1
|
Bridgers JB, Carlström A, Sherpa D, Couvillion MT, Rovšnik U, Gao J, Wan B, Shao S, Ott M, Churchman LS. Translational activators align mRNAs at the small mitoribosomal subunit for translation initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634913. [PMID: 39896557 PMCID: PMC11785255 DOI: 10.1101/2025.01.26.634913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Mitochondrial gene expression is essential for oxidative phosphorylation. Mitochondrial-encoded mRNAs are translated by dedicated mitochondrial ribosomes (mitoribosomes), whose regulation remains elusive. In the baker's yeast Saccharomyces cerevisiae , nuclear-encoded mitochondrial translational activators (TAs) facilitate transcript-specific translation by a yet unknown mechanism. Here, we investigated the function of TAs containing RNA-binding pentatricopeptide repeats (PPRs) using selective mitoribosome profiling and cryo-EM structural analysis. These analyses revealed that TAs exhibit strong selectivity for mitoribosomes initiating on their target transcripts. Moreover, TA-mitoribosome footprints indicated that TAs recruit mitoribosomes proximal to the start codon. Two cryo-EM structures of mRNA-TA complexes bound to post-initiation/pre-elongation-stalled mitoribosomes revealed the general mechanism of TA action. Specifically, the TAs bind to structural elements in the 5' UTR of the client mRNA as well as to the mRNA channel exit to align the mRNA in the small subunit during initiation. Our findings provide a mechanistic basis for understanding how mitochondria achieve transcript-specific translation initiation without relying on general sequence elements to position mitoribosomes at start codons.
Collapse
|
2
|
Dinh N, Bonnefoy N. Schizosaccharomyces pombe as a fundamental model for research on mitochondrial gene expression: Progress, achievements and outlooks. IUBMB Life 2024; 76:397-419. [PMID: 38117001 DOI: 10.1002/iub.2801] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Schizosaccharomyces pombe (fission yeast) is an attractive model for mitochondrial research. The organism resembles human cells in terms of mitochondrial inheritance, mitochondrial transport, sugar metabolism, mitogenome structure and dependence of viability on the mitogenome (the petite-negative phenotype). Transcriptions of these genomes produce only a few polycistronic transcripts, which then undergo processing as per the tRNA punctuation model. In general, the machinery for mitochondrial gene expression is structurally and functionally conserved between fission yeast and humans. Furthermore, molecular research on S. pombe is supported by a considerable number of experimental techniques and database resources. Owing to these advantages, fission yeast has significantly contributed to biomedical and fundamental research. Here, we review the current state of knowledge regarding S. pombe mitochondrial gene expression, and emphasise the pertinence of fission yeast as both a model and tool, especially for studies on mitochondrial translation.
Collapse
Affiliation(s)
- Nhu Dinh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
3
|
Tran HC, Schmitt V, Lama S, Wang C, Launay-Avon A, Bernfur K, Sultan K, Khan K, Brunaud V, Liehrmann A, Castandet B, Levander F, Rasmusson AG, Mireau H, Delannoy E, Van Aken O. An mTRAN-mRNA interaction mediates mitochondrial translation initiation in plants. Science 2023; 381:eadg0995. [PMID: 37651534 DOI: 10.1126/science.adg0995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
Plant mitochondria represent the largest group of respiring organelles on the planet. Plant mitochondrial messenger RNAs (mRNAs) lack Shine-Dalgarno-like ribosome-binding sites, so it is unknown how plant mitoribosomes recognize mRNA. We show that "mitochondrial translation factors" mTRAN1 and mTRAN2 are land plant-specific proteins, required for normal mitochondrial respiration chain biogenesis. Our studies suggest that mTRANs are noncanonical pentatricopeptide repeat (PPR)-like RNA binding proteins of the mitoribosomal "small" subunit. We identified conserved Adenosine (A)/Uridine (U)-rich motifs in the 5' regions of plant mitochondrial mRNAs. mTRAN1 binds this motif, suggesting that it is a mitoribosome homing factor to identify mRNAs. We demonstrate that mTRANs are likely required for translation of all plant mitochondrial mRNAs. Plant mitochondrial translation initiation thus appears to use a protein-mRNA interaction that is divergent from bacteria or mammalian mitochondria.
Collapse
Affiliation(s)
| | | | - Sbatie Lama
- Department of Biology, Lund University, Lund, Sweden
| | - Chuande Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Katja Bernfur
- Department of Chemistry, Lund University, Lund, Sweden
| | - Kristin Sultan
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Arnaud Liehrmann
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université Paris-Saclay, CNRS, Université d'Évry, Laboratoire de Mathématiques et Modélisation d'Évry, 91037 Évry-Courcouronnes, France
| | - Benoît Castandet
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | | | - Hakim Mireau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | | |
Collapse
|
4
|
Powers EN, Chan C, Doron-Mandel E, Llacsahuanga Allcca L, Kim Kim J, Jovanovic M, Brar GA. Bidirectional promoter activity from expression cassettes can drive off-target repression of neighboring gene translation. eLife 2022; 11:e81086. [PMID: 36503721 PMCID: PMC9754628 DOI: 10.7554/elife.81086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Targeted selection-based genome-editing approaches have enabled many fundamental discoveries and are used routinely with high precision. We found, however, that replacement of DBP1 with a common selection cassette in budding yeast led to reduced expression and function for the adjacent gene, MRP51, despite all MRP51 coding and regulatory sequences remaining intact. Cassette-induced repression of MRP51 drove all mutant phenotypes detected in cells deleted for DBP1. This behavior resembled the 'neighboring gene effect' (NGE), a phenomenon of unknown mechanism whereby cassette insertion at one locus reduces the expression of a neighboring gene. Here, we leveraged strong off-target mutant phenotypes resulting from cassette replacement of DBP1 to provide mechanistic insight into the NGE. We found that the inherent bidirectionality of promoters, including those in expression cassettes, drives a divergent transcript that represses MRP51 through combined transcriptional interference and translational repression mediated by production of a long undecoded transcript isoform (LUTI). Divergent transcript production driving this off-target effect is general to yeast expression cassettes and occurs ubiquitously with insertion. Despite this, off-target effects are often naturally prevented by local sequence features, such as those that terminate divergent transcripts between the site of cassette insertion and the neighboring gene. Thus, cassette-induced off-target effects can be eliminated by the insertion of transcription terminator sequences into the cassette, flanking the promoter. Because the driving features of this off-target effect are broadly conserved, our study suggests it should be considered in the design and interpretation of experiments using integrated expression cassettes in other eukaryotic systems, including human cells.
Collapse
Affiliation(s)
- Emily Nicole Powers
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Charlene Chan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | | | - Jenny Kim Kim
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkleyBerkleyUnited States
- Center for Computational Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
5
|
Herbert CJ, Labarre-Mariotte S, Cornu D, Sophie C, Panozzo C, Michel T, Dujardin G, Bonnefoy N. Translational activators and mitoribosomal isoforms cooperate to mediate mRNA-specific translation in Schizosaccharomyces pombe mitochondria. Nucleic Acids Res 2021; 49:11145-11166. [PMID: 34634819 PMCID: PMC8565316 DOI: 10.1093/nar/gkab789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial mRNAs encode key subunits of the oxidative phosphorylation complexes that produce energy for the cell. In Saccharomyces cerevisiae, mitochondrial translation is under the control of translational activators, specific to each mRNA. In Schizosaccharomyces pombe, which more closely resembles the human system by its mitochondrial DNA structure and physiology, most translational activators appear to be either lacking, or recruited for post-translational functions. By combining bioinformatics, genetic and biochemical approaches we identified two interacting factors, Cbp7 and Cbp8, controlling Cytb production in S. pombe. We show that their absence affects cytb mRNA stability and impairs the detection of the Cytb protein. We further identified two classes of Cbp7/Cbp8 partners and showed that they modulated Cytb or Cox1 synthesis. First, two isoforms of bS1m, a protein of the small mitoribosomal subunit, that appear mutually exclusive and confer translational specificity. Second, a complex of four proteins dedicated to Cox1 synthesis, which includes an RNA helicase that interacts with the mitochondrial ribosome. Our results suggest that S. pombe contains, in addition to complexes of translational activators, a heterogeneous population of mitochondrial ribosomes that could specifically modulate translation depending on the mRNA translated, in order to optimally balance the production of different respiratory complex subunits.
Collapse
Affiliation(s)
- Christopher J Herbert
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Sylvie Labarre-Mariotte
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - David Cornu
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Cyrielle Sophie
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Cristina Panozzo
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Thomas Michel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Geneviève Dujardin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
6
|
IRC3 regulates mitochondrial translation in response to metabolic cues in Saccharomyces cerevisiae. Mol Cell Biol 2021; 41:e0023321. [PMID: 34398681 DOI: 10.1128/mcb.00233-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) enzymes are made up of dual genetic origin. Mechanisms regulating the expression of nuclear-encoded OXPHOS subunits in response to metabolic cues (glucose vs. glycerol), is significantly understood while regulation of mitochondrially encoded OXPHOS subunits is poorly defined. Here, we show that IRC3 a DEAD/H box helicase, previously implicated in mitochondrial DNA maintenance, is central to integrating metabolic cues with mitochondrial translation. Irc3 associates with mitochondrial small ribosomal subunit in cells consistent with its role in regulating translation elongation based on Arg8m reporter system. IRC3 deleted cells retained mitochondrial DNA despite growth defect on glycerol plates. Glucose grown Δirc3ρ+ and irc3 temperature-sensitive cells at 370C have reduced translation rates from majority of mRNAs. In contrast, when galactose was the carbon source, reduction in mitochondrial translation was observed predominantly from Cox1 mRNA in Δirc3ρ+ but no defect was observed in irc3 temperature-sensitive cells, at 370C. In support, of a model whereby IRC3 responds to metabolic cues to regulate mitochondrial translation, suppressors of Δirc3 isolated for restoration of growth on glycerol media restore mitochondrial protein synthesis differentially in presence of glucose vs. glycerol.
Collapse
|
7
|
Transcriptome analysis of Botrytis cinerea in response to tea tree oil and its two characteristic components. Appl Microbiol Biotechnol 2020; 104:2163-2178. [DOI: 10.1007/s00253-020-10382-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
|
8
|
Derbikova KS, Levitsky SA, Chicherin IV, Vinogradova EN, Kamenski PA. Activation of Yeast Mitochondrial Translation: Who Is in Charge? BIOCHEMISTRY (MOSCOW) 2018; 83:87-97. [DOI: 10.1134/s0006297918020013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Desai N, Brown A, Amunts A, Ramakrishnan V. The structure of the yeast mitochondrial ribosome. Science 2017; 355:528-531. [PMID: 28154081 DOI: 10.1126/science.aal2415] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/05/2017] [Indexed: 01/02/2023]
Abstract
Mitochondria have specialized ribosomes (mitoribosomes) dedicated to the expression of the genetic information encoded by their genomes. Here, using electron cryomicroscopy, we have determined the structure of the 75-component yeast mitoribosome to an overall resolution of 3.3 angstroms. The mitoribosomal small subunit has been built de novo and includes 15S ribosomal RNA (rRNA) and 34 proteins, including 14 without homologs in the evolutionarily related bacterial ribosome. Yeast-specific rRNA and protein elements, including the acquisition of a putatively active enzyme, give the mitoribosome a distinct architecture compared to the mammalian mitoribosome. At an expanded messenger RNA channel exit, there is a binding platform for translational activators that regulate translation in yeast but not mammalian mitochondria. The structure provides insights into the evolution and species-specific specialization of mitochondrial translation.
Collapse
Affiliation(s)
- Nirupa Desai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Alexey Amunts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.,SciLifeLab, Stockholm University, SE-106 91 Stockholm, Sweden
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
10
|
Ribosome-Associated Mba1 Escorts Cox2 from Insertion Machinery to Maturing Assembly Intermediates. Mol Cell Biol 2016; 36:2782-2793. [PMID: 27550809 PMCID: PMC5086520 DOI: 10.1128/mcb.00361-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/08/2016] [Accepted: 08/17/2016] [Indexed: 01/25/2023] Open
Abstract
The three conserved core subunits of the cytochrome c oxidase are encoded by mitochondria in close to all eukaryotes. The Cox2 subunit spans the inner membrane twice, exposing the N and C termini to the intermembrane space. For this, the N terminus is exported cotranslationally by Oxa1 and subsequently undergoes proteolytic maturation in Saccharomyces cerevisiae. Little is known about the translocation of the C terminus, but Cox18 has been identified to be a critical protein in this process. Here we find that the scaffold protein Cox20, which promotes processing of Cox2, is in complex with the ribosome receptor Mba1 and translating mitochondrial ribosomes in a Cox2-dependent manner. The Mba1-Cox20 complex accumulates when export of the C terminus of Cox2 is blocked by the loss of the Cox18 protein. While Cox20 engages with Cox18, Mba1 is no longer present at this stage. Our analyses indicate that Cox20 associates with nascent Cox2 and Mba1 to promote Cox2 maturation cotranslationally. We suggest that Mba1 stabilizes the Cox20-ribosome complex and supports the handover of Cox2 to the Cox18 tail export machinery.
Collapse
|
11
|
Richter-Dennerlein R, Oeljeklaus S, Lorenzi I, Ronsör C, Bareth B, Schendzielorz AB, Wang C, Warscheid B, Rehling P, Dennerlein S. Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein. Cell 2016; 167:471-483.e10. [PMID: 27693358 PMCID: PMC5055049 DOI: 10.1016/j.cell.2016.09.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/01/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Abstract
Mitochondrial ribosomes translate membrane integral core subunits of the oxidative phosphorylation system encoded by mtDNA. These translation products associate with nuclear-encoded, imported proteins to form enzyme complexes that produce ATP. Here, we show that human mitochondrial ribosomes display translational plasticity to cope with the supply of imported nuclear-encoded subunits. Ribosomes expressing mitochondrial-encoded COX1 mRNA selectively engage with cytochrome c oxidase assembly factors in the inner membrane. Assembly defects of the cytochrome c oxidase arrest mitochondrial translation in a ribosome nascent chain complex with a partially membrane-inserted COX1 translation product. This complex represents a primed state of the translation product that can be retrieved for assembly. These findings establish a mammalian translational plasticity pathway in mitochondria that enables adaptation of mitochondrial protein synthesis to the influx of nuclear-encoded subunits. Mitochondrial ribosomes display translational plasticity COX1 translation in mitochondria is stalled in the absence of nuclear-encoded COX4 A ribosome nascent chain complex of COX1 is a primed state for complex IV assembly MITRAC regulates translation via COX1 ribosome nascent chain complexes interaction
Collapse
Affiliation(s)
- Ricarda Richter-Dennerlein
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University Freiburg, 79104 Freiburg, Germany
| | - Isotta Lorenzi
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany
| | - Christin Ronsör
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany
| | - Bettina Bareth
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany
| | | | - Cong Wang
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany
| |
Collapse
|
12
|
Affiliation(s)
- Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Alexey Amunts
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden;
| | - Alan Brown
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|
13
|
Abstract
Programmed translational bypassing is a process whereby ribosomes "ignore" a substantial interval of mRNA sequence. Although discovered 25 y ago, the only experimentally confirmed example of this puzzling phenomenon is expression of the bacteriophage T4 gene 60. Bypassing requires translational blockage at a "takeoff codon" immediately upstream of a stop codon followed by a hairpin, which causes peptidyl-tRNA dissociation and reassociation with a matching "landing triplet" 50 nt downstream, where translation resumes. Here, we report 81 translational bypassing elements (byps) in mitochondria of the yeast Magnusiomyces capitatus and demonstrate in three cases, by transcript analysis and proteomics, that byps are retained in mitochondrial mRNAs but not translated. Although mitochondrial byps resemble the bypass sequence in the T4 gene 60, they utilize unused codons instead of stops for translational blockage and have relaxed matching rules for takeoff/landing sites. We detected byp-like sequences also in mtDNAs of several Saccharomycetales, indicating that byps are mobile genetic elements. These byp-like sequences lack bypassing activity and are tolerated when inserted in-frame in variable protein regions. We hypothesize that byp-like elements have the potential to contribute to evolutionary diversification of proteins by adding new domains that allow exploration of new structures and functions.
Collapse
|
14
|
Rackham O, Filipovska A. Supernumerary proteins of mitochondrial ribosomes. Biochim Biophys Acta Gen Subj 2013; 1840:1227-32. [PMID: 23958563 DOI: 10.1016/j.bbagen.2013.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Messenger RNAs encoded by mitochondrial genomes are translated on mitochondrial ribosomes that have unique structure and protein composition compared to prokaryotic and cytoplasmic ribosomes. Mitochondrial ribosomes are a patchwork of core proteins that share homology with prokaryotic ribosomal proteins and new, supernumerary proteins that can be unique to different organisms. In mammals, there are specific supernumerary ribosomal proteins that are not present in other eukaryotes. SCOPE OF REVIEW Here we discuss the roles of supernumerary proteins in the regulation of mitochondrial gene expression and compare them among different eukaryotic systems. Furthermore, we consider if differences in the structure and organization of mitochondrial genomes may have contributed to the acquisition of mitochondrial ribosomal proteins with new functions. MAJOR CONCLUSIONS The distinct and diverse compositions of mitochondrial ribosomes illustrate the high evolutionary divergence found between mitochondrial genetic systems. GENERAL SIGNIFICANCE Elucidating the role of the organism-specific supernumerary proteins may provide a window into the regulation of mitochondrial gene expression through evolution in response to distinct evolutionary paths taken by mitochondria in different organisms. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Oliver Rackham
- Western Australian Institute for Medical Research, Western Australia 6000, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Western Australian Institute for Medical Research, Western Australia 6000, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Western Australia 6009, Australia.
| |
Collapse
|
15
|
Weis BL, Schleiff E, Zerges W. Protein targeting to subcellular organelles via MRNA localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:260-73. [PMID: 23457718 DOI: 10.1016/j.bbamcr.2012.04.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells have complex membranous organelles for the compartmentalization and the regulation of most intracellular processes. Organelle biogenesis and maintenance requires newly synthesized proteins, each of which needs to go from the ribosome translating its mRNA to the correct membrane for insertion or transclocation to an a organellar subcompartment. Decades of research have revealed how proteins are targeted to the correct organelle and translocated across one or more organelle membranes ro the compartment where they function. The paradigm examples involve interactions between a peptide sequence in the protein, localization factors, and various membrane embedded translocation machineries. Membrane translocation is either cotranslational or posttranslational depending on the protein and target organelle. Meanwhile research in embryos, neurons and yeast revealed an alternative targeting mechanism in which the mRNA is localized and only then translated to synthesize the protein in the correct location. In these cases, the targeting information is coded by the cis-acting sequences in the mRNA ("Zipcodes") that interact with localization factors and, in many cases, are transported by the molecular motors on the cytoskeletal filaments. Recently, evidence has been found for this "mRNA based" mechanism in organelle protein targeting to endoplasmic reticulum, mitochondria, and the photosynthetic membranes within chloroplasts. Here we review known and potential roles of mRNA localization in protein targeting to and within organelles. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Benjamin L Weis
- Goether University, Cluster of Excellence Macromolecular Complexes, Institute for Molecular Biosciences, Max-von-Laue Str. 9, D-60438 Frankfort, Germany
| | | | | |
Collapse
|
16
|
Herrmann JM, Woellhaf MW, Bonnefoy N. Control of protein synthesis in yeast mitochondria: the concept of translational activators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:286-94. [PMID: 22450032 DOI: 10.1016/j.bbamcr.2012.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/01/2012] [Accepted: 03/08/2012] [Indexed: 12/18/2022]
Abstract
Mitochondria contain their own genome which codes for a small number of proteins. Most mitochondrial translation products are part of the membrane-embedded reaction centers of the respiratory chain complexes. In the yeast Saccharomyces cerevisiae, the expression of these proteins is regulated by translational activators that bind mitochondrial mRNAs, in most cases to their 5'-untranslated regions, and each mitochondrial mRNA appears to have its own translational activator(s). Recent studies showed that these translational activators can be part of feedback control loops which only permit translation if the downstream assembly of nascent translation products can occur. In several cases, the accumulation of a non-assembled protein prevents further synthesis of this protein but not translation in general. These control loops prevent the synthesis of potentially harmful assembly intermediates of the reaction centers of mitochondrial enzymes. Since such regulatory feedback loops only work if translation occurs in the compartment in which the complexes of the respiratory chain are assembled, these control mechanisms require the presence of a translation machinery in mitochondria. This might explain why eukaryotic cells maintained DNA in mitochondria during the last two billion years of evolution. This review gives an overview of the mitochondrial translation system and summarizes the current knowledge on translational activators and their role in the regulation of mitochondrial protein synthesis. This article is part of a Special Issue entitled: Protein import and quality control in mitochondria and plastids.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Cell Biology, Erwin-Schrödinger-Strasse 13, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| | | | | |
Collapse
|
17
|
Gruschke S, Kehrein K, Römpler K, Gröne K, Israel L, Imhof A, Herrmann JM, Ott M. Cbp3-Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly. ACTA ACUST UNITED AC 2011; 193:1101-14. [PMID: 21670217 PMCID: PMC3115798 DOI: 10.1083/jcb.201103132] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A complex specifically required for the biogenesis of the respiratory chain component cytochrome b binds to the tunnel exit of yeast mitochondrial ribosomes to coordinate protein synthesis and assembly. Mitochondria contain their own genetic system to express a small number of hydrophobic polypeptides, including cytochrome b, an essential subunit of the bc1 complex of the respiratory chain. In this paper, we show in yeast that Cbp3, a bc1 complex assembly factor, and Cbp6, a regulator of cytochrome b translation, form a complex that associates with the polypeptide tunnel exit of mitochondrial ribosomes and that exhibits two important functions in the biogenesis of cytochrome b. On the one hand, the interaction of Cbp3 and Cbp6 with mitochondrial ribosomes is necessary for efficient translation of cytochrome b transcript. On the other hand, the Cbp3–Cbp6 complex interacts directly with newly synthesized cytochrome b in an assembly intermediate that is not ribosome bound and that contains the assembly factor Cbp4. Our results suggest that synthesis of cytochrome b occurs preferentially on those ribosomes that have the Cbp3–Cbp6 complex bound to their tunnel exit, an arrangement that may ensure tight coordination of cytochrome b synthesis and assembly.
Collapse
Affiliation(s)
- Steffi Gruschke
- Abteilung Membranbiogenese and 2 Abteilung Membranbiogenese Zellbiologie, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gruschke S, Ott M. The polypeptide tunnel exit of the mitochondrial ribosome is tailored to meet the specific requirements of the organelle. Bioessays 2010; 32:1050-7. [PMID: 20967780 DOI: 10.1002/bies.201000081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ribosomal polypeptide tunnel exit is the site where a variety of factors interact with newly synthesized proteins to guide them through the early steps of their biogenesis. In mitochondrial ribosomes, this site has been considerably modified in the course of evolution. In contrast to all other translation systems, mitochondrial ribosomes are responsible for the synthesis of only a few hydrophobic membrane proteins that are essential subunits of the mitochondrial respiratory chain. Membrane insertion of these proteins occurs co-translationally and is connected to a sophisticated assembly process that not only includes the assembly of the different subunits but also the acquisition of redox co-factors. Here, we describe how mitochondrial translation is organized in the context of respiratory chain assembly and speculate how alteration of the ribosomal tunnel exit might allow the establishment of a subset of specialized ribosomes that individually organize the early steps in the biogenesis of distinct mitochondrially-encoded proteins.
Collapse
Affiliation(s)
- Steffi Gruschke
- Research Group Membrane Biogenesis, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
19
|
Chloroplast protein targeting involves localized translation in Chlamydomonas. Proc Natl Acad Sci U S A 2009; 106:1439-44. [PMID: 19164529 DOI: 10.1073/pnas.0811268106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The compartmentalization of eukaryotic cells requires that newly synthesized proteins be targeted to the compartments in which they function. In chloroplasts, a few thousand proteins function in photosynthesis, expression of the chloroplast genome, and other processes. Most chloroplast proteins are synthesized in the cytoplasm, imported, and then targeted to a specific chloroplast compartment. The remainder are encoded by the chloroplast genome, synthesized within the organelle, and targeted by mechanisms that are only beginning to be elucidated. We used fluorescence confocal microscopy to explore the targeting mechanisms used by several chloroplast proteins in the green alga Chlamydomonas. These include the small subunit of ribulose bisphosphate carboxylase (rubisco) and the light-harvesting complex II (LHCII) subunits, which are imported from the cytoplasm, and 2 proteins synthesized in the chloroplast: the D1 subunit of photosystem II and the rubisco large subunit. We determined whether the targeting of each protein involves localized translation of the mRNA that encodes it. When this was the case, we explored whether the targeting sequence was in the nascent polypeptide or in the mRNA, based on whether the localization was translation-dependent or -independent, respectively. The results reveal 2 novel examples of targeting by localized translation, in LHCII subunit import and the targeting of the rubisco large subunit to the pyrenoid. They also demonstrate examples of each of the three known mechanisms-posttranslational, cotranslational (signal recognition particle-mediated), and mRNA-based-in the targeting of specific chloroplast proteins. Our findings can help guide the exploration of these pathways at the biochemical level.
Collapse
|
20
|
Prucca CG, Slavin I, Quiroga R, Elías EV, Rivero FD, Saura A, Carranza PG, Luján HD. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 2008; 456:750-4. [DOI: 10.1038/nature07585] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 10/06/2008] [Indexed: 12/25/2022]
|
21
|
Abstract
The ribosome filter hypothesis postulates that ribosomes are not simply translation machines but also function as regulatory elements that differentially affect or filter the translation of particular mRNAs. On the basis of new information, we take the opportunity here to review the ribosome filter hypothesis, suggest specific mechanisms of action, and discuss recent examples from the literature that support it.
Collapse
Affiliation(s)
- Vincent P. Mauro
- Department of Neurobiology, The Scripps Research Institute and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Gerald M. Edelman
- Department of Neurobiology, The Scripps Research Institute and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
22
|
Williams EH, Butler CA, Bonnefoy N, Fox TD. Translation initiation in Saccharomyces cerevisiae mitochondria: functional interactions among mitochondrial ribosomal protein Rsm28p, initiation factor 2, methionyl-tRNA-formyltransferase and novel protein Rmd9p. Genetics 2007; 175:1117-26. [PMID: 17194786 PMCID: PMC1840066 DOI: 10.1534/genetics.106.064576] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 12/19/2006] [Indexed: 11/18/2022] Open
Abstract
Rsm28p is a dispensable component of the mitochondrial ribosomal small subunit in Saccharomyces cerevisiae that is not related to known proteins found in bacteria. It was identified as a dominant suppressor of certain mitochondrial mutations that reduced translation of the COX2 mRNA. To explore further the function of Rsm28p, we isolated mutations in other genes that caused a synthetic respiratory defective phenotype together with rsm28Delta. These mutations identified three nuclear genes: IFM1, which encodes the mitochondrial translation initiation factor 2 (IF2); FMT1, which encodes the methionyl-tRNA-formyltransferase; and RMD9, a gene of unknown function. The observed genetic interactions strongly suggest that the ribosomal protein Rsm28p and Ifm1p (IF2) have similar and partially overlapping functions in yeast mitochondrial translation initiation. Rmd9p, bearing a TAP-tag, was localized to mitochondria and exhibited roughly equal distribution in soluble and membrane-bound fractions. A small fraction of the Rmd9-TAP sedimented together with presumed monosomes, but not with either individual ribosomal subunit. Thus, Rmd9 is not a ribosomal protein, but may be a novel factor associated with initiating monosomes. The poorly respiring rsm28Delta, rmd9-V363I double mutant did not have a strong translation-defective phenotype, suggesting that Rmd9p may function upstream of translation initiation, perhaps at the level of localization of mitochondrially coded mRNAs.
Collapse
Affiliation(s)
- Elizabeth H Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
23
|
19 Analysis of Gene Function of Mitochondria. J Microbiol Methods 2007. [DOI: 10.1016/s0580-9517(06)36019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Nouet C, Bourens M, Hlavacek O, Marsy S, Lemaire C, Dujardin G. Rmd9p controls the processing/stability of mitochondrial mRNAs and its overexpression compensates for a partial deficiency of oxa1p in Saccharomyces cerevisiae. Genetics 2006; 175:1105-15. [PMID: 17194787 PMCID: PMC1840076 DOI: 10.1534/genetics.106.063883] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxa1p is a key component of the general membrane insertion machinery of eukaryotic respiratory complex subunits encoded by the mitochondrial genome. In this study, we have generated a respiratory-deficient mutant, oxa1-E65G-F229S, that contains two substitutions in the predicted intermembrane space domain of Oxa1p. The respiratory deficiency due to this mutation is compensated for by overexpressing RMD9. We show that Rmd9p is an extrinsic membrane protein facing the matrix side of the mitochondrial inner membrane. Its deletion leads to a pleiotropic effect on respiratory complex biogenesis. The steady-state level of all the mitochondrial mRNAs encoding respiratory complex subunits is strongly reduced in the Deltarmd9 mutant, and there is a slight decrease in the accumulation of two RNAs encoding components of the small subunit of the mitochondrial ribosome. Overexpressing RMD9 leads to an increase in the steady-state level of mitochondrial RNAs, and we discuss how this increase could suppress the oxa1 mutations and compensate for the membrane insertion defect of the subunits encoded by these mRNAs.
Collapse
Affiliation(s)
- Cécile Nouet
- Centre de Génétique Moléculaire, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
25
|
Ando A, Tanaka F, Murata Y, Takagi H, Shima J. Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. FEMS Yeast Res 2006; 6:249-67. [PMID: 16487347 DOI: 10.1111/j.1567-1364.2006.00035.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Yeasts used in bread making are exposed to high concentrations of sucrose during sweet dough fermentation. Despite its importance, tolerance to high-sucrose stress is poorly understood at the gene level. To clarify the genes required for tolerance to high-sucrose stress, genome-wide screening was undertaken using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 273 deletions that yielded high sucrose sensitivity, approximately 20 of which were previously uncharacterized. These 273 deleted genes were classified based on their cellular function and localization of their gene products. Cross-sensitivity of the high-sucrose-sensitive mutants to high concentrations of NaCl and sorbitol was studied. Among the 273 sucrose-sensitive deletion mutants, 269 showed cross-sensitivities to sorbitol or NaCl, and four (i.e. ade5,7, ade6, ade8, and pde2) were specifically sensitive to high sucrose. The general stress response pathways via high-osmolarity glycerol and stress response element pathways and the function of the invertase in the ade mutants were similar to those in the wild-type strain. In the presence of high-sucrose stress, intracellular contents of ATP in ade mutants were at least twofold lower than that of the wild-type cells, suggesting that depletion of ATP is a factor in sensitivity to high-sucrose stress. The genes identified in this study might be important for tolerance to high-sucrose stress, and therefore should be target genes in future research into molecular modification for breeding of yeast tolerant to high-sucrose stress.
Collapse
Affiliation(s)
- Akira Ando
- National Food Research Institute, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
26
|
Ott M, Prestele M, Bauerschmitt H, Funes S, Bonnefoy N, Herrmann JM. Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO J 2006; 25:1603-10. [PMID: 16601683 PMCID: PMC1440829 DOI: 10.1038/sj.emboj.7601070] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 03/09/2006] [Indexed: 11/09/2022] Open
Abstract
The genome of mitochondria encodes a small number of very hydrophobic polypeptides that are inserted into the inner membrane in a cotranslational reaction. The molecular process by which mitochondrial ribosomes are recruited to the membrane is poorly understood. Here, we show that the inner membrane protein Mba1 binds to the large subunit of mitochondrial ribosomes. It thereby cooperates with the C-terminal ribosome-binding domain of Oxa1, which is a central component of the insertion machinery of the inner membrane. In the absence of both Mba1 and the C-terminus of Oxa1, mitochondrial translation products fail to be properly inserted into the inner membrane and serve as substrates of the matrix chaperone Hsp70. We propose that Mba1 functions as a ribosome receptor that cooperates with Oxa1 in the positioning of the ribosome exit site to the insertion machinery of the inner membrane.
Collapse
Affiliation(s)
- Martin Ott
- Institut für Physiologische Chemie, Universität München, München, Germany
| | - Martin Prestele
- Institut für Physiologische Chemie, Universität München, München, Germany
| | - Heike Bauerschmitt
- Institut für Physiologische Chemie, Universität München, München, Germany
| | - Soledad Funes
- Institut für Physiologische Chemie, Universität München, München, Germany
| | | | - Johannes M Herrmann
- Institut für Physiologische Chemie, Universität München, München, Germany
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, München 81377, Germany. Tel.: +49 89 2180 77122; Fax: +49 89 2180 77093; E-mail:
| |
Collapse
|
27
|
Scheffler IE. A century of mitochondrial research: achievements and perspectives. Mitochondrion 2005; 1:3-31. [PMID: 16120266 DOI: 10.1016/s1567-7249(00)00002-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- I E Scheffler
- Division of Biology, University of California, San Diego, and Center for Molecular Genetics, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
28
|
Williams EH, Bsat N, Bonnefoy N, Butler CA, Fox TD. Alteration of a novel dispensable mitochondrial ribosomal small-subunit protein, Rsm28p, allows translation of defective COX2 mRNAs. EUKARYOTIC CELL 2005; 4:337-45. [PMID: 15701796 PMCID: PMC549345 DOI: 10.1128/ec.4.2.337-345.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations affecting the RNA sequence of the first 10 codons of the Saccharomyces cerevisiae mitochondrial gene COX2 strongly reduce translation of the mRNA, which encodes the precursor of cytochrome c oxidase subunit II. A dominant chromosomal mutation that suppresses these defects is an internal in-frame deletion of 67 codons from the gene YDR494w. Wild-type YDR494w encodes a 361-residue polypeptide with no similarity to proteins of known function. The epitope-tagged product of this gene, now named RSM28, is both peripherally associated with the inner surface of the inner mitochondrial membrane and soluble in the matrix. Epitope-tagged Rsm28p from Triton X-100-solubilized mitochondria sedimented with the small subunit of mitochondrial ribosomes in a sucrose gradient containing 500 mM NH4Cl. Complete deletion of RSM28 caused only a modest decrease in growth on nonfermentable carbon sources in otherwise wild-type strains and enhanced the respiratory defect of the suppressible cox2 mutations. The rsm28 null mutation also reduced translation of an ARG8m reporter sequence inserted at the COX1, COX2, and COX3 mitochondrial loci. We tested the ability of RSM28-1 to suppress a variety of cox2 and cox3 mutations and found that initiation codon mutations in both genes were suppressed. We conclude that Rsm28p is a dispensable small-subunit mitochondrial ribosomal protein previously undetected in systematic investigations of these ribosomes, with a positive role in translation of several mitochondrial mRNAs.
Collapse
Affiliation(s)
- Elizabeth H Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | | | | | |
Collapse
|
29
|
Schäfer B, Hansen M, Lang BF. Transcription and RNA-processing in fission yeast mitochondria. RNA (NEW YORK, N.Y.) 2005; 11:785-95. [PMID: 15811919 PMCID: PMC1370763 DOI: 10.1261/rna.7252205] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We systematically examined transcription and RNA-processing in mitochondria of the petite-negative fission yeast Schizosaccharomyces pombe. Two presumptive transcription initiation sites at opposite positions on the circular-mapping mtDNA were confirmed by in vitro capping of primary transcripts with guanylyl-transferase. The major promoter (Pma) is located adjacent to the 5'-end of the rnl gene, and a second, minor promoter (Pmi) upstream from cox3. The primary 5'-termini of the mature rnl and cox3 transcripts remain unmodified. A third predicted accessory transcription initiation site is within the group IIA1 intron of the cob gene (cobI1). The consensus promoter motif of S. pombe closely resembles the nonanucleotide promoter motifs of various yeast mtDNAs. We further characterized all mRNAs and the two ribosomal RNAs by Northern hybridization, and precisely mapped their 5'- and 3'-ends. The mRNAs have leader sequences with a length of 38 up to 220 nt and, in most instances, are created by removal of tRNAs from large precursor RNAs. Like cox2 and rnl, cox1 and cox3 are not separated by tRNA genes; instead, transcription initiation from the promoters upstream from rnl and cox3 compensates for the lack of tRNA-mediated 5'-processing. The 3'-termini of mRNAs and of SSU rRNA are processed at distinct, C-rich motifs that are located at a variable distance (1-15 nt) downstream from mRNA and SSU-rRNA coding regions. The accuracy of RNA-processing at these sites is sequence-dependent. Similar 3'-RNA-processing motifs are present in species of the genus Schizosaccharomyces, but not in budding yeasts that have functionally analogous A+T-rich dodecamer processing signals.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Conserved Sequence/genetics
- DNA, Mitochondrial/genetics
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Introns/genetics
- Mitochondria/genetics
- Models, Genetic
- Promoter Regions, Genetic/genetics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA Splicing/genetics
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Schizosaccharomyces/cytology
- Schizosaccharomyces/genetics
- Transcription Initiation Site
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Bernd Schäfer
- Department of Biology IV (Microbiology), RWTH Aachen University, Worringer Weg, 52056 Aachen, Germany.
| | | | | |
Collapse
|
30
|
Williams EH, Perez-Martinez X, Fox TD. MrpL36p, a highly diverged L31 ribosomal protein homolog with additional functional domains in Saccharomyces cerevisiae mitochondria. Genetics 2005; 167:65-75. [PMID: 15166137 PMCID: PMC1470847 DOI: 10.1534/genetics.167.1.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translation in mitochondria utilizes a large complement of ribosomal proteins. Many mitochondrial ribosomal components are clearly homologous to eubacterial ribosomal proteins, but others appear unique to the mitochondrial system. A handful of mitochondrial ribosomal proteins appear to be eubacterial in origin but to have evolved additional functional domains. MrpL36p is an essential mitochondrial ribosomal large-subunit component in Saccharomyces cerevisiae. Increased dosage of MRPL36 also has been shown to suppress certain types of translation defects encoded within the mitochondrial COX2 mRNA. A central domain of MrpL36p that is similar to eubacterial ribosomal large-subunit protein L31 is sufficient for general mitochondrial translation but not suppression, and proteins bearing this domain sediment with the ribosomal large subunit in sucrose gradients. In contrast, proteins lacking the L31 domain, but retaining a novel N-terminal sequence and a C-terminal sequence with weak similarity to the Escherichia coli signal recognition particle component Ffh, are sufficient for dosage suppression and do not sediment with the large subunit of the ribosome. Interestingly, the activity of MrpL36p as a dosage suppressor exhibits gene and allele specificity. We propose that MrpL36p represents a highly diverged L31 homolog with derived domains functioning in mRNA selection in yeast mitochondria.
Collapse
Affiliation(s)
- Elizabeth H Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|
31
|
Krause-Buchholz U, Schöbel K, Lauffer S, Rödel G. Saccharomyces cerevisiae translational activator Cbs1p is associated with translationally active mitochondrial ribosomes. Biol Chem 2005; 386:407-15. [PMID: 15927884 DOI: 10.1515/bc.2005.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the yeast Saccharomyces cerevisiae, mitochondrial translation of most, if not all, mitochondrially encoded genes is regulated by an individual set of gene-specific activators. Translation of the COB mRNA encoding cytochrome b requires the function of two nuclearly encoded proteins, Cbs1p and Cbs2p. Genetic data revealed that the 5'-untranslated region of COB mRNA is the target of both proteins. Recently, we provided evidence for an interaction of Cbs2p with mitochondrial ribosomes. We demonstrate here by means of blue native gel electrophoresis, density gradient centrifugation and tandem affinity purification that a portion of Cbs1p is also associated with mitochondrial ribosomes. In addition, we demonstrate that the amount of ribosome-associated Cbs1p is elevated in the presence of chloramphenicol, which is known to stall ribosomes on mRNAs. In the presence of puromycin, which strips off the mRNA and nascent protein chains from ribosomes, Cbs1p is no longer associated with ribosomes. Our data indicate that the observed interaction is mediated by ribosome-bound mRNA, thus restricting the association to ribosomes actively translating cytochrome b.
Collapse
Affiliation(s)
- Udo Krause-Buchholz
- Institut für Genetik, Technische Universität Dresden, D-01062 Dresden, Germany.
| | | | | | | |
Collapse
|
32
|
Krause-Buchholz U, Barth K, Dombrowski C, Rödel G. Saccharomyces cerevisiae translational activator Cbs2p is associated with mitochondrial ribosomes. Curr Genet 2004; 46:20-8. [PMID: 15127226 DOI: 10.1007/s00294-004-0503-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 03/22/2004] [Accepted: 03/27/2004] [Indexed: 11/28/2022]
Abstract
A characteristic feature of the mitochondrial expression system in Saccharomyces cerevisiae is the requirement for gene-specific translational activator proteins. Translation of mitochondrial apocytochrome b mRNA requires the nucleus-encoded proteins Cbs1p and Cbs2p. These proteins are thought to tether cytochrome b mRNA to the mitochondrial inner membrane via binding to the 5' untranslated mRNA leader. Here, we demonstrate by the use of affinity chromatography and coimmunoprecipitation that Cbs2p interacts with the mitoribosomes. We further provide evidence that the C-terminus of Cbs2p is important for ribosome association, while the N-terminal portion is essential for the formation of homomeric structures.
Collapse
Affiliation(s)
- Udo Krause-Buchholz
- Institut für Genetik, Technische Universität Dresden, 01062 Dresden, Germany.
| | | | | | | |
Collapse
|
33
|
Dubot A, Godinot C, Dumur V, Sablonnière B, Stojkovic T, Cuisset JM, Vojtiskova A, Pecina P, Jesina P, Houstek J. GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene. Biochem Biophys Res Commun 2004; 313:687-93. [PMID: 14697245 DOI: 10.1016/j.bbrc.2003.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A maternally inherited and practically homoplasmic mitochondrial (mtDNA) mutation, 8527A>G, changing the initiation codon AUG into GUG, normally coding for a valine, was observed in the ATP6 gene encoding the ATPase subunit a. No alternate Met codon could replace the normal translational initiator. The patient harboring this mutation exhibited clinical symptoms suggesting a mitochondrial disease but his mother who carried the same mtDNA mutation was healthy. The mutation was absent from 100 controls and occurred once amongst 44 patients suspected of Leber Hereditary Optic Neuropathy (LHON) but devoid of typical LHON mutations. In patient fibroblasts, no effect of 8527A>G mutation could be demonstrated on the biosynthesis of mtDNA-encoded proteins, on size and the content of ATPase subunit a, on ATP hydrolysis and on mitochondrial membrane potential. In addition, ATP synthesis was barely decreased. Therefore, GUG is a functional initiation codon for the human ATP6 gene.
Collapse
Affiliation(s)
- A Dubot
- Centre National de la Recherche Scientifique, Université Claude Bernard de Lyon I, 69622 Villeurbanne France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Qi H, Li TK, Kuo D, Nur-E-Kamal A, Liu LF. Inactivation of Cdc13p triggers MEC1-dependent apoptotic signals in yeast. J Biol Chem 2003; 278:15136-41. [PMID: 12569108 DOI: 10.1074/jbc.m212808200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Inactivation of the budding yeast telomere binding protein Cdc13 results in abnormal telomeres (exposed long G-strands) and activation of the DNA damage checkpoint. In the current study, we show that inactivation of Cdc13p induces apoptotic signals in yeast, as evidenced by caspase activation, increased reactive oxygen species production, and flipping of phosphatidylserine in the cytoplasmic membrane. These apoptotic signals were suppressed in a mitochondrial (rho(o)) mutant. Moreover, mitochondrial proteins (e.g. MTCO3) were identified as multicopy suppressors of cdc13-1, suggesting the involvement of mitochondrial functions in telomere-initiated apoptotic signaling. These telomere-initiated apoptotic signals were also shown to depend on MEC1, but not TEL1, and were antagonized by MRE11. Our results are consistent with a model in which single-stranded G-tails in the cdc13-1 mutant trigger MEC1-dependent apoptotic signaling in yeast.
Collapse
Affiliation(s)
- Haiyan Qi
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | | | | | |
Collapse
|
35
|
Williams EH, Fox TD. Antagonistic signals within the COX2 mRNA coding sequence control its translation in Saccharomyces cerevisiae mitochondria. RNA (NEW YORK, N.Y.) 2003; 9:419-31. [PMID: 12649494 PMCID: PMC1370409 DOI: 10.1261/rna.2182903] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 12/16/2002] [Indexed: 05/24/2023]
Abstract
Translation of the mitochondrially coded COX2 mRNA within the organelle in yeast produces the precursor of Cox2p (pre-Cox2p), which is processed and assembled into cytochrome c oxidase. The mRNA sequence of the first 14 COX2 codons, specifying the pre-Cox2p leader peptide, was previously shown to contain a positively acting element required for translation of a mitochondrial reporter gene, ARG8(m), fused to the 91st codon of COX2. Here we show that three relatively short sequences within the COX2 mRNA coding sequence, or structures they form in vivo, inhibit translation of the reporter in the absence of the positive element. One negative element was localized within codons 15 to 25 and shown to function at the level of the mRNA sequence, whereas two others are within predicted stem-loop structures formed by codons 22-44 and by codons 46-74. All three of these inhibitory elements are antagonized in a sequence-specific manner by reintroduction of the upstream positive-acting sequence. These interactions appear to be independent of 5'- and 3'-untranslated leader sequences, as they are also observed when the same reporter constructs are expressed from the COX3 locus. Overexpression of MRS2, which encodes a mitochondrial magnesium carrier, partially suppresses translational inhibition by each isolated negatively acting element, but does not suppress them in combination. We hypothesize that interplay among these signals during translation in vivo may ensure proper timing of pre-Cox2p synthesis and assembly into cytochrome c oxidase.
Collapse
Affiliation(s)
- Elizabeth H Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
36
|
Naithani S, Saracco SA, Butler CA, Fox TD. Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:324-33. [PMID: 12529447 PMCID: PMC140248 DOI: 10.1091/mbc.e02-08-0490] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Accepted: 09/20/2002] [Indexed: 11/11/2022] Open
Abstract
The core of the cytochrome c oxidase complex is composed of its three largest subunits, Cox1p, Cox2p, and Cox3p, which are encoded in mitochondrial DNA of Saccharomyces cerevisiae and inserted into the inner membrane from the inside. Mitochondrial translation of the COX1, COX2, and COX3 mRNAs is activated mRNA specifically by the nuclearly coded proteins Pet309p, Pet111p, and the concerted action of Pet54p, Pet122p, and Pet494p, respectively. Because the translational activators recognize sites in the 5'-untranslated leaders of these mRNAs and because untranslated mRNA sequences contain information for targeting their protein products, the activators are likely to play a role in localizing translation. Herein, we report physical associations among the mRNA-specific translational activator proteins, located on the matrix side of the inner membrane. These interactions, detected by coimmune precipitation and by two-hybrid experiments, suggest that the translational activator proteins could be organized on the surface of the inner membrane such that synthesis of Cox1p, Cox2p, and Cox3p would be colocalized in a way that facilitates assembly of the core of the cytochrome c oxidase complex. In addition, we found interactions between Nam1p/Mtf2p and the translational activators, suggesting an organized delivery of mitochondrial mRNAs to the translation system.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | |
Collapse
|
37
|
Gan X, Kitakawa M, Yoshino KI, Oshiro N, Yonezawa K, Isono K. Tag-mediated isolation of yeast mitochondrial ribosome and mass spectrometric identification of its new components. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5203-14. [PMID: 12392552 DOI: 10.1046/j.1432-1033.2002.03226.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial ribosomal proteins (mrps) of the budding yeast, Saccharomyces cerevisiae, have been extensively characterized genetically and biochemically. However, the list of the genes encoding individual mrps is still not complete and quite a few of the mrps are only predicted from their similarity to bacterial ribosomal proteins. We have constructed a yeast strain in which one of the small subunit proteins, termed Mrp4, was tagged with S-peptide and used for affinity purification of mitochondrial ribosome. Mass spectrometric analysis of the isolated proteins detected most of the small subunit mrps which were previously identified or predicted and about half of the large subunit mrps. In addition, several proteins of unknown function were identified. To confirm their identity further, we added tags to these proteins and analyzed their localization in subcellular fractions. Thus, we have newly established Ymr158w (MrpS8), Ypl013c (MrpS16), Ymr188c (MrpS17) and Ygr165w (MrpS35) as small subunit mrps and Img1, Img2, Ydr116c (MrpL1), Ynl177c (MrpL22), Ynr022c (MrpL50) and Ypr100w (MrpL51) as large subunit mrps.
Collapse
Affiliation(s)
- Xiang Gan
- Graduate School of Science and Technology, Department of Biology, Faculty of Science, and Biosignal Research Center, Kobe University, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Stuart R. Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:79-87. [PMID: 12191770 DOI: 10.1016/s0167-4889(02)00266-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The inner mitochondrial membrane harbors a large number of proteins that display a wide range of topological arrangements. The majority of these proteins are encoded in the cell's nucleus, but a few polytopic proteins, all subunits of respiratory chain complexes are encoded by the mitochondrial genome. A number of distinct sorting mechanisms exist to direct these proteins into the mitochondrial inner membrane. One of these pathways involves the export of proteins from the matrix into the inner membrane and is used by both proteins synthesized within the mitochondria, as well as by a subset of nuclear encoded proteins. Prior to embarking on the export pathway, nuclear encoded proteins using this sorting route are initially imported into the mitochondrial matrix from the cytosol, their site of synthesis. Protein export from the matrix into the inner membrane bears similarities to Sec-independent protein export in bacteria and requires the function of the Oxa1 protein. Oxa1 is a component of a general protein insertion site in yeast mitochondrial inner membrane used by both nuclear and mitochondrial DNA encoded proteins. Oxa1 is a member of the conserved Oxa1/YidC/Alb3 protein family found throughout prokaryotes throughout eukaryotes (where it is found in mitochondria and chloroplasts). The evidence to demonstrate that the Oxa1/YidC/Alb3 protein family represents a novel evolutionarily conserved membrane insertion machinery is reviewed here.
Collapse
Affiliation(s)
- Rosemary Stuart
- Department of Biology, Marquette University, 530 N. 15th Street, Milwaukee, WI 53233, USA.
| |
Collapse
|
39
|
Saveanu C, Fromont-Racine M, Harington A, Ricard F, Namane A, Jacquier A. Identification of 12 new yeast mitochondrial ribosomal proteins including 6 that have no prokaryotic homologues. J Biol Chem 2001; 276:15861-7. [PMID: 11278769 DOI: 10.1074/jbc.m010864200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial ribosomal proteins were studied best in yeast, where the small subunit was shown to contain about 35 proteins. Yet, genetic and biochemical studies identified only 14 proteins, half of which were predictable by sequence homology with prokaryotic ribosomal components of the small subunit. Using a recently described affinity purification technique and tagged versions of yeast Ykl155c and Mrp1, we isolated this mitochondrial ribosomal subunit and identified a total of 20 proteins, of which 12 are new. For a subset of the newly described ribosomal proteins, we showed that they are localized in mitochondria and are required for the respiratory competency of the yeast cells. This brings to 26 the total number of proteins described as components of the mitochondrial small ribosomal subunit. Remarkably, almost half of the previously and newly identified mitochondrial ribosomal components showed no similarity to any known ribosomal protein. Homologues could be found, however, in predicted protein sequences from Schizosaccharomyces pombe. In more distant species, putative homologues were detected for Ykl155c, which shares conserved motifs with uncharacterized proteins of higher eukaryotes including humans. Another newly identified ribosomal protein, Ygl129c, was previously shown to be a member of the DAP-3 family of mitochondrial apoptosis mediators.
Collapse
Affiliation(s)
- C Saveanu
- Génétique des Interactions Macromoléculaires, CNRS (URA2171), 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
40
|
Green-Willms NS, Butler CA, Dunstan HM, Fox TD. Pet111p, an inner membrane-bound translational activator that limits expression of the Saccharomyces cerevisiae mitochondrial gene COX2. J Biol Chem 2001; 276:6392-7. [PMID: 11106667 DOI: 10.1074/jbc.m009856200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein specified by the Saccharomyces cerevisiae nuclear gene PET111 specifically activates translation of the mitochondrially coded mRNA for cytochrome c oxidase subunit II (Cox2p). We found Pet111p specifically in mitochondria of both wild-type cells and cells expressing a chromosomal gene for a functional epitope-tagged form of Pet111p. Pet111p was associated with mitochondrial membranes and was highly resistant to extraction with alkaline carbonate. Pet111p was protected from proteolytic digestion by the mitochondrial inner membrane. Thus, it is exposed only on the matrix side, where it could participate directly in organellar translation and localize Cox2p synthesis by virtue of its functional interaction with the COX2 mRNA 5'-untranslated leader. We also found that Pet111p is present at levels limiting the synthesis of Cox2p by examining the effect of altered PET111 gene dosage in the nucleus on expression of a reporter gene, cox2::ARG8(m), that was inserted into mitochondrial DNA. The level of the reporter protein, Arg8p, was one-half that of wild type in a diploid strain heterozygous for a pet111 deletion mutation, whereas it was increased 2.8-fold in a strain bearing extra copies of PET111 on a high-copy plasmid. Thus, Pet111p could play dual roles in both membrane localization and regulation of Cox2p synthesis within mitochondria.
Collapse
Affiliation(s)
- N S Green-Willms
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | |
Collapse
|
41
|
Langkjaer RB, Nielsen ML, Daugaard PR, Liu W, Piskur J. Yeast chromosomes have been significantly reshaped during their evolutionary history. J Mol Biol 2000; 304:271-88. [PMID: 11090273 DOI: 10.1006/jmbi.2000.4209] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the first eukaryotic genome, belonging to Saccharomyces cerevisiae, has been deduced; however, very little is known about its origin. In order to trace events that led to the current state of the Saccharomyces nuclear genomes, random fragments of genomic DNA from three yeasts were sequenced and compared to the S. cerevisiae database sequence. Whereas, S. cerevisiae and Saccharomyces bayanus show perfect synteny, a significant portion of the analysed fragments from Saccharomyces servazzii and Saccharomyces kluyveri show a different arrangement of genes when compared to S. cerevisiae. When the sequenced fragments were probed to the corresponding karyotype, a group of genes present on a single chromosome of S. servazzii and S. kluyveri had homologues scattered on several S. cerevisiae chromosomes. Apparently, extensive reorganisation of the chromosomes has taken place during evolution of the Saccharomyces yeasts. In addition, while one gross duplication could have taken place, at least a few genes have been duplicated independently at different time-points in the evolution.
Collapse
Affiliation(s)
- R B Langkjaer
- Department of Microbiology, Technical University of Denmark, Building 301, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
42
|
Chacinska A, Boguta M, Krzewska J, Rospert S. Prion-dependent switching between respiratory competence and deficiency in the yeast nam9-1 mutant. Mol Cell Biol 2000; 20:7220-9. [PMID: 10982839 PMCID: PMC86276 DOI: 10.1128/mcb.20.19.7220-7229.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nam9p is a protein of the mitochondrial ribosome. The respiration-deficient Saccharomyces cerevisiae strain MB43-nam9-1 expresses Nam9-1p containing the point mutation S82L. Respiratory deficiency correlates with a decrease in the steady level of some mitochondrially encoded proteins and the complete lack of mitochondrially encoded cytochrome oxidase subunit 2 (Cox2). De novo synthesis of Cox2 in MB43-nam9-1 is unaffected, indicating that newly synthesized Cox2 is rapidly degraded. Respiratory deficiency of MB43-nam9-1 is overcome by transient overexpression of HSP104, by deletion of HSP104, by transient exposure to guanidine hydrochloride, and by expression of the C-terminal portion of Sup35, indicating an involvement of the yeast prion [PSI(+)]. Respiratory deficiency of MB43-nam9-1 can be reinduced by transfer of cytosol from S. cerevisiae that harbors [PSI(+)]. We conclude that nam9-1 causes respiratory deficiency only in combination with the cytosolic prion [PSI(+)], presenting the first example of a synthetic effect between cytosolic [PSI(+)] and a mutant mitochondrial protein.
Collapse
Affiliation(s)
- A Chacinska
- Institute of Biochemistry and Biophysics, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
43
|
Costanzo MC, Bonnefoy N, Williams EH, Clark-Walker GD, Fox TD. Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts. Genetics 2000; 154:999-1012. [PMID: 10757749 PMCID: PMC1460983 DOI: 10.1093/genetics/154.3.999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translation of mitochondrially coded mRNAs in Saccharomyces cerevisiae depends on membrane-bound mRNA-specific activator proteins, whose targets lie in the mRNA 5'-untranslated leaders (5'-UTLs). In at least some cases, the activators function to localize translation of hydrophobic proteins on the inner membrane and are rate limiting for gene expression. We searched unsuccessfully in divergent budding yeasts for orthologs of the COX2- and COX3-specific translational activator genes, PET111, PET54, PET122, and PET494, by direct complementation. However, by screening for complementation of mutations in genes adjacent to the PET genes in S. cerevisiae, we obtained chromosomal segments containing highly diverged homologs of PET111 and PET122 from Saccharomyces kluyveri and of PET111 from Kluyveromyces lactis. All three of these genes failed to function in S. cerevisiae. We also found that the 5'-UTLs of the COX2 and COX3 mRNAs of S. kluyveri and K. lactis have little similarity to each other or to those of S. cerevisiae. To determine whether the PET111 and PET122 homologs carry out orthologous functions, we deleted them from the S. kluyveri genome and deleted PET111 from the K. lactis genome. The pet111 mutations in both species prevented COX2 translation, and the S. kluyveri pet122 mutation prevented COX3 translation. Thus, while the sequences of these translational activator proteins and their 5'-UTL targets are highly diverged, their mRNA-specific functions are orthologous.
Collapse
Affiliation(s)
- M C Costanzo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | | | |
Collapse
|
44
|
Gojkovic Z, Jahnke K, Schnackerz KD, Piskur J. PYD2 encodes 5,6-dihydropyrimidine amidohydrolase, which participates in a novel fungal catabolic pathway. J Mol Biol 2000; 295:1073-87. [PMID: 10656811 DOI: 10.1006/jmbi.1999.3393] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most fungi cannot use pyrimidines or their degradation products as the sole nitrogen source. Previously, we screened several yeasts for their ability to catabolise pyrimidines. One of them, Saccharomyces kluyveri, was able to degrade the majority of pyrimidines. Here, a series of molecular techniques have been modified to clone pyrimidine catabolic genes, study their expression and purify the corresponding enzymes from this yeast. The pyd2-1 mutant, which lacked the 5,6-dihydropyrimidine amidohydrolase (DHPase) activity, was transformed with wild-type S. kluyveri genomic library. The complementing plasmid contained the full sequence of the PYD2 gene, which exhibited a high level of homology with mammalian DHPases and bacterial hydantoinases. The organisation of PYD2 showed a couple of specific features. The 542-codons open reading frame was interrupted by a 63 bp intron, which does not contain the Saccharomyces cerevisiae branch-point sequence, and the transcripts contained a long 5' untranslated leader with five or six AUG codons. The derived amino acid sequence showed similarities with dihydroorotases, allantoinases and uricases from various organisms. Surprisingly, the URA4 gene from S. cerevisiae, which encodes dihydroorotase, shows greater similarity to PYD2 and other catabolic enzymes than to dihydroorotases from several other non-fungal organisms. The S. kluyveri DHPase was purified to homogeneity and sequencing of the N-terminal region revealed that the purified enzyme corresponds to the PYD2 gene product. The enzyme is a tetramer, likely consisting of similar if not identical subunits each with a molecular mass of 59 kDa. The S. kluyveri DHPase was capable of catalysing both dihydrouracil and dihydrothymine degradation, presumably by the same reaction mechanism as that described for mammalian DHPase. On the other hand, the regulation of the yeast PYD2 gene and DHPase seem to be different from that in other organisms. DHPase activity and Northern analysis demonstrated that PYD2 expression is inducible by dihydrouracil, though not by uracil. Apparently, dihydrouracil and DHPase represent an important regulatory checkpoint of the pyrimidine catabolic pathway in S. kluyveri.
Collapse
Affiliation(s)
- Z Gojkovic
- Department of Microbiology Building 301, Technical University of Denmark, Lyngby, DK-2800, Denmark
| | | | | | | |
Collapse
|
45
|
Lorenz MC, Cutler NS, Heitman J. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell 2000; 11:183-99. [PMID: 10637301 PMCID: PMC14767 DOI: 10.1091/mbc.11.1.183] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Diploid cells of the budding yeast Saccharomyces cerevisiae starved for nitrogen differentiate into a filamentous growth form. Poor carbon sources such as starches can also stimulate filamentation, whereas haploid cells undergo a similar invasive growth response in rich medium. Previous work has demonstrated a role for various alcohols, by-products of amino acid metabolism, in altering cellular morphology. We found that several alcohols, notably isoamyl alcohol and 1-butanol, stimulate filamentous growth in haploid cells in which this differentiation is normally repressed. Butanol also induces cell elongation and changes in budding pattern, leading to a pseudohyphal morphology, even in liquid medium. The filamentous colony morphology and cell elongation require elements of the pheromone-responsive MAPK cascade and TEC1, whereas components of the nutrient-sensing machinery, such as MEP2, GPA2, and GPR1, do not affect this phenomenon. A screen for 1-butanol-insensitive mutants identified additional proteins that regulate polarized growth (BUD8, BEM1, BEM4, and FIG1), mitochondrial function (MSM1, MRP21, and HMI1), and a transcriptional regulator (CHD1). Furthermore, we have also found that ethanol stimulates hyperfilamentation in diploid cells, again in a MAPK-dependent manner. Together, these results suggest that yeast may sense a combination of nutrient limitation and metabolic by-products to regulate differentiation.
Collapse
Affiliation(s)
- M C Lorenz
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
46
|
Higgs DC, Shapiro RS, Kindle KL, Stern DB. Small cis-acting sequences that specify secondary structures in a chloroplast mRNA are essential for RNA stability and translation. Mol Cell Biol 1999; 19:8479-91. [PMID: 10567573 PMCID: PMC84957 DOI: 10.1128/mcb.19.12.8479] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleus-encoded proteins interact with cis-acting elements in chloroplast transcripts to promote RNA stability and translation. We have analyzed the structure and function of three such elements within the Chlamydomonas petD 5' untranslated region; petD encodes subunit IV of the cytochrome b(6)/f complex. These elements were delineated by linker-scanning mutagenesis, and RNA secondary structures were investigated by mapping nuclease-sensitive sites in vitro and by in vivo dimethyl sulfate RNA modification. Element I spans a maximum of 8 nucleotides (nt) at the 5' end of the mRNA; it is essential for RNA stability and plays a role in translation. This element appears to form a small stem-loop that may interact with a previously described nucleus-encoded factor to block 5'-->3' exoribonucleolytic degradation. Elements II and III, located in the center and near the 3' end of the 5' untranslated region, respectively, are essential for translation, but mutations in these elements do not affect mRNA stability. Element II is a maximum of 16 nt in length, does not form an obvious secondary structure, and appears to bind proteins that protect it from dimethyl sulfate modification. Element III spans a maximum of 14 nt and appears to form a stem-loop in vivo, based on dimethyl sulfate modification and the sequences of intragenic suppressors of element III mutations. Furthermore, mutations in element II result in changes in the RNA structure near element III, consistent with a long-range interaction that may promote translation.
Collapse
Affiliation(s)
- D C Higgs
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|