1
|
Nonaka K, Nishimura K, Uesaka K, Mishiro-Sato E, Fukase M, Kato R, Okumura F, Nakatsukasa K, Obara K, Kamura T. Snf1 and yeast GSK3-β activates Tda1 to suppress glucose starvation signaling. EMBO Rep 2025:10.1038/s44319-025-00456-y. [PMID: 40275108 DOI: 10.1038/s44319-025-00456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
In budding yeast, the presence of glucose, a preferred energy source, suppresses the expression of respiration-related genes through a process known as glucose repression. Conversely, under glucose starvation conditions, Snf1 phosphorylates and activates downstream factors, relieving this repression and allowing cells to adapt. Recently, the Tda1 protein kinase has been implicated in these glucose starvation responses, although its function remains largely uncharacterized. In this study, we demonstrate that Snf1 and yeast glycogen synthase kinase 3-beta (GSK3-β) independently phosphorylate and activate Tda1, which in turn phosphorylates Hxk2 at Ser15. The Ser483 and Thr484 residues of Tda1 are critical for its activation by Snf1, while the Ser509 residue is crucial for its activation by yeast GSK3-β. Importantly, under glucose starvation conditions, the TDA1 deletion mutant shows increased expression of respiration-related genes and a faster growth rate compared to wild-type cells, which is opposite to what is observed in SNF1 and yeast GSK3-β deletion mutants. These findings suggest that Tda1 is activated by Snf1 and yeast GSK3-β, and functions as a suppressor of the glucose starvation signaling.
Collapse
Affiliation(s)
- Kazuki Nonaka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Kohei Nishimura
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Kazuma Uesaka
- Graduate School of Bioagricultural Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Emi Mishiro-Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Minako Fukase
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Rei Kato
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Fumihiko Okumura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Fukuoka, 813-8529, Japan
| | - Kunio Nakatsukasa
- Graduate School of Science, Nagoya City University, Nagoya, Aichi, 467-8501, Japan
| | - Keisuke Obara
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Takumi Kamura
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| |
Collapse
|
2
|
Li Y, Lai YH, Lu T. Coarse-Grained Modeling Elucidates Differential Metabolism of Saccharomyces cerevisiae under Varied Nutrient Limitations. ACS Synth Biol 2025. [PMID: 40266044 DOI: 10.1021/acssynbio.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Microorganisms such as Saccharomyces cerevisiae have a native ability to adapt their metabolism to varying nutrient conditions. Understanding their responses to nutrient limitations is critical for decoding cellular physiology and designing strategies for metabolic engineering. While the influence of carbon availability on yeast metabolism has been extensively studied, the role of nitrogen availability remains relatively underexplored. In this study, we utilized a coarse-grained kinetic model to systematically analyze and compare the effects of carbon and nitrogen limitations on yeast metabolism. Our model successfully revealed the differential metabolic characteristics of S. cerevisiae under carbon- and nitrogen-limited chemostat conditions. It also highlighted the significance of protein activity regulation at varying carbon-to-nitrogen ratios, and elucidated distinct strategies employed to maintain ATP homeostasis. This study provides a computational tool for investigating yeast physiology under nutrient limitations and offers quantitative and mechanistic insights into yeast metabolism.
Collapse
Affiliation(s)
- Yifei Li
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi-Hui Lai
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ting Lu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Bhondeley M, Liu Z. GSM1 Requires Hap4 for Expression and Plays a Role in Gluconeogenesis and Utilization of Nonfermentable Carbon Sources. Genes (Basel) 2024; 15:1128. [PMID: 39336719 PMCID: PMC11432098 DOI: 10.3390/genes15091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Multiple transcription factors in the budding yeast Saccharomyces cerevisiae are required for the switch from fermentative growth to respiratory growth. The Hap2/3/4/5 complex is a transcriptional activator that binds to CCAAT sequence elements in the promoters of many genes involved in the tricarboxylic acid cycle and oxidative phosphorylation and activates gene expression. Adr1 and Cat8 are required to activate the expression of genes involved in the glyoxylate cycle, gluconeogenesis, and utilization of nonfermentable carbon sources. Here, we characterize the regulation and function of the zinc cluster transcription factor Gsm1 using Western blotting and lacZ reporter-gene analysis. GSM1 is subject to glucose repression, and it requires a CCAAT sequence element for Hap2/3/4/5-dependent expression under glucose-derepression conditions. Genome-wide CHIP analyses revealed many potential targets. We analyzed 29 of them and found that FBP1, LPX1, PCK1, SFC1, and YAT1 require both Gsm1 and Hap4 for optimal expression. FBP1, PCK1, SFC1, and YAT1 play important roles in gluconeogenesis and utilization of two-carbon compounds, and they are known to be regulated by Cat8. GSM1 overexpression in cat8Δ mutant cells increases the expression of these target genes and suppresses growth defects in cat8Δ mutants on lactate medium. We propose that Gsm1 and Cat8 have shared functions in gluconeogenesis and utilization of nonfermentable carbon sources and that Cat8 is the primary regulator.
Collapse
Affiliation(s)
- Manika Bhondeley
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
- Kudo Biotechnology, 117 Kendrick Street, Needham, MA 02494, USA
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
4
|
Sunder S, Bauman JS, Decker SJ, Lifton AR, Kumar A. The yeast AMP-activated protein kinase Snf1 phosphorylates the inositol polyphosphate kinase Kcs1. J Biol Chem 2024; 300:105657. [PMID: 38224949 PMCID: PMC10851228 DOI: 10.1016/j.jbc.2024.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
The yeast Snf1/AMP-activated kinase (AMPK) maintains energy homeostasis, controlling metabolic processes and glucose derepression in response to nutrient levels and environmental cues. Under conditions of nitrogen or glucose limitation, Snf1 regulates pseudohyphal growth, a morphological transition characterized by the formation of extended multicellular filaments. During pseudohyphal growth, Snf1 is required for wild-type levels of inositol polyphosphate (InsP), soluble phosphorylated species of the six-carbon cyclitol inositol that function as conserved metabolic second messengers. InsP levels are established through the activity of a family of inositol kinases, including the yeast inositol polyphosphate kinase Kcs1, which principally generates pyrophosphorylated InsP7. Here, we report that Snf1 regulates Kcs1, affecting Kcs1 phosphorylation and inositol kinase activity. A snf1 kinase-defective mutant exhibits decreased Kcs1 phosphorylation, and Kcs1 is phosphorylated in vivo at Ser residues 537 and 646 during pseudohyphal growth. By in vitro analysis, Snf1 directly phosphorylates Kcs1, predominantly at amino acids 537 and 646. A yeast strain carrying kcs1 encoding Ser-to-Ala point mutations at these residues (kcs1-S537A,S646A) shows elevated levels of pyrophosphorylated InsP7, comparable to InsP7 levels observed upon deletion of SNF1. The kcs1-S537A,S646A mutant exhibits decreased pseudohyphal growth, invasive growth, and cell elongation. Transcriptional profiling indicates extensive perturbation of metabolic pathways in kcs1-S537A,S646A. Growth of kcs1-S537A,S646A is affected on medium containing sucrose and antimycin A, consistent with decreased Snf1p signaling. This work identifies Snf1 phosphorylation of Kcs1, collectively highlighting the interconnectedness of AMPK activity and InsP signaling in coordinating nutrient availability, energy homoeostasis, and cell growth.
Collapse
Affiliation(s)
- Sham Sunder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua S Bauman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stuart J Decker
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandra R Lifton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
Deng H, Du Z, Lu S, Wang Z, He X. Regulation of Cat8 in energy metabolic balance and glucose tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12593-2. [PMID: 37249587 DOI: 10.1007/s00253-023-12593-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Cat8 is a C6 zinc cluster transcription activator in yeast. It is generally recognized that the transcription of CAT8 is inhibited and that Cat8 is inactive in the presence of high concentrations of glucose. However, our recent study found that constitutively overexpressed Cat8 played a regulatory role in Saccharomyces cerevisiae in the presence of 20 g/L glucose. To explore the regulatory network of Cat8 at high glucose concentrations, CAT8 was both overexpressed and deleted in this study. Cell growth and glucose consumption in different media were significantly accelerated by the deletion of CAT8, while the lag period was greatly shortened. RNA-seq and genetic modification showed that the deletion of CAT8 changed the type of energy metabolism in yeast cells. Many genes related to the mitochondrial respiratory chain were downregulated, resulting in a reduction in aerobic respiration and the tricarboxylic acid cycle. Meanwhile, both the energy supply of anaerobic ethanol fermentation and the Crabtree effect of S. cerevisiae were enhanced by the deletion of CAT8. CAT8 knockout cells show a higher sugar uptake rate, a higher cell growth rate, and higher tolerance to glucose than the wild-type strain YS58. This study expands the understanding of the regulatory network of Cat8 and provides guidance for modulating yeast cell growth. KEY POINTS: • The deletion of CAT8 promoted cell growth of S. cerevisiae. • Transcriptome analysis revealed the regulation network of Cat8 under 1% glucose condition. • CAT8 deletion increases the glucose tolerance of cells by enhancing the Crabtree effect.
Collapse
Affiliation(s)
- Hong Deng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengda Du
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Surui Lu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Sun Q, Dong B, Yang D, Yu J, Ren T, Wang T, Yang L, Lu Y, Su C. Zcf24, a zinc-finger transcription factor, is required for lactate catabolism and inhibits commensalism in Candida albicans. Mol Microbiol 2023; 119:112-125. [PMID: 36545847 DOI: 10.1111/mmi.15015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Candida albicans is a normal resident of humans and also a prevalent fungal pathogen. Lactate, a nonfermentative carbon source available in numerous anatomical niches, can be used by C. albicans as a carbon source. However, the key regulator(s) involved in this process remain unknown. Here, through a genetic screen, we report the identification of a transcription factor Zcf24 that is specifically required for lactate utilization in C. albicans. Zcf24 is responsible for the induction of CYB2, a gene encoding lactate dehydrogenase that is essential for lactate catabolism, in response to lactate. Chromatin immunoprecipitation showed a significantly higher signal of Zcf24 on the CYB2 promoter in lactate-grown cells than that in glucose-grown cells. Genome-wide transcription profiling indicates that, in addition to CYB2, Zcf24 regulates genes involved in the β-oxidation of fatty acids, iron transport, and drug transport. Surprisingly, deleting ZCF24 confers enhanced commensal fitness. This could be attributed to Crz1-activated β-glucan masking in the zcf24 mutant. The orthologs of Zcf24 are distributed in species most closely to C. albicans and some filamentous fungal species. Altogether, Zcf24 is the first transcription factor identified to date that regulates lactate catabolism in C. albicans and it is also involved in the regulation of commensalism.
Collapse
Affiliation(s)
- Qiangqiang Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bin Dong
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Dandan Yang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tianhao Ren
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Tianxu Wang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lianjuan Yang
- Shanghai Dermatology Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Lu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Du Z, Deng H, Cheng Y, Zhai Z, Guo X, Wang Z, He X. Cat8 Response to Nutritional Changes and Interaction With Ehrlich Pathway Related Factors. Front Microbiol 2022; 13:898938. [PMID: 35783377 PMCID: PMC9245043 DOI: 10.3389/fmicb.2022.898938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cat8 is an important transcription factor regulating the utilization of non-fermentative carbon sources in Saccharomyces cerevisiae. However, our previous studies found that Cat8 may play a critical role in nitrogen metabolism, but the regulatory mechanism has not been elucidated. In this study, the nuclear localization and analysis of regulatory activity showed that the Cat8 function relies on Snf1 kinase. In the fermentation with glucose or glycerol as carbon sources under phenylalanine (Phe) induction, by comparing the changes of cellular gene expression and Cat8 target gene binding profiles after Cat8 overexpression, enhanced transcription was shown among key genes involved in the Ehrlich pathway (e.g., ARO9, ARO10, and ADH2) and its upstream and downstream related factors (e.g., GAP1, AGP1, GAT1, PDR12, and ESPB6), indicating that Cat8 participated in the regulation of nitrogen metabolism. Moreover, highly active Cat8 interacts with transcriptional activator Aro80 and GATA activator Gat1 coordinately to regulate the transcription of ARO10. Altogether, our results showed that Cat8 may act as a global transcription factor in response to nutritional changes, regulating both carbon and nitrogen utilization. This provides a new insight for us to explore the regulation of cell nutrient metabolism networks in yeast.
Collapse
Affiliation(s)
- Zhengda Du
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Hong Deng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Yanfei Cheng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiguang Zhai
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhaoyue Wang,
| | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
- Xiuping He,
| |
Collapse
|
8
|
Peterson PP, Liu Z. Identification and Characterization of Rapidly Accumulating sch9Δ Suppressor Mutations in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2021; 11:6254187. [PMID: 33901283 DOI: 10.1093/g3journal/jkab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 01/30/2023]
Abstract
Nutrient sensing is important for cell growth, aging, and longevity. In Saccharomyces cerevisiae, Sch9, an AGC-family protein kinase, is a major nutrient sensing kinase homologous to mammalian Akt and S6 kinase. Sch9 integrates environmental cues with cell growth by functioning downstream of TORC1 and in parallel with the Ras/PKA pathway. Mutations in SCH9 lead to reduced cell growth in dextrose medium; however, reports on the ability of sch9Δ mutants to utilize non-fermentable carbon sources are inconsistent. Here we show that sch9Δ mutant strains cannot grow on non-fermentable carbon sources and rapidly accumulate suppressor mutations, which reverse growth defects of sch9Δ mutants. sch9Δ induces gene expression of three transcription factors required for utilization of non-fermentable carbon sources, Cat8, Adr1, and Hap4, while sch9Δ suppressor mutations, termed sns1 and sns2, strongly decrease the gene expression of those transcription factors. Despite the genetic suppression interactions, both sch9Δ and sns1 (or sns2) homozygous mutants have severe defects in meiosis. By screening mutants defective in sporulation, we identified additional sch9Δ suppressor mutants with mutations in GPB1, GPB2, and MCK1. Using library complementation and genetic analysis, we identified SNS1 and SNS2 to be IRA2 and IRA1, respectively. Furthermore, we discovered that lifespan extension in sch9Δ mutants is dependent on IRA2 and that PKA inactivation greatly increases basal expression of CAT8, ADR1, and HAP4. Our results demonstrate that sch9Δ leads to complete loss of growth on non-fermentable carbon sources and mutations in MCK1 or genes encoding negative regulators of the Ras/PKA pathway reverse sch9Δ mutant phenotypes.
Collapse
Affiliation(s)
- Patricia P Peterson
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
9
|
Rashida Z, Srinivasan R, Cyanam M, Laxman S. Kog1/Raptor mediates metabolic rewiring during nutrient limitation by controlling SNF1/AMPK activity. SCIENCE ADVANCES 2021; 7:eabe5544. [PMID: 33853774 PMCID: PMC8046376 DOI: 10.1126/sciadv.abe5544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/26/2021] [Indexed: 05/04/2023]
Abstract
In changing environments, cells modulate resource budgeting through distinct metabolic routes to control growth. Accordingly, the TORC1 and SNF1/AMPK pathways operate contrastingly in nutrient replete or limited environments to maintain homeostasis. The functions of TORC1 under glucose and amino acid limitation are relatively unknown. We identified a modified form of the yeast TORC1 component Kog1/Raptor, which exhibits delayed growth exclusively during glucose and amino acid limitations. Using this, we found a necessary function for Kog1 in these conditions where TORC1 kinase activity is undetectable. Metabolic flux and transcriptome analysis revealed that Kog1 controls SNF1-dependent carbon flux apportioning between glutamate/amino acid biosynthesis and gluconeogenesis. Kog1 regulates SNF1/AMPK activity and outputs and mediates a rapamycin-independent activation of the SNF1 targets Mig1 and Cat8. This enables effective glucose derepression, gluconeogenesis activation, and carbon allocation through different pathways. Therefore, Kog1 centrally regulates metabolic homeostasis and carbon utilization during nutrient limitation by managing SNF1 activity.
Collapse
Affiliation(s)
- Zeenat Rashida
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Rajalakshmi Srinivasan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
| | - Meghana Cyanam
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
10
|
Two homologs of the Cat8 transcription factor are involved in the regulation of ethanol utilization in Komagataella phaffii. Curr Genet 2021; 67:641-661. [PMID: 33725138 PMCID: PMC8254726 DOI: 10.1007/s00294-021-01165-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/26/2022]
Abstract
The transcription factors Cat8 and Sip4 were described in Saccharomyces cerevisiae and Kluyveromyces lactis to have very similar DNA binding domains and to be necessary for derepression of a variety of genes under non-fermentative growth conditions via binding to the carbon source responsive elements (CSREs). The methylotrophic yeast Komagataella phaffii (syn Pichia pastoris) has two transcription factors (TFs), which are putative homologs of Cat8 based on sequence similarity, termed Cat8-1 and Cat8-2. It is yet unclear in which cellular processes they are involved and if one of them is actually the homolog of Sip4. To study the roles of the Cat8 homologs in K. phaffii, overexpression or deletion strains were generated for the two TFs. The ability of these mutant strains to grow on different carbon sources was tested, and transcript levels of selected genes from the carbon metabolism were quantified. Our experiments showed that the TFs are required for the growth of K. phaffii on C2 carbon sources, but not on glucose, glycerol or methanol. K. phaffii deleted for Cat8-1 showed impaired growth on acetate, while both Cat8-1 and Cat8-2 are involved in the growth of K. phaffii on ethanol. Correspondingly, both TFs are participating in the activation of ADH2, ALD4 and ACS1, three genes encoding enzymes important for the assimilation of ethanol. Different from S. cerevisiae and K. lactis, Cat8-1 is not regulating the transcription of the putative Sip4-family member Cat8-2 in K. phaffii. Furthermore, Cat8-1 is necessary for the activation of genes from the glyoxylate cycle, whereas Cat8-2 is necessary for the activation of genes from the carnitine shuttle. Neither Cat8-1 nor Cat8-2 are required for the activation of gluconeogenesis genes. Finally, the CAT8-2 gene is repressed by the Mig1-2 transcription factor on glucose and autorepressed by the Cat8-2 protein on all tested carbon sources. Our study identified the involvement of K. phaffii Cat8-1 and Cat8-2 in C2-metabolism, and highlighted similarities and differences to their homologs in other yeast species.
Collapse
|
11
|
Oh S, Lee J, Swanson SK, Florens L, Washburn MP, Workman JL. Yeast Nuak1 phosphorylates histone H3 threonine 11 in low glucose stress by the cooperation of AMPK and CK2 signaling. eLife 2020; 9:e64588. [PMID: 33372657 PMCID: PMC7781599 DOI: 10.7554/elife.64588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/26/2020] [Indexed: 12/26/2022] Open
Abstract
Changes in available nutrients are inevitable events for most living organisms. Upon nutritional stress, several signaling pathways cooperate to change the transcription program through chromatin regulation to rewire cellular metabolism. In budding yeast, histone H3 threonine 11 phosphorylation (H3pT11) acts as a marker of low glucose stress and regulates the transcription of nutritional stress-responsive genes. Understanding how this histone modification 'senses' external glucose changes remains elusive. Here, we show that Tda1, the yeast ortholog of human Nuak1, is a direct kinase for H3pT11 upon low glucose stress. Yeast AMP-activated protein kinase (AMPK) directly phosphorylates Tda1 to govern Tda1 activity, while CK2 regulates Tda1 nuclear localization. Collectively, AMPK and CK2 signaling converge on histone kinase Tda1 to link external low glucose stress to chromatin regulation.
Collapse
Affiliation(s)
- Seunghee Oh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Jaehyoun Lee
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | - Michael P Washburn
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical CenterKansas CityUnited States
| | - Jerry L Workman
- Stowers Institute for Medical ResearchKansas CityUnited States
| |
Collapse
|
12
|
Transcriptional regulatory proteins in central carbon metabolism of Pichia pastoris and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:7273-7311. [PMID: 32651601 DOI: 10.1007/s00253-020-10680-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 01/21/2023]
Abstract
System-wide interactions in living cells and discovery of the diverse roles of transcriptional regulatory proteins that are mediator proteins with catalytic domains and regulatory subunits and transcription factors in the cellular pathways have become crucial for understanding the cellular response to environmental conditions. This review provides information for future metabolic engineering strategies through analyses on the highly interconnected regulatory networks in Saccharomyces cerevisiae and Pichia pastoris and identifying their components. We discuss the current knowledge on the carbon catabolite repression (CCR) mechanism, interconnecting regulatory system of the central metabolic pathways that regulate cell metabolism based on nutrient availability in the industrial yeasts. The regulatory proteins and their functions in the CCR signalling pathways in both yeasts are presented and discussed. We highlight the importance of metabolic signalling networks by signifying ways on how effective engineering strategies can be designed for generating novel regulatory circuits, furthermore to activate pathways that reconfigure the network architecture. We summarize the evidence that engineering of multilayer regulation is needed for directed evolution of the cellular network by putting the transcriptional control into a new perspective for the regulation of central carbon metabolism of the industrial yeasts; furthermore, we suggest research directions that may help to enhance production of recombinant products in the widely used, creatively engineered, but relatively less studied P. pastoris through de novo metabolic engineering strategies based on the discovery of components of signalling pathways in CCR metabolism. KEY POINTS: • Transcriptional regulation and control is the key phenomenon in the cellular processes. • Designing de novo metabolic engineering strategies depends on the discovery of signalling pathways in CCR metabolism. • Crosstalk between pathways occurs through essential parts of transcriptional machinery connected to specific catalytic domains. • In S. cerevisiae, a major part of CCR metabolism is controlled through Snf1 kinase, Glc7 phosphatase, and Srb10 kinase. • In P. pastoris, signalling pathways in CCR metabolism have not yet been clearly known yet. • Cellular regulations on the transcription of promoters are controlled with carbon sources.
Collapse
|
13
|
Tripodi F, Castoldi A, Nicastro R, Reghellin V, Lombardi L, Airoldi C, Falletta E, Maffioli E, Scarcia P, Palmieri L, Alberghina L, Agrimi G, Tedeschi G, Coccetti P. Methionine supplementation stimulates mitochondrial respiration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1901-1913. [PMID: 30290237 DOI: 10.1016/j.bbamcr.2018.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
Abstract
Mitochondria play essential metabolic functions in eukaryotes. Although their major role is the generation of energy in the form of ATP, they are also involved in maintenance of cellular redox state, conversion and biosynthesis of metabolites and signal transduction. Most mitochondrial functions are conserved in eukaryotic systems and mitochondrial dysfunctions trigger several human diseases. By using multi-omics approach, we investigate the effect of methionine supplementation on yeast cellular metabolism, considering its role in the regulation of key cellular processes. Methionine supplementation induces an up-regulation of proteins related to mitochondrial functions such as TCA cycle, electron transport chain and respiration, combined with an enhancement of mitochondrial pyruvate uptake and TCA cycle activity. This metabolic signature is more noticeable in cells lacking Snf1/AMPK, the conserved signalling regulator of energy homeostasis. Remarkably, snf1Δ cells strongly depend on mitochondrial respiration and suppression of pyruvate transport is detrimental for this mutant in methionine condition, indicating that respiration mostly relies on pyruvate flux into mitochondrial pathways. These data provide new insights into the regulation of mitochondrial metabolism and extends our understanding on the role of methionine in regulating energy signalling pathways.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Andrea Castoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Veronica Reghellin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Linda Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | | | - Elisa Maffioli
- DIMEVET - Department of Veterinary Medicine, University of Milano, Milan, Italy
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy.
| | - Gabriella Tedeschi
- DIMEVET - Department of Veterinary Medicine, University of Milano, Milan, Italy.
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy.
| |
Collapse
|
14
|
Coccetti P, Nicastro R, Tripodi F. Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae. MICROBIAL CELL 2018; 5:482-494. [PMID: 30483520 PMCID: PMC6244292 DOI: 10.15698/mic2018.11.655] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
All proliferating cells need to match metabolism, growth and cell cycle progression with nutrient availability to guarantee cell viability in spite of a changing environment. In yeast, a signaling pathway centered on the effector kinase Snf1 is required to adapt to nutrient limitation and to utilize alternative carbon sources, such as sucrose and ethanol. Snf1 shares evolutionary conserved functions with the AMP-activated Kinase (AMPK) in higher eukaryotes which, activated by energy depletion, stimulates catabolic processes and, at the same time, inhibits anabolism. Although the yeast Snf1 is best known for its role in responding to a number of stress factors, in addition to glucose limitation, new unconventional roles of Snf1 have recently emerged, even in glucose repressing and unstressed conditions. Here, we review and integrate available data on conventional and non-conventional functions of Snf1 to better understand the complexity of cellular physiology which controls energy homeostasis.
Collapse
Affiliation(s)
- Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Present address: Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| |
Collapse
|
15
|
Tripodi F, Fraschini R, Zocchi M, Reghellin V, Coccetti P. Snf1/AMPK is involved in the mitotic spindle alignment in Saccharomyces cerevisiae. Sci Rep 2018; 8:5853. [PMID: 29643469 PMCID: PMC5895576 DOI: 10.1038/s41598-018-24252-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
Before anaphase onset, budding yeast cells must align the mitotic spindle parallel to the mother-bud axis to ensure proper chromosome segregation. The protein kinase Snf1/AMPK is a highly conserved energy sensor, essential for adaptation to glucose limitation and in response to cellular stresses. However, recent findings indicate that it plays important functions also in non-limiting glucose conditions. Here we report a novel role of Snf1/AMPK in the progression through mitosis in glucose-repressing condition. We show that active Snf1 is localized to the bud neck from bud emergence to cytokinesis in a septin-dependent manner. In addition, loss of Snf1 induces a delay of the metaphase to anaphase transition that is due to a defect in the correct alignment of the mitotic spindle. In particular, genetic data indicate that Snf1 promotes spindle orientation acting in parallel with Dyn1 and in concert with Kar9. Altogether this study describes a new role for Snf1 in mitosis and connects cellular metabolism to mitosis progression.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy. .,SYSBIO, Centre of Systems Biology, Milan, Italy.
| | - Roberta Fraschini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Monica Zocchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.,Museo della Scienza e della Tecnologia Leonardo da Vinci, Milano, Italy
| | - Veronica Reghellin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.,Eurofins BioPharma, Vimodrone, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy. .,SYSBIO, Centre of Systems Biology, Milan, Italy.
| |
Collapse
|
16
|
Maqani N, Fine RD, Shahid M, Li M, Enriquez-Hesles E, Smith JS. Spontaneous mutations in CYC8 and MIG1 suppress the short chronological lifespan of budding yeast lacking SNF1/AMPK. MICROBIAL CELL 2018; 5:233-248. [PMID: 29796388 PMCID: PMC5961917 DOI: 10.15698/mic2018.05.630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronologically aging yeast cells are prone to adaptive regrowth, whereby mutants with a survival advantage spontaneously appear and re-enter the cell cycle in stationary phase cultures. Adaptive regrowth is especially noticeable with short-lived strains, including those defective for SNF1, the homolog of mammalian AMP-activated protein kinase (AMPK). SNF1 becomes active in response to multiple environmental stresses that occur in chronologically aging cells, including glucose depletion and oxidative stress. SNF1 is also required for the extension of chronological lifespan (CLS) by caloric restriction (CR) as defined as limiting glucose at the time of culture inoculation. To identify specific downstream SNF1 targets responsible for CLS extension during CR, we screened for adaptive regrowth mutants that restore chronological longevity to a short-lived snf1∆ parental strain. Whole genome sequencing of the adapted mutants revealed missense mutations in TPR motifs 9 and 10 of the transcriptional co-repressor Cyc8 that specifically mediate repression through the transcriptional repressor Mig1. Another mutation occurred in MIG1 itself, thus implicating the activation of Mig1-repressed genes as a key function of SNF1 in maintaining CLS. Consistent with this conclusion, the cyc8 TPR mutations partially restored growth on alternative carbon sources and significantly extended CLS compared to the snf1∆ parent. Furthermore, cyc8 TPR mutations reactivated multiple Mig1-repressed genes, including the transcription factor gene CAT8, which is responsible for activating genes of the glyoxylate and gluconeogenesis pathways. Deleting CAT8 completely blocked CLS extension by the cyc8 TPR mutations on CLS, identifying these pathways as key Snf1-regulated CLS determinants.
Collapse
Affiliation(s)
- Nazif Maqani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Ryan D Fine
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mehreen Shahid
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mingguang Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908.,Department of Laboratory Medicine, Jilin Medical University, Jilin, 132013, China
| | - Elisa Enriquez-Hesles
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
17
|
Galello F, Pautasso C, Reca S, Cañonero L, Portela P, Moreno S, Rossi S. Transcriptional regulation of the protein kinase a subunits inSaccharomyces cerevisiaeduring fermentative growth. Yeast 2017; 34:495-508. [DOI: 10.1002/yea.3252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/26/2017] [Accepted: 08/09/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica and CONICET - Universidad de Buenos Aires; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Buenos Aires Argentina
| | - Constanza Pautasso
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica and CONICET - Universidad de Buenos Aires; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Buenos Aires Argentina
| | - Sol Reca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica and CONICET - Universidad de Buenos Aires; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Buenos Aires Argentina
| | - Luciana Cañonero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica and CONICET - Universidad de Buenos Aires; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Buenos Aires Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica and CONICET - Universidad de Buenos Aires; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Buenos Aires Argentina
| | - Silvia Moreno
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica and CONICET - Universidad de Buenos Aires; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Buenos Aires Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica and CONICET - Universidad de Buenos Aires; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Buenos Aires Argentina
| |
Collapse
|
18
|
Wierman MB, Maqani N, Strickler E, Li M, Smith JS. Caloric Restriction Extends Yeast Chronological Life Span by Optimizing the Snf1 (AMPK) Signaling Pathway. Mol Cell Biol 2017; 37:e00562-16. [PMID: 28373292 PMCID: PMC5472825 DOI: 10.1128/mcb.00562-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/04/2016] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
AMP-activated protein kinase (AMPK) and the homologous yeast SNF1 complex are key regulators of energy metabolism that counteract nutrient deficiency and ATP depletion by phosphorylating multiple enzymes and transcription factors that maintain energetic homeostasis. AMPK/SNF1 also promotes longevity in several model organisms, including yeast. Here we investigate the role of yeast SNF1 in mediating the extension of chronological life span (CLS) by caloric restriction (CR). We find that SNF1 activity is required throughout the transition of log phase to stationary phase (diauxic shift) for effective CLS extension. CR expands the period of maximal SNF1 activation beyond the diauxic shift, as indicated by Sak1-dependent T210 phosphorylation of the Snf1 catalytic α-subunit. A concomitant increase in ADP is consistent with SNF1 activation by ADP in vivo Downstream of SNF1, the Cat8 and Adr1 transcription factors are required for full CR-induced CLS extension, implicating an alternative carbon source utilization for acetyl coenzyme A (acetyl-CoA) production and gluconeogenesis. Indeed, CR increased acetyl-CoA levels during the diauxic shift, along with expression of both acetyl-CoA synthetase genes ACS1 and ACS2 We conclude that CR maximizes Snf1 activity throughout and beyond the diauxic shift, thus optimizing the coordination of nucleocytosolic acetyl-CoA production with massive reorganization of the transcriptome and respiratory metabolism.
Collapse
Affiliation(s)
- Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nazif Maqani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Erika Strickler
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mingguang Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
19
|
Ruchala J, Kurylenko OO, Soontorngun N, Dmytruk KV, Sibirny AA. Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha. Microb Cell Fact 2017; 16:36. [PMID: 28245828 PMCID: PMC5331723 DOI: 10.1186/s12934-017-0652-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 11/16/2022] Open
Abstract
Background Efficient xylose alcoholic fermentation is one of the key to a successful lignocellulosic ethanol production. However, regulation of this process in the native xylose-fermenting yeasts is poorly understood. In this work, we paid attention to the transcriptional factor Cat8 and its possible role in xylose alcoholic fermentation in Ogataea (Hansenula) polymorpha. In Saccharomyces cerevisiae, organism, which does not metabolize xylose, gene CAT8 encodes a Zn-cluster transcriptional activator necessary for expression of genes involved in gluconeogenesis, respiration, glyoxylic cycle and ethanol utilization. Xylose is a carbon source that could be fermented to ethanol and simultaneously could be used in gluconeogenesis for hexose synthesis. This potentially suggests involvement of CAT8 in xylose metabolism. Results Here, the role of CAT8 homolog in the natural xylose-fermenting thermotolerant yeast O. polymorpha was characterized. The CAT8 ortholog was identified in O. polymorpha genome and deleted both in the wild-type strain and in advanced ethanol producer from xylose. Constructed cat8Δ strain isolated from wild strain showed diminished growth on glycerol, ethanol and xylose as well as diminished respiration on the last substrate. At the same time, cat8Δ mutant isolated from the best available O. polymorpha ethanol producer showed only visible defect in growth on ethanol. CAT8 deletant was characterized by activated transcription of genes XYL3, DAS1 and RPE1 and slight increase in the activity of several enzymes involved in xylose metabolism and alcoholic fermentation. Ethanol production from xylose in cat8Δ mutants in the background of wild-type strain and the best available ethanol producer from xylose increased for 50 and 30%, respectively. The maximal titer of ethanol during xylose fermentation was 12.5 g ethanol/L at 45 °C. Deletion of CAT8 did not change ethanol production from glucose. Gene CAT8 was also overexpressed under control of the strong constitutive promoter GAP of glyceraldehyde-3-phosphate dehydrogenase. Corresponding strains showed drop in ethanol production in xylose medium whereas glucose alcoholic fermentation remained unchanged. Available data suggest on specific role of Cat8 in xylose alcoholic fermentation. Conclusions The CAT8 gene is one of the first identified genes specifically involved in regulation of xylose alcoholic fermentation in the natural xylose-fermenting yeast O. polymorpha. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0652-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005, Ukraine
| | | | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland. .,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005, Ukraine.
| |
Collapse
|
20
|
Wang Z, Bai X, Guo X, He X. Regulation of crucial enzymes and transcription factors on 2-phenylethanol biosynthesis via Ehrlich pathway in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2016; 44:129-139. [PMID: 27770224 DOI: 10.1007/s10295-016-1852-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/06/2016] [Indexed: 11/26/2022]
Abstract
2-Phenylethanol (2-PE) is widely used in food, perfume and pharmaceutical industry, but lower production in microbes and less known regulatory mechanisms of 2-PE make further study necessary. In this study, crucial genes like ARO8 and ARO10 of Ehrlich pathway for 2-PE synthesis and key transcription factor ARO80 in Saccharomyces cerevisiae were re-regulated using constitutive promoter; in the meantime, the effect of nitrogen source in synthetic complete (SC) medium with L-phenylalanine (L-Phe) on Aro8/Aro9 and Aro10 was investigated. The results showed that aromatic aminotransferase activities of ARO8 over-expressing strains were seriously inhibited by ammonia sulfate in SC + Phe medium. Flask fermentation test demonstrated that over-expressing ARO8 or ARO10 led to about 42 % increase in 2-PE production when compared with the control strain. Furthermore, influence of transcription factors Cat8 and Mig1 on 2-PE biosynthesis was explored. CAT8 over-expression or MIG1 deletion increased in the transcription of ARO9 and ARO10. 2-PE production of CAT8 over-expressing strain was 62 % higher than that of control strain. Deletion of MIG1 also led to 2-PE biosynthesis enhancement. The strain of CAT8 over-expression and MIG1 deletion was most effective in regulating expression of ARO9 and ARO10. Analysis of mRNA levels and enzyme activities indicates that transaminase in Ehrlich pathway is the crucial target of Nitrogen Catabolize Repression (NCR). Among the engineering strains, the higher 3.73 g/L 2-PE production in CAT8 over-expressing strain without in situ product recovery suggests that the robust strain has potentiality for commercial exploitation.
Collapse
Affiliation(s)
- Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xuejing Bai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
21
|
Deroover S, Ghillebert R, Broeckx T, Winderickx J, Rolland F. Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1. FEMS Yeast Res 2016; 16:fow036. [PMID: 27189362 DOI: 10.1093/femsyr/fow036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2016] [Indexed: 11/12/2022] Open
Abstract
Trehalose-6-P (T6P), an intermediate of trehalose biosynthesis, was identified as an important regulator of yeast sugar metabolism and signaling. tps1Δ mutants, deficient in T6P synthesis (TPS), are unable to grow on rapidly fermentable medium with uncontrolled influx in glycolysis, depletion of ATP and accumulation of sugar phosphates. However, the exact molecular mechanisms involved are not fully understood. We show that SNF1 deletion restores the tps1Δ growth defect on glucose, suggesting that lack of TPS hampers inactivation of SNF1 or SNF1-regulated processes. In addition to alternative, non-fermentable carbon metabolism, SNF1 controls two major processes: respiration and gluconeogenesis. The tps1Δ defect appears to be specifically associated with deficient inhibition of gluconeogenesis, indicating more downstream effects. Consistently, Snf1 dephosphorylation and inactivation on glucose medium are not affected, as confirmed with an in vivo Snf1 activity reporter. Detailed analysis shows that gluconeogenic Pck1 and Fbp1 expression, protein levels and activity are not repressed upon glucose addition to tps1Δ cells, suggesting a link between the metabolic defect and persistent gluconeogenesis. While SNF1 is essential for induction of gluconeogenesis, T6P/TPS is required for inactivation of gluconeogenesis in the presence of glucose, downstream and independent of SNF1 activity and the Cat8 and Sip4 transcription factors.
Collapse
Affiliation(s)
- Sofie Deroover
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Ruben Ghillebert
- Laboratory of Functional Biology, Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Tom Broeckx
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Joris Winderickx
- Laboratory of Functional Biology, Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
22
|
Casal M, Queirós O, Talaia G, Ribas D, Paiva S. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:229-251. [PMID: 26721276 DOI: 10.1007/978-3-319-25304-6_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.
Collapse
Affiliation(s)
- Margarida Casal
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Odília Queirós
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Gabriel Talaia
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - David Ribas
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sandra Paiva
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
23
|
Lubitz T, Welkenhuysen N, Shashkova S, Bendrioua L, Hohmann S, Klipp E, Krantz M. Network reconstruction and validation of the Snf1/AMPK pathway in baker's yeast based on a comprehensive literature review. NPJ Syst Biol Appl 2015; 1:15007. [PMID: 28725459 PMCID: PMC5516868 DOI: 10.1038/npjsba.2015.7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/19/2015] [Accepted: 07/14/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND/OBJECTIVES The SNF1/AMPK protein kinase has a central role in energy homeostasis in eukaryotic cells. It is activated by energy depletion and stimulates processes leading to the production of ATP while it downregulates ATP-consuming processes. The yeast SNF1 complex is best known for its role in glucose derepression. METHODS We performed a network reconstruction of the Snf1 pathway based on a comprehensive literature review. The network was formalised in the rxncon language, and we used the rxncon toolbox for model validation and gap filling. RESULTS We present a machine-readable network definition that summarises the mechanistic knowledge of the Snf1 pathway. Furthermore, we used the known input/output relationships in the network to identify and fill gaps in the information transfer through the pathway, to produce a functional network model. Finally, we convert the functional network model into a rule-based model as a proof-of-principle. CONCLUSIONS The workflow presented here enables large scale reconstruction, validation and gap filling of signal transduction networks. It is analogous to but distinct from that established for metabolic networks. We demonstrate the workflow capabilities, and the direct link between the reconstruction and dynamic modelling, with the Snf1 network. This network is a distillation of the knowledge from all previous publications on the Snf1/AMPK pathway. The network is a knowledge resource for modellers and experimentalists alike, and a template for similar efforts in higher eukaryotes. Finally, we envisage the workflow as an instrumental tool for reconstruction of large signalling networks across Eukaryota.
Collapse
Affiliation(s)
- Timo Lubitz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niek Welkenhuysen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Sviatlana Shashkova
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Loubna Bendrioua
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Krantz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
24
|
Mehlgarten C, Krijger JJ, Lemnian I, Gohr A, Kasper L, Diesing AK, Grosse I, Breunig KD. Divergent Evolution of the Transcriptional Network Controlled by Snf1-Interacting Protein Sip4 in Budding Yeasts. PLoS One 2015; 10:e0139464. [PMID: 26440109 PMCID: PMC4634231 DOI: 10.1371/journal.pone.0139464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/14/2015] [Indexed: 11/19/2022] Open
Abstract
Cellular responses to starvation are of ancient origin since nutrient limitation has always been a common challenge to the stability of living systems. Hence, signaling molecules involved in sensing or transducing information about limiting metabolites are highly conserved, whereas transcription factors and the genes they regulate have diverged. In eukaryotes the AMP-activated protein kinase (AMPK) functions as a central regulator of cellular energy homeostasis. The yeast AMPK ortholog SNF1 controls the transcriptional network that counteracts carbon starvation conditions by regulating a set of transcription factors. Among those Cat8 and Sip4 have overlapping DNA-binding specificity for so-called carbon source responsive elements and induce target genes upon SNF1 activation. To analyze the evolution of the Cat8-Sip4 controlled transcriptional network we have compared the response to carbon limitation of Saccharomyces cerevisiae to that of Kluyveromyces lactis. In high glucose, S. cerevisiae displays tumor cell-like aerobic fermentation and repression of respiration (Crabtree-positive) while K. lactis has a respiratory-fermentative life-style, respiration being regulated by oxygen availability (Crabtree-negative), which is typical for many yeasts and for differentiated higher cells. We demonstrate divergent evolution of the Cat8-Sip4 network and present evidence that a role of Sip4 in controlling anabolic metabolism has been lost in the Saccharomyces lineage. We find that in K. lactis, but not in S. cerevisiae, the Sip4 protein plays an essential role in C2 carbon assimilation including induction of the glyoxylate cycle and the carnitine shuttle genes. Induction of KlSIP4 gene expression by KlCat8 is essential under these growth conditions and a primary function of KlCat8. Both KlCat8 and KlSip4 are involved in the regulation of lactose metabolism in K. lactis. In chromatin-immunoprecipitation experiments we demonstrate binding of both, KlSip4 and KlCat8, to selected CSREs and provide evidence that KlSip4 counteracts KlCat8-mediated transcription activation by competing for binding to some but not all CSREs. The finding that the hierarchical relationship of these transcription factors differs between K. lactis and S. cerevisiae and that the sets of target genes have diverged contributes to explaining the phenotypic differences in metabolic life-style.
Collapse
Affiliation(s)
| | - Jorrit-Jan Krijger
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ioana Lemnian
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - André Gohr
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Lydia Kasper
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Karin D. Breunig
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
- * E-mail:
| |
Collapse
|
25
|
Nicastro R, Tripodi F, Gaggini M, Castoldi A, Reghellin V, Nonnis S, Tedeschi G, Coccetti P. Snf1 Phosphorylates Adenylate Cyclase and Negatively Regulates Protein Kinase A-dependent Transcription in Saccharomyces cerevisiae. J Biol Chem 2015; 290:24715-26. [PMID: 26309257 DOI: 10.1074/jbc.m115.658005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, nutrient availability and metabolism are coordinated by sensing mechanisms and signaling pathways, which influence a broad set of cellular functions such as transcription and metabolic pathways to match environmental conditions. In yeast, PKA is activated in the presence of high glucose concentrations, favoring fast nutrient utilization, shutting down stress responses, and boosting growth. On the contrary, Snf1/AMPK is activated in the presence of low glucose or alternative carbon sources, thus promoting an energy saving program through transcriptional activation and phosphorylation of metabolic enzymes. The PKA and Snf1/AMPK pathways share common downstream targets. Moreover, PKA has been reported to negatively influence the activation of Snf1/AMPK. We report a new cross-talk mechanism with a Snf1-dependent regulation of the PKA pathway. We show that Snf1 and adenylate cyclase (Cyr1) interact in a nutrient-independent manner. Moreover, we identify Cyr1 as a Snf1 substrate and show that Snf1 activation state influences Cyr1 phosphorylation pattern, cAMP intracellular levels, and PKA-dependent transcription.
Collapse
Affiliation(s)
- Raffaele Nicastro
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO, Centre of Systems Biology, 20126 Milan, Italy
| | - Farida Tripodi
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO, Centre of Systems Biology, 20126 Milan, Italy
| | - Marco Gaggini
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO, Centre of Systems Biology, 20126 Milan, Italy
| | - Andrea Castoldi
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO, Centre of Systems Biology, 20126 Milan, Italy
| | - Veronica Reghellin
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO, Centre of Systems Biology, 20126 Milan, Italy
| | - Simona Nonnis
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria-Biochemistry, University of Milano, 20133 Milan, Italy, and the Filarete Foundation, 20139 Milan, Italy
| | - Gabriella Tedeschi
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria-Biochemistry, University of Milano, 20133 Milan, Italy, and the Filarete Foundation, 20139 Milan, Italy
| | - Paola Coccetti
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO, Centre of Systems Biology, 20126 Milan, Italy,
| |
Collapse
|
26
|
Abstract
Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. The role of Snf1 signaling in glucose repression and carbon metabolism in Saccharomyces cerevisae.
Collapse
Affiliation(s)
- Ömur Kayikci
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark
| |
Collapse
|
27
|
Parua PK, Dombek KM, Young ET. Yeast 14-3-3 protein functions as a comodulator of transcription by inhibiting coactivator functions. J Biol Chem 2014; 289:35542-60. [PMID: 25355315 PMCID: PMC4271238 DOI: 10.1074/jbc.m114.592287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/22/2014] [Indexed: 01/23/2023] Open
Abstract
In eukaryotes combinatorial activation of transcription is an important component of gene regulation. In the budding yeast Saccharomyces cerevisiae, Adr1-Cat8 and Adr1-Oaf1/Pip2 are pairs of activators that act together to regulate two diverse sets of genes. Transcription activation of both sets is regulated positively by the yeast AMP-activated protein kinase homolog, Snf1, in response to low glucose or the presence of a non-fermentable carbon source and negatively by two redundant 14-3-3 isoforms, Bmh1 and Bmh2. Bmh regulates the function of these pairs at a post-promoter binding step by direct binding to Adr1. However, how Bmh regulates transcription after activator binding remains unknown. In the present study we analyzed Bmh-mediated regulation of two sets of genes activated independently by these pairs of activators. We report that Bmh inhibits mRNA synthesis when the second activator is absent. Using gene fusions we show that Bmh binding to the Adr1 regulatory domain inhibits an Adr1 activation domain but not a heterologous activation domain or artificially recruited Mediator, consistent with Bmh acting at a step in transcription downstream of activator binding. Bmh inhibits the assembly and the function of a preinitiation complex (PIC). Gene expression studies suggest that Bmh regulates Adr1 activity through the coactivators Mediator and Swi/Snf. Mediator recruitment appeared to occur normally, but PIC formation and function were defective, suggesting that Bmh inhibits a step between Mediator recruitment and PIC activation.
Collapse
Affiliation(s)
- Pabitra K Parua
- From the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| | - Kenneth M Dombek
- From the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| | - Elton T Young
- From the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| |
Collapse
|
28
|
Thepnok P, Ratanakhanokchai K, Soontorngun N. The novel zinc cluster regulator Tog1 plays important roles in oleate utilization and oxidative stress response in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2014; 450:1276-82. [PMID: 24998441 DOI: 10.1016/j.bbrc.2014.06.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Abstract
Many zinc cluster proteins have been shown to play a role in the transcriptional regulation of glucose-repressible genes during glucose exhaustion and diauxic shift. Here, we studied an additional member of this family called Yer184c (herein called Tog1) for transcriptional regulator of oleate. Our results showed that a Δtog1 strain displays impaired growth with several non-fermentable carbons. Tog1 is also implicated in oxidative stress tolerance. Importantly, during the glucose-oleate shift, combined results from quantitative real time-PCR and chromatin immunoprecipitation (ChIP) experiments showed that Tog1 acts as a direct activator of oleate utilizing genes, encoded key enzymes in β-Oxidation and NADPH regeneration (POX1, FOX2, POT1 and IDP2), the glyoxylate shunt (MLS1 and ICL1), and gluconeogenesis (PCK1 and FBP1). A transmission electron microscopy (TEM) analysis of the Δtog1 strain assayed with oleate also revealed a substantial decrease in peroxisome abundance that is vital for fatty acid oxidation. Overall, our results clearly demonstrated that Tog1 is a newly characterized zinc cluster regulator that functions in the complex network of non-fermentable carbon metabolism in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Piyasuda Thepnok
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Tianthalay Road, Tha Kham, Bangkhuntian, Bangkok 10150, Thailand
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Tianthalay Road, Tha Kham, Bangkhuntian, Bangkok 10150, Thailand
| | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Tianthalay Road, Tha Kham, Bangkhuntian, Bangkok 10150, Thailand.
| |
Collapse
|
29
|
Randez-Gil F, Córcoles-Sáez I, Prieto JA. Genetic and Phenotypic Characteristics of Baker's Yeast: Relevance to Baking. Annu Rev Food Sci Technol 2013; 4:191-214. [DOI: 10.1146/annurev-food-030212-182609] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Francisca Randez-Gil
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Valencia, Spain;
| | - Isaac Córcoles-Sáez
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Valencia, Spain;
| | - José A. Prieto
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Valencia, Spain;
| |
Collapse
|
30
|
|
31
|
Abate G, Bastonini E, Braun KA, Verdone L, Young ET, Caserta M. Snf1/AMPK regulates Gcn5 occupancy, H3 acetylation and chromatin remodelling at S. cerevisiae ADY2 promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:419-27. [PMID: 22306658 DOI: 10.1016/j.bbagrm.2012.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 01/14/2012] [Accepted: 01/17/2012] [Indexed: 02/06/2023]
Abstract
The ability of cells to respond to changes in their environment is mediated by transcription factors that remodel chromatin and reprogram expression of specific subsets of genes. In Saccharomyces cerevisiae, changes in carbon source lead to gene induction by Adr1 and Cat8 that are known to require the upstream function of the Snf1 protein kinase, the central regulator of carbon metabolism, to exert their activating effect. How Snf1 facilitates transcription activation by Adr1 and Cat8 is not known. Here we show that under derepressing conditions, deletion of SNF1 abolishes the increase of histone H3 acetylation at the promoter of the glucose-repressed ADY2 gene, and as a consequence profoundly affects the chromatin structural alterations accompanying transcriptional activation. Adr1 and Cat8 are not required to regulate the acetylation switch and show only a partial influence on chromatin remodelling at this promoter, though their double deletion completely abolishes mRNA accumulation. Finally, we show that under derepressing conditions the recruitment of the histone acetyltransferase Gcn5 is abolished by SNF1 deletion, possibly explaining the lack of increased histone H3 acetylation and nucleosome remodelling. The results highlight a mechanism by which signalling to chromatin provides an essential permissive signal that is required for activation by glucose-responsive transcription factors.
Collapse
Affiliation(s)
- Georgia Abate
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Ethanol induced response in Phanerochaete chrysosporium and its role in the decolorization of triarylmethane dye. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0390-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
33
|
Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, Rolland F, Winderickx J. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 2011; 278:3978-90. [PMID: 21883929 DOI: 10.1111/j.1742-4658.2011.08315.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
All life forms on earth require a continuous input and monitoring of carbon and energy supplies. The AMP-activated kinase (AMPK)/sucrose non-fermenting1 (SNF1)/Snf1-related kinase1 (SnRK1) protein kinases are evolutionarily conserved metabolic sensors found in all eukaryotic organisms from simple unicellular fungi (yeast SNF1) to animals (AMPK) and plants (SnRK1). Activated by starvation and energy-depleting stress conditions, they enable energy homeostasis and survival by up-regulating energy-conserving and energy-producing catabolic processes, and by limiting energy-consuming anabolic metabolism. In addition, they control normal growth and development as well as metabolic homeostasis at the organismal level. As such, the AMPK/SNF1/SnRK1 kinases act in concert with other central signaling components to control carbohydrate uptake and metabolism, fatty acid and lipid biosynthesis and the storage of carbon energy reserves. Moreover, they have a tremendous impact on developmental processes that are triggered by environmental changes such as nutrient depletion or stress. Although intensive research by many groups has partly unveiled the factors that regulate AMPK/SNF1/SnRK1 kinase activity as well as the pathways and substrates they control, several fundamental issues still await to be clarified. In this review, we will highlight these issues and focus on the structure, function and regulation of the AMPK/SNF1/SnRK1 kinases.
Collapse
Affiliation(s)
- Ruben Ghillebert
- Department of Biology, Laboratory for Functional Biology, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Alberghina L, Mavelli G, Drovandi G, Palumbo P, Pessina S, Tripodi F, Coccetti P, Vanoni M. Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein-protein interaction network. Biotechnol Adv 2011; 30:52-72. [PMID: 21821114 DOI: 10.1016/j.biotechadv.2011.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/23/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
In this review we summarize the major connections between cell growth and cell cycle in the model eukaryote Saccharomyces cerevisiae. In S. cerevisiae regulation of cell cycle progression is achieved predominantly during a narrow interval in the late G1 phase known as START (Pringle and Hartwell, 1981). At START a yeast cell integrates environmental and internal signals (such as nutrient availability, presence of pheromone, attainment of a critical size, status of the metabolic machinery) and decides whether to enter a new cell cycle or to undertake an alternative developmental program. Several signaling pathways, that act to connect the nutritional status to cellular actions, are briefly outlined. A Growth & Cycle interaction network has been manually curated. More than one fifth of the edges within the Growth & Cycle network connect Growth and Cycle proteins, indicating a strong interconnection between the processes of cell growth and cell cycle. The backbone of the Growth & Cycle network is composed of middle-degree nodes suggesting that it shares some properties with HOT networks. The development of multi-scale modeling and simulation analysis will help to elucidate relevant central features of growth and cycle as well as to identify their system-level properties. Confident collaborative efforts involving different expertises will allow to construct consensus, integrated models effectively linking the processes of cell growth and cell cycle, ultimately contributing to shed more light also on diseases in which an altered proliferation ability is observed, such as cancer.
Collapse
Affiliation(s)
- Lilia Alberghina
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Posttranslational modifications of histone proteins play important roles in the modulation of gene expression. The Saccharomyces cerevisiae (yeast) 2-MDa SAGA (Spt-Ada-Gcn5) complex, a well-studied multisubunit histone modifier, regulates gene expression through Gcn5-mediated histone acetylation and Ubp8-mediated histone deubiquitination. Using a proteomics approach, we determined that the SAGA complex also deubiquitinates nonhistone proteins, including Snf1, an AMP-activated kinase. Ubp8-mediated deubiquitination of Snf1 affects the stability and phosphorylation state of Snf1, thereby affecting Snf1 kinase activity. Others have reported that Gal83 is phosphorylated by Snf1, and we found that deletion of UBP8 causes decreased phosphorylation of Gal83, which is consistent with the effects of Ubp8 loss on Snf1 kinase functions. Overall, our data indicate that SAGA modulates the posttranslational modifications of Snf1 in order to fine-tune gene expression levels.
Collapse
|
36
|
Frohner IE, Gregori C, Anrather D, Roitinger E, Schüller C, Ammerer G, Kuchler K. Weak Organic Acid Stress Triggers Hyperphosphorylation of the Yeast Zinc-Finger Transcription Factor War1 and Dampens Stress Adaptation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:575-86. [DOI: 10.1089/omi.2010.0032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ingrid E. Frohner
- Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Vienna, Austria
| | - Christa Gregori
- Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Vienna, Austria
| | - Dorothea Anrather
- University of Vienna, Max F. Perutz Laboratories, Christien Doppler Laboratory for Proteomics, Department of Molecular and Cell Biology, Vienna, Austria
| | - Elisabeth Roitinger
- University of Vienna, Max F. Perutz Laboratories, Christien Doppler Laboratory for Proteomics, Department of Molecular and Cell Biology, Vienna, Austria
| | - Christoph Schüller
- University of Vienna, Max F. Perutz Laboratories, Christien Doppler Laboratory for Proteomics, Department of Molecular and Cell Biology, Vienna, Austria
| | - Gustav Ammerer
- University of Vienna, Max F. Perutz Laboratories, Christien Doppler Laboratory for Proteomics, Department of Molecular and Cell Biology, Vienna, Austria
| | - Karl Kuchler
- Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Vienna, Austria
| |
Collapse
|
37
|
Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: Physiological investigation and transcriptome analysis. Biotechnol J 2010; 5:1016-27. [DOI: 10.1002/biot.201000199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Busti S, Coccetti P, Alberghina L, Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. SENSORS 2010; 10:6195-240. [PMID: 22219709 PMCID: PMC3247754 DOI: 10.3390/s100606195] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/05/2023]
Abstract
Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.
Collapse
Affiliation(s)
- Stefano Busti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy.
| | | | | | | |
Collapse
|
39
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
40
|
Turcotte B, Liang XB, Robert F, Soontorngun N. Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res 2009; 10:2-13. [PMID: 19686338 DOI: 10.1111/j.1567-1364.2009.00555.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces cerevisiae preferentially uses glucose as a carbon source, but following its depletion, it can utilize a wide variety of other carbons including nonfermentable compounds such as ethanol. A shift to a nonfermentable carbon source results in massive reprogramming of gene expression including genes involved in gluconeogenesis, the glyoxylate cycle, and the tricarboxylic acid cycle. This review is aimed at describing the recent progress made toward understanding the mechanism of transcriptional regulation of genes responsible for utilization of nonfermentable carbon sources. A central player for the use of nonfermentable carbons is the Snf1 kinase, which becomes activated under low glucose levels. Snf1 phosphorylates various targets including the transcriptional repressor Mig1, resulting in its inactivation allowing derepression of gene expression. For example, the expression of CAT8, encoding a member of the zinc cluster family of transcriptional regulators, is then no longer repressed by Mig1. Cat8 becomes activated through phosphorylation by Snf1, allowing upregulation of the zinc cluster gene SIP4. These regulators control the expression of various genes including those involved in gluconeogenesis. Recent data show that another zinc cluster protein, Rds2, plays a key role in regulating genes involved in gluconeogenesis and the glyoxylate pathway. Finally, the role of additional regulators such as Adr1, Ert1, Oaf1, and Pip2 is also discussed.
Collapse
Affiliation(s)
- Bernard Turcotte
- Department of Medicine, Royal Victoria Hospital, McGill University, Montréal, QC, Canada.
| | | | | | | |
Collapse
|
41
|
Casal M, Paiva S, Queirós O, Soares-Silva I. Transport of carboxylic acids in yeasts. FEMS Microbiol Rev 2008; 32:974-94. [DOI: 10.1111/j.1574-6976.2008.00128.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
42
|
Abstract
The SNF1/AMPK family of protein kinases is highly conserved in eukaryotes and is required for energy homeostasis in mammals, plants, and fungi. SNF1 protein kinase was initially identified by genetic analysis in the budding yeast Saccharomyces cerevisiae. SNF1 is required primarily for the adaptation of yeast cells to glucose limitation and for growth on carbon sources that are less preferred than glucose, but is also involved in responses to other environmental stresses. SNF1 regulates transcription of a large set of genes, modifies the activity of metabolic enzymes, and controls various nutrient-responsive cellular developmental processes. Like AMPK, SNF1 protein kinase is heterotrimeric. It is phosphorylated and activated by the upstream kinases Sak1, Tos3, and Elm1 and is inactivated by the Reg1-Glc7 protein phosphatase 1. Further regulation of SNF1 is achieved through autoinhibition and through control of its subcellular localization. Here we review the current understanding of SNF1 protein kinase pathways in Saccharomyces cerevisiae and other yeasts.
Collapse
Affiliation(s)
- Kristina Hedbacker
- Columbia University, Department of Genetics and Development, 701 W. 168th St. HSC 922, New York, NY 10032, USA
| | | |
Collapse
|
43
|
Tachibana C, Biddick R, Law GL, Young ET. A poised initiation complex is activated by SNF1. J Biol Chem 2007; 282:37308-15. [PMID: 17974563 DOI: 10.1074/jbc.m707363200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Snf1, the yeast AMP kinase homolog, is essential for derepression of glucose-repressed genes that are activated by Adr1. Although required for Adr1 DNA binding, the precise role of Snf1 is unknown. Deletion of histone deacetylase genes allowed constitutive promoter binding of Adr1 and Cat8, another activator of glucose-repressed genes. In repressed conditions, at the Adr1-and Cat8-dependent ADH2 promoter, partial chromatin remodeling had occurred, and the activators recruited a partial preinitiation complex that included RNA polymerase II. Transcription did not occur, however, unless Snf1 was activated, suggesting a Snf1-dependent event that occurs after RNA polymerase II recruitment. Glucose regulation persisted because shifting to low glucose increased expression. Glucose repression could be completely relieved by combining the three elements of 1) chromatin perturbation by mutation of histone deacetylases, 2) activation of Snf1, and 3) the addition of an Adr1 mutant that by itself confers only weak constitutive activity.
Collapse
Affiliation(s)
- Christine Tachibana
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
44
|
Soontorngun N, Larochelle M, Drouin S, Robert F, Turcotte B. Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol Cell Biol 2007; 27:7895-905. [PMID: 17875938 PMCID: PMC2169140 DOI: 10.1128/mcb.01055-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, RDS2 encodes a zinc cluster transcription factor with unknown function. Here, we unravel a key function of Rds2 in gluconeogenesis using chromatin immunoprecipitation-chip technology. While we observed that Rds2 binds to only a few promoters in glucose-containing medium, it binds many additional genes when the medium is shifted to ethanol, a nonfermentable carbon source. Interestingly, many of these genes are involved in gluconeogenesis, the tricarboxylic acid cycle, and the glyoxylate cycle. Importantly, we show that Rds2 has a dual function: it directly activates the expression of gluconeogenic structural genes while it represses the expression of negative regulators of this pathway. We also show that the purified DNA binding domain of Rds2 binds in vitro to carbon source response elements found in the promoters of target genes. Finally, we show that upon a shift to ethanol, Rds2 activation is correlated with its hyperphosphorylation by the Snf1 kinase. In summary, we have characterized Rds2 as a novel major regulator of gluconeogenesis.
Collapse
Affiliation(s)
- Nitnipa Soontorngun
- Department of Medicine, Royal Victoria Hospital, McGill University,Montréal, Québec, Canada H3A 1A1
| | | | | | | | | |
Collapse
|
45
|
Leverentz MK, Reece RJ. Phosphorylation of Zn(II)2Cys6 proteins: a cause or effect of transcriptional activation? Biochem Soc Trans 2007; 34:794-7. [PMID: 17052200 DOI: 10.1042/bst0340794] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many Zn(II)2Cys6 transcriptional regulators exhibit changes in phosphorylation that are coincident with their roles in transcriptional activation. It is, however, unclear whether these changes occur as a cause of, or as a result of, transcriptional activation. In this paper, we explore the relationship between these two events and collate data available on the phosphorylation state of those transcriptional regulators where the relationship has not been clearly identified.
Collapse
Affiliation(s)
- M K Leverentz
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
46
|
MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 2006; 70:583-604. [PMID: 16959962 PMCID: PMC1594591 DOI: 10.1128/mmbr.00015-06] [Citation(s) in RCA: 436] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The trace element zinc is required for proper functioning of a large number of proteins, including various enzymes. However, most zinc-containing proteins are transcription factors capable of binding DNA and are named zinc finger proteins. They form one of the largest families of transcriptional regulators and are categorized into various classes according to zinc-binding motifs. This review focuses on one class of zinc finger proteins called zinc cluster (or binuclear) proteins. Members of this family are exclusively fungal and possess the well-conserved motif CysX(2)CysX(6)CysX(5-12)CysX(2)CysX(6-8)Cys. The cysteine residues bind to two zinc atoms, which coordinate folding of the domain involved in DNA recognition. The first- and best-studied zinc cluster protein is Gal4p, a transcriptional activator of genes involved in the catabolism of galactose in the budding yeast Saccharomyces cerevisiae. Since the discovery of Gal4p, many other zinc cluster proteins have been characterized; they function in a wide range of processes, including primary and secondary metabolism and meiosis. Other roles include regulation of genes involved in the stress response as well as pleiotropic drug resistance, as demonstrated in budding yeast and in human fungal pathogens. With the number of characterized zinc cluster proteins growing rapidly, it is becoming more and more apparent that they are important regulators of fungal physiology.
Collapse
Affiliation(s)
- Sarah MacPherson
- Department of Microbiology and Immunology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada H3A 1A
| | | | | |
Collapse
|
47
|
Abstract
Eukaryotic cells possess an exquisitely interwoven and fine-tuned series of signal transduction mechanisms with which to sense and respond to the ubiquitous fermentable carbon source glucose. The budding yeast Saccharomyces cerevisiae has proven to be a fertile model system with which to identify glucose signaling factors, determine the relevant functional and physical interrelationships, and characterize the corresponding metabolic, transcriptomic, and proteomic readouts. The early events in glucose signaling appear to require both extracellular sensing by transmembrane proteins and intracellular sensing by G proteins. Intermediate steps involve cAMP-dependent stimulation of protein kinase A (PKA) as well as one or more redundant PKA-independent pathways. The final steps are mediated by a relatively small collection of transcriptional regulators that collaborate closely to maximize the cellular rates of energy generation and growth. Understanding the nuclear events in this process may necessitate the further elaboration of a new model for eukaryotic gene regulation, called "reverse recruitment." An essential feature of this idea is that fine-structure mapping of nuclear architecture will be required to understand the reception of regulatory signals that emanate from the plasma membrane and cytoplasm. Completion of this task should result in a much improved understanding of eukaryotic growth, differentiation, and carcinogenesis.
Collapse
Affiliation(s)
- George M Santangelo
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406-5018, USA.
| |
Collapse
|
48
|
Ronen M, Botstein D. Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source. Proc Natl Acad Sci U S A 2005; 103:389-94. [PMID: 16381818 PMCID: PMC1326188 DOI: 10.1073/pnas.0509978103] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand the dynamics of transcriptional response to changing environments, well defined, easily controlled, and short-term perturbation experiments were undertaken. We subjected steady-state cultures of Saccharomyces cerevisiae in chemostats growing on limiting galactose to two different size pulses of glucose, well known to be a preferred carbon source. Although these pulses were not large enough to change growth rates or cell size, approximately 25% of the genes changed their expression at least 2-fold. Using DNA microarrays to estimate mRNA abundance, we found a number of distinguishable patterns of transcriptional response among the many genes whose expression changed. Many of these genes were already known to be regulated by particular transcription factors; we estimated five potentially relevant transcription factor activities from the observed changes in gene expression (i.e., Mig1p, Gal4p, Cat8p, Rgt1p, Adr1p, and Rcs1p). With these estimates, for two regulatory circuits involving interaction among multiple regulators we could generate dynamical models that quantitatively account for the observed transcriptional responses to the transient perturbations.
Collapse
Affiliation(s)
- Michal Ronen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
49
|
Tachibana C, Yoo JY, Tagne JB, Kacherovsky N, Lee TI, Young ET. Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Mol Cell Biol 2005; 25:2138-46. [PMID: 15743812 PMCID: PMC1061606 DOI: 10.1128/mcb.25.6.2138-2146.2005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, glucose depletion causes a profound alteration in metabolism, mediated in part by global transcriptional changes. Many of the transcription factors that regulate these changes act combinatorially. We have analyzed combinatorial regulation by Adr1 and Cat8, two transcription factors that act during glucose depletion, by combining genome-wide expression and genome-wide binding data. We identified 32 genes that are directly activated by Adr1, 28 genes that are directly activated by Cat8, and 14 genes that are directly regulated by both. Our analysis also uncovered promoters that Adr1 binds but does not regulate and promoters that are indirectly regulated by Cat8, stressing the advantage of combining global expression and global localization analysis to find directly regulated targets. At most of the coregulated promoters, the in vivo binding of one factor is independent of the other, but Adr1 is required for optimal Cat8 binding at two promoters with a poor match to the Cat8 binding consensus. In addition, Cat8 is required for Adr1 binding at promoters where Adr1 is not required for transcription. These data provide a comprehensive analysis of the direct, indirect, and combinatorial requirements for these two global transcription factors.
Collapse
Affiliation(s)
- Christine Tachibana
- Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | | | |
Collapse
|
50
|
Westergaard SL, Bro C, Olsson L, Nielsen J. Elucidation of the role of Grr1p in glucose sensing by Saccharomyces cerevisiae through genome-wide transcription analysis. FEMS Yeast Res 2005; 5:193-204. [PMID: 15556081 DOI: 10.1016/j.femsyr.2004.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 06/22/2004] [Accepted: 06/22/2004] [Indexed: 11/24/2022] Open
Abstract
The role of Grr1p in glucose sensing in Saccharomyces cerevisiae was elucidated through genome-wide transcription analysis. From triplicate analysis of a strain with deletion of the GRR1-gene from the genome and an isogenic reference strain, 68 genes were identified to have significantly altered expression using a Student's t-test with Bonferroni correction. These 68 genes were widely distributed across different parts of the cellular metabolism and GRR1-deletion is therefore concluded to result in polytrophic effects, indicating multiple roles for Grr1p. Using a less conservative statistical test, namely the SAM test, 232 genes were identified as having significantly altered expression, and also these genes were widely distributed across different parts of the cellular metabolism. Promoter analyses on a genome-wide scale and on the genes with significant changes revealed an over-representation of DNA-binding motifs for the transcriptional regulators Mig1p and Rgt1p in the promoter region of the significantly altered genes, indicating that Grr1p plays an important role in the regulatory pathways that ultimately lead to transcriptional regulation by each of the components Mig1p and Rgt1p.
Collapse
Affiliation(s)
- Steen L Westergaard
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Building 223, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|