1
|
Wei KY, Chen YY, Smolke CD. A yeast-based rapid prototype platform for gene control elements in mammalian cells. Biotechnol Bioeng 2013. [DOI: 10.1002/bit.24792] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
2
|
Meluzzi D, Olson KE, Dolan GF, Arya G, Müller UF. Computational prediction of efficient splice sites for trans-splicing ribozymes. RNA (NEW YORK, N.Y.) 2012; 18:590-602. [PMID: 22274956 PMCID: PMC3285945 DOI: 10.1261/rna.029884.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/02/2011] [Indexed: 05/31/2023]
Abstract
Group I introns have been engineered into trans-splicing ribozymes capable of replacing the 3'-terminal portion of an external mRNA with their own 3'-exon. Although this design makes trans-splicing ribozymes potentially useful for therapeutic application, their trans-splicing efficiency is usually too low for medical use. One factor that strongly influences trans-splicing efficiency is the position of the target splice site on the mRNA substrate. Viable splice sites are currently determined using a biochemical trans-tagging assay. Here, we propose a rapid and inexpensive alternative approach to identify efficient splice sites. This approach involves the computation of the binding free energies between ribozyme and mRNA substrate. We found that the computed binding free energies correlate well with the trans-splicing efficiency experimentally determined at 18 different splice sites on the mRNA of chloramphenicol acetyl transferase. In contrast, our results from the trans-tagging assay correlate less well with measured trans-splicing efficiency. The computed free energy components suggest that splice site efficiency depends on the following secondary structure rearrangements: hybridization of the ribozyme's internal guide sequence (IGS) with mRNA substrate (most important), unfolding of substrate proximal to the splice site, and release of the IGS from the 3'-exon (least important). The proposed computational approach can also be extended to fulfill additional design requirements of efficient trans-splicing ribozymes, such as the optimization of 3'-exon and extended guide sequences.
Collapse
Affiliation(s)
- Dario Meluzzi
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA
- Department of NanoEngineering, University of California, San Diego, California 92093, USA
| | - Karen E. Olson
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA
| | - Gregory F. Dolan
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA
| | - Gaurav Arya
- Department of NanoEngineering, University of California, San Diego, California 92093, USA
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA
| |
Collapse
|
3
|
Noguchi K, Ishitu Y, Takaku H. Evaluating target silencing by short hairpin RNA mediated by the group I intron in cultured mammalian cells. BMC Biotechnol 2011; 11:79. [PMID: 21781346 PMCID: PMC3151216 DOI: 10.1186/1472-6750-11-79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/25/2011] [Indexed: 02/07/2023] Open
Abstract
Background The group I intron, a ribozyme that catalyzes its own splicing reactions in the absence of proteins in vitro, is a potential target for rational engineering and attracted our interest due to its potential utility in gene repair using trans-splicing. However, the ribozyme activity of a group I intron appears to be facilitated by RNA chaperones in vivo; therefore, the efficiency of self-splicing could be dependent on the structure around the insert site or the length of the sequence to be inserted. To better understand how ribozyme activity could be modulated in cultured mammalian cells, a group I intron was inserted into a short hairpin RNA (shRNA), and silencing of a reporter gene by the shRNA was estimated to reflect self-splicing activity in vivo. In addition, we appended a theophylline-binding aptamer to the ribozyme to investigate any potential effects caused by a trans-effector. Results shRNA-expression vectors in which the loop region of the shRNA was interrupted by an intron were constructed to target firefly luciferase mRNA. There was no remarkable toxicity of the shRNA-expression vectors in Cos cells, and the decrease in luciferase activity was measured as an index of the ribozyme splicing activity. In contrast, the expression of the shRNA through intron splicing was completely abolished in 293T cells, although the silencing induced by the shRNA-expressing vector alone was no different from that in the Cos cells. The splicing efficiency of the aptamer-appended intron also had implications for the potential of trans-factors to differentially promote self-splicing among cultured mammalian cells. Conclusions Silencing by shRNAs interrupted by a group I intron could be used to monitor self-splicing activity in cultured mammalian cells, and the efficiency of self-splicing appears to be affected by cell-type specific factors, demonstrating the potential effectiveness of a trans-effector.
Collapse
Affiliation(s)
- Kousei Noguchi
- Department of Life and Environmental Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | | | | |
Collapse
|
4
|
Sullivan JM, Yau EH, Kolniak TA, Sheflin LG, Taggart RT, Abdelmaksoud HE. Variables and strategies in development of therapeutic post-transcriptional gene silencing agents. J Ophthalmol 2011; 2011:531380. [PMID: 21785698 PMCID: PMC3138052 DOI: 10.1155/2011/531380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/17/2011] [Accepted: 02/28/2011] [Indexed: 11/24/2022] Open
Abstract
Post-transcriptional gene silencing (PTGS) agents such as ribozymes, RNAi and antisense have substantial potential for gene therapy of human retinal degenerations. These technologies are used to knockdown a specific target RNA and its cognate protein. The disease target mRNA may be a mutant mRNA causing an autosomal dominant retinal degeneration or a normal mRNA that is overexpressed in certain diseases. All PTGS technologies depend upon the initial critical annealing event of the PTGS ligand to the target RNA. This event requires that the PTGS agent is in a conformational state able to support hybridization and that the target have a large and accessible single-stranded platform to allow rapid annealing, although such platforms are rare. We address the biocomplexity that currently limits PTGS therapeutic development with particular emphasis on biophysical variables that influence cellular performance. We address the different strategies that can be used for development of PTGS agents intended for therapeutic translation. These issues apply generally to the development of PTGS agents for retinal, ocular, or systemic diseases. This review should assist the interested reader to rapidly appreciate critical variables in PTGS development and facilitate initial design and testing of such agents against new targets of clinical interest.
Collapse
Affiliation(s)
- Jack M. Sullivan
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Department of Pharmacology and Toxicology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Department of Physiology and Biophysics, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Neuroscience Program, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Ross Eye Institute, University at Buffalo SUNY, Buffalo, NY 14209, USA
- Veterans Administration Western New York Healthcare System, Medical Research, Buffalo, NY 14215, USA
| | - Edwin H. Yau
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Department of Pharmacology and Toxicology, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Tiffany A. Kolniak
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Neuroscience Program, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Lowell G. Sheflin
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Veterans Administration Western New York Healthcare System, Medical Research, Buffalo, NY 14215, USA
| | - R. Thomas Taggart
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Heba E. Abdelmaksoud
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13215, USA
| |
Collapse
|
5
|
Fiskaa T, Birgisdottir AB. RNA reprogramming and repair based on trans-splicing group I ribozymes. N Biotechnol 2010; 27:194-203. [PMID: 20219714 DOI: 10.1016/j.nbt.2010.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
While many traditional gene therapy strategies attempt to deliver new copies of wild-type genes back to cells harboring the defective genes, RNA-directed strategies offer a range of novel therapeutic applications. Revision or reprogramming of mRNA is a form of gene therapy that modifies mRNA without directly changing the transcriptional regulation or the genomic gene sequence. Group I ribozymes can be engineered to act in trans by recognizing a separate RNA molecule in a sequence-specific manner, and to covalently link a new RNA sequence to this separate RNA molecule. Group I ribozymes have been shown to repair defective transcripts that cause human genetic or malignant diseases, as well as to replace transcript sequences by foreign RNA resulting in new cellular functions. This review provides an overview of current strategies using trans-splicing group I ribozymes in RNA repair and reprogramming.
Collapse
Affiliation(s)
- Tonje Fiskaa
- RNA and Transcriptomics Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | | |
Collapse
|
6
|
Jackson SA, Koduvayur S, Woodson SA. Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast. RNA (NEW YORK, N.Y.) 2006; 12:2149-59. [PMID: 17135489 PMCID: PMC1664722 DOI: 10.1261/rna.184206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stable RNAs must form specific three-dimensional structures, yet many RNAs become kinetically trapped in misfolded conformations. To understand the factors that control the accuracy of RNA folding in the cell, the self-splicing activity of the Tetrahymena group I intron was compared in different genetic contexts in budding yeast. The extent of splicing was 98% when the intron was placed in its natural rDNA context, but only 3% when the intron was expressed in an exogenous pre-mRNA. Further experiments showed that the probability of forming the active intron structure depends on local sequence context and transcription by Pol I. Pre-rRNAs decayed at similar rates, whether the intron was wild type or inactivated by an internal deletion, suggesting that most of the unreacted pre-rRNA is incompetent to splice. Northern blots and complementation assays showed that mutations that destabilize the intron tertiary structure inhibited self-splicing and processing of internal transcribed spacer 2. The data are consistent with partitioning of pre-rRNAs into active and inactive populations. The misfolded RNAs are sequestered and degraded without refolding to a significant extent. Thus, the initial fidelity of folding can dictate the intracellular fate of transcripts containing this group I intron.
Collapse
Affiliation(s)
- Scott A Jackson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
7
|
Müller S. Engineered ribozymes as molecular tools for site-specific alteration of RNA sequence. Chembiochem 2004; 4:991-7. [PMID: 14523916 DOI: 10.1002/cbic.200300665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sabine Müller
- Ruhr-Universität Bochum, Fakultät für Chemie, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
8
|
Cserhalmi-Friedman PB, Panteleyev AA, Christiano AM. Recapitulation of the hairless mouse phenotype using catalytic oligonucleotides: implications for permanent hair removal. Exp Dermatol 2004; 13:155-62. [PMID: 14987255 DOI: 10.1111/j.0906-6705.2004.0143.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribozyme technology is widely used to target mRNA in a sequence-specific fashion and thus change the expression pattern of cells or tissues. While the goal of mRNA targeting is usually the cleavage of mutant mRNAs with the prospect of gene therapy for inherited diseases, in certain instances, targeting of wild-type genes can be used therapeutically. Lack of expression of the mouse hairless gene due to inherited mutations leads to the complete and irreversible loss of hair known as atrichia. We designed this study to recapitulate the hairless phenotype in a restricted manner by topical application of deoxyribozyme-targeting molecules to specifically cleave the mouse hairless mRNA. Histological samples taken from treated skin at different times demonstrated a decreased number of hair follicles, an involution of the remaining follicles, a separation of the dermal papillae, and the presence of dermal cysts, all characteristics of the hairless phenotype, but not normally present in the skin of C57Bl/6 J mice. In this study, we successfully recapitulated the hairless phenotype using topically applied target-specific catalytic oligonucleotides designed to cleave the mouse hairless mRNA. Our results demonstrate the feasibility of using ribozyme technology to alter the gene expression in the skin via topical application and provide proof of principle for the development of this strategy for permanent hair removal.
Collapse
Affiliation(s)
- Peter B Cserhalmi-Friedman
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
9
|
Hasegawa S, Jackson WC, Tsien RY, Rao J. Imaging Tetrahymena ribozyme splicing activity in single live mammalian cells. Proc Natl Acad Sci U S A 2003; 100:14892-6. [PMID: 14645710 PMCID: PMC299846 DOI: 10.1073/pnas.2036553100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tetrahymena ribozymes hold promise for repairing genetic disorders but are largely limited by their modest splicing efficiency and low production of final therapeutic proteins. Ribozyme evolution in intact living mammalian cells would greatly facilitate the discovery of new ribozyme variants with high in vivo activity, but no such strategies have been reported. Here we present a study using a new reporter enzyme, beta-lactamase, to report splicing activity in single living cells and perform high-throughput screening with flow cytometry. The reporter ribozyme constructs consist of the self-splicing Tetrahymena thermophila group I intron ribozyme that is inserted into the ORF of the mRNA of beta-lactamase. The splicing activity in single living cells can be readily detected quantitatively and visualized. Individual cells have shown considerable heterogeneity in ribozyme activity. Screening of Tetrahymena ribozymes with insertions in the middle of the L1 loop led to identification of better variants with at least 4-fold more final in vivo activity than the native sequence. Our work has provided a new reporter system that allows high-throughput screening with flow cytometry of single living mammalian cells for a direct and facile in vivo selection of desired ribozyme variants.
Collapse
Affiliation(s)
- Sumitaka Hasegawa
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095-1770, USA
| | | | | | | |
Collapse
|
10
|
Long MB, Jones J, Sullenger BA, Byun J. Ribozyme-mediated revision of RNA and DNA. J Clin Invest 2003. [DOI: 10.1172/jci200319386] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Long MB, Jones JP, Sullenger BA, Byun J. Ribozyme-mediated revision of RNA and DNA. J Clin Invest 2003; 112:312-8. [PMID: 12897196 PMCID: PMC166303 DOI: 10.1172/jci19386] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Meredith B Long
- Department of Surgery, Duke University Medical Center, Box 2601, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
12
|
Lozier JN, Dutra A, Pak E, Zhou N, Zheng Z, Nichols TC, Bellinger DA, Read M, Morgan RA. The Chapel Hill hemophilia A dog colony exhibits a factor VIII gene inversion. Proc Natl Acad Sci U S A 2002; 99:12991-6. [PMID: 12242334 PMCID: PMC130574 DOI: 10.1073/pnas.192219599] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2002] [Indexed: 11/18/2022] Open
Abstract
In the Chapel Hill colony of factor VIII-deficient dogs, abnormal sequence (ch8, for canine hemophilia 8, GenBank no. ) follows exons 1-22 in the factor VIII transcript in place of exons 23-26. The canine hemophilia 8 locus (ch8) sequence was found in a 140-kb normal dog genomic DNA bacterial artificial chromosome (BAC) clone that was completely outside the factor VIII gene, but not in BAC clones containing the factor VIII gene. The BAC clone that contained ch8 also contained a homologue of F8A (factor 8 associated) sequence, which participates in a common inversion that causes severe hemophilia A in humans. Fluorescence in situ hybridization analysis indicated that exons 1-26 normally proceed sequentially from telomere to centromere at Xq28, and ch8 is telomeric to the factor VIII gene. The appearance of an "upstream" genomic sequence element (ch8) at the end of the aberrant factor VIII transcript suggested that an inversion of genomic DNA replaced factor VIII exons 22-26 with ch8. The F8A sequence appeared also in overlapping normal BAC clones containing factor VIII sequence. We hypothesized that homologous recombination between copies of canine F8A inside and outside the factor VIII gene had occurred, as in human hemophilia A. High-resolution fluorescent in situ hybridization on hemophilia A dog DNA revealed a pattern consistent with this inversion mechanism. We also identified a HindIII restriction fragment length polymorphism of F8A fragments that distinguished hemophilia A, carrier, and normal dogs' DNA. The Chapel Hill hemophilia A dog colony therefore replicates the factor VIII gene inversion commonly seen in humans with severe hemophilia A.
Collapse
Affiliation(s)
- Jay N Lozier
- Food and Drug Administration, Center for Biologics Evaluation and Research, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Martell RE, Nevins JR, Sullenger BA. Optimizing aptamer activity for gene therapy applications using expression cassette SELEX. Mol Ther 2002; 6:30-4. [PMID: 12095300 DOI: 10.1006/mthe.2002.0624] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RNA aptamers against a variety of clinically relevant target proteins have been generated. For example, we previously isolated an RNA aptamer that inhibits the function of the E2F family of transcription factors that play a critical role in the control of cell proliferation. However, the development of this and other aptamers for gene therapy applications has been complicated by the fact that expression of RNA aptamers in the context of flanking sequences can inhibit the ability of an aptamer to fold into its functional conformation. Insertion of the E2F aptamer into a tRNA expression cassette resulted in the production of high levels of chimeric tRNA that contains a misfolded and inactive aptamer in transfected mammalian cells. To overcome this problem, we randomized the sequence flanking the aptamer and selected for chimeric tRNAs that retained high affinity binding to E2F1. This expression cassette SELEX strategy yielded RNAs that bind E2F with high affinity (IC50 of 15 nM) and which can be expressed at high levels in mammalian cells. Moreover, these chimeric tRNA-E2F aptamers are functional and can inhibit E2F-mediated transactivation by up to 80% in human 293 cells. Expression cassette SELEX should greatly facilitate the use of aptamers for a variety of gene therapy applications.
Collapse
Affiliation(s)
- Robert E Martell
- Geriatric Research and Education Clinical Center, Durham VA Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
14
|
Esnault C, Casella JF, Heidmann T. A Tetrahymena thermophila ribozyme-based indicator gene to detect transposition of marked retroelements in mammalian cells. Nucleic Acids Res 2002; 30:e49. [PMID: 12034850 PMCID: PMC117211 DOI: 10.1093/nar/30.11.e49] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We devised an indicator gene for retrotransposition based on an autocatalytic ribozyme element--the Tetrahymena thermophila 23S rRNA group I intron--which can self-splice in vitro and does not require--at variance with nuclear mRNA introns--any specific pathway and cellular component for the completion of the splicing process. Several constructs, with the Tetrahymena intron adequately modified so as to be inserted at various positions within a neomycin-containing cassette under conditions that restore the neomycin-coding sequence after splicing out of the intron, were assayed for splicing efficiency in mammalian cells in culture. We show, both by northern blot analysis and by the recovery of neomycin activity upon retroviral transduction of the cassettes, that splicing efficiency depends on both the local base pairing and the global position of the intron within the neomycin transcript, and that some constructs are functional. We further show that they allow the efficient sorting out of retrotransposition events when assayed, as a control, with a human LINE retrotransposon. These indicator genes should be of great help in elucidating the mechanisms of transposition of a series of retroelements associated with transcripts not prone to nuclear mRNA intron splicing and previously not opened to any retrotransposition assay.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Genes, Reporter/genetics
- HeLa Cells
- Humans
- Introns/genetics
- Long Interspersed Nucleotide Elements/genetics
- Mice
- Neomycin
- Nucleic Acid Conformation
- RNA Splicing/genetics
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Recombination, Genetic/genetics
- Retroelements/genetics
- Retroviridae/genetics
- Tetrahymena thermophila/enzymology
- Tetrahymena thermophila/genetics
- Transduction, Genetic
Collapse
Affiliation(s)
- Cécile Esnault
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, CNRS UMR 1573, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | |
Collapse
|
15
|
Guo F, Cech TR. In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron. RNA (NEW YORK, N.Y.) 2002; 8:647-658. [PMID: 12022231 PMCID: PMC1370285 DOI: 10.1017/s1355838202029011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In vivo selection was used to improve the activity of the Tetrahymena pre-rRNA self-splicing intron in the context of heterologous exons. The intron was engineered into a kanamycin nucleotidyltransferase gene, with the pairing between intron bases and the 5' and 3' splice sites maintained. The initial construct failed to confer kanamycin resistance on Escherichia coli, although the pre-mRNA was active in splicing in vitro. Random mutation libraries were constructed to identify active intron variants in E. coli. All the active mutants sequenced contained mutations disrupting a base-paired region above the paired region P1 (referred to as the P1 extension region or P1ex) that involves the very 5' end of the intron. Subsequent site-directed mutagenesis confirmed that these P1ex mutations are responsible and sufficient to activate the intron splicing in E. coli. Thus, it appears that too strong of a secondary structure in the P1ex element can be inhibitory to splicing in vivo. In vitro splicing assays demonstrated that two P1ex mutant constructs splice six to eight times faster than the designed construct at 40 microM GTP concentration. The relative reaction rates of the mutant constructs compared to the original design are further increased at a lower GTP concentration. Possible mechanisms by which the disrupted P1ex structure could influence splicing rates are discussed. This study emphasizes the value of using libraries of random mutations to improve the activity of ribozymes in heterologous contexts in vivo.
Collapse
Affiliation(s)
- Feng Guo
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA
| | | |
Collapse
|
16
|
Abstract
RNA enzymes--ribozymes--are being developed as treatments for a variety of diseases ranging from inborn metabolic disorders to viral infections and acquired diseases such as cancer. Ribozymes can be used both to downregulate and to repair pathogenic genes. In some instances, short-term exogenous delivery of stabilized RNA is desirable, but many treatments will require viral-mediated delivery to provide long-term expression of the therapeutic catalyst. Current gene therapy applications employ variations on naturally occurring ribozymes, but in vitro selection has provided new RNA and DNA catalysts, and research on trans-splicing and RNase P has suggested ways to harness the endogenous ribozymes of the cell for therapeutic purposes.
Collapse
Affiliation(s)
- A S Lewin
- Dept of Molecular Genetics and Microbiology and the Powell Gene Therapy Center, University of Florida, Gainesville 32610-0266, USA.
| | | |
Collapse
|
17
|
Rice MC, Czymmek K, Kmiec EB. The potential of nucleic acid repair in functional genomics. Nat Biotechnol 2001; 19:321-6. [PMID: 11283588 DOI: 10.1038/86701] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chimeric RNA/DNA oligonucleotides have been used successfully to correct point and frameshift mutations in cells as well as in animal and plant models. This approach is one of several nucleic acid repair technologies that will help elucidate the function of newly discovered genes. Understanding the mechanisms by which these different technologies direct gene alteration is essential for progress in their application to functional genomics.
Collapse
Affiliation(s)
- M C Rice
- Department of Biological Science, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
18
|
Abstract
Treatment of genetic disorders by gene therapy has conventionally been attempted through the transfer of a wild type version of a gene to the cells of a patient harboring defective copies of a disease associated gene. Despite significant advances using this paradigm, several technical hurdles must still be overcome before this 'gene replacement' approach will become useful in the treatment of a variety of genetic maladies. Such limitations have led a number of researchers to begin to investigate alternative strategies to genetic therapy. Repair of mutant genetic instructions represents a fundamentally different approach to genetic therapy that may have significant advantages over gene replacement. Herein, we will discuss recent advances using repair of mutant RNAs as a novel means to correct genetic deficiencies.
Collapse
Affiliation(s)
- T Watanabe
- Center for Genetic and Cellular Therapies, Departments of Surgery and Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
19
|
Abstract
In this chapter we discuss the design, delivery and preclinical testing of mutation-specific ribozymes for the treatment of dominantly inherited retinal disease. We focus particular attention on the initial screening of ribozymes in vitro, because the activity of RNA enzymes in cell-free systems can be used to predict their suitability for animal experiments. Current techniques for delivering genes of interest to cells of the retina using viral vectors are then briefly surveyed emphasizing vector properties that best match to the needs of a ribozyme-based therapy. Using these considerations, analysis of ribozyme gene therapy for an autosomal dominant RP-like disease in a rodent model is outlined emphasizing the desirability of combining biochemical, morphological and electrophysiological measures of therapy. Finally, we describe alternative, perhaps more general, ribozyme approaches that have yet to be tested in the context of retinal disease.
Collapse
Affiliation(s)
- W W Hauswirth
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
20
|
Einvik C, Nielsen H, Nour R, Johansen S. Flanking sequences with an essential role in hydrolysis of a self-cleaving group I-like ribozyme. Nucleic Acids Res 2000; 28:2194-200. [PMID: 10773091 PMCID: PMC105364 DOI: 10.1093/nar/28.10.2194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DiGIR1 is a group I-like ribozyme derived from the mobile twin ribozyme group I intron DiSSU1 in the nuclear ribosomal DNA of the myxomycete Didymium iridis. This ribozyme is responsible for intron RNA processing in vitro and in vivo at two internal sites close to the 5'-end of the intron endo-nuclease open reading frame and is a unique example of a group I ribozyme with an evolved biological function. DiGIR1 is the smallest functional group I ribozyme known from nature and has an unusual core organization including the 6 bp P15 pseudoknot. Here we report results of functional and structural analyses that identify RNA elements critical for hydrolysis outside the DiGIR1 ribozyme core moiety. Results from deletion analysis, disruption/compensation mutagenesis and RNA structure probing analysis all support the existence of two new segments, named P2 and P2.1, involved in the hydrolysis of DiGIR1. Significant decreases in the hydrolysis rate, k (obs), were observed in disruption mutants involving both segments. These effects were restored by compensatory base pairing mutants. The possible role of P2 is to tether the ribozyme core, whereas P2.1 appears to be more directly involved in catalysis.
Collapse
Affiliation(s)
- C Einvik
- Department of Molecular Cell Biology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|