1
|
Nguyen NH, Sheng S, Banerjee A, Guerriero CJ, Chen J, Wang X, Mackie TD, Welling PA, Kleyman TR, Bahar I, Carlson AE, Brodsky JL. Characterization of hyperactive mutations in the renal potassium channel ROMK uncovers unique effects on channel biogenesis and ion conductance. Mol Biol Cell 2024; 35:ar119. [PMID: 39024255 PMCID: PMC11449386 DOI: 10.1091/mbc.e23-12-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Hypertension affects one billion people worldwide and is the most common risk factor for cardiovascular disease, yet a comprehensive picture of its underlying genetic factors is incomplete. Amongst regulators of blood pressure is the renal outer medullary potassium (ROMK) channel. While select ROMK mutants are prone to premature degradation and lead to disease, heterozygous carriers of some of these same alleles are protected from hypertension. Therefore, we hypothesized that gain-of-function (GoF) ROMK variants which increase potassium flux may predispose people to hypertension. To begin to test this hypothesis, we employed genetic screens and a candidate-based approach to identify six GoF variants in yeast. Subsequent functional assays in higher cells revealed two variant classes. The first group exhibited greater stability in the endoplasmic reticulum, enhanced channel assembly, and/or increased protein at the cell surface. The second group of variants resided in the PIP2-binding pocket, and computational modeling coupled with patch-clamp studies demonstrated lower free energy for channel opening and slowed current rundown, consistent with an acquired PIP2-activated state. Together, these findings advance our understanding of ROMK structure-function, suggest the existence of hyperactive ROMK alleles in humans, and establish a system to facilitate the development of ROMK-targeted antihypertensives.
Collapse
Affiliation(s)
- Nga H. Nguyen
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Shaohu Sheng
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15260
| | | | - Jingxin Chen
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Xueqi Wang
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Timothy D. Mackie
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Paul A. Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15260
| | - Anne E. Carlson
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| |
Collapse
|
2
|
Nguyen NH, Sarangi S, McChesney EM, Sheng S, Durrant JD, Porter AW, Kleyman TR, Pitluk ZW, Brodsky JL. Genome mining yields putative disease-associated ROMK variants with distinct defects. PLoS Genet 2023; 19:e1011051. [PMID: 37956218 PMCID: PMC10695394 DOI: 10.1371/journal.pgen.1011051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/04/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal, and there is currently no cure. Bartter syndrome type II specifically arises from mutations in KCNJ1, which encodes the renal outer medullary potassium channel, ROMK. Over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified, yet their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined genomic data in both the NIH TOPMed and ClinVar databases with the aid of Rhapsody, a verified computational algorithm that predicts mutation pathogenicity and disease severity. Subsequent phenotypic studies using a yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced cell surface expression. Another mutation (T300R) was ERAD-resistant, but defects in channel activity were apparent based on two-electrode voltage clamp measurements in X. laevis oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies to advance precision medicine.
Collapse
Affiliation(s)
- Nga H. Nguyen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Srikant Sarangi
- Paradigm4, Inc., Waltham, Massachusetts, United States of America
| | - Erin M. McChesney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shaohu Sheng
- Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aidan W. Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
3
|
Nguyen NH, Sarangi S, McChesney EM, Sheng S, Porter AW, Kleyman TR, Pitluk ZW, Brodsky JL. Genome mining yields new disease-associated ROMK variants with distinct defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539609. [PMID: 37214976 PMCID: PMC10197530 DOI: 10.1101/2023.05.05.539609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal. Although there is no cure for this disease, specific genes that lead to different Bartter syndrome subtypes have been identified. Bartter syndrome type II specifically arises from mutations in the KCNJ1 gene, which encodes the renal outer medullary potassium channel, ROMK. To date, over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified. Yet, their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined ROMK genomic data in both the NIH TOPMed and ClinVar databases with the aid of a computational algorithm that predicts protein misfolding and disease severity. Subsequent phenotypic studies using a high throughput yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced protein expression at the cell surface. Another ERAD-targeted ROMK mutant (L320P) was found in only one of the screens. In contrast, another mutation (T300R) was ERAD-resistant, but defects in ROMK activity were apparent after expression and two-electrode voltage clamp measurements in Xenopus oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies. Author Summary Bartter syndrome is a rare genetic disorder characterized by defective renal electrolyte handing, leading to debilitating symptoms and, in some patients, death in infancy. Currently, there is no cure for this disease. Bartter syndrome is divided into five types based on the causative gene. Bartter syndrome type II results from genetic variants in the gene encoding the ROMK protein, which is expressed in the kidney and assists in regulating sodium, potassium, and water homeostasis. Prior work established that some disease-associated ROMK mutants misfold and are destroyed soon after their synthesis in the endoplasmic reticulum (ER). Because a growing number of drugs have been identified that correct defective protein folding, we wished to identify an expanded cohort of similarly misshapen and unstable disease-associated ROMK variants. To this end, we developed a pipeline that employs computational analyses of human genome databases with genetic and biochemical assays. Next, we both confirmed the identity of known variants and uncovered previously uncharacterized ROMK variants associated with Bartter syndrome type II. Further analyses indicated that select mutants are targeted for ER-associated degradation, while another mutant compromises ROMK function. This work sets-the-stage for continued mining for ROMK loss of function alleles as well as other potassium channels, and positions select Bartter syndrome mutations for correction using emerging pharmaceuticals.
Collapse
|
4
|
Mackie TD, Brodsky JL. Investigating Potassium Channels in Budding Yeast: A Genetic Sandbox. Genetics 2018; 209:637-650. [PMID: 29967058 PMCID: PMC6028241 DOI: 10.1534/genetics.118.301026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
Like all species, the model eukaryote Saccharomyces cerevisiae, or Bakers' yeast, concentrates potassium in the cytosol as an electrogenic osmolyte and enzyme cofactor. Yeast are capable of robust growth on a wide variety of potassium concentrations, ranging from 10 µM to 2.5 M, due to the presence of a high-affinity potassium uptake system and a battery of cation exchange transporters. Genetic perturbation of either of these systems retards yeast growth on low or high potassium, respectively. However, these potassium-sensitized yeast are a powerful genetic tool, which has been leveraged for diverse studies. Notably, the potassium-sensitive cells can be transformed with plasmids encoding potassium channels from bacteria, plants, or mammals, and subsequent changes in growth rate have been found to correlate with the activity of the introduced potassium channel. Discoveries arising from the use of this assay over the past three decades have increased our understanding of the structure-function relationships of various potassium channels, the mechanisms underlying the regulation of potassium channel function and trafficking, and the chemical basis of potassium channel modulation. In this article, we provide an overview of the major genetic tools used to study potassium channels in S. cerevisiae, a survey of seminal studies utilizing these tools, and a prospective for the future use of this elegant genetic approach.
Collapse
Affiliation(s)
- Timothy D Mackie
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| |
Collapse
|
5
|
Heuck S, Gerstmann UC, Michalke B, Kanter U. Genome-wide analysis of caesium and strontium accumulation in Saccharomyces cerevisiae. Yeast 2011; 27:817-35. [PMID: 20641020 DOI: 10.1002/yea.1780] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
(137)Cs and (90)Sr contribute to significant and long-lasting contamination of the environment with radionuclides. Due to their relatively high biological availability, they are transferred rapidly into biotic systems and may enter the food chain. In this study, we analysed 4862 haploid yeast knockout strains of Saccharomyces cerevisiae to identify genes involved in caesium (Cs(+)) and/or strontium (Sr(2+)) accumulation. According to this analysis, 212 mutant strains were associated with reproducible altered Cs(+) and/or Sr(2+) accumulation. These mutants were deficient for a wide range of cellular processes. Among those, the vacuolar function and biogenesis turned out to be crucial for both Cs(+) and Sr(2+) accumulation. Disruption of the vacuole diminished Cs(+) accumulation, whereas Sr(2+) enrichment was enhanced. Further analysis with a subset of the identified candidates were undertaken comparing the accumulation of Cs(+) and Sr(2+) with their essential counterparts potassium (K(+)) and calcium (Ca(2+)). Sr(2+) and Ca(2+) accumulation was highly correlated in yeast excluding the possibility of a differential regulation or uptake mechanisms. In direct contrast, the respective results suggest that Cs(+) uptake is at least partially dependent on mechanisms distinct from K(+) uptake. Single candidates (e.g. KHA1) are presented which might be specifically responsible for Cs(+) homeostasis.
Collapse
Affiliation(s)
- Sabine Heuck
- Helmholtz Zentrum München, Institut für Strahlenschutz, Neuherberg, Germany
| | | | | | | |
Collapse
|
6
|
Vargas RC, García-Salcedo R, Tenreiro S, Teixeira MC, Fernandes AR, Ramos J, Sá-Correia I. Saccharomyces cerevisiae multidrug resistance transporter Qdr2 is implicated in potassium uptake, providing a physiological advantage to quinidine-stressed cells. EUKARYOTIC CELL 2006; 6:134-42. [PMID: 17189489 PMCID: PMC1797947 DOI: 10.1128/ec.00290-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The QDR2 gene of Saccharomyces cerevisiae encodes a putative plasma membrane drug:H(+) antiporter that confers resistance against quinidine, barban, bleomycin, and cisplatin. This work provides experimental evidence of defective K(+) (Rb(+)) uptake in the absence of QDR2. The direct involvement of Qdr2p in K(+) uptake is reinforced by the fact that increased K(+) (Rb(+)) uptake due to QDR2 expression is independent of the Trk1p/Trk2p system. QDR2 expression confers a physiological advantage for the yeast cell during the onset of K(+) limited growth, due either to a limiting level of K(+) in the growth medium or to the presence of quinidine. This drug decreases the K(+) uptake rate and K(+) accumulation in the yeast cell, especially in the Deltaqdr2 mutant. Qdr2p also helps to sustain the decrease of intracellular pH in quinidine-stressed cells in growth medium at pH 5.5 by indirectly promoting H(+) extrusion affected by the drug. The results are consistent with the hypothesis that Qdr2p may also couple K(+) movement with substrate export, presumably with quinidine. Other clues to the biological role of QDR2 in the yeast cell come from two additional lines of experimental evidence. First, QDR2 transcription is activated under nitrogen (NH(4)(+)) limitation or when the auxotrophic strain examined enters stationary phase due to leucine limitation, this regulation being dependent on general amino acid control by Gcn4p. Second, the amino acid pool is higher in Deltaqdr2 cells than in wild-type cells, indicating that QDR2 expression is, directly or indirectly, involved in amino acid homeostasis.
Collapse
Affiliation(s)
- Rita C Vargas
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
7
|
Thornton G, Wilkinson CRM, Toone WM, Jones N. A novel pathway determining multidrug sensitivity in Schizosaccharomyces pombe. Genes Cells 2005; 10:941-51. [PMID: 16164595 DOI: 10.1111/j.1365-2443.2005.00891.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, we show that a mutation isolated during a screen for determinants of chemosensitivity in S. pombe results in loss of function of a previously uncharacterized protein kinase now named Hal4. Hal4 shares sequence homology to Hal4 and Hal5 in S. cerevisiae, and previous evidence indicates that these kinases positively regulate the major potassium transporter Trk1,2 and thereby maintain the plasma membrane potential. Disruption of this ion homeostasis pathway results in a hyperpolarized membrane and a concomitant increased sensitivity to cations. We demonstrate that a mutation in hal4+ results in hyperpolarization of the plasma membrane. In addition to the original selection agent, the hal4-1 mutant is sensitive to a variety of chemotherapeutic agents and stress-inducing compounds. Furthermore, this wider chemosensitive phenotype is also displayed by corresponding mutants in S. cerevisiae, and in a trk1deltatrk2delta double deletion mutant in S. pombe. We propose that this pathway and its role in regulating the plasma membrane potential may act as a pleiotropic determinant of sensitivity to chemotherapeutic agents.
Collapse
Affiliation(s)
- Gemma Thornton
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | | | | | | |
Collapse
|
8
|
Gaber RF, Ottow K, Andersen HA, Kielland-Brandt MC. Constitutive and hyperresponsive signaling by mutant forms of Saccharomyces cerevisiae amino acid sensor Ssy1. EUKARYOTIC CELL 2004; 2:922-9. [PMID: 14555474 PMCID: PMC219377 DOI: 10.1128/ec.2.5.922-929.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sensing of extracellular amino acids results in transcriptional induction of amino acid permease genes in yeast. Ssy1, a membrane protein resembling amino acid permeases, is required for signaling but is apparently unable to transport amino acids and is thus believed to be a sensor. By using a novel genetic screen in which potassium uptake was made dependent on amino acid signaling, we obtained gain-of-function mutations in SSY1. Some alleles confer inducer-independent signaling; others increase the apparent affinity for inducers. The results reveal that amino acid transport is not required for signaling and support the notion that sensing by Ssy1 occurs via its direct interaction with extracellular amino acids.
Collapse
Affiliation(s)
- Richard F Gaber
- Department of Physiology, Carlsberg Laboratory, DK-2500 Copenhagen Valby, Denmark
| | | | | | | |
Collapse
|
9
|
Hooley P, Fincham DA, Whitehead MP, Clipson NJ. Fungal osmotolerance. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:177-211. [PMID: 14696319 DOI: 10.1016/s0065-2164(03)53005-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- P Hooley
- School of Applied Sciences, University of Wolverhampton, Wolverhampton, WV1 1SB, UK
| | | | | | | |
Collapse
|
10
|
Bertl A, Ramos J, Ludwig J, Lichtenberg-Fraté H, Reid J, Bihler H, Calero F, Martínez P, Ljungdahl PO. Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Mol Microbiol 2003; 47:767-80. [PMID: 12535075 DOI: 10.1046/j.1365-2958.2003.03335.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae cells express three defined potassium-specific transport systems en-coded by TRK1, TRK2 and TOK1. To gain a more complete understanding of the physiological function of these transport proteins, we have constructed a set of isogenic yeast strains carrying all combinations of trk1delta, trk2delta and tok1delta null mutations. The in vivo K+ transport characteristics of each strain have been documented using growth-based assays, and the in vitro biochemical and electrophysiological properties associated with K+ transport have been determined. As has been reported previously, Trk1p and Trk2p facilitate high-affinity potassium uptake and appear to be functionally redundant under a wide range of environmental conditions. In the absence of TRK1 and TRK2, strains lack the ability specifically to take up K+, and trk1deltatrk2delta double mutant cells depend upon poorly understood non-specific cation uptake mechanisms for growth. Under conditions that impair the activity of the non-specific uptake system, termed NSC1, we have found that the presence of functional Tok1p renders cells sensitive to Cs+. Based on this finding, we have established a growth-based assay that monitors the in vivo activity of Tok1p.
Collapse
|
11
|
Erez O, Kahana C. Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiae trk1Deltatrk2Delta mutant cells exert dual effect on ion homeostasis. Biochem Biophys Res Commun 2002; 295:1142-9. [PMID: 12135613 DOI: 10.1016/s0006-291x(02)00823-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sky1p and Ptk2p are protein kinases that regulate ion transport across the plasma membrane of Saccharomyces cerevisiae. We show here that deletion of SKY1 or PTK2 in trk1,2Delta cells increase spermine tolerance, implying Trk1,2p independent activity. Unexpectedly, trk1,2Deltasky1Delta and trk1,2Deltaptk2Delta cells display hypersensitivity to LiCl. These cells also show increased tolerance to low pH and improved growth in low K(+), as demonstrated for deletion of PMP3 in trk1,2Delta cells. We show that Sky1p and Pmp3p act in different pathways. Hypersensitivity to LiCl and improved growth in low K(+) are partly dependent on the Nha1p and Kha1p antiporters and on the Tok1p channel. Finally, Dhh1p, a RNA helicase was demonstrated to improve growth of trk1,2Deltasky1Delta cells in low K(+). Overexpression of Dhh1p improves the ability of trk1,2Delta cells to grow in low K(+) while dhh1Delta cells are sensitive to spermine and salt ions. A model that integrates these results to explain the mechanism of ion transport across the plasma membrane is proposed.
Collapse
Affiliation(s)
- Omri Erez
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
12
|
Miranda M, Saldaña C, Ramírez J, Codiz G, Brunner A, Ongay-Larios L, Coria R, Peña A. The KlTrk1 gene encodes a low affinity transporter of the K+ uptake system in the budding yeast Kluyveromyces lactis. Yeast 2002; 19:601-9. [PMID: 11967830 DOI: 10.1002/yea.855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Potassium uptake in Saccharomyces cerevisiae is mediated by at least two proteins, known as Trk1p and Trk2p. Direct involvement in cation movements has been demonstrated for Trk1p, which is the high affinity transporter. S. cerevisiae cells also show low affinity potassium uptake, perhaps mediated by Trk2p. Mutants lacking Trk1p, lose high affinity system, but when grown with moderate potassium concentrations, Trk2p seems to replace it. Mutants lacking both proteins are viable but require at least 10 mM K(+) in the medium to sustain growth. Here we report the cloning and characterization of a gene from Kluyveromyces lactis encoding a homologue of these two proteins. KlTrkp is a 1070 amino acid peptide that shows, overall, higher homology with Trk2p than with Trk1p, and its disruption gives rise to cells with deficient potassium transport and with an increased K(+) requirement for normal growth. Determination of kinetic parameters in the K. lactis wild-type and Kltrk1Delta strains, as well as in Sctrk1Delta Sctrk2Delta S. cerevisiae cells expressing KlTrk1, indicated that this is a low affinity component of a major potassium uptake system in K. lactis.
Collapse
Affiliation(s)
- Manuel Miranda
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F. México, Ap. Postal 70-242, 04510 México
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wagner R, Straub ML, Souciet JL, Potier S, de Montigny J. New plasmid system to select for Saccharomyces cerevisiae purine-cytosine permease affinity mutants. J Bacteriol 2001; 183:4386-8. [PMID: 11418581 PMCID: PMC95330 DOI: 10.1128/jb.183.14.4386-4388.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FCY2 gene of Saccharomyces cerevisiae encodes a purine-cytosine permease (PCP) that mediates the active transport of purines and cytosine. A structure-function model for this PCP has been recently proposed. In this study, we developed a plasmid-based system that generated a number of affinity-mutated alleles, enabling us to define new amino acids critical for permease function.
Collapse
Affiliation(s)
- R Wagner
- Laboratoire de Microbiologie et de Génétique, ESA 7010 Université Louis Pasteur/CNRS, Institut de Botanique, F-67083 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
14
|
Navarre C, Goffeau A. Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J 2000; 19:2515-24. [PMID: 10835350 PMCID: PMC212770 DOI: 10.1093/emboj/19.11.2515] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Yeast plasma membranes contain a small 55 amino acid hydrophobic polypeptide, Pmp3p, which has high sequence similarity to a novel family of plant polypeptides that are overexpressed under high salt concentration or low temperature treatment. The PMP3 gene is not essential under normal growth conditions. However, its deletion increases the plasma membrane potential and confers sensitivity to cytotoxic cations, such as Na(+) and hygromycin B. Interestingly, the disruption of PMP3 exacerbates the NaCl sensitivity phenotype of a mutant strain lacking the Pmr2p/Enap Na(+)-ATPases and the Nha1p Na(+)/H(+) antiporter, and suppresses the potassium dependency of a strain lacking the K(+) transporters, Trk1p and Trk2p. All these phenotypes could be reversed by the addition of high Ca(2+) concentration to the medium. These genetic interactions indicate that the major effect of the PMP3 deletion is a hyperpolarization of the plasma membrane potential that probably promotes a non-specific influx of monovalent cations. Expression of plant RCI2A in yeast could substitute for the loss of Pmp3p, indicating a common role for Pmp3p and the plant homologue.
Collapse
Affiliation(s)
- C Navarre
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Croix du Sud 2-20, 1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
15
|
Kasahara T, Kasahara M. Interaction between the critical aromatic amino acid residues Tyr(352) and Phe(504) in the yeast Gal2 transporter. FEBS Lett 2000; 471:103-7. [PMID: 10760522 DOI: 10.1016/s0014-5793(00)01371-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Three critical aromatic sites have been identified in the yeast galactose transporter Gal2: Tyr(352) at the extracellular boundary of putative transmembrane segment (TM) 7, Tyr(446) in the middle of TM10 and Phe(504) in the middle of TM12. The relationship between these sites was investigated by random mutagenesis of each combination of two of the three residues. Galactose transport-positive clones selected by plate assays encoded Tyr(446) and specific combinations of aromatic residues at sites 352 and 504. Double-site mutants containing aromatic residues at these latter two positions showed either essentially full galactose transport activity (Phe(352)Trp(504) and Trp(352)Trp(504)) or no significant activity (Phe(352)Tyr(504) and Trp(352)Tyr(504)), whereas single-site mutants showed markedly reduced activity. These results are indicative of a specific interaction between sites 352 and 504 of Gal2.
Collapse
Affiliation(s)
- T Kasahara
- Laboratory of Biophysics, School of Medicine, Teikyo University, Hachioji, Tokyo, Japan
| | | |
Collapse
|
16
|
Affiliation(s)
- A Rodríguez-Navarro
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
17
|
Kasahara T, Kasahara M. Three aromatic amino acid residues critical for galactose transport in yeast Gal2 transporter. J Biol Chem 2000; 275:4422-8. [PMID: 10660614 DOI: 10.1074/jbc.275.6.4422] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyr(446) in putative transmembrane segment 10 (TM10) of the yeast galactose transporter Gal2 has previously been identified as essential for galactose recognition. In the present study, alignment of the amino acid sequences of 63 sugar transporters or related proteins revealed 14 aromatic sites, including Tyr(446) of Gal2, that are conserved in >75% of these proteins. The importance of the remaining 13 conserved aromatic amino acids was examined individually by random mutagenesis using degenerate primers. Galactose transport-positive clones were identified by plate selection and subjected to DNA sequencing. For those transport-positive clones corresponding to Tyr(352), and Phe(504) mutants, all the amino acid substitutions comprised aromatic residues. The importance of the aromatic residues at these sites was further investigated by replacing them individually with each of the other 19 amino acids and measuring the galactose transport activity of the resulting mutants. Among both Tyr(352) and Phe(504) mutants, the other aromatic amino acids supported galactose transport; no other amino acids conferred high affinity transport activity. Thus, at least three aromatic sites are critical for galactose transport: one at the extracellular boundary of putative TM7 (Tyr(352)), one in the middle of putative TM10 (Tyr(446)), and one in the middle of putative TM12 (Phe(504)).
Collapse
Affiliation(s)
- T Kasahara
- Laboratory of Biophysics, School of Medicine, Teikyo University, Hachioji, Tokyo 192-0395, Japan
| | | |
Collapse
|
18
|
Abstract
Sugar transporters from one group of the major facilitator superfamily of membrane transporters. A conserved common central pore structure lies at the heart of these transporters and diverse functionality is brought about by alterations to this pore or regions associated with it. Recent mutagenesis studies of sugar transporters within the framework of tenable models for the distantly related lactose permease argue that this model is a good paradigm for other members of the major facilitator superfamily.
Collapse
Affiliation(s)
- M P Barrett
- Divisions of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | | | |
Collapse
|
19
|
Abstract
Sugar transporters are key players in many fundamental processes in plant growth and development. Recent results have identified several new transporters that contribute to a wide array of physiological activities, and detailed molecular analysis has provided exciting insights into the structure and regulation of these essential membrane proteins.
Collapse
Affiliation(s)
- D R Bush
- US Department of Agriculture, Agricultural Research Service, Department of Plant Biology, University of Illinois at Urbana-Champaign, 190 ERML, 1201 W. Gregory, Urbana, IL 6180, USA.
| |
Collapse
|
20
|
Mulet JM, Leube MP, Kron SJ, Rios G, Fink GR, Serrano R. A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol Cell Biol 1999; 19:3328-37. [PMID: 10207057 PMCID: PMC84126 DOI: 10.1128/mcb.19.5.3328] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of intracellular ion concentrations is a fundamental property of living cells. Although many ion transporters have been identified, the systems that modulate their activity remain largely unknown. We have characterized two partially redundant genes from Saccharomyces cerevisiae, HAL4/SAT4 and HAL5, that encode homologous protein kinases implicated in the regulation of cation uptake. Overexpression of these genes increases the tolerance of yeast cells to sodium and lithium, whereas gene disruptions result in greater cation sensitivity. These phenotypic effects of the mutations correlate with changes in cation uptake and are dependent on a functional Trk1-Trk2 potassium transport system. In addition, hal4 hal5 and trk1 trk2 mutants exhibit similar phenotypes: (i) they are deficient in potassium uptake; (ii) their growth is sensitive to a variety of toxic cations, including lithium, sodium, calcium, tetramethylammonium, hygromycin B, and low pH; and (iii) they exhibit increased uptake of methylammonium, an indicator of membrane potential. These results suggest that the Hal4 and Hal5 protein kinases activate the Trk1-Trk2 potassium transporter, increasing the influx of potassium and decreasing the membrane potential. The resulting loss in electrical driving force reduces the uptake of toxic cations and improves salt tolerance. Our data support a role for regulation of membrane potential in adaptation to salt stress that is mediated by the Hal4 and Hal5 kinases.
Collapse
Affiliation(s)
- J M Mulet
- Instituto de Biologia Molecular y Celular de Plantas, Universidad Politecnica de Valencia-C.S.I.C., 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Kasahara M, Maeda M. Contribution to substrate recognition of two aromatic amino acid residues in putative transmembrane segment 10 of the yeast sugar transporters Gal2 and Hxt2. J Biol Chem 1998; 273:29106-12. [PMID: 9786918 DOI: 10.1074/jbc.273.44.29106] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The comprehensive study of chimeras between the Gal2 galactose transporter and the Hxt2 glucose transporter of Saccharomyces cerevisiae has shown that Tyr446 is essential and Trp455 is important for galactose recognition by Gal2. Consistent with this finding, replacement of the corresponding Phe431 and Tyr440 residues of Hxt2 with Tyr and Trp, respectively, allowed Hxt2 to transport galactose, suggesting that the two amino acid residues in putative transmembrane segment 10 play a definite role in galactose recognition (Kasahara, M., Shimoda, E., and Maeda, M. (1997) J. Biol. Chem. 272, 16721-16724). Replacement of Trp455 of Gal2 with any of the other 19 amino acids was shown to reduce galactose transport activity to between 0 and <20% of that of wild-type Gal2. The role of Phe431 in Hxt2 was similarly studied. Other than Phe, only Tyr at position 431 was able to support glucose transport activity, at the reduced level of <20%. In contrast, replacement of Tyr440 of Hxt2 with other amino acids revealed that most replacements, with the exception of Pro and charged amino acids, supported glucose transport activity. The importance of residue 431 in sugar recognition was more pronounced in a modified Hxt2 in which Tyr440 was replaced with Trp. Glucose transport was supported only by the aromatic amino acids Phe, Tyr, and Trp at position 431, and galactose transport was supported only by Tyr. These results suggest that an aromatic amino acid located in the middle of transmembrane segment 10 (Tyr446 in Gal2 and Phe431 in Hxt2) plays a critical role in substrate recognition in the yeast sugar transporter family to which Gal2 and Hxt2 belong.
Collapse
Affiliation(s)
- M Kasahara
- Laboratory of Biophysics, School of Medicine, Teikyo University, Hachioji, Tokyo 192-0395, Japan.
| | | |
Collapse
|
22
|
Ganster RW, McCartney RR, Schmidt MC. Identification of a calcineurin-independent pathway required for sodium ion stress response in Saccharomyces cerevisiae. Genetics 1998; 150:31-42. [PMID: 9725828 PMCID: PMC1460325 DOI: 10.1093/genetics/150.1.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The calcium-dependent protein phosphatase calcineurin plays an essential role in ion homeostasis in yeast. In this study, we identify a parallel ion stress response pathway that is independent of the calcineurin signaling pathway. Cells with null alleles in both STD1 and its homologue, MTH1, manifest numerous phenotypes observed in calcineurin mutants, including sodium, lithium, manganese, and hydroxyl ion sensitivity, as well as alpha factor toxicity. Furthermore, increased gene dosage of STD1 suppresses the ion stress phenotypes in calcineurin mutants and confers halotolerance in wild-type cells. However, Std1p functions in a calcineurin-independent ion stress response pathway, since a std1 mth1 mutant is FK506 sensitive under conditions of ion stress. Mutations in other genes known to regulate gene expression in response to changes in glucose concentration, including SNF3, RGT2, and SNF5, also affect cell growth under ion stress conditions. Gene expression studies indicate that the regulation of HAL1 and PMR2 expression is affected by STD1 gene dosage. Taken together, our data demonstrate that response to ion stress requires the participation of both calcineurin-dependent and -independent pathways.
Collapse
Affiliation(s)
- R W Ganster
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
23
|
Affiliation(s)
- R L Nakamura
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
24
|
Bihler H, Slayman CL, Bertl A. NSC1: a novel high-current inward rectifier for cations in the plasma membrane of Saccharomyces cerevisiae. FEBS Lett 1998; 432:59-64. [PMID: 9710251 DOI: 10.1016/s0014-5793(98)00832-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The plasma membrane of the yeast Saccharomyces cerevisiae possesses a non-specific cation 'channel', tentatively dubbed NSC1, which is blocked by normal (mM) calcium and other divalent metal ions, is unblocked by reduction of extracellular free divalents below approximately 10 microM, and is independent of the identified potassium channel and porters in yeast, Duk1p, Trk1p, and Trk2p. Ion currents through NSC1, observed by means of whole-cell patch recording, have the following characteristics: Large amplitude, often exceeding 1 nA of K+/ cell at -200 mV, in tetraploid yeast, sufficient to double the normal intracellular K+ concentration within 10 s; non-saturation at large negative voltages; complicated activation kinetics, in which approximately 50% of the total current arises nearly instantaneously with a voltage-clamp step, while the remainder develops as two components, with time constants of approximately 100 ms and approximately 1.3 s; and voltage independence of both the activation time constants and the associated fractional current amplitudes.
Collapse
Affiliation(s)
- H Bihler
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
25
|
Madrid R, Gómez MJ, Ramos J, Rodríguez-Navarro A. Ectopic potassium uptake in trk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential. J Biol Chem 1998; 273:14838-44. [PMID: 9614085 DOI: 10.1074/jbc.273.24.14838] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Null trk1 trk2 mutants of Saccharomyces cerevisiae exhibit a low-affinity uptake of K+ and Rb+. We show that this low-affinity Rb+ uptake is mediated by several independent transporters, and that trk1Delta cells and especially trk1Delta trk2Delta cells are highly hyperpolarized. Differences in the membrane potentials were assessed for sensitivity to hygromycin B and by flow cytometric analyses of cellular DiOC6(3) fluorescence. On the basis of the latter analyses, it is proposed that Trk1p and Trk2p are involved in the control of the membrane potential, preventing excessive hyperpolarizations. K+ starvation and nitrogen starvation hyperpolarize both TRK1 TRK2 and trk1Delta trk2Delta cells, thus suggesting that other proteins, in addition to Trk1p and Trk2p, participate in the control of the membrane potential. The HAK1 K+ transporter from Schwanniomyces occidentalis suppresses the K+-defective transport of trk1Delta trk2Delta cells but not the high hyperpolarization, and the HKT1 K+ transporter from wheat suppresses both defects, in the presence of Na+. We discuss the mechanism involved in the control of the membrane potential by Trk1p and Trk2p and the causal relationship between the high membrane potential (negative inside) of trk1Delta trk2Delta cells and its ectopic transport of alkali cations.
Collapse
Affiliation(s)
- R Madrid
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|