1
|
Knyazhanskaya ES, Shadrina OA, Anisenko AN, Gottikh MB. Role of DNA-dependent protein kinase in the HIV-1 replication cycle. Mol Biol 2016. [DOI: 10.1134/s0026893316040075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
2
|
Shadrina OA, Knyazhanskaya ES, Korolev S, Gottikh MB. Host Proteins Ku and HMGA1 As Participants of HIV-1 Transcription. Acta Naturae 2016; 8:34-47. [PMID: 27099783 PMCID: PMC4837570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Human immunodeficiency virus type 1 is known to use the transcriptional machinery of the host cell for viral gene transcription, and the only viral protein that partakes in this process is Tat, the viral trans-activator of transcription. During acute infection, the binding of Tat to the hairpin at the beginning of the transcribed viral RNA recruits the PTEFb complex, which in turn hyperphosphorylates RNA-polymerase II and stimulates transcription elongation. Along with acute infection, HIV-1 can also lead to latent infection that is characterized by a low level of viral transcription. During the maintenance and reversal of latency, there are no detectable amounts of Tat protein in the cell and the mechanism of transcription activation in the absence of Tat protein remains unclear. The latency maintenance is also a problematic question. It seems evident that cellular proteins with a yet unknown nature or role regulate both transcriptional repression in the latent phase and its activation during transition into the lytic phase. The present review discusses the role of cellular proteins Ku and HMGA1 in the initiation of transcription elongation of the HIV-1 provirus. The review presents data regarding Ku-mediated HIV-1 transcription and its dependence on the promoter structure and the shape of viral DNA. We also describe the differential influence of the HMGA1 protein on the induced and basal transcription of HIV-1. Finally, we offer possible mechanisms for Ku and HMGA1 proteins in the proviral transcription regulation.
Collapse
Affiliation(s)
- O. A. Shadrina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - E. S. Knyazhanskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - S.P. Korolev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - M. B. Gottikh
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia; 119991
| |
Collapse
|
3
|
Manic G, Maurin-Marlin A, Laurent F, Vitale I, Thierry S, Delelis O, Dessen P, Vincendeau M, Leib-Mösch C, Hazan U, Mouscadet JF, Bury-Moné S. Impact of the Ku complex on HIV-1 expression and latency. PLoS One 2013; 8:e69691. [PMID: 23922776 PMCID: PMC3726783 DOI: 10.1371/journal.pone.0069691] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 06/17/2013] [Indexed: 01/20/2023] Open
Abstract
Ku, a cellular complex required for human cell survival and involved in double strand break DNA repair and multiple other cellular processes, may modulate retroviral multiplication, although the precise mechanism through which it acts is still controversial. Recently, Ku was identified as a possible anti-human immunodeficiency virus type 1 (HIV-1) target in human cells, in two global approaches. Here we investigated the role of Ku on the HIV-1 replication cycle by analyzing the expression level of a panel of non-replicative lentiviral vectors expressing the green fluorescent protein in human colorectal carcinoma HCT 116 cells, stably or transiently depleted of Ku. We found that in this cellular model the depletion of Ku did not affect the efficiency of (pre-)integrative steps but decreased the early HIV-1 expression by acting at the transcriptional level. This negative effect was specific of the HIV-1 promoter, required the obligatory step of viral DNA integration and was reversed by transient depletion of p53. We also provided evidence on a direct binding of Ku to HIV-1 LTR in transduced cells. Ku not only promotes the early transcription from the HIV-1 promoter, but also limits the constitution of viral latency. Moreover, in the presence of a normal level of Ku, HIV-1 expression was gradually lost over time, likely due to the counter-selection of HIV-1-expressing cells. On the contrary, the reactivation of transgene expression from HIV-1 by means of trichostatin A- or tumor necrosis factor α-administration was enhanced under condition of Ku haplodepletion, suggesting a phenomenon of provirus latency. These observations plead in favor of the hypothesis that Ku has an impact on HIV-1 expression and latency at early- and mid-time after integration.
Collapse
Affiliation(s)
- Gwenola Manic
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Aurélie Maurin-Marlin
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Fanny Laurent
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy
- National Institute of Health, Rome, Italy
| | - Sylvain Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Philippe Dessen
- Institut Gustave Roussy, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale-U985, Villejuif, France
| | - Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christine Leib-Mösch
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Uriel Hazan
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Jean-François Mouscadet
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Stéphanie Bury-Moné
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|
4
|
Wu J, Zhu W, Fu H, Zhang Y, Sun J, Yang W, Li Y. DNA-PKcs interacts with Aire and regulates the expression of toll-like receptors in RAW264.7 cells. Scand J Immunol 2012; 75:479-88. [PMID: 22239103 DOI: 10.1111/j.1365-3083.2012.02682.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The autoimmune regulator (Aire) is a key mediator of the central tolerance for peripheral tissue self-antigen (PTAs) and is involved in the transcriptional control of many antigens in thymic medullary epithelial cells (mTECs). However, the function of Aire in peripheral lymphoid tissues and haematopoietic cells, particularly in monocytes and macrophages, remains poorly understood. We previously found that the expression of Toll-like receptor (TLR) 1, TLR3 and TLR8 was notably upregulated in pEGFPC1/Aire stably transfected RAW264.7 (GFP-Aire/RAW) cells, while the expressions of other TLRs were not significantly changed. The mechanism by which Aire affects TLR1, TLR3 and TLR8 expression is not clear. Interactions with other proteins, such as DNA-dependent protein kinase (DNA-PK), are crucial for regulating the transcriptional activity of Aire. In this study, we found that Aire and DNA-PK catalytic subunit (DNA-PKcs) were co-located in the nucleus of GFP-Aire/RAW cells, and they interact with each other. Small interfering RNA knock-down of DNA-PKcs in these cells decreased the expression of TLR1, TLR3 and TLR8, but no change was observed in pEGFPC1 stably transfected RAW264.7 (GFP/RAW) cells. We did not observe any change in the expressions of other TLRs after DNA-PKcs knock-down in GFP-Aire/RAW or GFP/RAW cells. A similar observation has been made in pEGFPC1/Aire or pEGFPC1 transiently transfected primary peritoneal macrophages. Using a luciferase activity assay, we found the that the transcriptional activity of TLR1, TLR3 and TLR8 promoters was also decreased after knock-down of DNA-PKcs in GFP-Aire/RAW cells. In conclusion, our results suggest that DNA-PKcs may interact with Aire to promote the expression of TLRs in RAW264.7 cells.
Collapse
Affiliation(s)
- J Wu
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Hu S, Cucinotta FA. Computational studies on full-length Ku70 with DNA duplexes: base interactions and a helical path. J Mol Model 2011; 18:1935-49. [DOI: 10.1007/s00894-011-1220-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/09/2011] [Indexed: 11/30/2022]
|
6
|
Lin J, Xu P, LaVallee P, Hoidal JR. Identification of proteins binding to E-Box/Ku86 sites and function of the tumor suppressor SAFB1 in transcriptional regulation of the human xanthine oxidoreductase gene. J Biol Chem 2008; 283:29681-9. [PMID: 18772145 PMCID: PMC2573066 DOI: 10.1074/jbc.m802076200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 08/01/2008] [Indexed: 01/24/2023] Open
Abstract
The xanthine oxidoreductase gene (XOR) encodes an important source of reactive oxygen species and uric acid, and its expression is associated with various human diseases including several forms of cancer. We previously reported that basal human XOR (hXOR) expression is restricted or repressed by E-box and TATA-like elements and a cluster of transcriptional proteins, including AREB6-like proteins and DNA-dependent protein kinase (DNA-PK). We now demonstrate that the cluster contains the tumor suppressors SAFB1, BRG1, and SAF-A. We further demonstrate that SAFB1 silencing increases hXOR expression and that SAFB1 directly binds to the E-box. Multiple studies in vitro and in vivo including pulldown, immunoprecipitation and chromatin immunoprecipitation analyses indicate that SAFB1, Ku86, and BRG1 associate with each other. The results suggest that the SAFB1 complex binds to the hXOR promoter in a chromatin environment and plays a critical role in restricting hXOR expression via its direct interaction with the E-box, DNA-PK, and tumor suppressors. Moreover, we demonstrate that the cytokine, oncostatin M (OSM), induces the phosphorylation of SAFB1 and that the OSM-induced hXOR mRNA expression is significantly inhibited by silencing the DNA-PK catalytic subunit or SAFB1 expression. The present studies for the first time demonstrate that hXOR is a tumor suppressor-targeted gene and that the phosphorylation of SAFB1 is regulated by OSM, providing a molecular basis for understanding the role of SAFB1-regulated hXOR transcription in cytokine stimulation and tumorigenesis.
Collapse
Affiliation(s)
- Junji Lin
- Department of Internal Medicine, Division of Respiratory, Critical Care, and Occupational Medicine, University of Utah Health Sciences Center and Veterans Affairs Medical Center, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
7
|
Ponguta LA, Gregory CW, French FS, Wilson EM. Site-specific androgen receptor serine phosphorylation linked to epidermal growth factor-dependent growth of castration-recurrent prostate cancer. J Biol Chem 2008; 283:20989-1001. [PMID: 18511414 DOI: 10.1074/jbc.m802392200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The androgen receptor (AR) is required for prostate cancer development and contributes to tumor progression after remission in response to androgen deprivation therapy. Epidermal growth factor (EGF) increases AR transcriptional activity at low levels of androgen in the CWR-R1 prostate cancer cell line derived from the castration-recurrent CWR22 prostate cancer xenograft. Here we report that knockdown of AR decreases EGF stimulation of prostate cancer cell growth and demonstrate a mechanistic link between EGF and AR signaling. The EGF-induced increase in AR transcriptional activity is dependent on phosphorylation at mitogen-activated protein kinase consensus site Ser-515 in the AR NH(2)-terminal region and at protein kinase C consensus site Ser-578 in the AR DNA binding domain. Phosphorylation at these sites alters the nuclear-cytoplasmic shuttling of AR and AR interaction with the Ku-70/80 regulatory subunits of DNA-dependent protein kinase. Abolishing AR Ser-578 phosphorylation by introducing an S578A mutation eliminates the AR transcriptional response to EGF and increases both AR binding of Ku-70/80 and nuclear retention of AR in association with hyperphosphorylation of AR Ser-515. The results support a model in which AR transcriptional activity increases castration-recurrent prostate cancer cell growth in response to EGF by site-specific serine phosphorylation that regulates nuclear-cytoplasmic shuttling through interactions with the Ku-70/80 regulatory complex.
Collapse
Affiliation(s)
- Liliana A Ponguta
- Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
8
|
Liiv I, Rebane A, Org T, Saare M, Maslovskaja J, Kisand K, Juronen E, Valmu L, Bottomley MJ, Kalkkinen N, Peterson P. DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:74-83. [PMID: 17997173 PMCID: PMC2225445 DOI: 10.1016/j.bbamcr.2007.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 08/29/2007] [Accepted: 09/21/2007] [Indexed: 01/29/2023]
Abstract
The autoimmune regulator (AIRE) protein is a key mediator of the central tolerance for tissue specific antigens and is involved in transcriptional control of many antigens in thymic medullary epithelial cells (mTEC). Mutations in the AIRE gene cause a rare disease named autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Here we report using GST pull-down assay, mass-spectrometry and co-immunoprecipitation that a heterotrimeric complex of DNA-Dependent Protein Kinase (DNA-PK), consisting of Ku70, Ku80 and DNA-PK catalytic subunit (DNA-PKcs), is a novel interaction partner for AIRE. In vitro phosphorylation assays show that the residues Thr68 and Ser156 are DNA-PK phosphorylation sites in AIRE. In addition, we demonstrate that DNA-PKcs is expressed in AIRE positive mTEC cell population and that introduction of mutations into the AIRE phosphorylation sites decrease the capacity of AIRE to activate transcription from reporter promoters. In conclusion, our results suggest that phosphorylation of the AIRE protein at Thr68 and Ser156 by DNA-PK influences AIRE transactivation ability and might have impact on other aspects of the functional regulation of the AIRE protein.
Collapse
Affiliation(s)
- Ingrid Liiv
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Ana Rebane
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Tõnis Org
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Mario Saare
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | | | - Kai Kisand
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Erkki Juronen
- Human Biology and Genetics, University of Tartu, Tartu 50411, Estonia
| | - Leena Valmu
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Matthew James Bottomley
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Via Pontina Km. 30.600, 00040 Pomezia (Rome), Italy
| | - Nisse Kalkkinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pärt Peterson
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
- Institute of Medical Technology, University of Tampere, Tampere 33014, Finland
| |
Collapse
|
9
|
Ishiguro A, Ideta M, Mikoshiba K, Chen DJ, Aruga J. ZIC2-dependent Transcriptional Regulation Is Mediated by DNA-dependent Protein Kinase, Poly(ADP-ribose) Polymerase, and RNA Helicase A. J Biol Chem 2007; 282:9983-9995. [PMID: 17251188 DOI: 10.1074/jbc.m610821200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Zic family of zinc finger proteins is essential for animal development, as demonstrated by the holoprosencephaly caused by mammalian Zic2 mutation. To determine the molecular mechanism of Zic-mediated developmental control, we characterized two types of high molecular weight complexes, including Zic2. Complex I was composed of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku70/80, and poly(ADP-ribose) polymerase; complex II contained Ku70/80 and RNA helicase A; all the components interacted directly with Zic2 protein. Immunoprecipitation, subnuclear localization, and in vitro phosphorylation analyses revealed that the DNA-PKcs in complex I played an essential role in the assembly of complex II. Stepwise exchange from complex I to complex II depended on phosphorylation of Zic2 by DNA-PK and poly-(ADP-ribose) polymerase. Phosphorylated Zic2 protein made a stable complex with RNA helicase A, and complex II could interact with RNA polymerase II. Phosphorylation-dependent transformation of Zic2-containing molecular complexes may occur in transcriptional regulation.
Collapse
Affiliation(s)
- Akira Ishiguro
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.
| | - Maki Ideta
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | - Katsuhiko Mikoshiba
- Laboratory of Developmental Neurobiology, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | - David J Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jun Aruga
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
10
|
Sucharov CC, Helmke SM, Langer SJ, Perryman MB, Bristow M, Leinwand L. The Ku protein complex interacts with YY1, is up-regulated in human heart failure, and represses alpha myosin heavy-chain gene expression. Mol Cell Biol 2004; 24:8705-15. [PMID: 15367688 PMCID: PMC516749 DOI: 10.1128/mcb.24.19.8705-8715.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human heart failure is accompanied by repression of genes such as alpha myosin heavy chain (alphaMyHC) and SERCA2A and the induction of fetal genes such as betaMyHC and atrial natriuretic factor. It seems likely that changes in MyHC isoforms contribute to the poor contractility seen in heart failure, because small changes in isoform composition can have a major effect on the contractility of cardiac myocytes and the heart. Our laboratory has recently shown that YY1 protein levels are increased in human heart failure and that YY1 represses the activity of the human alphaMyHC promoter. We have now identified a region of the alphaMyHC promoter that binds a factor whose expression is increased sixfold in failing human hearts. Through peptide mass spectrometry, we identified this binding activity to be a heterodimer of Ku70 and Ku80. Expression of Ku represses the human alphaMyHC promoter in neonatal rat ventricular myocytes. Moreover, overexpression of Ku70/80 decreases alphaMyHC mRNA expression and increases skeletal alpha-actin. Interestingly, YY1 interacts with Ku70 and Ku80 in HeLa cells. Together, YY1, Ku70, and Ku80 repress the alphaMyHC promoter to an extent that is greater than that with YY1 or Ku70/80 alone. Our results suggest that Ku is an important factor in the repression of the human alphaMyHC promoter during heart failure.
Collapse
Affiliation(s)
- Carmen C Sucharov
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, USA
| | | | | | | | | | | |
Collapse
|
11
|
Yan KH, Liu PF, Tzeng HT, Chang WC, Chou WG, Pan RL. Characterization of DNA end-binding activities in higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:617-622. [PMID: 15331090 DOI: 10.1016/j.plaphy.2004.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2003] [Accepted: 06/04/2004] [Indexed: 05/24/2023]
Abstract
DNA double-strand-breaks (DSB) are the most severe lesion in cells exposing to ionizing radiation and many other stress environments. Repair of DNA DSB is therefore critical to cellular survival. In this work, we observed the double-stranded DNA end-binding (DEB) like activities in rice (Oryza sativa L. cv. TN5) suspension cells and hypocotyls from etiolated mung bean (Vigna radiata L. TN5) seedlings. Higher plant DEB-like protein binds primarily to linearized double-stranded DNA ends. Competition of unlabeled probe was examined in double-stranded DEB assay of cell extracts from rice and mung bean. DEB-like activities of higher plants did not depend on sequence and types of double-stranded DNA ends. Distinct electrophoretic mobility shift patterns and binding features further indicate that DEB-like factors from various sources might not share identical structure and function, and probably belong to different types of DEB proteins from higher plants. Our evidence suggests that DEB proteins are certainly ubiquitous in all organisms probably for repairing and processing double-stranded DNA breaks from formidable lethal lesion.
Collapse
Affiliation(s)
- Kun H Yan
- Department of Life Sciences and Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin Chu, Taiwan 30043, Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Schild-Poulter C, Matheos D, Novac O, Cui B, Giffin W, Ruiz MT, Price GB, Zannis-Hadjopoulos M, Haché RJG. Differential DNA binding of Ku antigen determines its involvement in DNA replication. DNA Cell Biol 2003; 22:65-78. [PMID: 12713733 DOI: 10.1089/104454903321515887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ku antigen (Ku70/Ku80) is a regulatory subunit of DNA-dependent protein kinase, which participates in the regulation of DNA replication and gene transcription through specific DNA sequences. In this study, we have compared the mechanism of action of Ku from A3/4, a DNA sequence that appears in mammalian origins of DNA replication, and NRE1, a transcriptional regulatory element in the long terminal repeat of mouse mammary tumor virus through which Ku antigen and its associated kinase, DNA-dependent protein kinase (DNA-PK(cs)), act to repress steroid-induced transcription. Our results indicate that replication from a minimal replication origin of ors8 is independent of DNA-PK(cs) and that Ku interacts with A3/4-like sequences and NRE1 in fundamentally different ways. UV crosslinking experiments revealed differential interactions of the Ku subunits with A3/4, NRE1, and two other proposed Ku transcriptional regulatory elements. In vitro footprinting experiments showed direct contact of Ku on A3/4 and over the region of ors8 homologous to A3/4. In vitro replication assays using ors8 templates bearing mutations in the A3/4-like sequence suggested that Ku binding to this element was necessary for replication. By contrast, in vitro replication experiments revealed that NRE1 was not involved in DNA replication. Our results establish A3/4 as a new class of Ku DNA binding site. Classification of Ku DNA binding into eight categories of interaction based on recognition and DNA crosslinking experiments is discussed.
Collapse
Affiliation(s)
- Caroline Schild-Poulter
- Department of Medicine, The Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bertinato J, Tomlinson JJ, Schild-Poulter C, Haché RJG. Evidence implicating Ku antigen as a structural factor in RNA polymerase II-mediated transcription. Gene 2003; 302:53-64. [PMID: 12527196 DOI: 10.1016/s0378111902010892] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ku antigen is an abundant nuclear protein with multiple functions that depend mainly on Ku's prolific and highly verstatile interactions with DNA. We have shown previously that the direct binding of Ku in vitro to negative regulatory element 1 (NRE1), a transcriptional regulatory element in the long terminal repeat of mouse mammary tumour virus, correlates with the regulation of viral transcription by Ku. In this study, we have sought to explore the interaction of Ku with NRE1 in vivo in yeast one-hybrid experiments. Unexpectedly, we observed that human Ku70 carrying a transcriptional activation domain from the yeast Gal4 protein induced transcription of yeast reporter genes pleiotrophically, independent of NRE1, promoter, reporter gene and chromosomal location. Ku80 with the same activation domain had no effect on transcription when expressed alone, but reconstituted activation when co-expressed with native human Ku70. The requirements for transcriptional activation by Ku-Gal4 activation domain proteins correlated with previous descriptions of the requirements for DNA sequence-independent DNA binding by Ku, but were distinct from determinants for DNA-end binding by a truncated Ku heterodimer determined recently by crystallography. These results suggest a preferential targeting of Ku to transcriptionally active chromatin that indicate a possible function for Ku within the RNA polymerase II holoenzyme.
Collapse
Affiliation(s)
- Jesse Bertinato
- Graduate Program in Biochemistry, University of Ottawa, The Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, Ont. K1Y 4E9, Canada
| | | | | | | |
Collapse
|
14
|
Mo X, Dynan WS. Subnuclear localization of Ku protein: functional association with RNA polymerase II elongation sites. Mol Cell Biol 2002; 22:8088-99. [PMID: 12391174 PMCID: PMC134733 DOI: 10.1128/mcb.22.22.8088-8099.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ku is an abundant nuclear protein with an essential function in the repair of DNA double-strand breaks. Various observations suggest that Ku also interacts with the cellular transcription machinery, although the mechanism and significance of this interaction are not well understood. In the present study, we investigated the subnuclear distribution of Ku in normally growing human cells by using confocal microscopy, chromatin immunoprecipitation, and protein immunoprecipitation. All three approaches indicated association of Ku with RNA polymerase II (RNAP II) elongation sites. This association occurred independently of the DNA-dependent protein kinase catalytic subunit and was highly selective. There was no detectable association with the initiating isoform of RNAP II or with the general transcription initiation factors. In vitro protein-protein interaction assays demonstrated that the association of Ku with elongation proteins is mediated, in part, by a discrete C-terminal domain in the Ku80 subunit. Functional disruption of this interaction with a dominant-negative mutant inhibited transcription in vitro and in vivo and suppressed cell growth. These results suggest that association of Ku with transcription sites is important for maintenance of global transcription levels. Tethering of double-strand break repair proteins to defined subnuclear structures may also be advantageous in maintenance of genome stability.
Collapse
Affiliation(s)
- Xianming Mo
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | |
Collapse
|
15
|
Jeanson L, Mouscadet JF. Ku represses the HIV-1 transcription: identification of a putative Ku binding site homologous to the mouse mammary tumor virus NRE1 sequence in the HIV-1 long terminal repeat. J Biol Chem 2002; 277:4918-24. [PMID: 11733502 DOI: 10.1074/jbc.m110830200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ku has been implicated in nuclear processes, including DNA break repair, transcription, V(D)J recombination, and telomere maintenance. Its mode of action involves two distinct mechanisms: one in which a nonspecific binding occurs to DNA ends and a second that involves a specific binding to negative regulatory elements involved in transcription repression. Such elements were identified in mouse mammary tumor virus and human T cell leukemia virus retroviruses. The purpose of this study was to investigate a role for Ku in the regulation of human immunodeficiency virus (HIV)-1 transcription. First, HIV-1 LTR activity was studied in CHO-K1 cells and in CH0-derived xrs-6 cells, which are devoid of Ku80. LTR-driven expression of a reporter gene was significantly increased in xrs-6 cells. This enhancement was suppressed after re-expression of Ku80. Second, transcription of HIV-1 was followed in U1 human cells that were depleted in Ku by using a Ku80 antisense RNA. Ku depletion led to a increase of both HIV-1 mRNA synthesis and viral production compared with the parent cells. These results demonstrate that Ku acts as a transcriptional repressor of HIV-1 expression. Finally, a putative Ku-specific binding site was identified within the negative regulatory region of the HIV-1 long terminal repeat, which may account for this repression of transcription.
Collapse
Affiliation(s)
- Laurence Jeanson
- CNRS UMR8532, Institut Gustave-Roussy, PR2, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | | |
Collapse
|
16
|
Chan JY, Chen LK, Chang JF, Ting HM, Goy C, Chen JL, Hwang JJ, Chen FD, Chen DJ, Ngo FQ. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80: analysis by cDNA microarray. JOURNAL OF RADIATION RESEARCH 2001; 42:371-385. [PMID: 11951661 DOI: 10.1269/jrr.42.371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ability of cells to rejoin DNA double-strand breaks (DSBs) usually correlates with their radiosensitivity. This correlation has been demonstrated in radiosensitive cells, including the Chinese hamster ovary mutant XRS-5. XRS-5 is defective in a DNA end-binding protein, Ku80, which is a component of a DNA-dependent protein kinase complex used for joining strand breaks. However, Ku80-deficient cells are known to be retarded in cell proliferation and growth as well as other yet to be identified defects. Using custom-made 600-gene cDNA microarray filters, we found differential gene expressions between the wild-type and XRS-5 cells. Defective Ku80 apparently affects the expression of several repair genes, including topoisomerase-I and -IIA, ERCC5, MLH1, and ATM. In contrast, other DNA repair-associated genes, such as GADD45A, EGR1 MDM2 and p53, were not affected. In addition, for large numbers of growth-associated genes, such as cyclins and clks, the growth factors and cytokines were also affected. Down-regulated expression was also found in several categories of seemingly unrelated genes, including apoptosis, angiogenesis, kinase and signaling, phosphatase, stress protein, proto-oncogenes and tumor suppressors, transcription and translation factors. A RT-PCR analysis confirmed that the XRS-5 cells used were defective in Ku80 expression. The diversified groups of genes being affected could mean that Ku80, a multi-functional DNA-binding protein, not only affects DNA repair, but is also involved in transcription regulation. Our data, taken together, indicate that there are specific genes being modulated in Ku80- deficient cells, and that some of the DNA repair pathways and other biological functions are apparently linked, suggesting that a defect in one gene could have global effects on many other processes.
Collapse
Affiliation(s)
- J Y Chan
- Institute of Radiological Sciences, National Yang Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wenzel J, Gerdsen R, Uerlich M, Bauer R, Bieber T, Boehm I. Antibodies targeting extractable nuclear antigens: historical development and current knowledge. Br J Dermatol 2001; 145:859-67. [PMID: 11899137 DOI: 10.1046/j.1365-2133.2001.04577.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- J Wenzel
- Department of Dermatology, University of Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Soubeyrand S, Torrance H, Giffin W, Gong W, Schild-Poulter C, Haché RJ. Activation and autoregulation of DNA-PK from structured single-stranded DNA and coding end hairpins. Proc Natl Acad Sci U S A 2001; 98:9605-10. [PMID: 11481441 PMCID: PMC55499 DOI: 10.1073/pnas.171211398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) acts through an essential relationship with DNA to participate in the regulation of multiple cellular processes. Yet the role of DNA as a cofactor in kinase activity remains to be completely elucidated. For example, although DNA-PK activity appears to be required for the resolution of hairpin coding ends in variable diversity joining recombination, kinase activity remains to be demonstrated from hairpin ends or other DNA structures. In the present study we report that DNA-PK is strongly activated from hairpin ends and structured single-stranded DNA, but that the phosphorylation of many heterologous substrates is blocked efficiently by inactivation of the kinase through autophosphorylation. However, substrates that bound efficiently to single-stranded DNA such as p53 and replication protein A were efficiently phosphorylated by DNA-PK from structured DNA. DNA-PK also was found to be active toward heterologous substrates from hairpin ends on double-stranded DNA under conditions where autophosphorylation was minimized. These results suggest that the role of DNA-PK in resolving coding end hairpins is likely to be enzymatic rather than structural, expand understanding of how DNA-PK binding to structured DNA relates to enzyme activity, and suggest a mechanism for autoregulatory control of its kinase activity in the cell.
Collapse
Affiliation(s)
- S Soubeyrand
- Department of Medicine, University of Ottawa, Ottawa Health Research Institute, ON, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Schild-Poulter C, Pope L, Giffin W, Kochan JC, Ngsee JK, Traykova-Andonova M, Haché RJ. The binding of Ku antigen to homeodomain proteins promotes their phosphorylation by DNA-dependent protein kinase. J Biol Chem 2001; 276:16848-56. [PMID: 11279128 DOI: 10.1074/jbc.m100768200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ku antigen (70- and 80-kDa subunits) is a regulatory subunit of DNA-dependent protein kinase (DNA-PK) that promotes the recruitment of the catalytic subunit of DNA-PK (DNA-PKcs) to DNA ends and to specific DNA sequences from which the kinase is activated. Ku and DNA-PKcs plays essential roles in double-stranded DNA break repair and V(D)J recombination and have been implicated in the regulation of specific gene transcription. In a yeast two-hybrid screen of a Jurkat T cell cDNA library, we have identified a specific interaction between the 70-kDa subunit of Ku heterodimer and the homeodomain of HOXC4, a homeodomain protein expressed in the hematopoietic system. Unexpectedly, a similar interaction with Ku was observed for several additional homeodomain proteins including octamer transcription factors 1 and 2 and Dlx2, suggesting that specific binding to Ku may be a property shared by many homeodomain proteins. Ku-homeodomain binding was mediated through the extreme C terminus of Ku70 and was abrogated by amino acid substitutions at Lys595/Lys596. Ku binding allowed the recruitment of the homeodomain to DNA ends and dramatically enhanced the phosphorylation of homeodomain-containing proteins by DNA-PK. These results suggest that Ku functions as a substrate docking protein for signaling by DNA-PK to homeodomain proteins from DNA ends.
Collapse
Affiliation(s)
- C Schild-Poulter
- Department of Medicine, The Loeb Health Research Institute at the Ottawa Hospital, University of Ottawa, Ottawa, Ontario K1Y 4E9, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Bertinato J, Schild-Poulter C, Haché RJ. Nuclear localization of Ku antigen is promoted independently by basic motifs in the Ku70 and Ku80 subunits. J Cell Sci 2001; 114:89-99. [PMID: 11112693 DOI: 10.1242/jcs.114.1.89] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Ku antigen is a heteromeric (Ku70/Ku80), mostly nuclear protein. Ku participates in multiple nuclear processes from DNA repair to V(D)J recombination to telomere maintenance to transcriptional regulation and serves as a DNA binding subunit and allosteric regulator of DNA-dependent protein kinase. While some evidence suggests that subcellular localization of Ku may be subject to regulation, how Ku gains access to the nucleus is poorly understood. In this work, using a combination of indirect immunofluorescence and direct fluorescence, we have demonstrated that transfer of the Ku heterodimer to the nucleus is determined by basic nuclear localization signals in each of the Ku subunits that function independently. A bipartite basic nuclear localization signal between amino acids 539–556 of Ku70 was observed to be required for nuclear import of full-length Ku70 monomer, while a short Ku80 motif of four amino acids from 565–568 containing three lysines was required for the nuclear import of full-length Ku80. Ku heterodimers containing only one nuclear localization signal accumulated in the nucleus as efficiently as wild-type Ku, while site directed mutagenesis inactivating the basic motifs in each subunit, resulted in a Ku heterodimer that was completely localized to the cytoplasm. Lastly, our results indicate that mutations in Ku previously proposed to abrogate Ku70/Ku80 heterodimerization, markedly reduced the accumulation of Ku70 without affecting heterodimer formation in mammalian cells.
Collapse
Affiliation(s)
- J Bertinato
- Graduate Program in Biochemistry, Department of Medicine, University of Ottawa, Ontario, Canada, K1Y 4K9
| | | | | |
Collapse
|
21
|
Giampuzzi M, Botti G, Di Duca M, Arata L, Ghiggeri G, Gusmano R, Ravazzolo R, Di Donato A. Lysyl oxidase activates the transcription activity of human collagene III promoter. Possible involvement of Ku antigen. J Biol Chem 2000; 275:36341-9. [PMID: 10942761 DOI: 10.1074/jbc.m003362200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysyl oxidase is an extracellular enzyme that controls the maturation of collagen and elastin. Lysyl oxidase and collagen III often show similar expression patterns in fibrotic tissues. Therefore, we investigated the influence of lysyl oxidase overexpression on the promoter activity of human COL3A1 gene. Our results showed that when COS-7 cells overexpressed the mature form of lysyl oxidase, the activity of the human COL3A1 promoter was increased up to an average of 12 times when tested by luciferase reporter assay. The effect was specific, because other promoters were not affected. Moreover, lysyl oxidase effect was abolished by beta-aminopropionitrile, a specific inhibitor of its catalytic activity. Electrophoretic mobility shift assay showed a binding activity in the region from -101 to -77 that was significantly increased by lysyl oxidase overexpression. The binding was specifically competed by the cold probe, and the mutagenesis of this region abolished both the binding activity in gel retardation and lysyl oxidase stimulation of COL3A1 promoter in transfection experiments. We identified the binding activity as Ku antigen in its two components: Ku80 and Ku70. This study suggests a new coordinated mechanism by which lysyl oxidase might control the development of fibrosis.
Collapse
Affiliation(s)
- M Giampuzzi
- Department of Nephrology, Gaslini Children's Hospital, Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Li DP, Periyasamy S, Jones TJ, Sánchez ER. Heat and chemical shock potentiation of glucocorticoid receptor transactivation requires heat shock factor (HSF) activity. Modulation of HSF by vanadate and wortmannin. J Biol Chem 2000; 275:26058-65. [PMID: 10862623 DOI: 10.1074/jbc.m004502200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock and other forms of stress increase glucocorticoid receptor (GR) activity in cells, suggesting cross-talk between the heat shock and GR signal pathways. An unresolved question concerning this cross-talk is whether heat shock factor (HSF1) activity is required for this response. We addressed this issue by modulating HSF1 activity with compounds acting by distinct mechanisms: sodium vanadate (SV), an inhibitor of protein phosphatases; and wortmannin, an inhibitor of DNA-dependent protein kinase. Using HSF1- and GR-responsive CAT reporters, we demonstrate that SV inhibits both HSF1 activity and the stress potentiation of GR, while having no effect on the hormone-free GR or HSF1. Paradoxically, SV increased hormone-induced GR activity in the absence of stress. In contrast, wortmannin increased HSF1 activity in stressed cells and had no effect on HSF1 in the absence of stress. Using the pMMTV-CAT reporter containing the negative regulatory element 1 site for DNA-dependent protein kinase, wortmannin was found to increase the GR response. However, in cells expressing a minimal promoter lacking negative regulatory element 1 sites, wortmannin had no effect on the GR in the absence of stress but increased the stress potentiation of GR. Our results show that the mechanism by which GR activity is increased in stressed cells requires intrinsic HSF1 activity.
Collapse
Affiliation(s)
- D P Li
- Department of Pharmacology, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The ends of chromosomal DNA double-strand breaks (DSBs) can be accurately rejoined by at least two discrete pathways, homologous recombination and nonhomologous end-joining (NHEJ). The NHEJ pathway is essential for repair of specific classes of DSB termini in cells of the budding yeast Saccharomyces cerevisiae. Endonuclease-induced DSBs retaining complementary single-stranded DNA overhangs are repaired efficiently by end-joining. In contrast, damaged DSB ends (e.g., termini produced by ionizing radiation) are poor substrates for this pathway. NHEJ repair involves the functions of at least 10 genes, including YKU70, YKU80, DNL4, LIF1, SIR2, SIR3, SIR4, RAD50, MRE11, and XRS2. Most or all of these genes are required for efficient recombination-independent recircularization of linearized plasmids and for rejoining of EcoRI endonuclease-induced chromosomal DSBs in vivo. Several NHEJ mutants also display aberrant processing and rejoining of DSBs that are generated by HO endonuclease or formed spontaneously in dicentric plasmids. In addition, all NHEJ genes except DNL4 and LIF1 are required for stabilization of telomeric repeat sequences. Each of the proteins involved in NHEJ appears to bind, directly or through protein associations, with the ends of linear DNA. Enzymatic and/or structural roles in the rejoining of DSB termini have been postulated for several proteins within the group. Most yeast NHEJ genes have homologues in human cells and many biochemical activities and protein:protein interactions have been conserved in higher eucaryotes. Similarities and differences between NHEJ repair in yeast and mammalian cells are discussed.
Collapse
Affiliation(s)
- L K Lewis
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, PO Box 12233, 111 Alexander Drive, NIH, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
24
|
Abstract
Ku is a heterodimeric protein composed of approximately 70- and approximately 80-kDa subunits (Ku70 and Ku80) originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. Ku has high binding affinity for DNA ends and that is why originally it was known as a DNA end binding protein, but now it is known to also bind the DNA structure at nicks, gaps, hairpins, as well as the ends of telomeres. It has been reported also to bind with sequence specificity to DNA and with weak affinity to RNA. Ku is an abundant nuclear protein and is present in vertebrates, insects, yeast, and worms. Ku contains ssDNA-dependent ATPase and ATP-dependent DNA helicase activities. It is the regulatory subunit of the DNA-dependent protein kinase that phosphorylates many proteins, including SV-40 large T antigen, p53, RNA-polymerase II, RP-A, topoisomerases, hsp90, and many transcription factors such as c-Jun, c-Fos, oct-1, sp-1, c-Myc, TFIID, and many more. It seems to be a multifunctional protein that has been implicated to be involved directly or indirectly in many important cellular metabolic processes such as DNA double-strand break repair, V(D)J recombination of immunoglobulins and T-cell receptor genes, immunoglobulin isotype switching, DNA replication, transcription regulation, regulation of heat shock-induced responses, regulation of the precise structure of telomeric termini, and it also plays a novel role in G2 and M phases of the cell cycle. The mechanism underlying the regulation of all the diverse functions of Ku is still obscure.
Collapse
Affiliation(s)
- R Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi.
| | | |
Collapse
|
25
|
Brown KD, Lataxes TA, Shangary S, Mannino JL, Giardina JF, Chen J, Baskaran R. Ionizing radiation exposure results in up-regulation of Ku70 via a p53/ataxia-telangiectasia-mutated protein-dependent mechanism. J Biol Chem 2000; 275:6651-6. [PMID: 10692474 DOI: 10.1074/jbc.275.9.6651] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genome damaging events, such as gamma-irradiation exposure, result in the induction of pathways that activate DNA repair mechanisms, halt cell cycle progression, and/or trigger apoptosis. We have investigated the effects of gamma-irradiation on cellular levels of the Ku autoantigens. Ku70 and Ku80 have been shown to form a heterodimeric complex that can bind tightly to free DNA ends and activate the protein kinase DNA-PKcs. We have found that irradiation results in an up-regulation of cellular levels of Ku70, but not Ku80, and that this enhanced level of Ku70 accumulates within the nucleus. Further, we uncovered that the postirradiation up-regulation of Ku70 utilizes a mechanism that is dependent on both p53 and damage response protein kinase ATM (ataxia-telangiectasia-mutated); however, the activation of DNA-PK does not require Ku70 up-regulation. These findings suggest that Ku70 up-regulation provides the cell with a means of assuring either proper DNA repair or an appropriate response to DNA damage independent of DNA-PKcs activation.
Collapse
Affiliation(s)
- K D Brown
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|