1
|
Camattari A, Goh A, Yip LY, Tan AHM, Ng SW, Tran A, Liu G, Liachko I, Dunham MJ, Rancati G. Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications. Microb Cell Fact 2016; 15:139. [PMID: 27515025 PMCID: PMC4981965 DOI: 10.1186/s12934-016-0540-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022] Open
Abstract
Background Recombinant protein production in the methylotrophic yeast Pichia pastoris largely relies on integrative vectors. Although the stability of integrated expression cassettes is well appreciated for most applications, the availability of reliable episomal vectors for this host would represent a useful tool to expedite cloning and high-throughput screening, ameliorating also the relatively high clonal variability reported in transformants from integrative vectors caused by off-target integration in the P. pastoris genome. Recently, heterologous and endogenous autonomously replicating sequences (ARS) were identified in P. pastoris by genome mining, opening the possibility of expanding the available toolbox to include efficient episomal plasmids. The aim of this technical report is to validate a 452-bp sequence (“panARS”) in context of P. pastoris expression vectors, and to compare their performance to classical integrative plasmids. Moreover, we aimed to test if such episomal vectors would be suitable to sustain in vivo recombination, using fragments for transformation, directly in P. pastoris cells. Results A panARS-based episomal vector was evaluated using blue fluorescent protein (BFP) as a reporter gene. Normalized fluorescence from colonies carrying panARS-BFP outperformed the level of signal obtained from integrative controls by several-fold, whereas endogenous sequences, identified from the P. pastoris genome, were not as efficient in terms of protein production. At the single cell level, panARS-BFP clones showed lower interclonal variability but higher intraclonal variation compared to their integrative counterparts, supporting the idea that heterologous protein production could benefit from episomal plasmids. Finally, efficiency of 2-fragment and 3-fragment in vivo recombination was tested using varying lengths of overlapping regions and molar ratios between fragments. Upon optimization, minimal background was obtained for in vivo assembled vectors, suggesting this could be a quick and efficient method to generate of episomal plasmids of interest. Conclusions An expression vector based on the panARS sequence was shown to outperform its integrative counterparts in terms of protein productivity and interclonal variability, facilitating recombinant protein expression and screening. Using optimized fragment lengths and ratios, it was possible to perform reliable in vivo recombination of fragments in P. pastoris. Taken together, these results support the applicability of panARS episomal vectors for synthetic biology approaches.
Collapse
Affiliation(s)
- Andrea Camattari
- Bioprocessing Technology Institute (A-STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| | - Amelia Goh
- Bioprocessing Technology Institute (A-STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Lian Yee Yip
- Bioprocessing Technology Institute (A-STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Andy Hee Meng Tan
- Bioprocessing Technology Institute (A-STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Sze Wai Ng
- Bioprocessing Technology Institute (A-STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Anthony Tran
- Institute of Medical Biology (A-STAR), 8a Biomedical Grove, #06-06, Singapore, 138648, Singapore
| | - Gaowen Liu
- Institute of Medical Biology (A-STAR), 8a Biomedical Grove, #06-06, Singapore, 138648, Singapore
| | - Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Giulia Rancati
- Institute of Medical Biology (A-STAR), 8a Biomedical Grove, #06-06, Singapore, 138648, Singapore
| |
Collapse
|
2
|
Kohzaki H. A proposal for clinical genetics (genetics in medicine) education for medical technologists and other health professionals in Japan. Front Public Health 2014; 2:128. [PMID: 25202688 PMCID: PMC4142599 DOI: 10.3389/fpubh.2014.00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/11/2014] [Indexed: 11/30/2022] Open
Abstract
Since the completion of the Human Genome Project, technology has developed markedly in fields such as medical genetics and genetic counseling in the medical arena. In particular, this technology has advanced the discovery of and ways of understanding various genes responsible for genetic diseases, and genetic polymorphisms thought to be associated with disease. Some have been implicated as factors in common lifestyle diseases and have increased the significance of genetic testing. In Japan, doctors and other health professionals, such as nurse and medical technologists have been engaged in genetic testing and genetic disease treatment. Chromosomal and gene aberrations were detected mainly by medical technologists. However, due to the nature of medical technologists who have to provide various clinical tests, such as blood test, pre-medical technology students are required to cover tremendous knowledge of different academic fields to pass the national exam. Therefore, the time allowed for such students to study chromosomal and gene analysis is quite limited. Moreover, they are forced to enter the medical setting without receiving sufficient training. Among them, only few medical technologists specialize in chromosomal and gene analysis. However, with the advancement of clinical genetics and development of chromosomal and gene analysis, conducting clinical practice is becoming more and more difficult for medical technologists who just passed the national exam. Also, doctors and other health professionals have not been able to keep up with service demands either. This paper attempts to address knowledge and skills gaps (especially clinical genetics, English, and ICT literacy) of medical technologists and we propose educational methods to prepare medical genetics professionals in Japan to meet these gaps.
Collapse
Affiliation(s)
- Hidetsugu Kohzaki
- Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Department of Molecular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Faculty of Allied Health Science, Yamato University, Suita, Japan
| |
Collapse
|
3
|
Foulk MS, Waggener JM, Johnson JM, Yamamoto Y, Liew GM, Urnov FD, Young Y, Lee G, Smith HS, Gerbi SA. Isolation and characterization of the ecdysone receptor and its heterodimeric partner ultraspiracle through development in Sciara coprophila. Chromosoma 2013; 122:103-19. [PMID: 23321980 DOI: 10.1007/s00412-012-0395-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/09/2012] [Accepted: 12/18/2012] [Indexed: 01/08/2023]
Abstract
Regulation of DNA replication is critical, and loss of control can lead to DNA amplification. Naturally occurring, developmentally regulated DNA amplification occurs in the DNA puffs of the late larval salivary gland giant polytene chromosomes in the fungus fly, Sciara coprophila. The steroid hormone ecdysone induces DNA amplification in Sciara, and the amplification origin of DNA puff II/9A contains a putative binding site for the ecdysone receptor (EcR). We report here the isolation, cloning, and characterizing of two ecdysone receptor isoforms in Sciara (ScEcR-A and ScEcR-B) and the heterodimeric partner, ultraspiracle (ScUSP). ScEcR-A is the predominant isoform in larval tissues and ScEcR-B in adult tissues, contrary to the pattern in Drosophila. Moreover, ScEcR-A is produced at amplification but is absent just prior. We discuss these results in relation to the model of ecdysone regulation of DNA amplification.
Collapse
Affiliation(s)
- Michael S Foulk
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Spiesser TW, Diener C, Barberis M, Klipp E. What influences DNA replication rate in budding yeast? PLoS One 2010; 5:e10203. [PMID: 20436919 PMCID: PMC2860512 DOI: 10.1371/journal.pone.0010203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 03/12/2010] [Indexed: 11/18/2022] Open
Abstract
Background DNA replication begins at specific locations called replication origins, where helicase and polymerase act in concert to unwind and process the single DNA filaments. The sites of active DNA synthesis are called replication forks. The density of initiation events is low when replication forks travel fast, and is high when forks travel slowly. Despite the potential involvement of epigenetic factors, transcriptional regulation and nucleotide availability, the causes of differences in replication times during DNA synthesis have not been established satisfactorily, yet. Methodology/Principal Findings Here, we aimed at quantifying to which extent sequence properties contribute to the DNA replication time in budding yeast. We interpreted the movement of the replication machinery along the DNA template as a directed random walk, decomposing influences on DNA replication time into sequence-specific and sequence-independent components. We found that for a large part of the genome the elongation time can be well described by a global average replication rate, thus by a single parameter. However, we also showed that there are regions within the genomic landscape of budding yeast with highly specific replication rates, which cannot be explained by global properties of the replication machinery. Conclusion/Significance Computational models of DNA replication in budding yeast that can predict replication dynamics have rarely been developed yet. We show here that even beyond the level of initiation there are effects governing the replication time that can not be explained by the movement of the polymerase along the DNA template alone. This allows us to characterize genomic regions with significantly altered elongation characteristics, independent of initiation times or sequence composition.
Collapse
Affiliation(s)
- Thomas W. Spiesser
- Theoretical Biophysics, Institute for Biology, Humboldt University Berlin, Berlin, Germany
| | - Christian Diener
- Theoretical Biophysics, Institute for Biology, Humboldt University Berlin, Berlin, Germany
| | - Matteo Barberis
- Theoretical Biophysics, Institute for Biology, Humboldt University Berlin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail: (MB); (EK)
| | - Edda Klipp
- Theoretical Biophysics, Institute for Biology, Humboldt University Berlin, Berlin, Germany
- * E-mail: (MB); (EK)
| |
Collapse
|
5
|
Murakami Y, Chen LF, Sanechika N, Kohzaki H, Ito Y. Transcription factor Runx1 recruits the polyomavirus replication origin to replication factories. J Cell Biochem 2007; 100:1313-23. [PMID: 17063494 DOI: 10.1002/jcb.21115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Eukaryotic DNA replication takes place in the replication factories, where replication proteins are properly assembled to form replication forks. Thus, recruitment of DNA replication origins to the replication factories must be the key step for the regulation of DNA replication. The transcription factor Runx1 associates with the nuclear matrix, the putative substructure of DNA replication factories. An earlier report from our laboratory showed that Runx1 activates polyomavirus DNA replication, and that this requires its nuclear matrix-binding activity. Here, we show that Runx1 activates polyomavirus DNA replication by stimulating the binding of the viral-encoded replication initiator/helicase, large T antigen, to its replication origin. We found that newly replicated polyomavirus DNA is associated with the nuclear matrix and that large T antigen is targeted to replication factories, suggesting that polyomavirus is replicated in replication factories on the nuclear matrix. Although Runx1 did not co-localize with large T antigen-containing foci by itself, it co-localized with large T antigen-containing replication factories during Runx1-dependent polyomavirus DNA replication. These observations together suggest that Runx1 recruits the polyomavirus replication origin to the replication factory on the nuclear matrix, and that this requires the nuclear matrix-binding activity of Runx1.
Collapse
Affiliation(s)
- Yota Murakami
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | |
Collapse
|
6
|
Abstract
Chromatin immunoprecipitation (ChIP) assays are widely used to investigate where chromatin-binding proteins bind to the genome. The standard assay is very time consuming. We have developed a rapid ChIP assay in which the immunoprecipitates serve directly as PCR templates. This assay eliminates the step to reverse the crosslinking, shortening the assay by 1 day. It also requires a less immunoprecipitating antibody, permits many samples to be tested simultaneously, and is more sensitive than the standard ChIP assay.
Collapse
|
7
|
Foulk MS, Liang C, Wu N, Blitzblau HG, Smith H, Alam D, Batra M, Gerbi SA. Ecdysone induces transcription and amplification in Sciara coprophila DNA puff II/9A. Dev Biol 2006; 299:151-63. [PMID: 16938289 DOI: 10.1016/j.ydbio.2006.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 01/10/2023]
Abstract
DNA replication is normally tightly regulated to ensure the production of only one copy of the genome per cell cycle. However, DNA puffs of the salivary gland giant polytene chromosomes of Sciara coprophila undergo DNA amplification during the normal course of development, overriding this control. This developmental strategy provides more template for the production of large amounts of protein needed for pupation. We have focused on DNA puff II/9A, which amplifies approximately 17-fold over the rest of the genome. Evidence presented here suggests that DNA amplification at this locus is controlled by the steroid hormone ecdysone, the master regulator of insect development. Explanted, pre-amplification stage salivary glands undergo premature amplification when incubated with ecdysone. Injection of ecdysone into pre-amplification stage larvae induces amplification. Ecdysone also induces transcription of the II/9A genes. We report the presence of a putative ecdysone response element directly adjacent to the origin recognition complex (ORC)-binding site in the II/9A origin and demonstrate that it is efficiently bound by the Sciara ecdysone receptor. These results implicate ecdysone in the regulation of DNA amplification in Sciara and suggest the ecdysone receptor may be the elusive amplification factor. This would be a new role for this transcription factor.
Collapse
Affiliation(s)
- Michael S Foulk
- Brown University, 69 Brown St.-J.W. Wilson Laboratory, Providence, RI 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
There has been remarkable progress in the last 20 years in defining the molecular mechanisms that regulate initiation of DNA synthesis in eukaryotic cells. Replication origins in the DNA nucleate the ordered assembly of protein factors to form a prereplication complex (preRC) that is poised for DNA synthesis. Transition of the preRC to an active initiation complex is regulated by cyclin-dependent kinases and other signaling molecules, which promote further protein assembly and activate the mini chromosome maintenance helicase. We will review these mechanisms and describe the state of knowledge about the proteins involved. However, we will also consider an additional layer of complexity. The DNA in the cell is packaged with histone proteins into chromatin. Chromatin structure provides an additional layer of heritable information with associated epigenetic modifications. Thus, we will begin by describing chromatin structure, and how the cell generally controls access to the DNA. Access to the DNA requires active chromatin remodeling, specific histone modifications, and regulated histone deposition. Studies in transcription have revealed a variety of mechanisms that regulate DNA access, and some of these are likely to be shared with DNA replication. We will briefly describe heterochromatin as a model for an epigenetically inherited chromatin state. Next, we will describe the mechanisms of replication initiation and how these are affected by constraints of chromatin. Finally, chromatin must be reassembled with appropriate modifications following passage of the replication fork, and our third major topic will be the reassembly of chromatin and its associated epigenetic marks. Thus, in this chapter, we seek to bring together the studies of replication initiation and the studies of chromatin into a single holistic narrative.
Collapse
Affiliation(s)
- Angel P Tabancay
- Molecular and Computational Biology Section University of Southern California Los Angeles, California 90089, USA
| | | |
Collapse
|
9
|
Ghosh M, Liu G, Randall G, Bevington J, Leffak M. Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity. Mol Cell Biol 2005; 24:10193-207. [PMID: 15542830 PMCID: PMC529035 DOI: 10.1128/mcb.24.23.10193-10207.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The observation that transcriptionally active genes generally replicate early in S phase and observations of the interaction between transcription factors and replication proteins support the thesis that promoter elements may have a role in DNA replication. To test the relationship between transcription and replication we constructed HeLa cell lines in which inducible green fluorescent protein (GFP)-encoding genes replaced the proximal approximately 820-bp promoter region of the c-myc gene. Without the presence of an inducer, basal expression occurred from the GFP gene in either orientation and origin activity was restored to the mutant c-myc replicator. In contrast, replication initiation was repressed upon induction of transcription. When basal or induced transcription complexes were slowed by the presence of alpha-amanitin, origin activity depended on the orientation of the transcription unit. To test mechanistically whether basal transcription or transcription factor binding was sufficient for replication rescue by the uninduced GFP genes, a GAL4p binding cassette was used to replace all regulatory sequences within approximately 1,400 bp 5' to the c-myc gene. In these cells, expression of a CREB-GAL4 fusion protein restored replication origin activity. These results suggest that transcription factor binding can enhance replication origin activity and that high levels of expression or the persistence of transcription complexes can repress it.
Collapse
Affiliation(s)
- M Ghosh
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
The chromosomes of eukaryotic cells possess many potential DNA replication origins, of which a subset is selected in response to the cellular environment, such as the developmental stage, to act as active replication start sites. The mechanism of origin selection is not yet fully understood. In this review, we summarize recent observations regarding replication origins and initiator proteins in various organisms. These studies suggest that the DNA-binding specificities of the initiator proteins that bind to the replication origins and promote DNA replication are primarily responsible for origin selection. We particularly focus on the importance of transcription factors in the origin selection process. We propose that transcription factors are general regulators of the formation of functional complexes on the chromosome, including the replication initiation complex. We discuss the possible mechanisms by which transcription factors influence the selection of particular origins.
Collapse
Affiliation(s)
- Hidetsugu Kohzaki
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Japan.
| | | |
Collapse
|
11
|
Chang VK, Donato JJ, Chan CS, Tye BK. Mcm1 promotes replication initiation by binding specific elements at replication origins. Mol Cell Biol 2004; 24:6514-24. [PMID: 15226450 PMCID: PMC434236 DOI: 10.1128/mcb.24.14.6514-6524.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Minichromosome maintenance protein 1 (Mcm1) is required for efficient replication of autonomously replicating sequence (ARS)-containing plasmids in yeast cells. Reduced DNA binding activity in the Mcm1-1 mutant protein (P97L) results in selective initiation of a subset of replication origins and causes instability of ARS-containing plasmids. This plasmid instability in the mcm1-1 mutant can be overcome for a subset of ARSs by the inclusion of flanking sequences. Previous work showed that Mcm1 binds sequences flanking the minimal functional domains of ARSs. Here, we dissected two conserved telomeric X ARSs, ARS120 (XARS6L) and ARS131a (XARS7R), that replicate with different efficiencies in the mcm1-1 mutant. We found that additional Mcm1 binding sites in the C domain of ARS120 that are missing in ARS131a are responsible for efficient replication of ARS120 in the mcm1-1 mutant. Mutating a conserved Mcm1 binding site in the C domain diminished replication efficiency in ARS120 in wild-type cells, and increasing the number of Mcm1 binding sites stimulated replication efficiency. Our results suggest that threshold occupancy of Mcm1 in the C domain of telomeric ARSs is required for efficient initiation. We propose that origin usage in Saccharomyces cerevisiae may be regulated by the occupancy of Mcm1 at replication origins.
Collapse
Affiliation(s)
- Victoria K Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
12
|
Boucher N, McNicoll F, Laverdière M, Rochette A, Chou MN, Papadopoulou B. The ribosomal RNA gene promoter and adjacent cis-acting DNA sequences govern plasmid DNA partitioning and stable inheritance in the parasitic protozoan Leishmania. Nucleic Acids Res 2004; 32:2925-36. [PMID: 15161957 PMCID: PMC419617 DOI: 10.1093/nar/gkh617] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Detailed analysis of the Leishmania donovani ribosomal RNA (rRNA) gene promoter region has allowed the identification of cis-acting sequences involved in plasmid DNA partitioning and stable plasmid inheritance. We report that plasmids bearing the 350 bp rRNA promoter along with the 200 bp region immediately 3' to the promoter exhibited a 6.5-fold increase in transformation frequency and were transmitted to daughter cells as single-copy molecules. This is in contrast to what has been observed for plasmid molecules in this organism so far. Moreover, we show that these low-copy-number plasmids displayed a remarkable mitotic stability in the absence of selective pressure. The region in the vicinity of the RNA pol I transcription initiation site, and also in the adjacent 200 nt, displays a complex structural organization and shares sequence similarity to the yeast autonomously replicating consensus sequence and centromere DNA elements. Deletion analyses indicated that these elements were necessary but not sufficient for plasmid DNA partitioning and stable inheritance, and that the rRNA promoter region was required for optimal function. These results suggest an interplay between RNA pol I transcription, DNA replication, DNA partitioning and mitotic stability in trypanosomatids. This is the first example of defined DNA elements for plasmid partitioning and stable inheritance in the protozoan parasite Leishmania.
Collapse
Affiliation(s)
- Nathalie Boucher
- Infectious Disease Research Center, CHUL Research Center, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Raghavan V, Malik PS, Choudhury NR, Mukherjee SK. The DNA-A component of a plant geminivirus (Indian mung bean yellow mosaic virus) replicates in budding yeast cells. J Virol 2004; 78:2405-13. [PMID: 14963136 PMCID: PMC369238 DOI: 10.1128/jvi.78.5.2405-2413.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the biochemistry of DNA replication of the plant DNA viruses is important for the development of antiviral strategies. Since DNA replication is little studied in plants, a genetically tractable, easily culturable, eukaryotic model system is required to pursue such studies in a facile manner. Here we report the development of a yeast model system that supports DNA replication of a chosen geminivirus strain, Indian mung bean yellow mosaic virus. The replication of plasmid DNA in the model system relies specifically on the virus-derived elements and factors. Usage of this model system revealed the role of at least one hitherto unknown viral factor for viral DNA replication. The episomal characteristic of single-strandedness of replicated plasmid DNA was shown, and the expression of viral genes was also confirmed. This model system is expected to shed light on the machinery and mechanism involved in geminiviral DNA replication in plants.
Collapse
Affiliation(s)
- Vineetha Raghavan
- Plant Molecular Biology, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|