1
|
Tup1 Paralog CgTUP11 Is a Stronger Repressor of Transcription than CgTUP1 in Candida glabrata. mSphere 2022; 7:e0076521. [PMID: 35341317 PMCID: PMC9044973 DOI: 10.1128/msphere.00765-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TUP1 is a well-characterized repressor of transcription in Saccharomyces cerevisiae and Candida albicans and is observed as a single-copy gene. We observe that most species that experienced a whole-genome duplication outside of the Saccharomyces genus have two copies of TUP1 in the Saccharomycotina yeast clade. We focused on Candida glabrata and demonstrated that the uncharacterized TUP1 homolog, C. glabrata TUP11 (CgTUP11), is most like the S. cerevisiae TUP1 (ScTUP1) gene through phenotypic assays and transcriptome sequencing (RNA-seq). Whereas CgTUP1 plays a role in gene repression, it is much less repressive in standard growth media. Through RNA-seq and reverse transcription-quantitative PCR (RT-qPCR), we observed that genes associated with pathogenicity (YPS2, YPS4, and HBN1) are upregulated upon deletion of either paralog, and loss of both paralogs is synergistic. Loss of the corepressor CgCYC8 mimics the loss of both paralogs, but not to the same extent as the Cgtup1Δ Cgtup11Δ mutant for these pathogenesis-related genes. In contrast, genes involved in energy metabolism (CgHXT2, CgADY2, and CgFBP1) exhibit similar behavior (dependence on both paralogs), but deletion of CgCYC8 is very similar to the Cgtup1Δ Cgtup11Δ mutant. Finally, some genes (CgMFG1 and CgRIE1) appear to only be dependent on CgTUP11 and CgCYC8 and not CgTUP1. These data indicate separable and overlapping roles for the two TUP1 paralogs and that other genes may function as the CgCyc8 corepressor. Through a comparison by RNA-seq of Sctup1Δ, it was found that TUP1 homologs regulate similar genes in the two species. This work highlights that studies focused only on Saccharomyces may miss important biological processes because of paralog loss after genome duplication. IMPORTANCE Due to a whole-genome duplication, many yeast species related to C. glabrata have two copies of the well-characterized TUP1 gene, unlike most Saccharomyces species. This work identifies roles for the paralogs in C. glabrata, highlights the importance of the uncharacterized paralog, called TUP11, and suggests that the two paralogs have both overlapping and unique functions. The TUP1 paralogs likely influence pathogenicity based on tup mutants upregulating genes that are associated with pathogenicity.
Collapse
|
2
|
Abstract
Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break.
Collapse
|
3
|
Parnell EJ, Stillman DJ. Shields up: the Tup1-Cyc8 repressor complex blocks coactivator recruitment. Genes Dev 2012; 25:2429-35. [PMID: 22156205 DOI: 10.1101/gad.181768.111] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Tup1-Cyc8 complex is responsible for repression of a large and diverse collection of genes in Saccharomyces cerevisiae. The predominant view has been that Tup1-Cyc8 functions as a corepressor, actively associating with regulatory proteins and organizing chromatin to block transcription. A new study by Wong and Struhl in this issue of Genes & Development (pp. 2525-2539) challenges nearly 20 years of models by demonstrating that Tup1-Cyc8 functions primarily as a shield to block DNA-binding proteins from recruiting transcriptional coactivators.
Collapse
Affiliation(s)
- Emily J Parnell
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
4
|
Wong KH, Struhl K. The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev 2011; 25:2525-39. [PMID: 22156212 PMCID: PMC3243062 DOI: 10.1101/gad.179275.111] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/14/2011] [Indexed: 12/22/2022]
Abstract
The yeast Tup1-Cyc8 corepressor complex is recruited to promoters by DNA-binding repressors, but the mechanisms by which it inhibits expression of genes involved in various stress pathways are poorly understood. Conditional and rapid depletion of Tup1 from the nucleus leads to concurrent nucleosome depletion and histone acetylation, recruitment of coactivators (Swi/Snf, SAGA, and Mediator), and increased transcriptional activity. Conversely, coactivator dissociation occurs rapidly upon rerepression by Cyc8-Tup1, although coactivator association and transcription can be blocked even in the absence of nucleosomes. The coactivators are recruited to the sites where Tup1 was located prior to depletion, indicating that the repressor proteins that recruit Tup1 function as activators in its absence. Last, Cyc8-Tup1 can interact with activation domains in vivo. Thus, Cyc8-Tup1 regulates transcription primarily by masking and inhibiting the transcriptional activation domains of the recruiting proteins, not by acting as a corepressor. We suggest that the corepressor function of Cyc8-Tup1 makes only a modest contribution to expression of target genes, specifically to keep expression levels below the nonactivated state.
Collapse
Affiliation(s)
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
5
|
Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 2008; 178:145-56. [PMID: 18202364 DOI: 10.1534/genetics.107.081315] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adhesins play a central role in the cellular response of eukaryotic microorganisms to their host environment. In pathogens such as Candida spp. and other fungi, adhesins are responsible for adherence to mammalian tissues, and in Saccharomyces spp. yeasts also confer adherence to solid surfaces and to other yeast cells. The analysis of FLO11, the main adhesin identified in Saccharomyces cerevisiae, has revealed complex mechanisms, involving both genetic and epigenetic regulation, governing the expression of this critical gene. We designed a genomewide screen to identify new regulators of this pivotal adhesin in budding yeasts. We took advantage of a specific FLO11 allele that confers very high levels of FLO11 expression to wild "flor" strains of S. cerevisiae. We screened for mutants that abrogated the increased FLO11 expression of this allele using the loss of the characteristic fluffy-colony phenotype and a reporter plasmid containing GFP controlled by the same FLO11 promoter. Using this approach, we isolated several genes whose function was essential to maintain the expression of FLO11. In addition to previously characterized activators, we identified a number of novel FLO11 activators, which reveal the pH response pathway and chromatin-remodeling complexes as central elements involved in FLO11 activation.
Collapse
|
6
|
Abstract
Transcriptional repressor proteins play key roles in the control of gene expression in development. For the Drosophila embryo, the following two functional classes of repressors have been described: short-range repressors such as Knirps that locally inhibit the activity of enhancers and long-range repressors such as Hairy that can dominantly inhibit distal elements. Several long-range repressors interact with Groucho, a conserved corepressor that is homologous to mammalian TLE proteins. Groucho interacts with histone deacetylases and histone proteins, suggesting that it may effect repression by means of chromatin modification; however, it is not known how long-range effects are mediated. Using embryo chromatin immunoprecipitation, we have analyzed a Hairy-repressible gene in the embryo during activation and repression. When inactivated, repressors, activators, and coactivators cooccupy the promoter, suggesting that repression is not accomplished by the displacement of activators or coactivators. Strikingly, the Groucho corepressor is found to be recruited to the transcribed region of the gene, contacting a region of several kilobases, concomitant with a loss of histone H3 and H4 acetylation. Groucho has been shown to form higher-order complexes in vitro; thus, our observations suggest that long-range effects may be mediated by a "spreading" mechanism, modifying chromatin over extensive regions to inhibit transcription.
Collapse
|
7
|
Abstract
The posttranslational modification of histone proteins via methylation has important functions in gene activation, transcriptional silencing, establishment of chromatin states, and likely many aspects of DNA metabolism. The identification of numerous effector protein domains with the capability of binding methylated histones has significantly advanced our understanding of how such histone modifications may exert their biological effects. Here, we summarize aspects of the generation of arginine and lysine methylation marks on core histones, the characterization of the protein modules that interact with them, and how histone methylation cross-talks with other modifications.
Collapse
Affiliation(s)
- Michael S Torok
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
8
|
Kim SJ, Swanson MJ, Qiu H, Govind CK, Hinnebusch AG. Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo. Mol Cell Biol 2006; 25:11171-83. [PMID: 16314536 PMCID: PMC1316967 DOI: 10.1128/mcb.25.24.11171-11183.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cyc8p/Tup1p complex mediates repression of diverse genes in Saccharomyces cerevisiae and is recruited by DNA binding proteins specific for the different sets of repressed genes. By screening the yeast deletion library, we identified Cyc8p as a coactivator for Gcn4p, a transcriptional activator of amino acid biosynthetic genes. Deletion of CYC8 confers sensitivity to an inhibitor of isoleucine/valine biosynthesis and impairs activation of Gcn4p-dependent reporters and authentic amino acid biosynthetic target genes. Deletion of TUP1 produces similar but less severe activation defects in vivo. Although expression of Gcn4p is unaffected by deletion of CYC8, chromatin immunoprecipitation assays reveal a strong defect in binding of Gcn4p at the target genes ARG1 and ARG4 in cyc8Delta cells and to a lesser extent in tup1Delta cells. The defects in Gcn4p binding and transcriptional activation in cyc8Delta cells cannot be overcome by Gcn4p overexpression but are partially suppressed in tup1Delta cells. The impairment of Gcn4p binding in cyc8Delta and tup1Delta cells is severe enough to reduce recruitment of SAGA, Srb mediator, TATA binding protein, and RNA polymerase II to the ARG1 and ARG4 promoters, accounting for impaired transcriptional activation of these genes in both mutants. Cyc8p and Tup1p are recruited to the ARG1 and ARG4 promoters, consistent with a direct role for this complex in stimulating Gcn4p occupancy of the upstream activation sequence (UAS). Interestingly, Gcn4p also stimulates binding of Cyc8p/Tup1p at the 3' ends of these genes, raising the possibility that Cyc8p/Tup1p influences transcription elongation. Our findings reveal a novel coactivator function for Cyc8p/Tup1p at the level of activator binding and suggest that Gcn4p may enhance its own binding to the UAS by recruiting Cyc8p/Tup1p.
Collapse
Affiliation(s)
- Soon-Ja Kim
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
9
|
Morey L, Barnes K, Chen Y, Fitzgerald-Hayes M, Baker RE. The histone fold domain of Cse4 is sufficient for CEN targeting and propagation of active centromeres in budding yeast. EUKARYOTIC CELL 2005; 3:1533-43. [PMID: 15590827 PMCID: PMC539035 DOI: 10.1128/ec.3.6.1533-1543.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Centromere-specific H3-like proteins (CenH3s) are conserved across the eukaryotic kingdom and are required for packaging centromere DNA into a specialized chromatin structure required for kinetochore assembly. Cse4 is the CenH3 protein of the budding yeast Saccharomyces cerevisiae. Like all CenH3 proteins, Cse4 consists of a conserved histone fold domain (HFD) and a divergent N terminus (NT). The Cse4 NT contains an essential domain designated END (for essential N-terminal domain); deletion of END is lethal. To investigate the role of the Cse4 NT in centromere targeting, a series of deletion alleles (cse4DeltaNT) were analyzed. No part of the Cse4 NT was required to target mutant proteins to centromere DNA in the presence of functional Cse4. A Cse4 degron strain was used to examine targeting of a Cse4DeltaNT protein in the absence of wild-type Cse4. The END was not required for centromere targeting under these conditions, confirming that the HFD confers specificity of Cse4 centromere targeting. Surprisingly, overexpression of the HFD bypassed the requirement for the END altogether, and viable S. cerevisiae strains in which the cells express only the Cse4 HFD and six adjacent N-terminal amino acids (Cse4Delta129) were constructed. Despite the complete absence of the NT, mitotic chromosome loss in the cse4Delta129 strain increased only 6-fold compared to a 15-fold increase in strains overexpressing wild-type Cse4. Thus, when overexpressed, the Cse4 HFD is sufficient for centromere function in S. cerevisiae, and no posttranslational modification or interaction of the NT with other kinetochore component(s) is essential for accurate chromosome segregation in budding yeast.
Collapse
Affiliation(s)
- Lisa Morey
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
10
|
|
11
|
García I, Gonzalez R, Gómez D, Scazzocchio C. Chromatin rearrangements in the prnD-prnB bidirectional promoter: dependence on transcription factors. EUKARYOTIC CELL 2004; 3:144-56. [PMID: 14871945 PMCID: PMC499541 DOI: 10.1128/ec.3.1.144-156.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prnD-prnB intergenic region regulates the divergent transcription of the genes encoding proline oxidase and the major proline transporter. Eight nucleosomes are positioned in this region. Upon induction, the positioning of these nucleosomes is lost. This process depends on the specific transcriptional activator PrnA but not on the general GATA factor AreA. Induction of prnB but not prnD can be elicited by amino acid starvation. A specific nucleosomal pattern in the prnB proximal region is associated with this process. Under conditions of induction by proline, metabolite repression depends on the presence of both repressing carbon (glucose) and nitrogen (ammonium) sources. Under these repressing conditions, partial nucleosomal positioning is observed. This depends on the CreA repressor's binding to two specific cis-acting sites. Three conditions (induction by the defective PrnA80 protein, induction by amino acid starvation, and induction in the presence of an activated CreA) result in similar low transcriptional activation. Each results in a different nucleosome pattern, which argues strongly for a specific effect of each signal on nucleosome positioning. Experiments with trichostatin A suggest that both default nucleosome positioning and partial positioning under induced-repressed conditions depend on deacetylated histones.
Collapse
Affiliation(s)
- Irene García
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621, 91405 Orsay Cedex, France.
| | | | | | | |
Collapse
|
12
|
Zhang Z, Reese JC. Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae. J Biol Chem 2004; 279:39240-50. [PMID: 15254041 DOI: 10.1074/jbc.m407159200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Ssn6-Tup1 corepressor complex regulates many genes in Saccharomyces cerevisiae. Three mechanisms have been proposed to explain its repression functions: 1) nucleosome positioning by binding histone tails; 2) recruitment of histone deacetylases; and 3) direct interference with the general transcription machinery or activators. It is unclear if Ssn6-Tup1 utilizes each of these mechanisms at a single gene in a redundant manner or each individually at different loci. A systematic analysis of the contribution of each mechanism at a native promoter has not been reported. Here we employed a genetic strategy to analyze the contributions of nucleosome positioning, histone deacetylation, and Mediator interference in the repression of chromosomal Tup1 target genes in vivo. We exploited the fact that Ssn6-Tup1 requires the ISW2 chromatin remodeling complex to establish nucleosome positioning in vivo to disrupt chromatin structure without affecting other Tup1 repression functions. Deleting ISW2, the histone deacetylase gene HDA1, or genes encoding Mediator subunits individually caused slight or no derepression of RNR3 and HUG1. However, when Mediator mutations were combined with Deltaisw2 or Deltahda1 mutations, enhanced transcription was observed, and the strongest level of derepression was observed in triple Deltaisw2/Deltahda1/Mediator mutants. The increased transcription in the mutants was not due to the loss of Tup1 at the promoter and correlated with increased TBP cross-linking to promoters. Thus, Tup1 utilizes multiple redundant mechanisms to repress transcription of native genes, which may be important for it to act as a global corepressor at a wide variety of promoters.
Collapse
Affiliation(s)
- Zhengjian Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
13
|
Zhang Z, Reese JC. Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. EMBO J 2004; 23:2246-57. [PMID: 15116071 PMCID: PMC419907 DOI: 10.1038/sj.emboj.7600227] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 04/08/2004] [Indexed: 12/30/2022] Open
Abstract
The Imitation SWItch (ISWI) chromatin remodeling factors have been implicated in nucleosome positioning. In vitro, they can mobilize nucleosomes bi-directionally, making it difficult to envision how they can establish precise translational positioning of nucleosomes in vivo. It has been proposed that they require other cellular factors to do so, but none has been identified thus far. Here, we demonstrate that both ISW2 and TUP1 are required to position nucleosomes across the entire coding sequence of the DNA damage-inducible gene RNR3. The chromatin structure downstream of the URS is indistinguishable in Deltaisw2 and Deltatup1 mutants, and the crosslinking of Tup1 and Isw2 to RNR3 is independent of each other, indicating that both complexes are required to maintain repressive chromatin structure. Furthermore, Tup1 repressed RNR3 and blocked preinitiation complex formation in the Deltaisw2 mutant, even though nucleosome positioning was completely disrupted over the promoter and ORF. Our study has revealed a novel collaboration between two nucleosome-positioning activities in vivo, and suggests that disruption of nucleosome positioning is insufficient to cause a high level of transcription.
Collapse
Affiliation(s)
- Zhengjian Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Joseph C Reese
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 203 Althouse Laboratory, University Park, Pennsylvania, PA 16802, USA. Tel.: +1 814 865 1976; Fax: +1 814 863 7024; E-mail:
| |
Collapse
|
14
|
Davie JK, Edmondson DG, Coco CB, Dent SYR. Tup1-Ssn6 Interacts with Multiple Class I Histone Deacetylases in Vivo. J Biol Chem 2003; 278:50158-62. [PMID: 14525981 DOI: 10.1074/jbc.m309753200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tup1-Ssn6 corepressor complex in Saccharomyces cerevisiae represses the transcription of a diverse set of genes. Chromatin is an important component of Tup1-Ssn6-mediated repression. Tup1 binds to underacetylated histone tails and requires multiple histone deacetylases (HDACs) for its repressive functions. Here, we describe physical interactions of the corepressor complex with the class I HDACs Rpd3, Hos2, and Hos1. In contrast, no in vivo interaction was observed between Tup-Ssn6 and Hda1, a class II HDAC. We demonstrate that Rpd3 interacts with both Tup1 and Ssn6. Rpd3 and Hos2 interact with Ssn6 independently of Tup1 via distinct tetratricopeptide domains within Ssn6, suggesting that these two HDACs may contact the corepressor at the same time.
Collapse
Affiliation(s)
- Judith K Davie
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
15
|
Dorigo B, Schalch T, Bystricky K, Richmond TJ. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 2003; 327:85-96. [PMID: 12614610 DOI: 10.1016/s0022-2836(03)00025-1] [Citation(s) in RCA: 406] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed a self-assembly system for nucleosome arrays in which recombinant, post-translationally unmodified histone proteins are combined with DNA of defined-sequence to form chromatin higher-order structure. The nucleosome arrays obtained are highly homogeneous and sediment at 53S when maximally folded in 1mM or 100mM MgCl(2). The folding properties are comparable to established systems. Analytical ultracentrifugation is used to determine the consequence of individual histone tail domain deletions on array folding. Fully compacted chromatin fibers are obtained with any one of the histone tails deleted with the exception of the H4 N terminus. The region of the H4 tail, which mediates compaction, resides in the stretch of amino acids 14-19.
Collapse
Affiliation(s)
- Benedetta Dorigo
- ETH Zürich, Institute for Molecular Biology and Biophysics, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
16
|
Ruiz C, Escribano V, Morgado E, Molina M, Mazón MJ. Cell-type-dependent repression of yeast a-specific genes requires Itc1p, a subunit of the Isw2p-Itc1p chromatin remodelling complex. MICROBIOLOGY (READING, ENGLAND) 2003; 149:341-351. [PMID: 12624196 DOI: 10.1099/mic.0.25920-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Saccharomyces cerevisiae MATa haploid cells, the a-specific genes are expressed, whereas in the MATalpha haploid and MATa/alpha diploid cell types their transcription is repressed. It is shown in this report that Itc1p, a component of the ATP-dependent Isw2p-Itc1p chromatin remodelling complex, is required for the repression of a-specific genes. It has previously been reported that disruption of the ITC1 gene leads, in MATalpha cells, to an aberrant cell morphology resembling the polarized mating projection of cells responding to pheromone. The activation of the pheromone signalling pathway in itc1 mutants of both mating types was examined and found to be constitutively active in MATalpha itc1 but not in MATa itc1 cells. Furthermore, unlike the wild-type, MATalpha itc1 and MATa/alpha itc1/itc1 cells secrete a-factor and express significant levels of other a-specific genes. The results indicate that the inappropriate a-factor production in a MATalpha context, due to the derepression of the a-specific genes, produces an autocrine signalling loop that leads to the aberrant morphology displayed by MATalpha itc1 cells. It is suggested that the Isw2p-Itc1p complex contributes to maintain the repressive chromatin structure described for the asg operator present in the promoters of a-specific genes.
Collapse
Affiliation(s)
- Cristina Ruiz
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Victoria Escribano
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Eulalia Morgado
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Mazón
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
17
|
Gu X. Helix 12 in the human estrogen receptor (hER) is essential for the hER function by overcoming nucleosome repression in yeast. J Cell Biochem 2002; 86:224-38. [PMID: 12111992 DOI: 10.1002/jcb.10229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When exogenous human estrogen receptor (hER) binds with estrogen, it can activate transcription of target genes in yeast cells. The estrogen dose-response expression patterns in yeast are very similar to those in human cells. This implies that hER may function in yeast cells via mechanisms similar to those in human cells. In this study, Saccharomyces cerevisiae was used to dissect mechanisms of hER-activated transcription in yeast. The hER contains two transcription activation domains: ER-AF-1 and ER-AF-2 (LBD or HBD). In both human and wild-type yeast cells, hER must bind with estrogen in order to activate transcription. In those cells, ER-AF-2 is independently active upon hormone binding, but ER-AF-1 by itself is inactive. In a mutagenesis screen, we found a mutant strain in which the ER-AF-1 was independently active. It was determined that this mutant strain carried a Tup1 mutation. More interestingly, a small hER fragment ER-AF-0, containing neither ER-AF-1 nor ER-AF-2, was also fully active in the DeltaTup1 cells. This suggests that in this strain, hormone binding is not required for transcription activation by hER. It is known that the Tup1/Ssn6 complex plays an important role in general transcription repression by protecting histone acetylation sites thus stabilizing nucleosomes. In the DeltaTup1 cells, nucleosomes are known to be unstable because histones can be easily accessed by acetylase and cause nucleosome disassociation. Two point mutations in helix 12 (H12) in ER-AF-2, which abolished hER function in human cells, also completely abolished hER function in the wild-type yeast cells. This suggested that H12 is essential for hER transcription activation function. However, hER with the H12 mutation is able to activate transcription in DeltaTup1 cells. This indicates that the normal function of H12 is required for transcription activation by hER only if nucleosomes are not acetylated and are therefore stable. The results of this work suggest that there is a close relationship between hER function and nucleosome remodeling. It also provides insight about H12 activity and its functional relationship with other domains in hER. We propose here that H12 is essential for hER function by recruiting strong nucleosome remodeling proteins to the promoter region thus overcoming nucleosome repression.
Collapse
Affiliation(s)
- Xiaohong Gu
- Department of Pharmacology and Cancer Biology, Medical Center, Duke University, Durham, North Carolina 27710, USA.
| |
Collapse
|
18
|
Zhang Z, Varanasi U, Trumbly RJ. Functional dissection of the global repressor Tup1 in yeast: dominant role of the C-terminal repression domain. Genetics 2002; 161:957-69. [PMID: 12136003 PMCID: PMC1462163 DOI: 10.1093/genetics/161.3.957] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, Tup1, in association with Cyc8 (Ssn6), functions as a general repressor of transcription. Tup1 and Cyc8 are required for repression of diverse families of genes coordinately controlled by glucose repression, mating type, and other mechanisms. This repression is mediated by recruitment of the Cyc8-Tup1 complex to target promoters by sequence-specific DNA-binding proteins. We created a library of XhoI linker insertions and internal in-frame deletion mutations within the TUP1 coding region. Insertion mutations outside of the WD domains were wild type, while insertions within the WD domains induced mutant phenotypes with differential effects on the target genes SUC2, MFA2, RNR2, and HEM13. Deletion mutations confirmed previous findings of two separate repression domains in the N and C termini. The cumulative data suggest that the C-terminal repression domain, located near the first WD repeat, plays the dominant role in repression. Although the N-terminal repression domain is sufficient for partial repression, deletion of this region does not compromise repression. Surprisingly, deletion of the majority of the histone-binding domain of Tup1 also does not significantly reduce repression. The N-terminal region containing potential alpha-helical coiled coils is required for Tup1 oligomerization and association with Cyc8. Association with Cyc8 is required for repression of SUC2, HEM13, and RNR2 but not MFA2 and STE2.
Collapse
Affiliation(s)
- Zhizhou Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, 3035 Arlington Avenue, Toledo, OH 43614, USA
| | | | | |
Collapse
|
19
|
Davie JK, Trumbly RJ, Dent SYR. Histone-dependent association of Tup1-Ssn6 with repressed genes in vivo. Mol Cell Biol 2002; 22:693-703. [PMID: 11784848 PMCID: PMC133554 DOI: 10.1128/mcb.22.3.693-703.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tup1-Ssn6 complex regulates diverse classes of genes in Saccharomyces cerevisiae and serves as a model for corepressor functions in many organisms. Tup1-Ssn6 does not directly bind DNA but is brought to target genes through interactions with sequence-specific DNA binding factors. Full repression by Tup1-Ssn6 appears to require interactions with both the histone tails and components of the general transcription machinery, although the relative contribution of these two pathways is not clear. Here, we map Tup1 locations on two classes of Tup1-Ssn6-regulated genes in vivo via chromatin immunoprecipitations. Distinct profiles of Tup1 are observed on a cell-specific genes and DNA damage-inducible genes, suggesting that alternate repressive architectures may be created on different classes of repressed genes. In both cases, decreases in acetylation of histone H3 colocalize with Tup1. Strikingly, although loss of the Srb10 mediator protein had no effect on Tup1 localization, both histone tail mutations and histone deacetylase mutations crippled the association of Tup1 with target loci. Together with previous findings that Tup1-Ssn6 physically associates with histone deacetylase activities, these results indicate that the repressor complex alters histone modification states to facilitate interactions with histones and that these interactions are required to maintain a stable repressive state.
Collapse
Affiliation(s)
- Judith K Davie
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
20
|
Hirst M, Ho C, Sabourin L, Rudnicki M, Penn L, Sadowski I. A two-hybrid system for transactivator bait proteins. Proc Natl Acad Sci U S A 2001; 98:8726-31. [PMID: 11447261 PMCID: PMC37503 DOI: 10.1073/pnas.141413598] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We describe a two-hybrid strategy for detection of interactions with transactivator proteins. This repressed transactivator (RTA) system employs the N-terminal repression domain of the yeast general repressor TUP1. TUP1-GAL80 fusion proteins, when coexpressed with GAL4, are shown to inhibit transcription of GAL4-dependent reporter genes. This effect requires the C-terminal 30 residues of GAL4, which are required for interaction with GAL80 in vitro. Furthermore, repression of GAL transcription by TUP1-GAL80 requires SRB10, demonstrating that the TUP1 repression domain, in the context of a two-hybrid interaction, functions by the same mechanism as endogenous TUP1. Using this strategy, we demonstrate interactions between the mammalian basic helix-loop-helix proteins MyoD and E12, and between c-Myc and Bin-1. We have also identified interacting clones from a TUP1-cDNA fusion expression library by using GAL4-VP16 as a bait fusion. These results demonstrate that RTA is generally applicable for identifying and characterizing interactions with transactivator proteins in vivo.
Collapse
Affiliation(s)
- M Hirst
- Department of Biochemistry and Molecular Biology; University of British Columbia Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Upon uracil depletion, the transcriptional activator Ppr1p stimulates expression of the Saccharomyces cerevisiae URA3 gene only four-fold. We performed a split-ubiquitin screen with Tup1p as bait, and we found that the global repressor Tup1p interacts with the transcriptional activator Ppr1p both in vivo and in vitro. The interaction is biologically significant, since the deletion of the TUP1 gene as well as the removal of the Tup1p-binding domain from Ppr1p results in an increased expression of the URA3 gene. Our results suggest that Tup1p blocks Ppr1p directly, and that Ppr1p is a weak activator of transcription because of its interaction with Tup1p. Thus we were able to demonstrate that the global repressor Tup1p can modulate transcription by interacting with an activator.
Collapse
Affiliation(s)
- A J Pätzold
- Max-Delbrück-Laboratorium in der Max-Planck-Gesellschaft, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | | |
Collapse
|
22
|
Guyon JR, Narlikar GJ, Sullivan EK, Kingston RE. Stability of a human SWI-SNF remodeled nucleosomal array. Mol Cell Biol 2001; 21:1132-44. [PMID: 11158300 PMCID: PMC99567 DOI: 10.1128/mcb.21.4.1132-1144.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2000] [Accepted: 11/03/2000] [Indexed: 11/20/2022] Open
Abstract
SWI-SNF alters DNA-histone interactions within a nucleosome in an ATP-dependent manner. These alterations cause changes in the topology of a closed circular nucleosomal array that persist after removal of ATP from the reaction. We demonstrate here that a remodeled closed circular array will revert toward its original topology when ATP is removed, indicating that the remodeled array has a higher energy than that of the starting state. However, reversion occurs with a half-life measured in hours, implying a high energy barrier between the remodeled and standard states. The addition of competitor DNA accelerates reversion of the remodeled array by more than 10-fold, and we interpret this result to mean that binding of human SWI-SNF (hSWI-SNF), even in the absence of ATP hydrolysis, stabilizes the remodeled state. In addition, we also show that SWI-SNF is able to remodel a closed circular array in the absence of topoisomerase I, demonstrating that hSWI-SNF can induce topological changes even when conditions are highly energetically unfavorable. We conclude that the remodeled state is less stable than the standard state but that the remodeled state is kinetically trapped by the high activation energy barrier separating it from the unremodeled conformation.
Collapse
Affiliation(s)
- J R Guyon
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
23
|
Clapier CR, Längst G, Corona DF, Becker PB, Nightingale KP. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol Cell Biol 2001; 21:875-83. [PMID: 11154274 PMCID: PMC86678 DOI: 10.1128/mcb.21.3.875-883.2001] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATPase ISWI can be considered the catalytic core of several multiprotein nucleosome remodeling machines. Alone or in the context of nucleosome remodeling factor, the chromatin accessibility complex (CHRAC), or ACF, ISWI catalyzes a number of ATP-dependent transitions of chromatin structure that are currently best explained by its ability to induce nucleosome sliding. In addition, ISWI can function as a nucleosome spacing factor during chromatin assembly, where it will trigger the ordering of newly assembled nucleosomes into regular arrays. Both nucleosome remodeling and nucleosome spacing reactions are mechanistically unexplained. As a step toward defining the interaction of ISWI with its substrate during nucleosome remodeling and chromatin assembly we generated a set of nucleosomes lacking individual histone N termini from recombinant histones. We found the conserved N termini (the N-terminal tails) of histone H4 essential to stimulate ISWI ATPase activity, in contrast to other histone tails. Remarkably, the H4 N terminus, but none of the other tails, was critical for CHRAC-induced nucleosome sliding and for the generation of regularity in nucleosomal arrays by ISWI. Direct nucleosome binding studies did not reflect a dependence on the H4 tail for ISWI-nucleosome interactions. We conclude that the H4 tail is critically required for nucleosome remodeling and spacing at a step subsequent to interaction with the substrate.
Collapse
Affiliation(s)
- C R Clapier
- Adolf Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
24
|
Bone JR, Roth SY. Recruitment of the yeast Tup1p-Ssn6p repressor is associated with localized decreases in histone acetylation. J Biol Chem 2001; 276:1808-13. [PMID: 11056171 DOI: 10.1074/jbc.m008668200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Posttranslational acetylation of histones is an important element of transcriptional regulation. The yeast Tup1p repressor is one of only a few non-enzyme proteins known to interact directly with the amino-terminal tail domains of histones H3 and H4 that are subject to acetylation. We demonstrated previously that Tup1p interacts poorly with more highly acetylated isoforms of these histones in vitro. Here we show that two separate classes of promoters repressed by Tup1p are associated with underacetylated histones in vivo. This decreased histone acetylation is dependent upon Tup1p and its partner Ssn6p and is localized to sequences near the point of Tup1p-Ssn6p recruitment. Increased acetylation of histones H3 and H4 is observed upon activation of these genes, but this increase is not dependent on transcription per se. Direct recruitment of Tup1p-Ssn6p complexes via fusion of Tup1p to the lexA DNA binding domain is sufficient to confer repression and induce decreased acetylation of H3 and H4 at a target promoter. Taken together, our results suggest that stable decreases in histone acetylation levels are directed and/or maintained by the Tup1p-Ssn6p repressor complex.
Collapse
Affiliation(s)
- J R Bone
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
25
|
Abstract
The holoenzyme of transcription integrates the positive and negative signals from the promoters of eukaryotic genes. We demonstrate that the essential holoenzyme component Srb7p is a physiologically relevant target of the global repressor Tup1p in Saccharomyces cerevisiae. Tup1p binds Srb7p in vivo and in vitro, and all genes tested that are repressed by Tup1p are derepressed when wild-type Srb7p is replaced by a mutant derivative of Srb7p that is no longer capable of interacting with Tup1p. Therefore, Srb7p is the first holoenzyme component essential for repression by Tup1p for which a physical interaction with Tup1p has been demonstrated. Furthermore, we find that Srb7p also binds Med6p and that this interaction is necessary for full transcriptional activation by different activators. Our finding that Med6p and Tup1p compete for the interaction with Srb7p suggests a model for Tup1p-mediated repression.
Collapse
Affiliation(s)
- A Gromöller
- Max-Delbrück-Laboratorium in der Max-Planck-Gesellschaft, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | | |
Collapse
|
26
|
Laser H, Bongards C, Schüller J, Heck S, Johnsson N, Lehming N. A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter. Proc Natl Acad Sci U S A 2000; 97:13732-7. [PMID: 11095729 PMCID: PMC17644 DOI: 10.1073/pnas.250400997] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The split-ubiquitin assay detects protein interactions in vivo. To identify proteins interacting with Gal4p and Tup1p, two transcriptional regulators, we converted the split-ubiquitin assay into a generally applicable screen for binding partners of specific proteins in vivo. A library of genomic Saccharomyces cerevisiae DNA fragments fused to the N-terminal half of ubiquitin was constructed and transformed into yeast strains carrying either Gal4p or Tup1p as a bait. Both proteins were C-terminally extended by the C-terminal half of ubiquitin followed by a modified Ura3p with an arginine in position 1, a destabilizing residue in the N-end rule pathway. The bait fusion protein alone is stable and enzymatically active. However, upon interaction with its prey, a native-like ubiquitin is reconstituted. RUra3p is then cleaved off by the ubiquitin-specific proteases and rapidly degraded by the N-end rule pathway. In both screens, Nhp6B was identified as a protein in close proximity to Gal4p as well as to Tup1p. Direct interaction between either protein and Nhp6B was confirmed by coprecipitation assays. Genetic analysis revealed that Nhp6B, a member of the HMG1 family of DNA-binding proteins, can influence transcriptional activation as well as repression at a specific locus in the chromosome of the yeast S. cerevisiae.
Collapse
Affiliation(s)
- H Laser
- Max-Delbrück-Laboratorium in der Max-Planck-Gesellschaft, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Flores-Saaib RD, Courey AJ. Analysis of Groucho-histone interactions suggests mechanistic similarities between Groucho- and Tup1-mediated repression. Nucleic Acids Res 2000; 28:4189-96. [PMID: 11058116 PMCID: PMC113153 DOI: 10.1093/nar/28.21.4189] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Drosophila Groucho (Gro) protein is the defining member of a family of metazoan corepressors that have roles in many aspects of development, including segmentation, dorsal/ventral pattern formation, Notch signaling, and Wnt/Wg signaling. Previous speculation has suggested that Gro may be orthologous to the yeast corepressor Tup1. In support of this idea, a detailed alignment between the C-terminal WD-repeat domains of these two proteins shows that each Gro WD repeat is most similar to the Tup1 WD repeat occupying the corresponding position in that protein. Our analysis of Gro-histone interactions provides further support for a close evolutionary relationship between Gro and Tup1. In particular, we show that, as with the N-terminal region of Tup1, the N-terminal region of Gro is necessary and sufficient for direct binding to histones. The highest affinity interaction is with histone H3 and binding is primarily observed with hypoacetylated histones. Using transient transfection assays, we show that a Gal4-Gro fusion protein containing the histone-binding domain is able to repress transcription. Deletions that weaken histone binding also weaken repression. These findings, along with our recent report that Gro interacts with the histone deacetylase Rpd3, suggest a mechanism for Gro-mediated repression.
Collapse
Affiliation(s)
- R D Flores-Saaib
- Department of Chemistry and Biochemistry, 5034 Young Hall, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | | |
Collapse
|
28
|
Gavin IM, Kladde MP, Simpson RT. Tup1p represses Mcm1p transcriptional activation and chromatin remodeling of an a-cell-specific gene. EMBO J 2000; 19:5875-83. [PMID: 11060038 PMCID: PMC305800 DOI: 10.1093/emboj/19.21.5875] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2000] [Revised: 09/08/2000] [Accepted: 09/12/2000] [Indexed: 11/13/2022] Open
Abstract
In yeast, a number of regulatory proteins expressed only in specific cell types interact with general transcription factors in a combinatorial manner to control expression of cell-type-specific genes. We report a detailed analysis of activation and repression events that occur at the promoter of the a-cell-specific STE6 gene fused to a beta-galactosidase gene in a yeast minichromosome, as well as factors that control the chromatin structure of this promoter both in the minichromosome and in the genomic STE6 locus. Mcm1p results in chromatin remodeling and is responsible for all transcriptional activity from the STE6 promoter in both wild-type a and alpha cells. Matalpha2p cooperates with Tup1p to block both chromatin remodeling and Mcm1p-associated activation. While Matalpha2p represses only Mcm1p, the Tup1p-mediated repression involves both Mcm1p-dependent and -independent mechanisms. Swi/Snf and Gcn5p, required for full induction of the STE6 gene, do not contribute to chromatin remodeling. We suggest that Tup1p can contribute to repression by blocking transcriptional activators, in addition to interacting with transcription machinery and stabilizing chromatin.
Collapse
Affiliation(s)
- I M Gavin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 308 Althouse Laboratory, University Park, PA 16802, USA
| | | | | |
Collapse
|
29
|
Lee M, Chatterjee S, Struhl K. Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8-Tup1 corepressor in yeast. Genetics 2000; 155:1535-42. [PMID: 10924455 PMCID: PMC1461184 DOI: 10.1093/genetics/155.4.1535] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Cyc8-Tup1 corepressor complex is targeted to promoters by pathway-specific DNA-binding repressors, thereby inhibiting the transcription of specific classes of genes. Genetic screens have identified mutations in a variety of Pol II holoenzyme components (Srb8, Srb9, Srb10, Srb11, Sin4, Rgr1, Rox3, and Hrs1) and in the N-terminal tails of histones H3 and H4 that weaken repression by Cyc8-Tup1. Here, we analyze the effect of individual and multiple mutations in many of these components on transcriptional repression of natural promoters that are regulated by Cyc8-Tup1. In all cases tested, individual mutations have a very modest effect on SUC2 RNA levels and no detectable effect on levels of ANB1, MFA2, and RNR2. Furthermore, multiple mutations within the Srb components, between Srbs and Sin4, and between Srbs and histone tails affect Cyc8-Tup1 repression to the same modest extent as the individual mutations. These results argue that the weak effects of the various mutations on repression by Cyc8-Tup1 are not due to redundancy among components of the Pol II machinery, and they argue against a simple redundancy between the holoenzyme and chromatin pathways. In addition, phenotypic analysis indicates that, although Srbs8-11 are indistinguishable with respect to Cyc8-Tup1 repression, the individual Srbs are functionally distinct in other respects. Genetic interactions among srb mutations imply that a balance between the activities of Srb8 + Srb10 and Srb11 is important for normal cell growth.
Collapse
Affiliation(s)
- M Lee
- Departments of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
30
|
Sprague ER, Redd MJ, Johnson AD, Wolberger C. Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast. EMBO J 2000; 19:3016-27. [PMID: 10856245 PMCID: PMC203344 DOI: 10.1093/emboj/19.12.3016] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Tup1-Ssn6 corepressor complex regulates the expression of several sets of genes, including genes that specify mating type in the yeast Saccharomyces cerevisiae. Repression of mating-type genes occurs when Tup1-Ssn6 is brought to the DNA by the Matalpha2 DNA-binding protein and assembled upstream of a- and haploid-specific genes. We have determined the 2.3 A X-ray crystal structure of the C-terminal domain of Tup1 (accesion No. 1ERJ), a 43 kDa fragment that contains seven copies of the WD40 sequence motif and binds to the Matalpha2 protein. Moreover, this portion of the protein can partially substitute for full-length Tup1 in bringing about transcriptional repression. The structure reveals a seven-bladed beta propeller with an N-terminal subdomain that is anchored to the side of the propeller and extends the beta sheet of one of the blades. Point mutations in Tup1 that specifically affect the Tup1-Matalpha2 interaction cluster on one surface of the propeller. We identified regions of Tup1 that are conserved among the fungal Tup1 homologs and may be important in protein-protein interactions with additional components of the Tup1-mediated repression pathways.
Collapse
Affiliation(s)
- E R Sprague
- Department of Biophysics and Biophysical Chemistry and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
31
|
Papamichos-Chronakis M, Conlan RS, Gounalaki N, Copf T, Tzamarias D. Hrs1/Med3 is a Cyc8-Tup1 corepressor target in the RNA polymerase II holoenzyme. J Biol Chem 2000; 275:8397-403. [PMID: 10722672 DOI: 10.1074/jbc.275.12.8397] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Srb/Mediator, a multisubunit subcomplex of the RNA polymerase II (RNA pol II) holoenzyme has been proposed to function as a control panel regulating transcription in response to gene-specific activator proteins. In this report, we identify the Mediator subunit Hrs1/Med3 as a physical target for Cyc8-Tup1, a yeast transcriptional corepressor. Two-hybrid and glutathione S-transferase interaction assays show that Hrs1 can associate directly with Cyc8-Tup1. Moreover, affinity chromatography experiments, using yeast protein extracts, reveal that Cyc8-Tup1 co-purifies with Hrs1 and with additional Mediator subunits in a Hrs1-dependent manner. These observations suggest that Cyc8-Tup1 contacts the Mediator complex via its interaction with the Hrs1 subunit. Further on, genetic analysis indicates that increased Hrs1 dosage can alleviate Cyc8-Tup1-mediated repression, suggesting that Hrs1/Mediator's function is inhibited upon its interaction with Cyc8-Tup1. Finally, artificial holoenzyme recruitment assays support a model by which the contact between the corepressor and the Hrs1/Mediator may prevent pol II holoenzyme recruitment to the core promoter. These data, together with previous genetic evidence, establish a functional and physical interaction between the Cyc8-Tup1 corepressor and the RNA pol II holoenzyme and support a central role of the Mediator complex in transcriptional repression.
Collapse
Affiliation(s)
- M Papamichos-Chronakis
- Institute of Molecular Biology and Biotechnology Foundation of Research and Technology, University of Crete, Vassilika Vouton, P. O. Box 1527, GR-711 10 Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
32
|
Geisberg JV, Struhl K. TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo. Mol Cell Biol 2000; 20:1478-88. [PMID: 10669725 PMCID: PMC85312 DOI: 10.1128/mcb.20.5.1478-1488.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Using a genetic screen, we isolated three TATA-binding protein (TBP) mutants that increase transcription from promoters that are repressed by the Cyc8-Tup1 or Sin3-Rpd3 corepressors or that lack an enhancer element, but not from an equivalently weak promoter with a mutated TATA element. Increased transcription is observed when the TBP mutants are expressed at low levels in the presence of wild-type TBP. These TBP mutants are unable to support cell viability, and they are toxic in strains lacking Rpd3 histone deacetylase or when expressed at higher levels. Although these mutants do not detectably bind TATA elements in vitro, genetic and chromatin immunoprecipitation experiments indicate that they act directly at promoters and do not increase transcription by titration of a negative regulatory factor(s). The TBP mutants are mildly defective for associating with promoters responding to moderate or strong activators; in addition, they are severely defective for RNA polymerase (Pol) III but not Pol I transcription. These results suggest that, with respect to Pol II transcription, the TBP mutants specifically increase expression from core promoters. Biochemical analysis indicates that the TBP mutants are unaffected for TFIID complex formation, dimerization, and interactions with either the general negative regulator NC2 or the N-terminal inhibitory domain of TAF130. We speculate that these TBP mutants have an unusual structure that allows them to preferentially access TATA elements in chromatin templates. These TBP mutants define a criterion by which promoters repressed by Cyc8-Tup1 or Sin3-Rpd3 resemble enhancerless, but not TATA-defective, promoters; hence, they support the idea that these corepressors inhibit the function of activator proteins rather than the Pol II machinery.
Collapse
Affiliation(s)
- J V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
33
|
Ha N, Hellauer K, Turcotte B. Fusions with histone H3 result in highly specific alteration of gene expression. Nucleic Acids Res 2000; 28:1026-35. [PMID: 10648797 PMCID: PMC102566 DOI: 10.1093/nar/28.4.1026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hap1 is a yeast transcriptional activator which controls expression of genes such as CYC1 and CYC7. Our results show that Hap1 activity is dependent on a functional chromatin remodeling complex SWI/SNF. Using a modified two-hybrid screen with Hap1 as bait, we recovered expression vectors encoding the Gal4 activation domain fused to histone H3 [Gal4(AD)-H3]. Hap1 activity at CYC1 or CYC7 was increased by Gal4(AD)-H3 and the effect was dependent on the presence of the activation domain of Hap1 and a functional SWI complex. Importantly, overexpression of H3 alone had no effect on Hap1 activity. Analysis of Gal4(AD)-H3 revealed that the fusion is not incorporated into the nucleosome while a functional Gal4 activation domain is dispensable. Activity of many other transcriptional activators was unchanged or slightly affected in the presence of Gal4(AD)-H3. Thus, our results identify a new class of histone H3 variants that cause highly specific alteration of gene expression. Hap1 may interact directly with H3 favoring chromatin remodeling by the SWI/SNF complex.
Collapse
Affiliation(s)
- N Ha
- Department of Medicine, Royal Victoria Hospital, Montréal, Québec, Canada
| | | | | |
Collapse
|
34
|
Ducker CE, Simpson RT. The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome. EMBO J 2000; 19:400-9. [PMID: 10654939 PMCID: PMC305577 DOI: 10.1093/emboj/19.3.400] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In yeast alpha cells the a cell-specific genes STE6 and BAR1 are packaged as gene-sized chromatin domains of positioned nucleosomes. Organized chromatin depends on Tup1p, a corepressor that interacts with the N-terminal regions of H3 and H4. If Tup1p functions to organize or stabilize a chromatin domain, the protein might be expected to be present at a level stoichiometric with nucleosomes. Chromatin immunoprecipitation assays using Tup1p antibodies showed Tup1p to be associated with the entire genomic STE6 coding region. To determine stoichiometry of Tup1p associated with the gene, a yeast plasmid containing varying lengths of the STE6 gene including flanking control regions and an Escherichia coli lac operator sequence was constructed. After assembly into chromatin in vivo in Saccharomyces cerevisiae, minichromosomes were isolated using an immobilized lac repressor. In these experiments, Tup1p was found to be specifically associated with repressed STE6 chromatin in vivo at a ratio of about two molecules of the corepressor per nucleosome. These observations strongly suggest a structural role for Tup1p in repression and constrain models for organized chromatin in repressive domains.
Collapse
Affiliation(s)
- C E Ducker
- Department of Biochemistry and Molecular Biology, 308 Althouse, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
35
|
Mukai Y, Matsuo E, Roth SY, Harashima S. Conservation of histone binding and transcriptional repressor functions in a Schizosaccharomyces pombe Tup1p homolog. Mol Cell Biol 1999; 19:8461-8. [PMID: 10567571 PMCID: PMC84951 DOI: 10.1128/mcb.19.12.8461] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ssn6p-Tup1p corepressor complex is important to the regulation of several diverse genes in Saccharomyces cerevisiae and serves as a model for corepressor functions. To investigate the evolutionary conservation of these functions, sequences homologous to the S. cerevisiae TUP1 gene were cloned from Kluyveromyces lactis (TUP1) and Schizosaccharomyces pombe (tup11(+)). Interestingly, while the K. lactis TUP1 gene complemented an S. cerevisiae tup1 null mutation, the S. pombe tup11(+) gene did not, even when expressed under the control of the S. cerevisiae TUP1 promoter. However, an S. pombe Tup11p-LexA fusion protein repressed transcription of a corresponding reporter gene, indicating that this Tup1p homolog has intrinsic repressor activity. Moreover, a chimeric protein containing the amino-terminal Ssn6p-binding domain of S. cerevisiae Tup1p and 544 amino acids from the C-terminal region of S. pombe Tup11p complemented the S. cerevisiae tup1 mutation. The failure of native S. pombe Tup11p to complement loss of Tup1p functions in S. cerevisiae corresponds to an inability to bind to S. cerevisiae Ssn6p in vitro. Disruption of tup11(+) in combination with a disruption of tup12(+), another TUP1 homolog gene in S. pombe, causes a defect in glucose repression of fbp1(+), suggesting that S. pombe Tup1p homologs function as repressors in S. pombe. Furthermore, Tup11p binds specifically to histones H3 and H4 in vitro, indicating that both the repression and histone binding functions of Tup1p-related proteins are conserved across species.
Collapse
Affiliation(s)
- Y Mukai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
36
|
Abstract
Glucose, the most abundant monosaccharide in nature, is the principal carbon and energy source for nearly all cells. The first, and rate-limiting, step of glucose metabolism is its transport across the plasma membrane. In cells of many organisms glucose ensures its own efficient metabolism by serving as an environmental stimulus that regulates the quantity, types, and activity of glucose transporters, both at the transcriptional and posttranslational levels. This is most apparent in the baker's yeast Saccharomyces cerevisiae, which has 20 genes encoding known or likely glucose transporters, each of which is known or likely to have a different affinity for glucose. The expression and function of most of these HXT genes is regulated by different levels of glucose. This review focuses on the mechanisms S. cerevisiae and a few other fungal species utilize for sensing the level of glucose and transmitting this information to the nucleus to alter HXT gene expression. One mechanism represses transcription of some HXT genes when glucose levels are high and works through the Mig1 transcriptional repressor, whose function is regulated by the Snf1-Snf4 protein kinase and Reg1-Glc7 protein phosphatase. Another pathway induces HXT expression in response to glucose and employs the Rgt1 transcriptional repressor, a ubiquitin ligase protein complex (SCF(Grr1)) that regulates Rgt1 function, and two glucose sensors in the membrane (Snf3 and Rgt2) that bind glucose and generate the intracellular signal to which Rgt1 responds. These two regulatory pathways collaborate with other, less well-understood, pathways to ensure that yeast cells express the glucose transporters best suited for the amount of glucose available.
Collapse
Affiliation(s)
- S Ozcan
- Department of Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
37
|
Wahi M, Komachi K, Johnson AD. Gene regulation by the yeast Ssn6-Tup1 corepressor. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:447-57. [PMID: 10384309 DOI: 10.1101/sqb.1998.63.447] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M Wahi
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
38
|
Edmondson DG, Zhang W, Watson A, Xu W, Bone JR, Yu Y, Stillman D, Roth SY. In vivo functions of histone acetylation/deacetylation in Tup1p repression and Gcn5p activation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:459-68. [PMID: 10384310 DOI: 10.1101/sqb.1998.63.459] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- D G Edmondson
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Stiegler P, Lotan R, Giordano A. From cell cycle regulation to angiogenesis: dialogue between the basic and clinical sciences. J Cell Physiol 1999; 179:233-6. [PMID: 10199563 DOI: 10.1002/(sici)1097-4652(199905)179:2<233::aid-jcp14>3.0.co;2-n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Basic research in biological and medical disciplines has revealed fundamental aspects of the differentiation of single cells as well as the development of multicellular organisms. The combination of knowledge of intracellular and intercellular pathways controlling development and homeostasis in higher organisms is the key to understanding certain diseases that are associated with abnormalities in these pathways and developing strategies for fighting them. Today's high scientific output in a rapidly growing number of scientific journals requires great effort to keep up with the latest developments outside one's specialization. The tenth international conference of the International Society of Differentiation (ISD) therefore was a great opportunity for scientists of diverse fields of biological and medical research to learn about the latest developments in even remotely related branches of research and opening new perspectives. The authors have tried to conserve this spirit in reviewing main aspects of research presented at the conference.
Collapse
Affiliation(s)
- P Stiegler
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
40
|
Smith JS, Caputo E, Boeke JD. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol Cell Biol 1999; 19:3184-97. [PMID: 10082585 PMCID: PMC84112 DOI: 10.1128/mcb.19.4.3184] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genetic loci, including the ribosomal DNA (rDNA). Silencing at telomeres (telomere position effect [TPE]) and the cryptic mating-type loci (HML and HMR) depends on the silent information regulator genes, SIR1, SIR2, SIR3, and SIR4. However, silencing of polymerase II-transcribed reporter genes integrated within the rDNA locus (rDNA silencing) requires only SIR2. The mechanism of rDNA silencing is therefore distinct from TPE and HM silencing. Few genes other than SIR2 have so far been linked to the rDNA silencing process. To identify additional non-Sir factors that affect rDNA silencing, we performed a genetic screen designed to isolate mutations which alter the expression of reporter genes integrated within the rDNA. We isolated two classes of mutants: those with a loss of rDNA silencing (lrs) phenotype and those with an increased rDNA silencing (irs) phenotype. Using transposon mutagenesis, lrs mutants were found in 11 different genes, and irs mutants were found in 22 different genes. Surprisingly, we did not isolate any genes involved in rRNA transcription. Instead, multiple genes associated with DNA replication and modulation of chromatin structure were isolated. We describe these two gene classes, and two previously uncharacterized genes, LRS4 and IRS4. Further characterization of the lrs and irs mutants revealed that many had alterations in rDNA chromatin structure. Several lrs mutants, including those in the cdc17 and rfc1 genes, caused lengthened telomeres, consistent with the hypothesis that telomere length modulates rDNA silencing. Mutations in the HDB (RPD3) histone deacetylase complex paradoxically increased rDNA silencing by a SIR2-dependent, SIR3-independent mechanism. Mutations in rpd3 also restored mating competence selectively to sir3Delta MATalpha strains, suggesting restoration of silencing at HMR in a sir3 mutant background.
Collapse
MESH Headings
- Chromatin/metabolism
- Chromatin/ultrastructure
- DNA Replication
- DNA, Ribosomal/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genes, Mating Type, Fungal
- Histone Deacetylases
- Models, Genetic
- Mutation
- Phenotype
- RNA, Ribosomal/biosynthesis
- Repressor Proteins/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Selection, Genetic
- Silent Information Regulator Proteins, Saccharomyces cerevisiae
- Sirtuin 2
- Sirtuins
- Telomere/genetics
- Telomere-Binding Proteins
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- J S Smith
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
41
|
Guyon JR, Narlikar GJ, Sif S, Kingston RE. Stable remodeling of tailless nucleosomes by the human SWI-SNF complex. Mol Cell Biol 1999; 19:2088-97. [PMID: 10022896 PMCID: PMC84002 DOI: 10.1128/mcb.19.3.2088] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1998] [Accepted: 12/13/1998] [Indexed: 12/22/2022] Open
Abstract
The histone N-terminal tails have been shown previously to be important for chromatin assembly, remodeling, and stability. We have tested the ability of human SWI-SNF (hSWI-SNF) to remodel nucleosomes whose tails have been cleaved through a limited trypsin digestion. We show that hSWI-SNF is able to remodel tailless mononucleosomes and nucleosomal arrays, although hSWI-SNF remodeling of tailless nucleosomes is less effective than remodeling of nucleosomes with tails. Analogous to previous observations with tailed nucleosomal templates, we show both (i) that hSWI-SNF-remodeled trypsinized mononucleosomes and arrays are stable for 30 min in the remodeled conformation after removal of ATP and (ii) that the remodeled tailless mononucleosome can be isolated on a nondenaturing acrylamide gel as a novel species. Thus, nucleosome remodeling by hSWI-SNF can occur via interactions with a tailless nucleosome core.
Collapse
Affiliation(s)
- J R Guyon
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
42
|
Ren B, Chee KJ, Kim TH, Maniatis T. PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev 1999; 13:125-37. [PMID: 9887105 PMCID: PMC316372 DOI: 10.1101/gad.13.1.125] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The PRDI-BF1/Blimp-1 protein is a transcriptional repressor required for normal B-cell differentiation, and it has been implicated in the repression of beta-interferon (IFN-beta) and c-myc gene expression. Here, we show that PRDI-BF1 represses transcription of the IFN-beta promoter and of an artificial promoter through an active repression mechanism. We also identified a minimal repression domain in PRDI-BF1 that is sufficient for transcriptional repression when tethered to DNA as a Gal4 fusion protein. Remarkably, this repression domain interacts specifically with hGrg, TLE1, and TLE2 proteins, all of which are members of the Groucho family of transcriptional corepressors. In addition, the hGrg protein itself can function as a potent repressor when tethered to DNA through the Gal4 DNA-binding domain. We also find that the amino-terminal glutamine-rich domains of hGrg and TLE1 are sufficient to mediate dimerization of the two Groucho family proteins. Proteins containing only this domain can function as a dominant-negative inhibitor of PRDI-BF1 repression, and can significantly increase the IFN-beta promoter activity after virus induction. We conclude that PRDI-BF1/Blimp-1 represses transcription by recruiting a complex of Groucho family proteins to DNA, and suggest that such corepressor complexes are required for the postinduction repression of the IFN-beta promoter.
Collapse
Affiliation(s)
- B Ren
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
43
|
Friesen H, Tanny JC, Segall J. Spe3, which encodes spermidine synthase, is required for full repression through NRE(DIT) in Saccharomyces cerevisiae. Genetics 1998; 150:59-73. [PMID: 9725830 PMCID: PMC1460323 DOI: 10.1093/genetics/150.1.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously identified a transcriptional regulatory element, which we call NRE(DIT), that is required for repression of the sporulation-specific genes, DIT1 and DIT2, during vegetative growth of Saccharomyces cerevisiae. Repression through this element is dependent on the Ssn6-Tup1 corepressor. In this study, we show that SIN4 contributes to NRE(DIT)-mediated repression, suggesting that changes in chromatin structure are, at least in part, responsible for regulation of DIT gene expression. In a screen for additional genes that function in repression of DIT (FRD genes), we recovered alleles of TUP1, SSN6, SIN4, and ROX3 and identified mutations comprising eight complementation groups of FRD genes. Four of these FRD genes appeared to act specifically in NRE(DIT)mediated repression, and four appeared to be general regulators of gene expression. We cloned the gene complementing the frd3-1 phenotype and found that it was identical to SPE3, which encodes spermidine synthase. Mutant spe3 cells not only failed to support complete repression through NRE(DIT) but also had modest defects in repression of some other genes. Addition of spermidine to the medium partially restored repression to spe3 cells, indicating that spermidine may play a role in vivo as a modulator of gene expression. We suggest various mechanisms by which spermidine could act to repress gene expression.
Collapse
Affiliation(s)
- H Friesen
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
44
|
Kaufman PD, Cohen JL, Osley MA. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol Cell Biol 1998; 18:4793-806. [PMID: 9671489 PMCID: PMC109065 DOI: 10.1128/mcb.18.8.4793] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/1998] [Accepted: 05/14/1998] [Indexed: 02/08/2023] Open
Abstract
Chromatin assembly factor I (CAF-I) is a three-subunit histone-binding complex conserved from the yeast Saccharomyces cerevisiae to humans. Yeast cells lacking CAF-I (cacDelta mutants) have defects in heterochromatic gene silencing. In this study, we showed that deletion of HIR genes, which regulate histone gene expression, synergistically reduced gene silencing at telomeres and at the HM loci in cacDelta mutants, although hirDelta mutants had no silencing defects when CAF-I was intact. Therefore, Hir proteins are required for an alternative silencing pathway that becomes important in the absence of CAF-I. Because Hir proteins regulate expression of histone genes, we tested the effects of histone gene deletion and overexpression on telomeric silencing and found that alterations in histone H3 and H4 levels or in core histone stoichiometry reduced silencing in cacDelta mutants but not in wild-type cells. We therefore propose that Hir proteins contribute to silencing indirectly via regulation of histone synthesis. However, deletion of combinations of CAC and HIR genes also affected the growth rate and in some cases caused partial temperature sensitivity, suggesting that global aspects of chromosome function may be affected by the loss of members of both gene families.
Collapse
Affiliation(s)
- P D Kaufman
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3206, USA.
| | | | | |
Collapse
|
45
|
Abstract
In the past year, the role of chromatin has emerged at the forefront of transcription research. Discovery and characterisation of the chromatin modifying machinery have significantly advanced our understanding of the molecular activities that establish a transcriptionally competent substrate in vivo, and have underscored the importance of the part played by chromatin in the regulation of transcription.
Collapse
Affiliation(s)
- P D Gregory
- Institut für Physiologische Chemie, Universität München, Germany
| | | |
Collapse
|
46
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|