin dehydrogenase. pcdr expression is restricted to the visual system with very high levels found in the pigment cells. Interestingly, expression of pcdr mRNA is sexually dimorphic with males showing higher levels of expression than females. This sexual dimorphism is under the control of the sex differentiation cascade as transformer and transformer 2 mutations shift females to a male-like level of expression. Finally, we demonstrate that a region of 335 nucleotides including sequences upstream and just downstream of the transcription start is sufficient to reproduce the normal expression pattern.
Collapse
Affiliation(s)
- C A Brunel
- Molecular Biology and Virology Laboratory, The Salk Institute for Biological Studies, PO Box 85800, San Diego, CA 92138, USA
| | | | | | | | | |
Collapse
|
20
|
McGuffin ME, Chandler D, Somaiya D, Dauwalder B, Mattox W. Autoregulation of transformer-2 alternative splicing is necessary for normal male fertility in Drosophila. Genetics 1998; 149:1477-86. [PMID: 9649535 PMCID: PMC1460228 DOI: 10.1093/genetics/149.3.1477] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the male germline of Drosophila the transformer-2 protein is required for differential splicing of pre-mRNAs from the exuperantia and att genes and autoregulates alternative splicing of its own pre-mRNA. Autoregulation of TRA-2 splicing results in production of two mRNAs that differ by the splicing/retention of the M1 intron and encode functionally distinct protein isoforms. Splicing of the intron produces an mRNA encoding TRA-2(226), which is necessary and sufficient for both male fertility and regulation of downstream target RNAs. When the intron is retained, an mRNA is produced encoding TRA-2(179), a protein with no known function. We have previously shown that repression of M1 splicing is dependent on TRA-2(226), suggesting that this protein quantitatively limits its own expression through a negative feedback mechanism at the level of splicing. Here we examine this idea, by testing the effect that variations in the level of tra-2 expression have on the splicing of M1 and on male fertility. Consistent with our hypothesis, we observe that as tra-2 gene dosage is increased, smaller proportions of TRA-2(226) mRNA are produced, limiting expression of this isoform. Feedback regulation is critical for male fertility, since it is significantly decreased by a transgene in which repression of M1 splicing cannot occur and TRA-2(226) mRNA is constitutively produced. The effect of this transgene becomes more severe as its dosage is increased, indicating that fertility is sensitive to an excess of TRA-2(226). Our results suggest that autoregulation of TRA-2(226) expression in male germ cells is necessary for normal spermatogenesis.
Collapse
Affiliation(s)
- M E McGuffin
- Department of Molecular Genetics, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
21
|
Tacke R, Tohyama M, Ogawa S, Manley JL. Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. Cell 1998; 93:139-48. [PMID: 9546399 DOI: 10.1016/s0092-8674(00)81153-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RNA-binding protein Tra2 is an important regulator of sex determination in Drosophila. Recently, two mammalian Tra2 homologs of unknown function have been described. Here, we show that human Tra2 proteins are present in HeLa cell nuclear extracts and that they bind efficiently and specifically to a previously characterized pre-mRNA splicing enhancer element. Indeed, both purified proteins bound preferentially to RNA sequences containing GAA repeats, characteristic of many enhancer elements. Neither Tra2 protein functioned in constitutive splicing in vitro, but both activated enhancer-dependent splicing in a sequence-specific manner and restored it after inhibition with competitor RNA. Our findings indicate that mammalian Tra2 proteins are sequence-specific splicing activators that likely participate in the control of cell-specific splicing patterns.
Collapse
Affiliation(s)
- R Tacke
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
22
|
Chandler D, McGuffin ME, Piskur J, Yao J, Baker BS, Mattox W. Evolutionary conservation of regulatory strategies for the sex determination factor transformer-2. Mol Cell Biol 1997; 17:2908-19. [PMID: 9111363 PMCID: PMC232143 DOI: 10.1128/mcb.17.5.2908] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sex determination in Drosophila melanogaster is regulated by a cascade of splicing factors which direct the sex-specific expression of gene products needed for male and female differentiation. The splicing factor TRA-2 affects sex-specific splicing of multiple pre-mRNAs involved in sexual differentiation. The tra-2 gene itself expresses a complex set of mRNAs generated through alternative processing that collectively encode three distinct protein isoforms. The expression of these isoforms differs in the soma and germ line. In the male germ line the ratio of two isoforms present is governed by autoregulation of splicing. However, the functional significance of multiple TRA-2 isoforms has remained uncertain. Here we have examined whether the structure, function, and regulation of tra-2 are conserved in Drosophila virilis, a species diverged from D. melanogaster by over 60 million years. We find that the D. virilis homolog of tra-2 produces alternatively spliced RNAs encoding a set of protein isoforms analogous to those found in D. melanogaster. When introduced into the genome of D. melanogaster, this homolog can functionally replace the endogenous tra-2 gene for both normal female sexual differentiation and spermatogenesis. Examination of alternative mRNAs produced in D. virilis testes suggests that germ line-specific autoregulation of tra-2 function is accomplished by a strategy similar to that used in D. melanogaster. The similarity in structure and function of the tra-2 genes in these divergent Drosophila species supports the idea that sexual differentiation in D. melanogaster and D. virilis is accomplished under the control of similar regulatory pathways.
Collapse
Affiliation(s)
- D Chandler
- Department of Molecular Genetics, M.D. Anderson Cancer Center, University of Texas, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|