1
|
Skaliter O, Bednarczyk D, Shor E, Shklarman E, Manasherova E, Aravena-Calvo J, Kerzner S, Cna’ani A, Jasinska W, Masci T, Dvir G, Edelbaum O, Rimon B, Brotman Y, Cohen H, Vainstein A. The R2R3-MYB transcription factor EVER controls the emission of petunia floral volatiles by regulating epicuticular wax biosynthesis in the petal epidermis. THE PLANT CELL 2023; 36:174-193. [PMID: 37818992 PMCID: PMC10734618 DOI: 10.1093/plcell/koad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The epidermal cells of petunia (Petunia × hybrida) flowers are the main site of volatile emission. However, the mechanisms underlying the release of volatiles into the environment are still being explored. Here, using cell-layer-specific transcriptomic analysis, reverse genetics by virus-induced gene silencing and clustered regularly interspaced short palindromic repeat (CRISPR), and metabolomics, we identified EPIDERMIS VOLATILE EMISSION REGULATOR (EVER)-a petal adaxial epidermis-specific MYB activator that affects the emission of volatiles. To generate ever knockout lines, we developed a viral-based CRISPR/Cas9 system for efficient gene editing in plants. These knockout lines, together with transient-suppression assays, revealed EVER's involvement in the repression of low-vapor-pressure volatiles. Internal pools and annotated scent-related genes involved in volatile production and emission were not affected by EVER. RNA-Seq analyses of petals of ever knockout lines and EVER-overexpressing flowers revealed enrichment in wax-related biosynthesis genes. Liquid chromatography/gas chromatography-MS analyses of petal epicuticular waxes revealed substantial reductions in wax loads in ever petals, particularly of monomers of fatty acids and wax esters. These results implicate EVER in the emission of volatiles by fine-tuning the composition of petal epicuticular waxes. We reveal a petunia MYB regulator that interlinks epicuticular wax composition and volatile emission, thus unraveling a regulatory layer in the scent-emission machinery in petunia flowers.
Collapse
Affiliation(s)
- Oded Skaliter
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dominika Bednarczyk
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ekaterina Shor
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elena Shklarman
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Javiera Aravena-Calvo
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Shane Kerzner
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alon Cna’ani
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Weronika Jasinska
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tania Masci
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Gony Dvir
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Orit Edelbaum
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ben Rimon
- Department of Ornamental Horticulture and Biotechnology, The Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
2
|
Soto L, Li Z, Santoso CS, Berenson A, Ho I, Shen VX, Yuan S, Bass JIF. Compendium of human transcription factor effector domains. Mol Cell 2022; 82:514-526. [PMID: 34863368 PMCID: PMC8818021 DOI: 10.1016/j.molcel.2021.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
Transcription factors (TFs) regulate gene expression by binding to DNA sequences and modulating transcriptional activity through their effector domains. Despite the central role of effector domains in TF function, there is a current lack of a comprehensive resource and characterization of effector domains. Here, we provide a catalog of 924 effector domains across 594 human TFs. Using this catalog, we characterized the amino acid composition of effector domains, their conservation across species and across the human population, and their roles in human diseases. Furthermore, we provide a classification system for effector domains that constitutes a valuable resource and a blueprint for future experimental studies of TF effector domain function.
Collapse
Affiliation(s)
- Luis Soto
- Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Perú
| | - Zhaorong Li
- Bioinformatics Program, Boston University, Boston MA 02215
| | - Clarissa S Santoso
- Biology Department, Boston University, Boston MA 02215,Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston MA 02215
| | - Anna Berenson
- Biology Department, Boston University, Boston MA 02215,Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston MA 02215
| | - Isabella Ho
- Biology Department, Boston University, Boston MA 02215
| | - Vivian X Shen
- Biology Department, Boston University, Boston MA 02215
| | - Samson Yuan
- Biology Department, Boston University, Boston MA 02215
| | - Juan I Fuxman Bass
- Bioinformatics Program, Boston University, Boston MA 02215,Biology Department, Boston University, Boston MA 02215,Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston MA 02215,correspondence:
| |
Collapse
|
3
|
Rodrigues JA, Espley RV, Allan AC. Genomic analysis uncovers functional variation in the C-terminus of anthocyanin-activating MYB transcription factors. HORTICULTURE RESEARCH 2021; 8:77. [PMID: 33790254 PMCID: PMC8012628 DOI: 10.1038/s41438-021-00514-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 05/26/2023]
Abstract
MYB transcription factors regulate diverse aspects of plant development and secondary metabolism, often by partnering in transcriptional regulatory complexes. Here, we harness genomic resources to identify novel MYBs, thereby producing an updated eudicot MYB phylogeny with revised relationships among subgroups as well as new information on sequence variation in the disordered C-terminus of anthocyanin-activating MYBs. BLAST® and hidden Markov model scans of gene annotations identified a total of 714 MYB transcription factors across the genomes of four crops that span the eudicots: apple, grape, kiwifruit and tomato. Codon model-based phylogenetic inference identified novel members of previously defined subgroups, and the function of specific anthocyanin-activating subgroup 6 members was assayed transiently in tobacco leaves. Sequence conservation within subgroup 6 highlighted one previously described and two novel short linear motifs in the disordered C-terminal region. The novel motifs have a mix of hydrophobic and acidic residues and are predicted to be relatively ordered compared with flanking protein sequences. Comparison of motifs with the Eukaryotic Linear Motif database suggests roles in protein-protein interaction. Engineering of motifs and their flanking regions from strong anthocyanin activators into weak activators, and vice versa, affected function. We conclude that, although the MYB C-terminal sequence diverges greatly even within MYB clades, variation within the C-terminus at and near relatively ordered regions offers opportunities for exploring MYB function and developing superior alleles for plant breeding.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Sandringham, Auckland, 1025, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Sandringham, Auckland, 1025, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Sandringham, Auckland, 1025, New Zealand.
- School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland, 1010, New Zealand.
| |
Collapse
|
4
|
Guan J, He Z, Qin M, Deng X, Chen J, Duan S, Gao X, Pan Y, Chen J, Yang Y, Feng S, Sun Q. Molecular characterization of the viral structural protein genes in the first outbreak of dengue virus type 2 in Hunan Province, inland China in 2018. BMC Infect Dis 2021; 21:166. [PMID: 33568111 PMCID: PMC7874035 DOI: 10.1186/s12879-021-05823-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/19/2021] [Indexed: 11/29/2022] Open
Abstract
Background An unexpected dengue outbreak occurred in Hunan Province in 2018. This was the first dengue outbreak in this area of inland China, and 172 cases were reported. Methods To verify the causative agent of this outbreak and characterise the viral genes, the genes encoding the structural proteins C/prM/E of viruses isolated from local residents were sequenced followed by mutation and phylogenetic analysis. Recombination, selection pressure, potential secondary structure and three-dimensional structure analyses were also performed. Results Phylogenetic analysis revealed that all epidemic strains were of the cosmopolitan DENV-2 genotype and were most closely related to the Zhejiang strain (MH010629, 2017) and then the Malaysia strain (KJ806803, 2013). Compared with the sequence of DENV-2SS, 151 base substitutions were found in the sequences of 89 isolates; these substitutions resulted in 20 non-synonymous mutations, of which 17 mutations existed in all samples (two in the capsid protein, six in the prM/M proteins, and nine in the envelope proteins). Moreover, amino acid substitutions at the 602nd (E322:Q → H) and 670th (E390: N → S) amino acids may have enhanced the virulence of the epidemic strains. One new DNA binding site and five new protein binding sites were observed. Two polynucleotide binding sites and seven protein binding sites were lost in the epidemic strains compared with DENV-2SS. Meanwhile, five changes were found in helical regions. Minor changes were observed in helical transmembrane and disordered regions. The 429th amino acid of the E protein switched from a histamine (positively charged) to an asparagine (neutral) in all 89 isolated strains. No recombination events or positive selection pressure sites were observed. To our knowledge, this study is the first to analyse the genetic characteristics of epidemic strains in the first dengue outbreak in Hunan Province in inland China. Conclusions The causative agent is likely to come from Zhejiang Province, a neighbouring province where dengue fever broke out in 2017. This study may help clarify the intrinsic geographical relatedness of DENV-2 and contribute to further research on pathogenicity and vaccine development. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-05823-3.
Collapse
Affiliation(s)
- Jiaoqiong Guan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Xialin Deng
- Qiyang People's Hospital, Yongzhou, Hunan, People's Republic of China
| | - Jun Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Xiaojun Gao
- Qiyang People's Hospital, Yongzhou, Hunan, People's Republic of China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Yaping Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Shijun Feng
- Qiyang People's Hospital, Yongzhou, Hunan, People's Republic of China.
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China. .,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China.
| |
Collapse
|
5
|
Erfatpour M, Pauls KP. A R2R3-MYB gene-based marker for the non-darkening seed coat trait in pinto and cranberry beans (Phaseolus vulgaris L.) derived from 'Wit-rood boontje'. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1977-1994. [PMID: 32112124 PMCID: PMC7237406 DOI: 10.1007/s00122-020-03571-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/21/2020] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE The gene Phvul.010G130600 which codes for a MYB was shown to be tightly associated with seed coat darkening in Phaseolus vulgaris and a single nucleotide deletion in the allele in Wit-rood disrupts a transcription activation region that likely prevents its functioning in this non-darkening genotype. The beige and white background colors of the seed coats of conventional pinto and cranberry beans turn brown through a process known as postharvest darkening (PHD). Seed coat PHD is attributed to proanthocyanidin accumulation and its subsequent oxidation in the seed coat. The J gene is an uncharacterized classical genetic locus known to be responsible for PHD in common bean (P. vulgaris) and individuals that are homozygous for its recessive allele have a non-darkening (ND) seed coat phenotype. A previous study identified a major colorimetrically determined QTL for seed coat color on chromosome 10 that was associated with the ND trait. The objectives of this study were to identify a gene associated with seed coat postharvest darkening in common bean and understand its function in promoting seed coat darkening. Amplicon sequencing of 21 candidate genes underlying the QTL associated with the ND trait revealed a single nucleotide deletion (c.703delG) in the candidate gene Phvul.010G130600 in non-darkening recombinant inbred lines derived from crosses between ND 'Wit-rood boontje' and a regular darkening pinto genotype. In silico analysis indicated that Phvul.010G130600 encodes a protein with strong amino acid sequence identity (70%) with a R2R3-MYB-type transcription factor MtPAR, which has been shown to regulate proanthocyanidin biosynthesis in Medicago truncatula seed coat tissue. The deletion in the 'Wit-rood boontje' allele of Phvul.010G130600 likely causes a translational frame shift that disrupts the function of a transcriptional activation domain contained in the C-terminus of the R2R3-MYB. A gene-based dominant marker was developed for the dominant allele of Phvul.010G130600 which can be used for marker-assisted selection of ND beans.
Collapse
Affiliation(s)
- M Erfatpour
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - K P Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
6
|
Komori T, Sun Y, Kashihara M, Uekawa N, Kato N, Usami S, Ishikawa N, Hiei Y, Kobayashi K, Kum R, Bortiri E, White K, Oeller P, Takemori N, Bate NJ, Komari T. High-throughput phenotypic screening of random genomic fragments in transgenic rice identified novel drought tolerance genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1291-1301. [PMID: 31980835 DOI: 10.1007/s00122-020-03548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Novel drought tolerance genes were identified by screening thousands of random genomic fragments from grass species in transgenic rice. Identification of agronomically important genes is a critical step for crop breeding through biotechnology. Multiple approaches have been employed to identify new gene targets, including comprehensive screening platforms for gene discovery such as the over-expression of libraries of cDNA clones. In this study, random genomic fragments from plants were introduced into rice and screened for drought tolerance in a high-throughput manner with the aim of finding novel genetic elements not exclusively limited to coding sequences. To illustrate the power of this approach, genomic libraries were constructed from four grass species, and screening a total of 50,825 transgenic rice lines for drought tolerance resulted in the identification of 12 reproducibly efficacious fragments. Of the twelve, two were from the mitochondrial genome of signal grass and ten were from the nuclear genome of buffalo grass. Subsequent sequencing and analyses revealed that the ten fragments from buffalo grass carried a similar genetic element with no significant homology to any previously characterized gene. The deduced protein sequence was rich in acidic amino acid residues in the C-terminal half, and two of the glutamic acid residues in the C-terminal half were shown to play an important role in drought tolerance. The results demonstrate that an open-ended screening approach using random genomic fragments could discover trait genes distinct from gene discovery based on known pathways or biased toward coding sequence over-expression.
Collapse
Affiliation(s)
- Toshiyuki Komori
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan.
| | - Yuejin Sun
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Masakazu Kashihara
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Natsuko Uekawa
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Norio Kato
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Satoru Usami
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Noriko Ishikawa
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Yukoh Hiei
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Kei Kobayashi
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Rise Kum
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Esteban Bortiri
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Kimberly White
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Paul Oeller
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Naoki Takemori
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Nicholas J Bate
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC, 27709, USA
- Pairwise Plants, 110 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Toshihiko Komari
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| |
Collapse
|
7
|
Lacroix B, Citovsky V. Biolistic Approach for Transient Gene Expression Studies in Plants. Methods Mol Biol 2020; 2124:125-139. [PMID: 32277451 DOI: 10.1007/978-1-0716-0356-7_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since its inception in the late 1980s, the delivery of exogenous nucleic acids into living cells via high-velocity microprojectiles (biolistic, or microparticle bombardment) has been an invaluable tool for both agricultural and fundamental plant research. Here, we review the technical aspects and the major applications of the biolistic method for studies involving transient gene expression in plant cells. These studies cover multiple areas of plant research, including gene expression, protein subcellular localization and cell-to-cell movement, plant virology, silencing, and the more recently developed targeted genome editing via transient expression of customized endonucleases.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA.
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| |
Collapse
|
8
|
Stracke R, Turgut-Kara N, Weisshaar B. The AtMYB12 activation domain maps to a short C-terminal region of the transcription factor. ACTA ACUST UNITED AC 2017; 72:251-257. [DOI: 10.1515/znc-2016-0221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/05/2017] [Indexed: 01/14/2023]
Abstract
Abstract
The Arabidopsis thaliana R2R3-MYB transcription factor MYB12 is a light-inducible, flavonol-specific activator of flavonoid biosynthesis. The transactivation activity of the AtMYB12 protein was analyzed using a C-terminal deletion series in a transient A. thaliana protoplast assay with the goal of mapping the activation domain (AD). Although the deletion of the last 46 C-terminal amino acids did not affect the activation capacity, the deletion of the last 98 amino acids almost totally abolished transactivation of two different target promoters. A domain swap experiment using the yeast GAL4 DNA-binding domain revealed that the region from positions 282 to 328 of AtMYB12 was sufficient for transactivation. In contrast to the R2R3-MYB ADs known thus far, that of AtMYB12 is not located at the rearmost C-terminal end of the protein. The AtMYB12 AD is conserved in other experimentally proven R2R3-MYB flavonol regulators from different species.
Collapse
Affiliation(s)
- Ralf Stracke
- Bielefeld University , Chair of Genome Research , 33615 Bielefeld , Germany
| | - Neslihan Turgut-Kara
- Istanbul University, Faculty of Science , Department of Molecular Biology and Genetics , 34134 Vezneciler , Istanbul , Turkey
| | - Bernd Weisshaar
- Bielefeld University , Chair of Genome Research , 33615 Bielefeld , Germany
| |
Collapse
|
9
|
Striberny B, Melton AE, Schwacke R, Krause K, Fischer K, Goertzen LR, Rashotte AM. Cytokinin Response Factor 5 has transcriptional activity governed by its C-terminal domain. PLANT SIGNALING & BEHAVIOR 2017; 12:e1276684. [PMID: 28045578 PMCID: PMC5351726 DOI: 10.1080/15592324.2016.1276684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 05/26/2023]
Abstract
Cytokinin Response Factors (CRFs) are AP2/ERF transcription factors involved in cytokinin signal transduction. CRF proteins consist of a N-terminal dimerization domain (CRF domain), an AP2 DNA-binding domain, and a clade-specific C-terminal region of unknown function. Using a series of sequential deletions in yeast-2-hybrid assays, we provide evidence that the C-terminal region of Arabidopsis CRF5 can confer transactivation activity. Although comparative analyses identified evolutionarily conserved protein sequence within the C-terminal region, deletion experiments suggest that this transactivation domain has a partially redundant modular structure required for activation of target gene transcription.
Collapse
Affiliation(s)
- Bernd Striberny
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway in Tromsø, Dramsvegen, Tromsø, Norway
- ArcticZymes AS, Sykehusveien, Tromsø, Norway
| | - Anthony E. Melton
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Rainer Schwacke
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway in Tromsø, Dramsvegen, Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway in Tromsø, Dramsvegen, Tromsø, Norway
| | - Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway in Tromsø, Dramsvegen, Tromsø, Norway
| | | | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
10
|
Dalton JC, Bätz U, Liu J, Curie GL, Quail PH. A Modified Reverse One-Hybrid Screen Identifies Transcriptional Activation Domains in PHYTOCHROME-INTERACTING FACTOR 3. FRONTIERS IN PLANT SCIENCE 2016; 7:881. [PMID: 27379152 PMCID: PMC4911399 DOI: 10.3389/fpls.2016.00881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/03/2016] [Indexed: 05/27/2023]
Abstract
Transcriptional activation domains (TADs) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput manner. A plant transcriptional activator, PIF3 (phytochrome interacting factor 3), was fused to the yeast GAL4-DNA-binding Domain (BD), driving expression of the URA3 (Orotidine 5'-phosphate decarboxylase) reporter, and used for negative selection on 5-fluroorotic acid (5FOA). Randomly mutagenized variants of PIF3 were then selected for a loss or reduction in transcriptional activation activity by survival on FOA. In the process, we developed a strategy to eliminate false positives from negative selection that can be used for both reverse-1- and 2-hybrid screens. With this method we were able to identify two distinct regions in PIF3 with transcriptional activation activity, both of which are functionally conserved in PIF1, PIF4, and PIF5. Both are collectively necessary for full PIF3 transcriptional activity, but neither is sufficient to induce transcription autonomously. We also found that the TAD appear to overlap physically with other PIF3 functions, such as phyB binding activity and consequent phosphorylation. Our protocol should provide a valuable tool for identifying, analyzing and characterizing novel TADs in eukaryotic transcription factors, and thus potentially contribute to the unraveling of the mechanism underlying transcriptional activation.
Collapse
|
11
|
|
12
|
Albert NW, Griffiths AG, Cousins GR, Verry IM, Williams WM. Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium. THE NEW PHYTOLOGIST 2015; 205:882-93. [PMID: 25329638 DOI: 10.1111/nph.13100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/20/2014] [Indexed: 05/02/2023]
Abstract
Anthocyanin pigments accumulate to form spatially restricted patterns in plants, particularly in flowers, but also occur in vegetative tissues. Spatially restricted anthocyanin leaf markings are poorly characterised in plants, but are common in forage legumes. We hypothesised that the molecular basis for anthocyanin leaf markings in Trifolium spp. is due to the activity of a family of R2R3-MYB genes. R2R3-MYB genes were identified that are associated with the two classic pigmentation loci in T. repens. The R locus patterns 'red leaf', 'red midrib' and 'red fleck' are conditioned by a single MYB gene, RED LEAF. The 'diffuse red leaf' trait is regulated by the RED LEAF DIFFUSE MYB gene. The V locus was identified through mapping two V-linked traits, 'V-broken yellow' (Vby) and 'red leaflet' (Vrl). Two highly similar R2R3-MYB genes, RED V-a and RED V-b, mapped to the V locus and co-segregated with the RED V pigmentation pattern. Functional characterisation of RED LEAF and RED V was performed, confirming their function as anthocyanin regulators and identifying a C-terminal region necessary for transactivation. The mechanisms responsible for generating anthocyanin leaf markings in T. repens provide a valuable system to compare with mechanisms that regulate complex floral pigmentation.
Collapse
Affiliation(s)
- Nick W Albert
- AgResearch Limited, Private Bag 11008, Palmerston North, 4442, New Zealand; Plant & Food Research Limited, Private Bag 11-600, Palmerston North, 4442, New Zealand
| | | | | | | | | |
Collapse
|
13
|
Frerigmann H, Berger B, Gigolashvili T. bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:349-69. [PMID: 25049362 PMCID: PMC4149720 DOI: 10.1104/pp.114.240887] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/20/2014] [Indexed: 05/18/2023]
Abstract
By means of yeast (Saccharomyces cerevisiae) two-hybrid screening, we identified basic helix-loop-helix transcription factor05 (bHLH05) as an interacting partner of MYB51, the key regulator of indolic glucosinolates (GSLs) in Arabidopsis (Arabidopsis thaliana). Furthermore, we show that bHLH04, bHLH05, and bHLH06/MYC2 also interact with other R2R3-MYBs regulating GSL biosynthesis. Analysis of bhlh loss-of-function mutants revealed that the single bhlh mutants retained GSL levels that were similar to those in wild-type plants, whereas the triple bhlh04/05/06 mutant was depleted in the production of GSL. Unlike bhlh04/06 and bhlh05/06 mutants, the double bhlh04/05 mutant was strongly affected in the production of GSL, pointing to a special role of bHLH04 and bHLH05 in the control of GSL levels in the absence of jasmonic acid. The combination of two specific gain-of-function alleles of MYB and bHLH proteins had an additive effect on GSL levels, as demonstrated by the analysis of the double MYB34-1D bHLH05D94N mutant, which produces 20-fold more indolic GSLs than bHLH05D94N and ecotype Columbia-0 of Arabidopsis. The amino acid substitution D94N in bHLH05D94N negatively affects the interaction with JASMONATE-ZIM DOMAIN protein, thereby resulting in constitutive activation of bHLH05 and mimicking jasmonic acid treatment. Our study revealed the bHLH04, bHLH05, and bHLH06/MYC2 factors as novel regulators of GSL biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Henning Frerigmann
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, BioCenter, D-50674 Cologne, Germany (H.F., T.G.); the Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae SA 5064, Australia (B.B.)
| | - Bettina Berger
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, BioCenter, D-50674 Cologne, Germany (H.F., T.G.); the Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae SA 5064, Australia (B.B.)
| | - Tamara Gigolashvili
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, BioCenter, D-50674 Cologne, Germany (H.F., T.G.); the Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae SA 5064, Australia (B.B.)
| |
Collapse
|
14
|
A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface. Proc Natl Acad Sci U S A 2014; 111:E3506-13. [PMID: 25122681 DOI: 10.1073/pnas.1412088111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although many transcription activators contact the same set of coactivator complexes, the mechanism and specificity of these interactions have been unclear. For example, do intrinsically disordered transcription activation domains (ADs) use sequence-specific motifs, or do ADs of seemingly different sequence have common properties that encode activation function? We find that the central activation domain (cAD) of the yeast activator Gcn4 functions through a short, conserved sequence-specific motif. Optimizing the residues surrounding this short motif by inserting additional hydrophobic residues creates very powerful ADs that bind the Mediator subunit Gal11/Med15 with high affinity via a "fuzzy" protein interface. In contrast to Gcn4, the activity of these synthetic ADs is not strongly dependent on any one residue of the AD, and this redundancy is similar to that of some natural ADs in which few if any sequence-specific residues have been identified. The additional hydrophobic residues in the synthetic ADs likely allow multiple faces of the AD helix to interact with the Gal11 activator-binding domain, effectively forming a fuzzier interface than that of the wild-type cAD.
Collapse
|
15
|
Gupta M, DeKelver RC, Palta A, Clifford C, Gopalan S, Miller JC, Novak S, Desloover D, Gachotte D, Connell J, Flook J, Patterson T, Robbins K, Rebar EJ, Gregory PD, Urnov FD, Petolino JF. Transcriptional activation of Brassica napus β-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:783-791. [PMID: 22520333 DOI: 10.1111/j.1467-7652.2012.00695.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Targeted gene regulation via designed transcription factors has great potential for precise phenotypic modification and acceleration of novel crop trait development. Canola seed oil composition is dictated largely by the expression of genes encoding enzymes in the fatty acid biosynthetic pathway. In the present study, zinc finger proteins (ZFPs) were designed to bind DNA sequences common to two canola β-ketoacyl-ACP Synthase II (KASII) genes downstream of their transcription start site. Transcriptional activators (ZFP-TFs) were constructed by fusing these ZFP DNA-binding domains to the VP16 transcriptional activation domain. Following transformation using Agrobacterium, transgenic events expressing ZFP-TFs were generated and shown to have elevated KASII transcript levels in the leaves of transgenic T(0) plants when compared to 'selectable marker only' controls as well as of T(1) progeny plants when compared to null segregants. In addition, leaves of ZFP-TF-expressing T(1) plants contained statistically significant decreases in palmitic acid (consistent with increased KASII activity) and increased total C18. Similarly, T(2) seed displayed statistically significant decreases in palmitic acid, increased total C18 and reduced total saturated fatty acid contents. These results demonstrate that designed ZFP-TFs can be used to regulate the expression of endogenous genes to elicit specific phenotypic modifications of agronomically relevant traits in a crop species.
Collapse
|
16
|
Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proc Natl Acad Sci U S A 2012; 109:E2091-7. [PMID: 22778424 DOI: 10.1073/pnas.1205513109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The maize R2R3-MYB regulator C1 cooperates with the basic helix-loop-helix (bHLH) factor R to activate the expression of anthocyanin biosynthetic genes coordinately. As is the case for other bHLH factors, R harbors several protein-protein interaction domains. Here we show that not the classical but rather a briefly extended R bHLH region forms homodimers that bind canonical G-box DNA motifs. This bHLH DNA-binding activity is abolished if the C-terminal ACT (aspartokinase, chorismate, and TyrA) domain is licensed to homodimerize. Then the bHLH remains in the monomeric form, allowing it to interact with R-interacting factor 1 (RIF1). In this configuration, the R-RIF1 complex is recruited to the promoters of a subset of anthocyanin biosynthetic genes, such as A1, through the interaction with its MYB partner C1. If, however, the ACT domain remains monomeric, the bHLH region dimerizes and binds to G-boxes present in several anthocyanin genes, such as Bz1. Our results provide a mechanism by which a dimerization domain in a bHLH factor behaves as a switch that permits distinct configurations of a regulatory complex to be tethered to different promoters. Such a combinatorial gene regulatory framework provides one mechanism by which genes lacking obviously conserved cis-regulatory elements are regulated coordinately.
Collapse
|
17
|
Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:94-116. [PMID: 21443626 DOI: 10.1111/j.1365-313x.2010.04459.x] [Citation(s) in RCA: 770] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The expansion of gene families encoding regulatory proteins is typically associated with the increase in complexity characteristic of multi-cellular organisms. The MYB and basic helix-loop-helix (bHLH) families provide excellent examples of how gene duplication and divergence within particular groups of transcription factors are associated with, if not driven by, the morphological and metabolic diversity that characterize the higher plants. These gene families expanded dramatically in higher plants; for example, there are approximately 339 and 162 MYB and bHLH genes, respectively, in Arabidopsis, and approximately 230 and 111, respectively, in rice. In contrast, the Chlamydomonas genome has only 38 MYB genes and eight bHLH genes. In this review, we compare the MYB and bHLH gene families from structural, evolutionary and functional perspectives. The knowledge acquired on the role of many of these factors in Arabidopsis provides an excellent reference to explore sequence-function relationships in crops and other plants. The physical interaction and regulatory synergy between particular sub-classes of MYB and bHLH factors is perhaps one of the best examples of combinatorial plant gene regulation. However, members of the MYB and bHLH families also interact with a number of other regulatory proteins, forming complexes that either activate or repress the expression of sets of target genes that are increasingly being identified through a diversity of high-throughput genomic approaches. The next few years are likely to witness an increasing understanding of the extent to which conserved transcription factors participate at similar positions in gene regulatory networks across plant species.
Collapse
Affiliation(s)
- Antje Feller
- Plant Biotechnology Center and Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
18
|
Depège-Fargeix N, Javelle M, Chambrier P, Frangne N, Gerentes D, Perez P, Rogowsky PM, Vernoud V. Functional characterization of the HD-ZIP IV transcription factor OCL1 from maize. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:293-305. [PMID: 20819789 DOI: 10.1093/jxb/erq267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
OCL1 (OUTER CELL LAYER1) encodes a maize HD-ZIP class IV transcription factor (TF) characterized by the presence of a homeo DNA-binding domain (HD), a dimerization leucine zipper domain (ZIP), and a steroidogenic acute regulatory protein (StAR)-related lipid transfer domain (START) involved in lipid transport in animals but the function of which is still unknown in plants. By combining yeast and plant trans-activation assays, the transcriptional activation domain of OCL1 was localized to 85 amino acids in the N-terminal part of the START domain. Full-length OCL1 devoid of this activation domain is unable to trans-activate a reporter gene under the control of a minimal promoter fused to six repeats of the L1 box, a cis-element present in target genes of HD-ZIP IV TFs in Arabidopsis. In addition, ectopic expression of OCL1 leads to pleiotropic phenotypic aberrations in transgenic maize plants, the most conspicuous one being a strong delay in flowering time which is correlated with the misexpression of molecular markers for floral transition such as ZMM4 (Zea Mays MADS-box4) or DLF1 (DELAYED FLOWERING1). As suggested by the interaction in planta between OCL1 and SWI3C1, a bona fide subunit of the SWI/SNF complex, OCL1 may modulate transcriptional activity of its target genes by interaction with a chromatin remodelling complex.
Collapse
Affiliation(s)
- Nathalie Depège-Fargeix
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, IFR128 BioSciences Lyon Gerland, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Du JX, McConnell BB, Yang VW. A small ubiquitin-related modifier-interacting motif functions as the transcriptional activation domain of Krüppel-like factor 4. J Biol Chem 2010; 285:28298-308. [PMID: 20584900 DOI: 10.1074/jbc.m110.101717] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc finger transcription factor, Krüppel-like factor 4 (KLF4), regulates numerous biological processes, including proliferation, differentiation, and embryonic stem cell self-renewal. Although the DNA sequence to which KLF4 binds is established, the mechanism by which KLF4 controls transcription is not well defined. Small ubiquitin-related modifier (SUMO) is an important regulator of transcription. Here we show that KLF4 is both SUMOylated at a single lysine residue and physically interacts with SUMO-1 in a region that matches an acidic and hydrophobic residue-rich SUMO-interacting motif (SIM) consensus. The SIM in KLF4 is required for transactivation of target promoters in a SUMO-1-dependent manner. Mutation of either the acidic or hydrophobic residues in the SIM significantly impairs the ability of KLF4 to interact with SUMO-1, activate transcription, and inhibit cell proliferation. Our study provides direct evidence that SIM in KLF4 functions as a transcriptional activation domain. A survey of transcription factor sequences reveals that established transactivation domains of many transcription factors contain sequences highly related to SIM. These results, therefore, illustrate a novel mechanism by which SUMO interaction modulates the activity of transcription factors.
Collapse
Affiliation(s)
- James X Du
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
20
|
Velten J, Cakir C, Cazzonelli CI. A spontaneous dominant-negative mutation within a 35S::AtMYB90 transgene inhibits flower pigment production in tobacco. PLoS One 2010; 5:e9917. [PMID: 20360951 PMCID: PMC2847903 DOI: 10.1371/journal.pone.0009917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 02/26/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In part due to the ease of visual detection of phenotypic changes, anthocyanin pigment production has long been the target of genetic and molecular research in plants. Specific members of the large family of plant myb transcription factors have been found to play critical roles in regulating expression of anthocyanin biosynthetic genes and these genes continue to serve as important tools in dissecting the molecular mechanisms of plant gene regulation. FINDINGS A spontaneous mutation within the coding region of an Arabidopsis 35S::AtMYB90 transgene converted the activator of plant-wide anthocyanin production to a dominant-negative allele (PG-1) that inhibits normal pigment production within tobacco petals. Sequence analysis identified a single base change that created a premature nonsense codon, truncating the encoded myb protein. The resulting mutant protein lacks 78 amino acids from the wild type C-terminus and was confirmed as the source of the white-flower phenotype. A putative tobacco homolog of AtMYB90 (NtAN2) was isolated and found to be expressed in flower petals but not leaves of all tobacco plants tested. Using transgenic tobacco constitutively expressing the NtAN2 gene confirmed the NtAN2 protein as the likely target of PG-1-based inhibition of tobacco pigment production. CONCLUSIONS Messenger RNA and anthocyanin analysis of PG-1Sh transgenic lines (and PG-1Sh x purple 35S::NtAN2 seedlings) support a model in which the mutant myb transgene product acts as a competitive inhibitor of the native tobacco NtAN2 protein. This finding is important to researchers in the field of plant transcription factor analysis, representing a potential outcome for experiments analyzing in vivo protein function in test transgenic systems that over-express or mutate plant transcription factors.
Collapse
Affiliation(s)
- Jeff Velten
- Plant Stress and Water Conservation Laboratory, United States Department of Agriculture - Agricultural Research Service, Lubbock, Texas, United States of America.
| | | | | |
Collapse
|
21
|
Qin Y, Ye H, Tang N, Xiong L. Systematic identification of X1-homologous genes reveals a family involved in stress responses in rice. PLANT MOLECULAR BIOLOGY 2009; 71:483-96. [PMID: 19701685 DOI: 10.1007/s11103-009-9535-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 08/01/2009] [Indexed: 05/04/2023]
Abstract
X1-homologous genes (XHS) encode plant-specific proteins containing three major domains (XH, XS, zf-XS), but their functions are largely unknown. We report the systematic identification and characterization of XHS genes in the rice genome. Eleven putative XHS protein sequences (OXHS1-11) were identified in the sequenced genome of Oryza sativa japonica cv. Nipponbare, and these sequences, along with other plant XHS homologues, were classified into five subgroups based on phylogenetic analysis. Distinct diversification of the XHS proteins occurred between monocotyledon and dicotyledon plants. The OXHS family has diverse exon-intron structures and organizations of putative domains and motifs. The OXHS proteins showed no transactivation activity, and no interaction between the XH domain and the XS domain in yeast. Four representative OXHS proteins were targeted to cytoplasm, which contradicts the previous speculation that XHS proteins are putative transcription factors. All the OXHS genes are predominantly expressed in floral organs, and some are expressed in a wide range of tissues or organs in indica rice Minghui 63. Nine OXHS genes are responsive to at least one of the abiotic stresses including drought, salt, cold, and abscisic acid treatment. Over-expression of one stress-responsive gene OXHS2 in rice resulted in reduced tolerance to salt and drought stresses. These results suggest that the OXHS family may be functionally diversified and some members of this family may play important roles in regulating stress tolerance in rice.
Collapse
Affiliation(s)
- Yonghua Qin
- National Center of Plant Gene Research (Wuhan), National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | | | | | | |
Collapse
|
22
|
Rajagopalan S, Andreeva A, Teufel DP, Freund SM, Fersht AR. Interaction between the transactivation domain of p53 and PC4 exemplifies acidic activation domains as single-stranded DNA mimics. J Biol Chem 2009; 284:21728-37. [PMID: 19525231 PMCID: PMC2755895 DOI: 10.1074/jbc.m109.006429] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/11/2009] [Indexed: 12/03/2022] Open
Abstract
The tumor suppressor p53 regulates cell cycle arrest and apoptosis by transactivating several genes that are critical for these processes. The transcriptional activity of p53 is often regulated by post-translational modifications and its interactions with various transcriptional coactivators. Here we report a physical interaction between the N-terminal transactivation domain (TAD) of p53 and the C-terminal DNA-binding domain of positive cofactor 4 (PC4(CTD)). Using NMR spectroscopy, we showed that residues 35-57 (TAD2) interact with PC4. (15)N,(1)H HSQC and fluorescence competition experiments indicated that TAD binds to the DNA-binding site of PC4. Hepta-phosphorylation of the TAD peptide increased its binding affinity. Computer modeling of the p53N-PC4 complex revealed several important interactions that are reminiscent of those in the single-stranded DNA-PC4 complex. The ubiquitous nature of the acidic transactivation domain of p53 in mediating interactions with several transcription cofactors is also manifested as a DNA mimetic.
Collapse
Affiliation(s)
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | | | | | | |
Collapse
|
23
|
Heine GF, Malik V, Dias AP, Grotewold E. Expression and Molecular Characterization of ZmMYB-IF35 and Related R2R3-MYB Transcription Factors. Mol Biotechnol 2007; 37:155-64. [PMID: 17914176 DOI: 10.1007/s12033-007-0061-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 11/30/1999] [Accepted: 06/25/2007] [Indexed: 11/28/2022]
Abstract
R2R3-MYB transcription factors play many important roles in higher plants including the regulation of secondary metabolism, the control of cell shape, and in the response to various stress conditions. In spite of their large number and significance, very few of these genes have been functionally characterized in monocots. Here, we describe the characterization of ZmMYB-IF35 from maize. Using GAL4 fusion constructs, we show that ZmMYB-IF35 possesses the ability to bind DNA in a sequence specific manner and activate transcription in yeast. We also show that ZmMYB-IF35 is capable of binding to the a1 promoter in planta, but it is not sufficient for activation of a1 transcription. Interestingly, a chimeric protein consisting of the MYB domain from ZmMYB-IF35 and the non-MYB C-terminal region of P1, a closely related R2R3-MYB protein, activated transcription from the a1 promoter in planta, suggesting that regions outside the conserved R2R3-MYB domain contribute to regulatory specificity. In situ hybridization experiments demonstrate that ZmMYB-IF35 expresses primarily in epidermal and vascular cells, while its rice ortholog, OsMYB-IF, displays a broad expression pattern in aerial parts of the plant. Together, our results provide novel insights on the participation of ZmMYB-IF35 and related genes in the regulation of secondary metabolic pathways in the grasses.
Collapse
Affiliation(s)
- George F Heine
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | |
Collapse
|
24
|
Lee SC, Choi HW, Hwang IS, Choi DS, Hwang BK. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. PLANTA 2006; 224:1209-25. [PMID: 16718483 DOI: 10.1007/s00425-006-0302-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Accepted: 04/25/2006] [Indexed: 05/03/2023]
Abstract
Transcription factors often belong to multigene families and their individual contribution in a particular regulatory network remains difficult to assess. We identify and functionally characterize the pepper bZIP transcription factor CAbZIP1 gene isolated from pepper leaves infected with Xanthomonas campestris pv. vesicatoria. Transient expression analysis of the CAbZIP1-GFP fusion protein in Arabidopsis protoplasts revealed that the CAbZIP1 protein is localized in the nucleus. The N-terminal region of CAbZIP1 fused to the GAL4 DNA-binding domain is required to activate transcription of reporter genes in yeast. The CAbZIP1 transcripts are constitutively expressed in the pepper root and flower, but not in the leaf, stem and fruit. The CAbZIP1 gene is locally or systemically induced in pepper plants infected by either X. campestris pv. vesicatoria or Pseudomonas fluorescens. The CAbZIP1 gene is also induced by abiotic elicitors and environmental stresses. The CAbZIP1 transgenic Arabidopsis exhibits a dwarf phenotype, indicating that CAbZIP1 may be involved in plant development. The CAbZIP1 overexpression in the transgenic Arabidopsis plants confers enhanced resistance to Pseudomonas syringae pv. tomato DC3000, accompanied by expression of the AtPR-4 and AtRD29A. The transgenic plants also exhibit increased drought and salt tolerance during all growth stages. Moreover, the transgenic plants are tolerant to methyl viologen-oxidative stress. Together, these data suggest that the CAbZIP1 transcription factor function as a possible regulator in enhanced disease resistance and environmental stress tolerance.
Collapse
Affiliation(s)
- Sung Chul Lee
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, South Korea
| | | | | | | | | |
Collapse
|
25
|
Lee SC, Choi HW, Hwang IS, Choi DS, Hwang BK. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. PLANTA 2006. [PMID: 16718483 DOI: 10.2307/23389543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Transcription factors often belong to multigene families and their individual contribution in a particular regulatory network remains difficult to assess. We identify and functionally characterize the pepper bZIP transcription factor CAbZIP1 gene isolated from pepper leaves infected with Xanthomonas campestris pv. vesicatoria. Transient expression analysis of the CAbZIP1-GFP fusion protein in Arabidopsis protoplasts revealed that the CAbZIP1 protein is localized in the nucleus. The N-terminal region of CAbZIP1 fused to the GAL4 DNA-binding domain is required to activate transcription of reporter genes in yeast. The CAbZIP1 transcripts are constitutively expressed in the pepper root and flower, but not in the leaf, stem and fruit. The CAbZIP1 gene is locally or systemically induced in pepper plants infected by either X. campestris pv. vesicatoria or Pseudomonas fluorescens. The CAbZIP1 gene is also induced by abiotic elicitors and environmental stresses. The CAbZIP1 transgenic Arabidopsis exhibits a dwarf phenotype, indicating that CAbZIP1 may be involved in plant development. The CAbZIP1 overexpression in the transgenic Arabidopsis plants confers enhanced resistance to Pseudomonas syringae pv. tomato DC3000, accompanied by expression of the AtPR-4 and AtRD29A. The transgenic plants also exhibit increased drought and salt tolerance during all growth stages. Moreover, the transgenic plants are tolerant to methyl viologen-oxidative stress. Together, these data suggest that the CAbZIP1 transcription factor function as a possible regulator in enhanced disease resistance and environmental stress tolerance.
Collapse
Affiliation(s)
- Sung Chul Lee
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, South Korea
| | | | | | | | | |
Collapse
|
26
|
Feller A, Hernandez JM, Grotewold E. An ACT-like Domain Participates in the Dimerization of Several Plant Basic-helix-loop-helix Transcription Factors. J Biol Chem 2006; 281:28964-74. [PMID: 16867983 DOI: 10.1074/jbc.m603262200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maize basic-helix-loop-helix (bHLH) factor R belongs to a group of proteins with important functions in the regulation of metabolism and development through the cooperation with R2R3-MYB transcription factors. Here we show that in addition to the bHLH and the R2R3-MYB-interacting domains, R contains a dimerization region located C-terminal to the bHLH motif. This protein-protein interaction domain is important for the regulation of anthocyanin pigment biosynthesis by contributing to the recruitment of the C1 R2R3-MYB factor to the C1 binding sites present in the promoters of flavonoid biosynthetic genes. The R dimerization region bares structural similarity to the ACT domain present in several metabolic enzymes. Protein fold recognition analyses resulted in the identification of similar ACT-like domains in several other plant bHLH proteins. We show that at least one of these related motifs is capable of mediating homodimer formation. These findings underscore the function of R as a docking site for multiple protein-protein interactions and provide evidence for the presence of a novel dimerization domain in multiple plant bHLH proteins.
Collapse
Affiliation(s)
- Antje Feller
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
27
|
Pattanaik S, Xie CH, Kong Q, Shen KA, Yuan L. Directed evolution of plant basic helix-loop-helix transcription factors for the improvement of transactivational properties. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1759:308-18. [PMID: 16837081 DOI: 10.1016/j.bbaexp.2006.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/09/2006] [Accepted: 04/21/2006] [Indexed: 11/18/2022]
Abstract
Myc-RP from Perilla frutescens and Delila from Antirrhinum majus, two plant basic helix-loop-helix transcription factors (bHLH TFs) involved in the flavonoid biosynthetic pathway, have been used for the improvement of transactivational properties by directed evolution. Through two rounds of DNA shuffling, Myc-RP variants with up to 70-fold increase in transcriptional activities have been identified using a yeast transactivation system. In a tobacco protoplast transient expression assay, one of the most improved variants, M2-1, also shows significant increase of transactivation. The majority of resulting mutations (approximately 53%) are localized in the acidic (activation) domains of the improved Myc-RP variants. In variant M2-1, three of the four mutations (L301P/N354D/S401F) are in the acidic domain. The fourth mutation (K157M) is localized to a helix within the N-terminal interaction domain. Combinatorial site-directed mutagenesis reveals that, while the acidic domain mutations contribute modestly to the increase in activity, the K157M substitution is responsible for 80% of the improvement observed in variant M2-1. The transactivation activity of the K157M/N354D double mutant is equal to that of M2-1. These results suggest that the interaction domain plays a critical role in transactivation of these bHLH TFs. Delila variants have also been screened for increased activities toward the Arabidopsis chalcone synthase (CHS) promoter, a pathway promoter that responds weakly to the bHLH TFs. Variants with increased activity on the CHS promoter, while maintaining wildtype-level activities on the naturally responsive dihydroflavonol reductase promoter, have been obtained. This study demonstrates that functional properties of TFs can be modified by directed evolution.
Collapse
Affiliation(s)
- Sitakanta Pattanaik
- Department of Plant and Soil Sciences, University of Kentucky, Cooper and University Drives, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
28
|
Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. THE PLANT CELL 2006; 18:831-51. [PMID: 16531495 PMCID: PMC1425845 DOI: 10.1105/tpc.105.039255] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 01/10/2006] [Accepted: 02/07/2006] [Indexed: 05/07/2023]
Abstract
The Rosea1, Rosea2, and Venosa genes encode MYB-related transcription factors active in the flowers of Antirrhinum majus. Analysis of mutant phenotypes shows that these genes control the intensity and pattern of magenta anthocyanin pigmentation in flowers. Despite the structural similarity of these regulatory proteins, they influence the expression of target genes encoding the enzymes of anthocyanin biosynthesis with different specificities. Consequently, they are not equivalent biochemically in their activities. Different species of the genus Antirrhinum, native to Spain and Portugal, show striking differences in their patterns and intensities of floral pigmentation. Differences in anthocyanin pigmentation between at least six species are attributable to variations in the activity of the Rosea and Venosa loci. Set in the context of our understanding of the regulation of anthocyanin production in other genera, the activity of MYB-related genes is probably a primary cause of natural variation in anthocyanin pigmentation in plants.
Collapse
Affiliation(s)
- Kathy Schwinn
- New Zealand Institute for Crop and Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chang SM, Lu Y, Rausher MD. Neutral evolution of the nonbinding region of the anthocyanin regulatory gene Ipmyb1 in Ipomoea. Genetics 2005; 170:1967-78. [PMID: 15944366 PMCID: PMC1449781 DOI: 10.1534/genetics.104.034975] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 04/28/2005] [Indexed: 11/18/2022] Open
Abstract
Plant transcription factors often contain domains that evolve very rapidly. Although it has been suggested that this rapid evolution may contribute substantially to phenotypic differentiation among species, this suggestion has seldom been tested explicitly. We tested the validity of this hypothesis by examining the rapidly evolving non-DNA-binding region of an R2R3-myb transcription factor that regulates anthocyanin expression in flowers of the genus Ipomoea. We first provide evidence that the W locus in Ipomoea purpurea, which determines whether flowers will be pigmented or white, corresponds to a myb gene segregating in southeastern U.S. populations for one functional allele and one nonfunctional allele. While the binding domain exhibits substantial selective constraint, the nonbinding region evolves at an average K(a)/K(s) ratio of 0.74. This elevated rate of evolution is due to relaxed constraint rather than to increased levels of positive selection. Despite this relaxed constraint, however, approximately 20-25% of the codons, randomly distributed throughout the nonbinding region, are highly constrained, with the remainder evolving neutrally, indicating that the entire region performs important function(s). Our results provide little indication that rapid evolution in this regulatory gene is driven by natural selection or that it is responsible for floral-color differences among Ipomoea species.
Collapse
Affiliation(s)
- Shu-Mei Chang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
30
|
Wang Z, Triezenberg SJ, Thomashow MF, Stockinger EJ. Multiple hydrophobic motifs in Arabidopsis CBF1 COOH-terminus provide functional redundancy in trans-activation. PLANT MOLECULAR BIOLOGY 2005; 58:543-59. [PMID: 16021338 DOI: 10.1007/s11103-005-6760-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 05/02/2005] [Indexed: 05/03/2023]
Abstract
The Arabidopsis CBF proteins activate expression of a set of genes whose upstream regulatory sequences typically harbor one or more copies of the CRT/DRE low temperature cis-acting DNA regulatory element. Using domain swap experiments in both yeast and Arabidopsis we show that the NH3-terminal 115 amino acids direct CBF1 to target genes and the COOH-terminal 98 amino acids function in trans-activation. Mutational analysis through the COOH-terminus using truncation and alanine-substitution mutants in yeast revealed four motifs that contribute positively towards activation. Overexpression of mutants in plants support this conclusion and also indicated that disruption of a single motif did not seriously compromise activity unless combined with the disruption of a second. These motifs consist of clusters of hydrophobic residues which are delimited from one another by short stretches of Asp, Glu, Pro and other residues favoring the formation of loops. This structural pattern is conserved across plant taxa as revealed through alignment of Arabidopsis CBF1 with homologous sequences from a diverse array of plant species. Overexpression in plants of the CBF1 COOH-terminus as a fusion with the yeast GAL4 DNA binding domain also resulted in severe stunting of growth, a phenotype which was alleviated if the activation domain was rendered ineffective. Taken together these results suggest that high level overexpression of an active, CBF activation domain compromises plant growth.
Collapse
Affiliation(s)
- Zhibin Wang
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH 44691, USA
| | | | | | | |
Collapse
|
31
|
Hernandez JM, Heine GF, Irani NG, Feller A, Kim MG, Matulnik T, Chandler VL, Grotewold E. Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1. J Biol Chem 2004; 279:48205-13. [PMID: 15347654 DOI: 10.1074/jbc.m407845200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The R2R3 MYB transcription factor C1 requires the basic helix-loop-helix factor R as an essential co-activator for the transcription of maize anthocyanin genes. In contrast, the R2R3 MYB protein P1 activates a subset of the C1-regulated genes independently of R. Substitution of six amino acids in P1 with the C1 amino acids results in P1(*), whose activity on C1-regulated and P1-regulated genes is R-dependent or R-enhanced, respectively. We have used P1(*) in combination with various promoters to uncover two mechanisms for R function. On synthetic promoters that contain only C1/P1 binding sites, R is an essential co-activator of C1. This function of R is unlikely to simply be the result of an increase in the C1 DNA-binding affinity, since transcriptional activity of a C1 mutant that binds DNA at a higher affinity, comparable with P1, remains R-dependent. The differential transcriptional activity of C1 fusions with the yeast Gal4 DNA-binding domain in yeast and maize cells suggests that part of the function of R is to relieve C1 from a plant-specific inhibitor. A second function of R requires cis-regulatory elements in addition to the C1/P1 DNA-binding sites for R-enhanced transcription of a1. We hypothesize that R functions in this mode by binding or recruiting additional factors to the anthocyanin regulatory element conserved in the promoters of several anthocyanin genes. Together, these findings suggest a model in which combinatorial interactions with co-activators enable R2R3 MYB factors with very similar DNA binding preferences to discriminate between target genes in vivo.
Collapse
Affiliation(s)
- J Marcela Hernandez
- Ohio State Biochemistry Program, Department of Plant Cellular and Molecular Biology, and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Xue B, Charest PJ, Devantier Y, Rutledge RG. Characterization of a MYBR2R3 gene from black spruce (Picea mariana) that shares functional conservation with maize C1. Mol Genet Genomics 2003; 270:78-86. [PMID: 12920576 DOI: 10.1007/s00438-003-0898-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 07/11/2003] [Indexed: 11/29/2022]
Abstract
PCR amplification with degenerate primers targeted to highly conserved amino acid motifs within the MYB domain was used to demonstrate that black spruce (Picea mariana) possesses a diverse MYB gene family. Amino acid sequence comparisons revealed three broad MYB subfamilies, one of which shares extensive similarity with maize C1, a central regulator of anthocyanin biosynthesis. A cDNA clone encoding a MYBR2R3 protein from P. mariana with high levels of sequence homology to maize C1 was shown to transactivate the Bz2 promoter in combination with maize R in embryonal tissues of both black spruce and larch. Functional dependence on the maize R protein, and the presence of a conserved C-terminal GIDPxTH motif, support the conservation of MYBR2R3 function in conifers, and demonstrate that the basic components of MYBR2R3-dependent transcriptional regulation have been conserved between angiosperms and gymnosperms.
Collapse
Affiliation(s)
- B Xue
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 3800, Sainte-Foy, Quebec, G1V 4C7, Canada
| | | | | | | |
Collapse
|
33
|
Dias AP, Braun EL, McMullen MD, Grotewold E. Recently duplicated maize R2R3 Myb genes provide evidence for distinct mechanisms of evolutionary divergence after duplication. PLANT PHYSIOLOGY 2003; 131:610-20. [PMID: 12586885 PMCID: PMC166837 DOI: 10.1104/pp.012047] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Revised: 09/22/2002] [Accepted: 10/19/2002] [Indexed: 05/17/2023]
Abstract
R2R3 Myb genes are widely distributed in the higher plants and comprise one of the largest known families of regulatory proteins. Here, we provide an evolutionary framework that helps explain the origin of the plant-specific R2R3 Myb genes from widely distributed R1R2R3 Myb genes, through a series of well-established steps. To understand the routes of sequence divergence that followed Myb gene duplication, we supplemented the information available on recently duplicated maize (Zea mays) R2R3 Myb genes (C1/Pl1 and P1/P2) by cloning and characterizing ZmMyb-IF35 and ZmMyb-IF25. These two genes correspond to the recently expanded P-to-A group of maize R2R3 Myb genes. Although the origins of C1/Pl1 and ZmMyb-IF35/ZmMyb-IF25 are associated with the segmental allotetraploid origin of the maize genome, other gene duplication events also shaped the P-to-A clade. Our analyses indicate that some recently duplicated Myb gene pairs display substantial differences in the numbers of synonymous substitutions that have accumulated in the conserved MYB domain and the divergent C-terminal regions. Thus, differences in the accumulation of substitutions during evolution can explain in part the rapid divergence of C-terminal regions for these proteins in some cases. Contrary to previous studies, we show that the divergent C termini of these R2R3 MYB proteins are subject to purifying selection. Our results provide an in-depth analysis of the sequence divergence for some recently duplicated R2R3 Myb genes, yielding important information on general patterns of evolution for this large family of plant regulatory genes.
Collapse
Affiliation(s)
- Anusha P Dias
- Plant Genetics Research and Plant Science Units, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
34
|
Tamai H, Iwabuchi M, Meshi T. Arabidopsis GARP transcriptional activators interact with the Pro-rich activation domain shared by G-box-binding bZIP factors. PLANT & CELL PHYSIOLOGY 2002; 43:99-107. [PMID: 11828027 DOI: 10.1093/pcp/pcf011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Pro-rich regions, found in a subset of plant bZIP transcription factors, including G-box-binding factors (GBFs) of Arabidopsis thaliana, are thought to be deeply involved in transcriptional regulation. However, the molecular mechanisms of the Pro-rich region-mediated transcriptional regulation are still largely unknown. Here we report evidence showing that two closely related Arabidopsis proteins, designated GPRI1 and GPRI2, containing a GARP DNA-binding domain, are likely partners of one or more GBFs. The results of yeast two-hybrid assays and in vitro binding assays indicated that GPRI1 can interact with the Pro-rich regions of GBF1 and GBF3. GPRI2 interacted with the Pro-rich region of GBF1. GPRI1 and GPRI2 transactivated transcription in yeast. In GPRI1 the region responsible for this activation was mapped in the N-terminal third of the protein. Transient assays showed that in Arabidopsis cells not only the N-terminal but also the C-terminal regions of GPRI1 can function as a separable activation domain. GPRI1 and GPRI2 may function in some promoters in concert with a GBF through interaction with its Pro-rich region to enhance the transcriptional level of the corresponding genes.
Collapse
Affiliation(s)
- Hiroki Tamai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | | | | |
Collapse
|
35
|
Selinger DA, Chandler VL. B-Bolivia, an allele of the maize b1 gene with variable expression, contains a high copy retrotransposon-related sequence immediately upstream. PLANT PHYSIOLOGY 2001; 125:1363-79. [PMID: 11244116 PMCID: PMC65615 DOI: 10.1104/pp.125.3.1363] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Accepted: 12/21/2000] [Indexed: 05/18/2023]
Abstract
The maize (Zea mays) b1 gene encodes a transcription factor that regulates the anthocyanin pigment pathway. Of the b1 alleles with distinct tissue-specific expression, B-Peru and B-Bolivia are the only alleles that confer seed pigmentation. B-Bolivia produces variable and weaker seed expression but darker, more regular plant expression relative to B-Peru. Our experiments demonstrated that B-Bolivia is not expressed in the seed when transmitted through the male. When transmitted through the female the proportion of kernels pigmented and the intensity of pigment varied. Molecular characterization of B-Bolivia demonstrated that it shares the first 530 bp of the upstream region with B-Peru, a region sufficient for seed expression. Immediately upstream of 530 bp, B-Bolivia is completely divergent from B-Peru. These sequences share sequence similarity to retrotransposons. Transient expression assays of various promoter constructs identified a 33-bp region in B-Bolivia that can account for the reduced aleurone pigment amounts (40%) observed with B-Bolivia relative to B-Peru. Transgenic plants carrying the B-Bolivia promoter proximal region produced pigmented seeds. Similar to native B-Bolivia, some transgene loci are variably expressed in seeds. In contrast to native B-Bolivia, the transgene loci are expressed in seeds when transmitted through both the male and female. Some transgenic lines produced pigment in vegetative tissues, but the tissue-specificity was different from B-Bolivia, suggesting the introduced sequences do not contain the B-Bolivia plant-specific regulatory sequences. We hypothesize that the chromatin context of the B-Bolivia allele controls its epigenetic seed expression properties, which could be influenced by the adjacent highly repeated retrotransposon sequence.
Collapse
Affiliation(s)
- D A Selinger
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
36
|
Liu Q, Zhang G, Chen S. Structure and regulatory function of plant transcription factors. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/bf03187184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Callus BA, Mathey-Prevot B. Hydrophobic residues Phe751 and Leu753 are essential for STAT5 transcriptional activity. J Biol Chem 2000; 275:16954-62. [PMID: 10748177 DOI: 10.1074/jbc.m909976199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
One facet of cytokine signaling is relayed to the nucleus by the activation, through tyrosine phosphorylation, of latent cytoplasmic signal transducers and activators of transcription (STAT) family members. It has been demonstrated that the C termini of STATs contain the transactivation domain and are essential for the transactivation of target genes. To better understand the function of the STAT C terminus, we have generated a series of C-terminal mutants in STAT5a and examined their effects on transactivation, tyrosine phosphorylation, and DNA binding. Using GAL4 chimerae with the C terminus of STAT5, we have defined a 12-amino acid region essential for STAT5 transactivation. Surprisingly, deletion of these 12 amino acids in the context of the native STAT5 backbone preserved the overall transcriptional activity of the protein. Further analysis revealed that deletion of this region resulted in hyper-DNA binding activity, thus compensating for the weakened transactivation domain. Using site-directed mutagenesis, we show that within this 12-amino acid region the acidic residues were non-essential for transactivation. In contrast, the non-acidic residues were crucial for transactivation. Mutating either Phe(751) or Leu(753) to alanine abolished transactivation suggesting that these residues were essential for connecting STAT5 to the basal transcriptional machinery.
Collapse
Affiliation(s)
- B A Callus
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
38
|
Rojo-Niersbach E, Furukawa T, Tanese N. Genetic dissection of hTAF(II)130 defines a hydrophobic surface required for interaction with glutamine-rich activators. J Biol Chem 1999; 274:33778-84. [PMID: 10559271 DOI: 10.1074/jbc.274.47.33778] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID is a multiprotein complex consisting of the TATA box-binding protein and multiple TATA box-binding protein-associated factors (TAF(II)s). The central domain of human TAF(II)130 contains four glutamine-rich regions Q1-Q4 that interact with transcriptional activators such as Sp1 and CREB and mediate activation. We screened in yeast random point mutations introduced into Q1-Q4 against the Sp1 activation domain and obtained a distinct set of hTAF(II)130s with alterations in TAF(II)-activator interaction. Here we characterize functionally an hTAF(II)130 mutant containing a phenylalanine to serine change at position 311 (F311S) that is compromised in its ability to associate with Sp1B and CREB-N activation domains. Substitution of phenylalanine with tyrosine but not with isoleucine or tryptophan also reduced hTAF(II)130 interaction, suggesting that the hydrophobic character rather than the specific amino acid at this position is a key determinant of interaction. Deletion of nine amino acids (Delta9) surrounding Phe(311) abolished the interaction of hTAF(II)130 with Sp1. Overexpression of hTAF(II)130Q1/Q2 and Q1-Q4 strongly inhibited Sp1-dependent transcriptional enhancement in transient transfection assays, whereas expression of either F311S or Delta9 only partially suppressed Sp1-mediated activation. Thus, a short hydrophobic sequence motif encompassing Phe(311) in hTAF(II)130 represents a critical surface with which Sp1B interacts to activate transcription.
Collapse
Affiliation(s)
- E Rojo-Niersbach
- Department of Microbiology, Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
39
|
Benuck ML, Li Z, Childs G. Mutations that increase acidity enhance the transcriptional activity of the glutamine-rich activation domain in stage-specific activator protein. J Biol Chem 1999; 274:25419-25. [PMID: 10464271 DOI: 10.1074/jbc.274.36.25419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sea urchin stage-specific activator protein (SSAP) activates transcription of the late H1 gene at the mid-blastula stage of development. Its C-terminal 202 amino acids form a potent glycine/glutamine rich activation domain (GQ domain) that can transactivate reporter genes to levels 5-fold higher than VP16 in several mammalian cell lines. We observed that, unlike other glutamine-rich activation domains, the GQ domain activates transcription to moderate levels in yeast. We utilized this activity to screen in yeast for intragenic mutations that enhance or inhibit the transcriptional activity of the GQ domain. We identified 37 loss of function and 23 gain of function mutants. Most gain of function mutations increased the acidity of the domain. The most frequently isolated mutations conferred enhanced transcriptional activity when assayed in mammalian cells. These mutations also enhance the ability of SSAP to up-regulate the late H1 promoter in sea urchin embryos. We conclude that the GQ domain fundamentally differs from other glutamine-rich activators and may share some properties of acidic activators. The ability of acidity to enhance SSAP-mediated transcription may reflect a mechanism by which phosphorylation of SSAP activates late H1 gene transcription during embryogenesis.
Collapse
Affiliation(s)
- M L Benuck
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
40
|
Guo K, Anjard C, Harwood A, Kim HJ, Newell PC, Gross JD. A myb-related protein required for culmination in Dictyostelium. Development 1999; 126:2813-22. [PMID: 10331990 DOI: 10.1242/dev.126.12.2813] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The avian retroviral v-myb gene and its cellular homologues throughout the animal and plant kingdoms contain a conserved DNA binding domain. We have isolated an insertional mutant of Dictyostelium unable to switch from slug migration to fruiting body formation i.e. unable to culminate. The gene that is disrupted, mybC, codes for a protein with a myb-like domain that is recognized by an antibody against the v-myb repeat domain. During development of myb+ cells, mybC is expressed only in prestalk cells. When developed together with wild-type cells mybC- cells are able to form both spores and stalk cells very efficiently. Their developmental defect is also bypassed by overexpressing cAMP-dependent protein kinase. However even when their defect is bypassed, mybC null slugs and culminates produce little if any of the intercellular signalling peptides SDF-1 and SDF-2 that are believed to be released by prestalk cells at culmination. We propose that the mybC gene product is required for an intercellular signaling process controlling maturation of stalk cells and spores and that SDF-1 and/or SDF-2 may be implicated in this process.
Collapse
Affiliation(s)
- K Guo
- Dept of Biochemistry University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | |
Collapse
|
41
|
Liu L, White MJ, MacRae TH. Transcription factors and their genes in higher plants functional domains, evolution and regulation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:247-57. [PMID: 10336605 DOI: 10.1046/j.1432-1327.1999.00349.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A typical plant transcription factor contains, with few exceptions, a DNA-binding region, an oligomerization site, a transcription-regulation domain, and a nuclear localization signal. Most transcription factors exhibit only one type of DNA-binding and oligomerization domain, occasionally in multiple copies, but some contain two distinct types. DNA-binding regions are normally adjacent to or overlap with oligomerization sites, and their combined tertiary structure determines critical aspects of transcription factor activity. Pairs of nuclear localization signals exist in several transcription factors, and basic amino acid residues play essential roles in their function, a property also true for DNA-binding domains. Multigene families encode transcription factors, with members either dispersed in the genome or clustered on the same chromosome. Distribution and sequence analyses suggest that transcription factor families evolved via gene duplication, exon capture, translocation, and mutation. The expression of transcription factor genes in plants is regulated at transcriptional and post-transcriptional levels, while the activity of their protein products is modulated post-translationally. The purpose of this review is to describe the domain structure of plant transcription factors, and to relate this information to processes that control the synthesis and action of these proteins.
Collapse
Affiliation(s)
- L Liu
- Department of Biology, University, Halifax, Nova Scotia, Canada.
| | | | | |
Collapse
|
42
|
Gubler F, Raventos D, Keys M, Watts R, Mundy J, Jacobsen JV. Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:1-9. [PMID: 10069063 DOI: 10.1046/j.1365-313x.1999.00346.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
GAMYB is an MYB transcription factor which is expressed in cereal aleurone cells in response to gibberellin (GA). HvGAMYB binds to the TAACAAA box of a high-pl alpha-amylase gene promoter and transcriptionally activates its expression. In this study, we examined the role of HvGAMYB in activating expression of other GA-regulated genes encoding hydrolytic enzymes. In transient expression experiments, HvGAMYB transactivated expression of reporter genes fused to a low-pl alpha-amylase gene promoter, an EII (1-3, 1-4)-beta-glucanase gene promoter and a cathepsin B-like protease promoter. HvGAMYB DNA binding specificity was determined using a PCR-based random site selection using HvGAMYB fusion protein isolated from E. coli. The deduced consensus closely resembled gibberellin response elements in alpha-amylase promoters. Functional analysis of HvGAMYB by transient expression of C terminal HvGAMYB deletions in barley aleurone cells identified two transcriptional activation domains (TADs) which function in transcriptional regulation of both high- and low-pl alpha-amylase promoters. The same TADs were identified using a heterologous yeast expression system. Together, these results indicate that HvGAMYB has two TADs. These domains are C-terminal to its DNA-binding domain.
Collapse
Affiliation(s)
- F Gubler
- Co-operative Research Centre for Plant Science, Canberra City, ACT, Australia.
| | | | | | | | | | | |
Collapse
|
43
|
Liu Y, Wang L, Kermicle JL, Wessler SR. Molecular consequences of Ds insertion into and excision from the helix-loop-helix domain of the maize R gene. Genetics 1998; 150:1639-48. [PMID: 9832539 PMCID: PMC1460437 DOI: 10.1093/genetics/150.4.1639] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The R and B proteins of maize are required to activate the transcription of several genes in the anthocyanin biosynthetic pathway. To determine the structural requirements for R function in vivo, we are exploiting its sensitive mutant phenotype to identify transposon (Ds) insertions that disrupt critical domains. Here we report that the ability of the r-m1 allele to activate transcription of at least three structural genes is reduced to only 2% of wild-type activity because of a 396-bp Ds element in helix 2 of the basic helix-loop-helix (bHLH) motif. Residual activity likely results from the synthesis of a mutant protein that contains seven additional amino acids in helix 2. This protein is encoded by a transcript where most of the Ds sequence has been spliced from pre-mRNA. Two phenotypic classes of stable derivative alleles, very pale and extremely pale, condition <1% of wild-type activity as a result of the presence of two- and three-amino-acid insertions, respectively, at the site of Ds excision. Localization of these mutant proteins to the nucleus indicates a requirement for an intact bHLH domain after nuclear import. The fact that deletion of the entire bHLH domain has only a minor effect on R protein activity while these small insertions virtually abolish activity suggests that deletion of the bHLH domain may bypass a requirement for bHLH-mediated protein-protein interactions in the activation of the structural genes in the anthocyanin biosynthetic pathway.
Collapse
Affiliation(s)
- Y Liu
- Department of Botany, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
44
|
Abstract
▪ Abstract Major advances have been made in understanding the role of transcription factors in gene expression in yeast, Drosophila, and man. Transcription factor modification, synergistic events, protein-protein interactions, and chromatin structure have been successfully integrated into transcription factor studies in these organisms. While many putative transcription factors have been isolated from plants, most of them are only poorly characterized. This review summarizes examples where molecular biological techniques have been successfully employed to study plant transcription factors. The functional analysis of transcription factors is described as well as techniques for studying the interactions of transcription factors with other proteins and with DNA.
Collapse
Affiliation(s)
- C. Schwechheimer
- Molecular Genetics Department, John Innes Centre, Norwich, Norfolk, NR4 7UH, United Kingdom; e-mail:
| | | | | |
Collapse
|
45
|
Selinger DA, Lisch D, Chandler VL. The maize regulatory gene B-Peru contains a DNA rearrangement that specifies tissue-specific expression through both positive and negative promoter elements. Genetics 1998; 149:1125-38. [PMID: 9611220 PMCID: PMC1460163 DOI: 10.1093/genetics/149.2.1125] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The B-Peru allele of the maize b regulatory gene is unusual relative to most b alleles in that it is expressed in the aleurone layer of the seed. It is also expressed in a subset of plant vegetative tissues. Transgenic maize plants containing the B-Peru gene with the first 710 bases of upstream sequence conferred the same levels of aleurone expression as nontransgenic B-Peru plants, but no pigment was made in vegetative tissues. Transient transformation assays in aleurone tissue localized the aleurone-specific promoter to the first 176 bases of the B-Peru upstream region and identified two critically important regions within this fragment. Mutation of either region alone reduced expression greater than fivefold. Surprisingly, the double mutation actually increased expression to twice the native promoter level. Our results suggest that these two critical sequences, which lie close together in the promoter, may form a negative regulatory element. Several lines of evidence suggest that the B-Peru promoter arose through the translocation of an existing aleurone-specific promoter to the b locus. Immediately upstream of the aleurone-specific promoter elements and in the opposite orientation to the b coding sequence is a pseudogene sequence with strong similarity to a known class of proteins. Our findings that novel aleurone-specific promoter sequences of the B-Peru transcription factor are found adjacent to part of another gene in a small insertion are quite unexpected and have interesting evolutionary implications.
Collapse
Affiliation(s)
- D A Selinger
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | | | | |
Collapse
|
46
|
Tell G, Perrone L, Fabbro D, Pellizzari L, Pucillo C, De Felice M, Acquaviva R, Formisano S, Damante G. Structural and functional properties of the N transcriptional activation domain of thyroid transcription factor-1: similarities with the acidic activation domains. Biochem J 1998; 329 ( Pt 2):395-403. [PMID: 9425125 PMCID: PMC1219057 DOI: 10.1042/bj3290395] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The thyroid transcription factor 1 (TTF-1) is a tissue-specific transcription factor involved in the development of thyroid and lung. TTF-1 contains two transcriptional activation domains (N and C domain). The primary amino acid sequence of the N domain does not show any typical characteristic of known transcriptional activation domains. In aqueous solution the N domain exists in a random-coil conformation. The increase of the milieu hydrophobicity, by the addition of trifluoroethanol, induces a considerable gain of alpha-helical structure. Acidic transcriptional activation domains are largely unstructured in solution, but, under hydrophobic conditions, folding into alpha-helices or beta-strands can be induced. Therefore our data indicate that the inducibility of alpha-helix by hydrophobic conditions is a property not restricted to acidic domains. Co-transfections experiments indicate that the acidic domain of herpes simplex virus protein VP16 (VP16) and the TTF-1 N domain are interchangeable and that a chimaeric protein, which combines VP16 linked to the DNA-binding domain of TTF-1, undergoes the same regulatory constraints that operate for the wild-type TTF-1. In addition, we demonstrate that the TTF-1 N domain possesses two typical properties of acidic activation domains: TBP (TATA-binding protein) binding and ability to activate transcription in yeast. Accordingly, the TTF-1 N domain is able to squelch the activity of the p65 acidic domain. Altogether, these structural and functional data suggest that a non-acidic transcriptional activation domain (TTF-1 N domain) activates transcription by using molecular mechanisms similar to those used by acidic domains. TTF-1 N domain and acidic domains define a family of proteins whose common property is to activate transcription through the use of mechanisms largely conserved during evolutionary development.
Collapse
Affiliation(s)
- G Tell
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Udine, Via Gervasutta 48, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sainz MB, Grotewold E, Chandler VL. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. THE PLANT CELL 1997; 9:611-25. [PMID: 9144964 PMCID: PMC156943 DOI: 10.1105/tpc.9.4.611] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The enzyme-encoding genes of two classes of maize flavonoid pigments, anthocyanins and phlobaphenes, are differentially regulated by distinct transcription factors. Anthocyanin biosynthetic gene activation requires the Myb domain C1 protein and the basic helix-loop-helix B or R proteins. In the phlobaphene pathway, a subset of C1-regulated genes, including a1, are activated by the Myb domain P protein independently of B/R. We show sequence-specific binding to the a1 promoter by C1 in the absence of B. Activation is decreased by mutations in the C1 DNA binding domain or in a1 sequences bound by C1, providing direct evidence for activation of the anthocyanin biosynthetic genes by C1. The two C1 binding sites in the a1 promoter are also bound by P. One site is bound with higher affinity by P relative to C1, whereas the other site is bound with similar lower affinity by both proteins. Interestingly, either site is sufficient for C1 plus B/R or P activation in vivo, demonstrating that differences in DNA binding affinities between P and C1 are insufficient to explain the differential requirement for B. Results of DNA binding site-selection experiments suggest that C1 has a broader DNA binding specificity than does P, which may help C1 to activate a more diverse set of promoters.
Collapse
Affiliation(s)
- M B Sainz
- Institute of Molecular Biology, University of Oregon, Eugene 97403, USA
| | | | | |
Collapse
|