1
|
Düster R, Anand K, Binder SC, Schmitz M, Gatterdam K, Fisher RP, Geyer M. Structural basis of Cdk7 activation by dual T-loop phosphorylation. Nat Commun 2024; 15:6597. [PMID: 39097586 PMCID: PMC11297931 DOI: 10.1038/s41467-024-50891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates basic residues conserved in other CDKs, pS164 nucleates an arginine network unique to the ternary Cdk7 complex, involving all three subunits. We identify differential dependencies of kinase activity and substrate recognition on the individual phosphorylations. CAK function is unaffected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by T170 phosphorylation. Moreover, dual T-loop phosphorylation stimulates multisite phosphorylation of the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7 activation is a two-step process wherein S164 phosphorylation precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing processivity, while pT170 enhances activity towards key transcriptional substrates.
Collapse
Affiliation(s)
- Robert Düster
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sophie C Binder
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Maximilian Schmitz
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Karl Gatterdam
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Düster R, Anand K, Binder SC, Schmitz M, Gatterdam K, Fisher RP, Geyer M. Structural basis of Cdk7 activation by dual T-loop phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580246. [PMID: 38405971 PMCID: PMC10888979 DOI: 10.1101/2024.02.14.580246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Cyclin-dependent kinase 7 (Cdk7) occupies a central position in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of the general transcription factor TFIIH. Cdk7 forms an active complex upon association with Cyclin H and Mat1, and its catalytic activity is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the fully activated human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates a set of basic residues conserved in other CDKs, pS164 nucleates an arginine network involving all three subunits that is unique to the ternary Cdk7 complex. We identify differential dependencies of kinase activity and substrate recognition on individual phosphorylations within the Cdk7 T loop. The CAK function of Cdk7 is not affected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by phosphorylation at T170. Moreover, dual T-loop phosphorylation at both T170 and S164 stimulates multi-site phosphorylation of transcriptional substrates-the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and the SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7-regulatory phosphorylation is a two-step process in which phosphorylation of S164 precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing Cdk7 processivity, while the canonical pT170 enhances kinase activity towards critical substrates involved in transcription.
Collapse
Affiliation(s)
- Robert Düster
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sophie C. Binder
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Maximilian Schmitz
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Karl Gatterdam
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Robert P. Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
3
|
Hu Z, Ghosh A, Stolze SC, Horváth M, Bai B, Schaefer S, Zündorf S, Liu S, Harzen A, Hajheidari M, Sarnowski TJ, Nakagami H, Koncz Z, Koncz C. Gene modification by fast-track recombineering for cellular localization and isolation of components of plant protein complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:411-429. [PMID: 31276249 PMCID: PMC6852550 DOI: 10.1111/tpj.14450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 05/04/2023]
Abstract
To accelerate the isolation of plant protein complexes and study cellular localization and interaction of their components, an improved recombineering protocol is described for simple and fast site-directed modification of plant genes in bacterial artificial chromosomes (BACs). Coding sequences of fluorescent and affinity tags were inserted into genes and transferred together with flanking genomic sequences of desired size by recombination into Agrobacterium plant transformation vectors using three steps of E. coli transformation with PCR-amplified DNA fragments. Application of fast-track recombineering is illustrated by the simultaneous labelling of CYCLIN-DEPENDENT KINASE D (CDKD) and CYCLIN H (CYCH) subunits of kinase module of TFIIH general transcription factor and the CDKD-activating CDKF;1 kinase with green fluorescent protein (GFP) and mCherry (green and red fluorescent protein) tags, and a PIPL (His18 -StrepII-HA) epitope. Functionality of modified CDKF;1 gene constructs is verified by complementation of corresponding T-DNA insertion mutation. Interaction of CYCH with all three known CDKD homologues is confirmed by their co-localization and co-immunoprecipitation. Affinity purification and mass spectrometry analyses of CDKD;2, CYCH, and DNA-replication-coupled HISTONE H3.1 validate their association with conserved TFIIH subunits and components of CHROMATIN ASSEMBLY FACTOR 1, respectively. The results document that simple modification of plant gene products with suitable tags by fast-track recombineering is well suited to promote a wide range of protein interaction and proteomics studies.
Collapse
Affiliation(s)
- Zhoubo Hu
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Ajit Ghosh
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Department of Biochemistry and Molecular BiologyShahjalal University of Science and TechnologySylhet3114, Bangladesh
| | - Sara C. Stolze
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Mihály Horváth
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Bing Bai
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Sabine Schaefer
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Simone Zündorf
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Shanda Liu
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Anne Harzen
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Mohsen Hajheidari
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Botanical InstituteCologne Biocenter, Cluster of Excellence on Plant Sciences, University of CologneD‐50674CologneGermany
| | - Tomasz J. Sarnowski
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5A02‐106WarsawPoland
| | - Hirofumi Nakagami
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Zsuzsa Koncz
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Csaba Koncz
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Institute of Plant BiologyBiological Research Center of Hungarian Academy of SciencesTemesvári krt. 62H‐6726SzegedHungary
| |
Collapse
|
4
|
Fisher RP. Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery. Transcription 2019; 10:47-56. [PMID: 30488763 PMCID: PMC6602562 DOI: 10.1080/21541264.2018.1553483] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
The transcription cycle of RNA polymerase II (Pol II) is regulated by a set of cyclin-dependent kinases (CDKs). Cdk7, associated with the transcription initiation factor TFIIH, is both an effector CDK that phosphorylates Pol II and other targets within the transcriptional machinery, and a CDK-activating kinase (CAK) for at least one other essential CDK involved in transcription. Recent studies have illuminated Cdk7 functions that are executed throughout the Pol II transcription cycle, from promoter clearance and promoter-proximal pausing, to co-transcriptional chromatin modification in gene bodies, to mRNA 3´-end formation and termination. Cdk7 has also emerged as a target of small-molecule inhibitors that show promise in the treatment of cancer and inflammation. The challenges now are to identify the relevant targets of Cdk7 at each step of the transcription cycle, and to understand how heightened dependence on an essential CDK emerges in cancer, and might be exploited therapeutically.
Collapse
Affiliation(s)
- Robert P. Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Allepuz-Fuster P, Martínez-Fernández V, Garrido-Godino AI, Alonso-Aguado S, Hanes SD, Navarro F, Calvo O. Rpb4/7 facilitates RNA polymerase II CTD dephosphorylation. Nucleic Acids Res 2014; 42:13674-88. [PMID: 25416796 PMCID: PMC4267648 DOI: 10.1093/nar/gku1227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022] Open
Abstract
The Rpb4 and Rpb7 subunits of eukaryotic RNA polymerase II (RNAPII) participate in a variety of processes from transcription, DNA repair, mRNA export and decay, to translation regulation and stress response. However, their mechanism(s) of action remains unclear. Here, we show that the Rpb4/7 heterodimer in Saccharomyces cerevisiae plays a key role in controlling phosphorylation of the carboxy terminal domain (CTD) of the Rpb1 subunit of RNAPII. Proper phosphorylation of the CTD is critical for the synthesis and processing of RNAPII transcripts. Deletion of RPB4, and mutations that disrupt the integrity of Rpb4/7 or its recruitment to the RNAPII complex, increased phosphorylation of Ser2, Ser5, Ser7 and Thr4 within the CTD. RPB4 interacted genetically with genes encoding CTD phosphatases (SSU72, FCP1), CTD kinases (KIN28, CTK1, SRB10) and a prolyl isomerase that targets the CTD (ESS1). We show that Rpb4 is important for Ssu72 and Fcp1 phosphatases association, recruitment and/or accessibility to the CTD, and that this correlates strongly with Ser5P and Ser2P levels, respectively. Our data also suggest that Fcp1 is the Thr4P phosphatase in yeast. Based on these and other results, we suggest a model in which Rpb4/7 helps recruit and potentially stimulate the activity of CTD-modifying enzymes, a role that is central to RNAPII function.
Collapse
Affiliation(s)
- Paula Allepuz-Fuster
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Verónica Martínez-Fernández
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Ana I. Garrido-Godino
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Sergio Alonso-Aguado
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Steven D. Hanes
- Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Francisco Navarro
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| |
Collapse
|
6
|
Abstract
Cyclin-dependent kinases (CDKs) play essential roles in cell proliferation and gene expression. Although distinct sets of CDKs work in cell division and transcription by RNA polymerase II (Pol II), they share a CDK-activating kinase (CAK), which is itself a CDK-Cdk7-in metazoans. Thus a unitary CDK network controls and may coordinate cycles of cell division and gene expression. Recent work reveals decisive roles for Cdk7 in both pathways. The CAK function of Cdk7 helps determine timing of activation and cyclin-binding preferences of different CDKs during the cell cycle. In the transcription cycle, Cdk7 is both an effector kinase, which phosphorylates Pol II and other proteins and helps establish promoter-proximal pausing; and a CAK for Cdk9 (P-TEFb), which releases Pol II from the pause. By governing the transition from initiation to elongation, Cdk7, Cdk9 and their substrates influence expression of genes important for developmental and cell-cycle decisions, and ensure co-transcriptional maturation of Pol II transcripts. Cdk7 engaged in transcription also appears to be regulated by phosphorylation within its own activation (T) loop. Here I review recent studies of CDK regulation in cell division and gene expression, and propose a model whereby mitogenic signals trigger a cascade of CDK T-loop phosphorylation that drives cells past the restriction (R) point, when continued cell-cycle progression becomes growth factor-independent. Because R-point control is frequently deregulated in cancer, the CAK-CDK pathway is an attractive target for chemical inhibition aimed at impeding the inappropriate commitment to cell division.
Collapse
|
7
|
Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation. Mol Cell Biol 2010; 30:5180-93. [PMID: 20823273 DOI: 10.1128/mcb.00819-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The transcriptional coactivator Sub1 has been implicated in several aspects of mRNA metabolism in yeast, such as activation of transcription, termination, and 3'-end formation. Here, we present evidence that Sub1 plays a significant role in controlling phosphorylation of the RNA polymerase II large subunit C-terminal domain (CTD). We show that SUB1 genetically interacts with the genes encoding all four known CTD kinases, SRB10, KIN28, BUR1, and CTK1, suggesting that Sub1 acts to influence CTD phosphorylation at more than one step of the transcription cycle. To address this directly, we first used in vitro kinase assays, and we show that, on the one hand, SUB1 deletion increased CTD phosphorylation by Kin28, Bur1, and Ctk1 but, on the other, it decreased CTD phosphorylation by Srb10. Second, chromatin immunoprecipitation assays revealed that SUB1 deletion decreased Srb10 chromatin association on the inducible GAL1 gene but increased Kin28 and Ctk1 chromatin association on actively transcribed genes. Taken together, our data point to multiple roles for Sub1 in the regulation of CTD phosphorylation throughout the transcription cycle.
Collapse
|
8
|
Takatsuka H, Ohno R, Umeda M. The Arabidopsis cyclin-dependent kinase-activating kinase CDKF;1 is a major regulator of cell proliferation and cell expansion but is dispensable for CDKA activation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:475-487. [PMID: 19368694 DOI: 10.1111/j.1365-313x.2009.03884.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cyclin-dependent kinases (CDKs) play an essential role in cell cycle regulation during the embryonic and post-embryonic development of various organisms. Full activation of CDKs requires not only binding to cyclins but also phosphorylation of the T-loop domain. This phosphorylation is catalysed by CDK-activating kinases (CAKs). Plants have two distinct types of CAKs, namely CDKD and CDKF; in Arabidopsis, CDKF;1 exhibits the highest CDK kinase activity in vitro. We have previously shown that CDKF;1 also functions in the activation of CDKD;2 and CDKD;3 by T-loop phosphorylation. Here, we isolated the knockout mutants of CDKF;1 and showed that they had severe defects in cell division, cell elongation and endoreduplication. No defect was observed during embryogenesis, suggesting that CDKF;1 function is primarily required for post-embryonic development. In the cdkf;1 mutants, T-loop phosphorylation of CDKA;1, an orthologue of yeast Cdc2/Cdc28p, was comparable to that in wild-type plants, and its kinase activity did not decrease. In contrast, the protein level and kinase activity of CDKD;2 were significantly reduced in the mutants. Substitution of threonine-168 with a non-phosphorylatable alanine residue made CDKD;2 unstable in Arabidopsis tissues. These results indicate that CDKF;1 is dispensable for CDKA;1 activation but is essential for maintaining a steady-state level of CDKD;2, thereby suggesting the quantitative regulation of a vertebrate-type CAK in a plant-specific manner.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | |
Collapse
|
9
|
Rubenstein EM, Schmidt MC. Mechanisms regulating the protein kinases of Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:571-83. [PMID: 17337635 PMCID: PMC1865659 DOI: 10.1128/ec.00026-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Eric M Rubenstein
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, W1247 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
10
|
Shimotohno A, Ohno R, Bisova K, Sakaguchi N, Huang J, Koncz C, Uchimiya H, Umeda M. Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:701-10. [PMID: 16856985 DOI: 10.1111/j.1365-313x.2006.02820.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
For the full activation of cyclin-dependent kinases (CDKs), not only cyclin binding but also phosphorylation of a threonine (Thr) residue within the T-loop is required. This phosphorylation is catalyzed by CDK-activating kinases (CAKs). In Arabidopsis three D-type CDK genes (CDKD;1-CDKD;3) encode vertebrate-type CAK orthologues, of which CDKD;2 exhibits high phosphorylation activity towards the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II. Here, we show that CDKD;2 forms a stable complex with cyclin H and is downregulated by the phosphorylation of the ATP-binding site by WEE1 kinase. A knockout mutant of CDKD;3, which has a higher CDK kinase activity, displayed no defect in plant development. Instead, another type of CAK - CDKF;1 - exhibited significant activity towards CDKA;1 in Arabidopsis root protoplasts, and the activity was dependent on the T-loop phosphorylation of CDKF;1. We propose that two distinct types of CAK, namely CDKF;1 and CDKD;2, play a major role in CDK and CTD phosphorylation, respectively, in Arabidopsis.
Collapse
Affiliation(s)
- Akie Shimotohno
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Qiu H, Hu C, Wong CM, Hinnebusch AG. The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II. Mol Cell Biol 2006; 26:3135-48. [PMID: 16581788 PMCID: PMC1446970 DOI: 10.1128/mcb.26.8.3135-3148.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Paf1 complex (Paf1C) interacts with RNA polymerase II (Pol II) and promotes histone methylation of transcribed coding sequences, but the mechanism of Paf1C recruitment is unknown. We show that Paf1C is not recruited directly by the activator Gcn4p but is dependent on preinitiation complex assembly and Ser5 carboxy-terminal domain phosphorylation for optimal association with ARG1 coding sequences. Importantly, Spt4p is required for Paf1C occupancy at ARG1 (and other genes) and for Paf1C association with Ser5-phosphorylated Pol II in cell extracts, whereas Spt4p-Pol II association is independent of Paf1C. Since spt4Delta does not reduce levels of Pol II at ARG1, Ser5 phosphorylation, or Paf1C expression, it appears that Spt4p (or its partner in DSIF, Spt5p) provides a platform on Pol II for recruiting Paf1C following Ser5 phosphorylation and promoter clearance. spt4Delta reduces trimethylation of Lys4 on histone H3, demonstrating a new role for yeast DSIF in promoting a Paf1C-dependent function in elongation.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 6A/Rm. B1A-13, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
12
|
Pei Y, Du H, Singer J, Stamour C, Granitto S, Shuman S, Fisher RP. Cyclin-dependent kinase 9 (Cdk9) of fission yeast is activated by the CDK-activating kinase Csk1, overlaps functionally with the TFIIH-associated kinase Mcs6, and associates with the mRNA cap methyltransferase Pcm1 in vivo. Mol Cell Biol 2006; 26:777-88. [PMID: 16428435 PMCID: PMC1347026 DOI: 10.1128/mcb.26.3.777-788.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cyclin-dependent kinase 9 (Cdk9) of fission yeast is an essential ortholog of metazoan positive transcription elongation factor b (P-TEFb), which is proposed to coordinate capping and elongation of RNA polymerase II (Pol II) transcripts. Here we show that Cdk9 is activated to phosphorylate Pol II and the elongation factor Spt5 by Csk1, one of two fission yeast CDK-activating kinases (CAKs). Activation depends on Cdk9 T-loop residue Thr-212. The other CAK-Mcs6, the kinase component of transcription factor IIH (TFIIH)-cannot activate Cdk9. Consistent with the specificities of the two CAKs in vitro, the kinase activity of Cdk9 is reduced approximately 10-fold by csk1 deletion, and Cdk9 complexes from csk1Delta but not csk1+ cells can be activated by Csk1 in vitro. A cdk9(T212A) mutant is viable but phenocopies conditional growth defects of csk1Delta strains, indicating a role for Csk1-dependent activation of Cdk9 in vivo. A cdk9(T212A) mcs6(S165A) strain, in which neither Cdk9 nor Mcs6 can be activated by CAK, has a synthetic growth defect, implying functional overlap between the two CDKs, which have distinct but overlapping substrate specificities. Cdk9 forms complexes in vivo with the essential cyclin Pch1 and with Pcm1, the mRNA cap methyltransferase. The carboxyl-terminal region of Cdk9, through which it interacts with another capping enzyme, the RNA triphosphatase Pct1, is essential. Together, the data support a proposed model whereby Cdk9/Pch1-the third essential CDK-cyclin complex described in fission yeast-helps to target the capping apparatus to the transcriptional elongation complex.
Collapse
Affiliation(s)
- Yi Pei
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY.
| | | | | | | | | | | | | |
Collapse
|
13
|
Ganem C, Miled C, Facca C, Valay JG, Labesse G, Ben Hassine S, Mann C, Faye G. Kinase Cak1 functionally interacts with the PAF1 complex and phosphatase Ssu72 via kinases Ctk1 and Bur1. Mol Genet Genomics 2005; 275:136-47. [PMID: 16362371 DOI: 10.1007/s00438-005-0071-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 10/24/2005] [Indexed: 11/25/2022]
Abstract
Protein kinases orthologous with Cak1 of Saccharomyces cerevisiae (ScCak1) appear specific to ascomycetes. ScCak1 phosphorylates Cdc28, the cyclin-dependent kinase (CDK) governing the cell cycle, as well as Kin28, Bur1 and Ctk1, CDKs required for the transcription process performed by RNA polymerase II (RNA Pol II). Using genetic methods, we found that Cak1 genetically interacts with Paf1 and Ctr9, two components belonging to the PAF1 elongation complex needed for histone modifications, and with Ssu72, a protein phosphatase that dephosphorylates serine-5 phosphate in the RNA Pol II C-terminal domain. We present evidence suggesting that the interactions linking Cak1 with the PAF1 complex and with Ssu72 are not direct but mediated via Ctk1 and Bur1. We discuss the possibility that Ssu72 intervenes at the capping checkpoint step of the transcription cycle.
Collapse
Affiliation(s)
- Carine Ganem
- Institut Curie, UMR2027 CNRS, Centre Universitaire, Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Umeda M, Shimotohno A, Yamaguchi M. Control of Cell Division and Transcription by Cyclin-dependent Kinase-activating Kinases in Plants. ACTA ACUST UNITED AC 2005; 46:1437-42. [PMID: 16024551 DOI: 10.1093/pcp/pci170] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cyclin-dependent protein kinases (CDKs) play key roles in the progression of the cell cycle in eukaryotes. A CDK-activating kinase (CAK) catalyzes the phosphorylation of CDKs to activate their enzyme activity; thus, it is involved in activation of cell proliferation. In plants, two distinct classes of CAK have been identified; CDKD is functionally related to vertebrate-type CAKs, while CDKF is a plant-specific CAK having unique enzymatic characteristics. Recently, CDKF was shown to phosphorylate and activate CDKDs in Arabidopsis. This led to a proposal that CDKD and CDKF constitute a phosphorylation cascade that mediates environmental or hormonal signals to molecular machineries that control the cell cycle and transcription. In this review, we have summarized the biochemical features of plant CAKs and discussed the manner in which they diverge from animal and yeast orthologs. We have introduced several transgenic studies in which CAK genes were used as a tool to modify the CDK activity and to analyze cell division and differentiation during organ development.
Collapse
Affiliation(s)
- Masaaki Umeda
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-0032 Japan.
| | | | | |
Collapse
|
15
|
Ostapenko D, Solomon MJ. Phosphorylation by Cak1 regulates the C-terminal domain kinase Ctk1 in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:3906-13. [PMID: 15870265 PMCID: PMC1087728 DOI: 10.1128/mcb.25.10.3906-3913.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ctk1 is a Saccharomyces cerevisiae cyclin-dependent protein kinase (CDK) that assembles with Ctk2 and Ctk3 to form an active protein kinase complex, CTDK-I. CTDK-I phosphorylates Ser2 within the RNA polymerase II C-terminal domain, an activity that is required for efficient transcriptional elongation and 3' RNA processing. Ctk1 contains a conserved T loop, which undergoes activating phosphorylation in other CDKs. We show that Ctk1 is phosphorylated on Thr-338 within the T loop. Mutation of this residue abolished Ctk1 kinase activity in vitro and resulted in a cold-sensitive phenotype. As with other yeast CDKs undergoing T-loop phosphorylation, Ctk1 phosphorylation on Thr-338 was dependent on the Cak1 protein kinase. Ctk1 isolated from cak1Delta cells was unphosphorylated and exhibited low protein kinase activity. Moreover, Cak1 directly phosphorylated Ctk1 in vitro. Unlike wild-type cells, cells expressing Ctk1(T338A) delayed growth at early stationary phase, did not show the increase in Ser2 phosphorylation that normally accompanies the transition from rapid growth to stationary phase, and had compromised transcriptional activation of two stationary-phase genes, CTT1 and SPI1. Therefore, Ctk1 phosphorylation on Thr-338 is carried out by Cak1 and is required for normal gene transcription during the transition into stationary phase.
Collapse
Affiliation(s)
- Denis Ostapenko
- Yale University School of Medicine, Department of Molecular Biophysics and Biochemistry, 333 Cedar Street, New Haven, CT 06520-8024, USA
| | | |
Collapse
|
16
|
Xiao T, Kao CF, Krogan NJ, Sun ZW, Greenblatt JF, Osley MA, Strahl BD. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol Cell Biol 2005; 25:637-51. [PMID: 15632065 PMCID: PMC543430 DOI: 10.1128/mcb.25.2.637-651.2005] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rad6-mediated ubiquitylation of histone H2B at lysine 123 has been linked to transcriptional activation and the regulation of lysine methylation on histone H3. However, how Rad6 and H2B ubiquitylation contribute to the transcription and histone methylation processes is poorly understood. Here, we show that the Paf1 transcription elongation complex and the E3 ligase for Rad6, Bre1, mediate an association of Rad6 with the hyperphosphorylated (elongating) form of RNA polymerase II (Pol II). This association appears to be necessary for the transcriptional activities of Rad6, as deletion of various Paf1 complex members or Bre1 abolishes H2B ubiquitylation (ubH2B) and reduces the recruitment of Rad6 to the promoters and transcribed regions of active genes. Using the inducible GAL1 gene as a model, we find that the recruitment of Rad6 upon activation occurs rapidly and transiently across the gene and coincides precisely with the appearance of Pol II. Significantly, during GAL1 activation in an rtf1 deletion mutant, Rad6 accumulates at the promoter but is absent from the transcribed region. This fact suggests that Rad6 is recruited to promoters independently of the Paf1 complex but then requires this complex for entrance into the coding region of genes in a Pol II-associated manner. In support of a role for Rad6-dependent H2B ubiquitylation in transcription elongation, we find that ubH2B levels are dramatically reduced in strains bearing mutations of the Pol II C-terminal domain (CTD) and abolished by inactivation of Kin28, the serine 5 CTD kinase that promotes the transition from initiation to elongation. Furthermore, synthetic genetic array analysis reveals that the Rad6 complex interacts genetically with a number of known or suspected transcription elongation factors. Finally, we show that Saccharomyces cerevisiae mutants bearing defects in the pathway to H2B ubiquitylation display transcription elongation defects as assayed by 6-azauracil sensitivity. Collectively, our results indicate a role for Rad6 and H2B ubiquitylation during the elongation cycle of transcription and suggest a mechanism by which H3 methylation may be regulated.
Collapse
Affiliation(s)
- Tiaojiang Xiao
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, 405 Mary Ellen Jones Bldg., Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Calvo O, Manley JL. The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription. EMBO J 2005; 24:1009-20. [PMID: 15692559 PMCID: PMC554125 DOI: 10.1038/sj.emboj.7600575] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 01/11/2005] [Indexed: 11/09/2022] Open
Abstract
Transcription and processing of mRNA precursors are coordinated events that require numerous complex interactions to ensure that they are successfully executed. We described previously an unexpected association between a transcription factor, PC4 (or Sub1 in yeast), and an mRNA polyadenylation factor, CstF-64 (Rna15 in yeast), and provided evidence that this was important for efficient transcription elongation. Here we provide insight into the mechanism by which this occurs. We show that Sub1 and Rna15 are recruited to promoters and present along the length of several yeast genes. Allele-specific genetic interactions between SUB1 and genes encoding an RNA polymerase II (RNAP II)-specific kinase (KIN28) and phosphatase (FCP1) suggest that Sub1 influences and/or is sensitive to the phosphorylation status of elongating RNAP II. Remarkably, we find that cells lacking Sub1 display decreased accumulation of Fcp1, altered RNAP II phosphorylation and decreased crosslinking of RNAP II to transcribed genes. Our data provide evidence that Rna15 and Sub1 are present along the length of several genes and that Sub1 facilitates elongation by influencing enzymes that modify RNAP II.
Collapse
Affiliation(s)
- Olga Calvo
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, 1117 Fairchild Center, 1212 Amsterdam Avenue, NY 10027, USA. Tel.: +1 212 854 4647; Fax: +1 212 865 8246; E-mail:
| |
Collapse
|
18
|
Wilcox CB, Rossettini A, Hanes SD. Genetic interactions with C-terminal domain (CTD) kinases and the CTD of RNA Pol II suggest a role for ESS1 in transcription initiation and elongation in Saccharomyces cerevisiae. Genetics 2005; 167:93-105. [PMID: 15166139 PMCID: PMC1470855 DOI: 10.1534/genetics.167.1.93] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ess1 is an essential prolyl isomerase that binds the C-terminal domain (CTD) of Rpb1, the large subunit of RNA polymerase II. Ess1 is proposed to control transcription by isomerizing phospho-Ser-Pro peptide bonds within the CTD repeat. To determine which step(s) in the transcription cycle might require Ess1, we examined genetic interactions between ESS1 and genes encoding the known CTD kinases (KIN28, CTK1, BUR1, and SRB10). Although genetic interactions were identified between ESS1 and all four kinases, the clearest interactions were with CTK1 and SRB10. Reduced dosage of CTK1 rescued the growth defect of ess1(ts) mutants, while overexpression of CTK1 enhanced the growth defects of ess1(ts) mutants. Deletion of SRB10 suppressed ess1(ts) and ess1Delta mutants. The interactions suggest that Ess1 opposes the functions of these kinases, which are thought to function in preinitiation and elongation. Using a series of CTD substitution alleles, we also identified Ser5-Pro6 as a potential target for Ess1 isomerization within the first "half" of the CTD repeats. On the basis of the results, we suggest a model in which Ess1-directed conformational changes promote dephosphorylation of Ser5 to stimulate preinitiation complex formation and, later, to inhibit elongation.
Collapse
Affiliation(s)
- Cathy B Wilcox
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, Albany, New York 12208, USA
| | | | | |
Collapse
|
19
|
Shimotohno A, Umeda-Hara C, Bisova K, Uchimiya H, Umeda M. The plant-specific kinase CDKF;1 is involved in activating phosphorylation of cyclin-dependent kinase-activating kinases in Arabidopsis. THE PLANT CELL 2004; 16:2954-66. [PMID: 15486101 PMCID: PMC527191 DOI: 10.1105/tpc.104.025601] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cyclin-dependent kinases (CDKs) play essential roles in coordinate control of cell cycle progression. Activation of CDKs requires interaction with specific cyclin partners and phosphorylation of their T-loops by CDK-activating kinases (CAKs). The Arabidopsis thaliana genome encodes four potential CAKs. CAK2At (CDKD;3) and CAK4At (CDKD;2) are closely related to the vertebrate CAK, CDK7/p40MO15; they interact with cyclin H and phosphorylate CDKs, as well as the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. CAK1At (CDKF;1) shows cyclin H-independent CDK-kinase activity and can activate a heterologous CAK, Mcs6, in fission yeast. In Arabidopsis, CAK1At is a subunit of a protein complex of 130 kD, which phosphorylates the T-loop of CAK2At and CAK4At and activates the CTD-kinase activity of CAK4At in vitro and in root protoplasts. These results suggest that CAK1At is a novel CAK-activating kinase that modulates the activity of CAK2At and CAK4At, thereby controlling CDK activities and basal transcription in Arabidopsis.
Collapse
Affiliation(s)
- Akie Shimotohno
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
20
|
Sakurai H, Hashikawa N, Imazu H, Fukasawa T. Carboxy-terminal region of the yeast heat shock factor contains two domains that make transcription independent of the TFIIH protein kinase. Genes Cells 2004; 8:951-61. [PMID: 14750950 DOI: 10.1046/j.1356-9597.2003.00689.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Phosphorylation of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II is implicated in transition from initiation to elongation in the transcription cycle. In yeast cells, Kin28, a subunit of the general transcription factor TFIIH, is responsible for the CTD phosphorylation. Although Kin28 is indispensable for transcription of many genes, its requirement is bypassed in certain genes such as SSA4 or CUP1, whose transcription is activated by the heat shock factor Hsf1. RESULTS We show that C-terminal region of Hsf1, which consists of an activation domain AR2 and a regulatory domain CTM, mediates the Kin28-independent transcription. The AR2 domain, when fused to the DNA-binding domain of Gal4 and recruited to the GAL7 gene via the Gal4-binding sequence, is sufficient for activating GAL7 in the absence of Kin28. We have further found that AR2 has an ability to recruit TATA box-binding protein-associated factors (TAFs) to the promoter. Consistently, transcription from promoters occupied naturally or artificially with TAFs is sustained in the absence of Kin28 function. CONCLUSIONS These results show that CTM modulates activation function of AR2 in the Hsf1 molecule. We also suggest that recruitment of TAFs to a promoter is involved in the Kin28-independent transcription.
Collapse
Affiliation(s)
- Hiroshi Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| | | | | | | |
Collapse
|
21
|
Schindler K, Benjamin KR, Martin A, Boglioli A, Herskowitz I, Winter E. The Cdk-activating kinase Cak1p promotes meiotic S phase through Ime2p. Mol Cell Biol 2003; 23:8718-28. [PMID: 14612412 PMCID: PMC262685 DOI: 10.1128/mcb.23.23.8718-8728.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CAK1 encodes an essential protein kinase in Saccharomyces cerevisiae that is required for activation of the Cdc28p Cdk. CAK1 also has several CDC28-independent functions that are unique to meiosis. The earliest of these functions is to induce S phase, which is regulated differently in meiosis than in mitosis. In mitosis, Cdc28p controls its own S-phase-promoting activity by signaling the destruction of its inhibitor, Sic1p. In meiosis, Sic1p destruction is signaled by the meiosis-specific Ime2p protein kinase. Our data show that Cak1p is required to activate Ime2p through a mechanism that requires threonine 242 and tyrosine 244 in Ime2p's activation loop. This activation promotes autophosphorylation and accumulation of multiply phosphorylated forms of Ime2p during meiotic development. Consistent with Cak1p's role in activating Ime2p, cells lacking Cak1p are deficient in degrading Sic1p. Deletion of SIC1 or overexpression of IME2 can partially suppress the S-phase defect in cak1 mutant cells, suggesting that Ime2p is a key target of Cak1p regulation. These data show that Cak1p is required for the destruction of Sic1p in meiosis, as in mitosis, but in meiosis, it functions through a sporulation-specific kinase.
Collapse
Affiliation(s)
- Karen Schindler
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ganem C, Devaux F, Torchet C, Jacq C, Quevillon-Cheruel S, Labesse G, Facca C, Faye G. Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast. EMBO J 2003; 22:1588-98. [PMID: 12660165 PMCID: PMC152886 DOI: 10.1093/emboj/cdg141] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ssu72 is an essential yeast protein that is involved in transcription. It physically interacts with transcription initiation and termination complexes. In this report, we provide evidence that Ssu72 is a phosphatase that physically interacts with the CTD kinase Kin28 and functionally interacts with the CTD phosphatase Fcp1. A genome-wide expression analysis of mutant ssu72-ts69 during growth in complete medium revealed a number of defects, including the accumulation of a limited number of mRNAs and the read-through transcription of small nucleolar RNAs and of some mRNAs. We hypothesize that Ssu72 plays a key role in the transcription termination of certain transcripts, possibly by promoting RNA polymerase pausing and release. The possibility that the CTD of the largest subunit of RNA polymerase II is a substrate of Ssu72 is discussed.
Collapse
Affiliation(s)
- Carine Ganem
- Institut Curie-CNRS UMR2027, Bât. 110, Centre Universitaire, 91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Pace HC, Brenner C. Feminizing chicks: a model for avian sex determination based on titration of Hint enzyme activity and the predicted structure of an Asw-Hint heterodimer. Genome Biol 2003; 4:R18. [PMID: 12620103 PMCID: PMC153458 DOI: 10.1186/gb-2003-4-3-r18] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Revised: 01/03/2003] [Accepted: 01/10/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In birds and some lizards, females are heterogametic with a ZW karyotype, while males are ZZ homogametes. The molecular basis for sexual differentiation in birds is unknown: arguments exist for doses of Z masculinizing chicks and for W information feminizing. ASW was identified as a tandemly repeated gene conserved on avian W chromosomes that is expressed in early female development and appears to be an inactive form of avian Z-encoded HINT. Hint is a dimeric enzyme that hydrolyzes AMP linked to lysine, whose enzyme activity is required for regulation of the Cdk7 homologous Kin28 kinase in yeast. Of 16 residues most conserved across all life forms for AMP interactions, 15 are sexually dimorphic in birds, that is, altered in the female-specific Asw protein. Genomic and expression data suggest that Asw may feminize chicks, dominantly interfering with Hint function by heterodimerization. RESULTS We consider whether positive cooperativity could explain how Hint heterodimerization with an inert enzyme might reduce specific activity by more than 50% and provide data sufficient to reject this model. Instead, we hypothesize that Asw carries a signal for mislocalization and/or proteolysis, and/or dominantly suppresses the remaining Hint active site to function as a dominant negative. CONCLUSIONS Molecular modeling suggests that Asw and Hint can heterodimerize and that Gln 127, an Asw-specific alteration for Trp123, dominantly interferes with the Hint active site. An extra dose of HINT in ZZW chicks, and thus more Hint homodimer, may partially overcome the feminizing influence of ASW and lead to the observed intersexual characteristics of ZZW triploids.
Collapse
Affiliation(s)
- Helen C Pace
- Structural Biology and Bioinformatics Program, Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Charles Brenner
- Structural Biology and Bioinformatics Program, Kimmel Cancer Center, Philadelphia, PA 19107, USA
| |
Collapse
|
24
|
Abstract
Cyclin-dependent kinases (Cdks) were originally identified as regulators of eukaryotic cell cycle progression, but several Cdks were subsequently shown to perform important roles as transcriptional regulators. While the mechanisms regulating the Cdks involved in cell cycle progression are well documented, much less is known regarding how the Cdks that are involved in transcription are regulated. In Saccharomyces cerevisiae, Bur1 and Bur2 comprise a Cdk complex that is involved in transcriptional regulation, presumably mediated by its phosphorylation of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II. To investigate the regulation of Bur1 in vivo, we searched for high-copy-number suppressors of a bur1 temperature-sensitive mutation, identifying a single gene, CAK1. Cak1 is known to activate two other Cdks in yeast by phosphorylating a threonine within their conserved T-loop domains. Bur1 also has the conserved threonine within its T loop and is therefore a potential direct target of Cak1. Additional tests establish a direct functional interaction between Cak1 and the Bur1-Bur2 Cdk complex: Bur1 is phosphorylated in vivo, both the conserved Bur1 T-loop threonine and Cak1 are required for phosphorylation and Bur1 function in vivo, and recombinant Cak1 stimulates CTD kinase activity of the purified Bur1-Bur2 complex in vitro. Thus, both genetic and biochemical evidence demonstrate that Cak1 is a physiological regulator of the Bur1 kinase.
Collapse
Affiliation(s)
- Sheng Yao
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
25
|
Brenner C. Hint, Fhit, and GalT: function, structure, evolution, and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases. Biochemistry 2002; 41:9003-14. [PMID: 12119013 PMCID: PMC2571077 DOI: 10.1021/bi025942q] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIT (histidine triad) proteins, named for a motif related to the sequence HphiHphiHphiphi (phi, a hydrophobic amino acid), are a superfamily of nucleotide hydrolases and transferases, which act on the alpha-phosphate of ribonucleotides, and contain a approximately 30 kDa domain that is typically either a homodimer of approximately 15 kDa polypeptides with two active-sites or an internally, imperfectly repeated polypeptide that retains a single HIT active site. On the basis of sequence, substrate specificity, structure, evolution, and mechanism, HIT proteins can be classified into the Hint branch, which consists of adenosine 5'-monophosphoramide hydrolases, the Fhit branch, which consists of diadenosine polyphosphate hydrolases, and the GalT branch, which consists of specific nucleoside monophosphate transferases, including galactose-1-phosphate uridylyltransferase, diadenosine tetraphosphate phosphorylase, and adenylyl sulfate:phosphate adenylytransferase. At least one human representative of each branch is lost in human diseases. Aprataxin, a Hint branch hydrolase, is mutated in ataxia-oculomotor apraxia syndrome. Fhit is lost early in the development of many epithelially derived tumors. GalT is deficient in galactosemia. Additionally, ASW is an avian Hint family member that has evolved to have unusual gene expression properties and the complete loss of its nucleotide binding site. The potential roles of ASW and Hint in avian sexual development are discussed elsewhere. Here we review what is known about biological activities of HIT proteins, the structural and biochemical bases for their functions, and propose a new enzyme mechanism for Hint and Fhit that may account for the differences between HIT hydrolases and transferases.
Collapse
Affiliation(s)
- Charles Brenner
- Structural Biology and Bioinformatics Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
26
|
Prelich G. RNA polymerase II carboxy-terminal domain kinases: emerging clues to their function. EUKARYOTIC CELL 2002; 1:153-62. [PMID: 12455950 PMCID: PMC118035 DOI: 10.1128/ec.1.2.153-162.2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Gregory Prelich
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
27
|
Bieganowski P, Garrison PN, Hodawadekar SC, Faye G, Barnes LD, Brenner C. Adenosine monophosphoramidase activity of Hint and Hnt1 supports function of Kin28, Ccl1, and Tfb3. J Biol Chem 2002; 277:10852-60. [PMID: 11805111 PMCID: PMC2556056 DOI: 10.1074/jbc.m111480200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The histidine triad superfamily of nucleotide hydrolases and nucleotide transferases consists of a branch of proteins related to Hint and Aprataxin, a branch of Fhit-related hydrolases, and a branch of galactose-1-phosphate uridylyltransferase (GalT)-related transferases. Although substrates of Fhit and GalT are known and consequences of mutations in Aprataxin, Fhit, and GalT are known, good substrates had not been reported for any member of the Hint branch, and mutational consequences were unknown for Hint orthologs, which are the most ancient and widespread proteins in the Hint branch and in the histidine triad superfamily. Here we show that rabbit and yeast Hint hydrolyze the natural product adenosine-5'-monophosphoramidate (AMPNH(2)) in an active-site-dependent manner at second order rates exceeding 1,000,000 m(-1) s(-1). Yeast strains constructed with specific loss of the Hnt1 active site fail to grow on galactose at elevated temperatures. Loss of Hnt1 enzyme activity also leads to hypersensitivity to mutations in Ccl1, Tfb3, and Kin28, which constitute the TFIIK kinase subcomplex of general transcription factor TFIIH and to mutations in Cak1, which phosphorylates Kin28. The target of Hnt1 regulation in this pathway was shown to be downstream of Cak1 and not to affect stability of Kin28 monomers. Functional complementation of all Hnt1 phenotypes was provided by rabbit Hint, which is only 22% identical to yeast Hnt1 but has very similar adenosine monophosphoramidase activity.
Collapse
Affiliation(s)
- Pawel Bieganowski
- Structural Biology and Bioinformatics Program, Kimmel Cancer Center, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
28
|
Keogh MC, Cho EJ, Podolny V, Buratowski S. Kin28 is found within TFIIH and a Kin28-Ccl1-Tfb3 trimer complex with differential sensitivities to T-loop phosphorylation. Mol Cell Biol 2002; 22:1288-97. [PMID: 11839796 PMCID: PMC134711 DOI: 10.1128/mcb.22.5.1288-1297.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Revised: 11/14/2001] [Accepted: 11/30/2001] [Indexed: 11/20/2022] Open
Abstract
Basal transcription factor TFIIH phosphorylates the RNA polymerase II (RNApII) carboxy-terminal domain (CTD) within the transcription initiation complex. The catalytic kinase subunit of TFIIH is a member of the cyclin-dependent kinase (Cdk) family, designated Kin28 in Saccharomyces cerevisiae and Cdk7 in higher eukaryotes. Together with TFIIH subunits cyclin H and Mat1, Cdk7 kinase is also found in a trimer complex known as Cdk activating kinase (CAK). A yeast trimer complex has not previously been identified, although a Kin28-Ccl1 dimer called TFIIK has been isolated as a breakdown product of TFIIH. Here we show that a trimeric complex of Kin28-Ccl1-Tfb3 exists in yeast extracts. Several Kin28 point mutants that are defective in CTD phosphorylation were created. Consistent with earlier studies, these mutants have no transcriptional defect in vitro. Like other Cdks, Kin28 is activated by phosphorylation on T162 of the T loop. Kin28 T162 mutants have no growth defects alone but do demonstrate synthetic phenotypes when combined with mutant versions of the cyclin partner, Ccl1. Surprisingly, these phosphorylation site mutants appear to destabilize the association of the cyclin subunit within the context of TFIIH but not within the trimer complex.
Collapse
Affiliation(s)
- Michael-Christopher Keogh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
29
|
Schaber M, Lindgren A, Schindler K, Bungard D, Kaldis P, Winter E. CAK1 promotes meiosis and spore formation in Saccharomyces cerevisiae in a CDC28-independent fashion. Mol Cell Biol 2002; 22:57-68. [PMID: 11739722 PMCID: PMC134222 DOI: 10.1128/mcb.22.1.57-68.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CAK1 encodes a protein kinase in Saccharomyces cerevisiae whose sole essential mitotic role is to activate the Cdc28p cyclin-dependent kinase by phosphorylation of threonine-169 in its activation loop. SMK1 encodes a sporulation-specific mitogen-activated protein (MAP) kinase homolog that is required to regulate the postmeiotic events of spore wall assembly. CAK1 was previously identified as a multicopy suppressor of a weakened smk1 mutant and shown to be required for spore wall assembly. Here we show that Smk1p, like other MAP kinases, is phosphorylated in its activation loop and that Smk1p is not activated in a cak1 missense mutant. Strains harboring a hyperactivated allele of CDC28 that is CAK1 independent and that lacks threonine-169 still require CAK1 to activate Smk1p. The data indicate that Cak1p functions upstream of Smk1p by activating a protein kinase other than Cdc28p. We also found that mutants lacking CAK1 are blocked early in meiotic development, as they show substantial delays in premeiotic DNA synthesis and defects in the expression of sporulation-specific genes, including IME1. The early meiotic role of Cak1p, like the postmeiotic role in the Smk1p pathway, is CDC28 independent. The data indicate that Cak1p activates multiple steps in meiotic development through multiple protein kinase targets.
Collapse
Affiliation(s)
- Michael Schaber
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kaldis P, Ojala PM, Tong L, Mäkelä TP, Solomon MJ. CAK-independent activation of CDK6 by a viral cyclin. Mol Biol Cell 2001; 12:3987-99. [PMID: 11739795 PMCID: PMC60770 DOI: 10.1091/mbc.12.12.3987] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2001] [Revised: 10/05/2001] [Accepted: 10/12/2001] [Indexed: 12/19/2022] Open
Abstract
In normal cells, activation of cyclin-dependent kinases (cdks) requires binding to a cyclin and phosphorylation by the cdk-activating kinase (CAK). The Kaposi's sarcoma-associated herpesvirus encodes a protein with similarity to D-type cyclins. This KSHV-cyclin activates CDK6, alters its substrate specificity, and renders CDK6 insensitive to inhibition by the cdk inhibitor p16(INK4a). Here we investigate the regulation of the CDK6/KSHV-cyclin kinase with the use of purified proteins and a cell-based assay. We find that KSHV-cyclin can activate CDK6 independent of phosphorylation by CAK in vitro. In addition, CAK phosphorylation decreased the p16(INK4a) sensitivity of CDK6/KSHV-cyclin complexes. In cells, expression of CDK6 or to a lesser degree of a nonphosphorylatable CDK6(T177A) together with KSHV-cyclin induced apoptosis, indicating that CDK6 activation by KSHV-cyclin can proceed in the absence of phosphorylation by CAK in vivo. Coexpression of p16 partially protected cells from cell death. p16 and KSHV-cyclin can form a ternary complex with CDK6 that can be detected by binding assays as well as by conformational changes in CDK6. The Kaposi's sarcoma-associated herpesvirus has adopted a clever strategy to render cell cycle progression independent of mitogenic signals, cdk inhibition, or phosphorylation by CAK.
Collapse
Affiliation(s)
- P Kaldis
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8114, USA.
| | | | | | | | | |
Collapse
|
31
|
Larochelle S, Chen J, Knights R, Pandur J, Morcillo P, Erdjument-Bromage H, Tempst P, Suter B, Fisher RP. T-loop phosphorylation stabilizes the CDK7-cyclin H-MAT1 complex in vivo and regulates its CTD kinase activity. EMBO J 2001; 20:3749-59. [PMID: 11447116 PMCID: PMC125544 DOI: 10.1093/emboj/20.14.3749] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinase (CDK)7-cyclin H, the CDK-activating kinase (CAK) and TFIIH-associated kinase in metazoans can be activated in vitro through T-loop phosphorylation or binding to the RING finger protein MAT1. Although the two mechanisms can operate independently, we show that in a physiological setting, MAT1 binding and T-loop phosphorylation cooperate to stabilize the CAK complex of Drosophila. CDK7 forms a stable complex with cyclin H and MAT1 in vivo only when phosphorylated on either one of two residues (Ser164 or Thr170) in its T-loop. Mutation of both phosphorylation sites causes temperature-dependent dissociation of CDK7 complexes and lethality. Furthermore, phosphorylation of Thr170 greatly stimulates the activity of the CDK7- cyclin H-MAT1 complex towards the C-terminal domain of RNA polymerase II without significantly affecting activity towards CDK2. Remarkably, the substrate-specific increase in activity caused by T-loop phosphorylation is due entirely to accelerated enzyme turnover. Thus phosphorylation on Thr170 could provide a mechanism to augment CTD phosphorylation by TFIIH-associated CDK7, and thereby regulate transcription.
Collapse
Affiliation(s)
- Stéphane Larochelle
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Jian Chen
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Ronald Knights
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Judit Pandur
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Patrick Morcillo
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Hediye Erdjument-Bromage
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Paul Tempst
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Beat Suter
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Robert P. Fisher
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| |
Collapse
|
32
|
Abstract
Different cyclins mediate different cell-cycle transitions. Some cyclins, such as cyclin A and cyclin E, form stable complexes with proteins that bind directly or indirectly to DNA and thus might be recruited to certain regions of the genome at specific times in the cell cycle. Furthermore, cyclins contain structural motifs that are also present in known transcriptional modulators. We found that cyclin A is a potent transcriptional repressor and cyclin E is a potent transcriptional activator when bound to DNA via a heterologous DNA binding domain. The former activity was linked to the integrity of the cyclin A cyclin fold, whereas the latter activity related to the ability of cyclin E to activate cdk2 and recognize substrates. Furthermore, we found that cyclin E, but not cyclin A, activated transcription in a cell-cycle-dependent manner when present in physiological concentrations as an unfused protein. These results suggest that cyclin A and cyclin E intrinsically differ with respect to their ability to modulate transcription when tethered to DNA.
Collapse
Affiliation(s)
- T Y Kim
- Brigham and Womens Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
33
|
Rossi DJ, Londesborough A, Korsisaari N, Pihlak A, Lehtonen E, Henkemeyer M, Mäkelä TP. Inability to enter S phase and defective RNA polymerase II CTD phosphorylation in mice lacking Mat1. EMBO J 2001; 20:2844-56. [PMID: 11387217 PMCID: PMC125252 DOI: 10.1093/emboj/20.11.2844] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The trimeric Cdk7-cyclin H-Mat1 complex comprises the kinase subunit of basal transcription factor TFIIH and has been shown to function as a cyclin-dependent kinase (Cdk)-activating kinase. Herein we report that disruption of the murine Mat1 gene leads to peri-implantation lethality coincident with depletion of maternal Mat1 protein. In culture, Mat1(-/-) blastocysts gave rise to viable post-mitotic trophoblast giant cells while mitotic lineages failed to proliferate and survive. In contrast to wild-type trophoblast giant cells, Mat1(-/-) cells exhibited a rapid arrest in endoreduplication, which was characterized by an inability to enter S phase. Additionally, Mat1(-/-) cells exhibited defects in phosphorylation of the C-terminal domain (CTD) of RNA polymerase II on both Ser5 and Ser2 of the heptapeptide repeat. Despite this, Mat1(-/-) cells demonstrated apparent transcriptional and translational integrity. These data indicate an essential role for Mat1 in progression through the endocycle and suggest that while Mat1 modulates CTD phosphorylation, it does not appear to be essential for RNA polymerase II-mediated transcription.
Collapse
Affiliation(s)
- Derrick J. Rossi
- Molecular Cancer Biology Research Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, PO Box 63, 00014 Helsinki, HUCH Laboratory Diagnostics, Helsinki University Central Hospital, PO Box 401, 00029 HYKS, Finland and Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9133, USA Corresponding author e-mail:
A.Londesborough and N.Korsisaari contributed equally to this work
| | - Anou Londesborough
- Molecular Cancer Biology Research Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, PO Box 63, 00014 Helsinki, HUCH Laboratory Diagnostics, Helsinki University Central Hospital, PO Box 401, 00029 HYKS, Finland and Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9133, USA Corresponding author e-mail:
A.Londesborough and N.Korsisaari contributed equally to this work
| | - Nina Korsisaari
- Molecular Cancer Biology Research Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, PO Box 63, 00014 Helsinki, HUCH Laboratory Diagnostics, Helsinki University Central Hospital, PO Box 401, 00029 HYKS, Finland and Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9133, USA Corresponding author e-mail:
A.Londesborough and N.Korsisaari contributed equally to this work
| | - Arno Pihlak
- Molecular Cancer Biology Research Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, PO Box 63, 00014 Helsinki, HUCH Laboratory Diagnostics, Helsinki University Central Hospital, PO Box 401, 00029 HYKS, Finland and Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9133, USA Corresponding author e-mail:
A.Londesborough and N.Korsisaari contributed equally to this work
| | - Eero Lehtonen
- Molecular Cancer Biology Research Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, PO Box 63, 00014 Helsinki, HUCH Laboratory Diagnostics, Helsinki University Central Hospital, PO Box 401, 00029 HYKS, Finland and Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9133, USA Corresponding author e-mail:
A.Londesborough and N.Korsisaari contributed equally to this work
| | - Mark Henkemeyer
- Molecular Cancer Biology Research Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, PO Box 63, 00014 Helsinki, HUCH Laboratory Diagnostics, Helsinki University Central Hospital, PO Box 401, 00029 HYKS, Finland and Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9133, USA Corresponding author e-mail:
A.Londesborough and N.Korsisaari contributed equally to this work
| | - Tomi P. Mäkelä
- Molecular Cancer Biology Research Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, PO Box 63, 00014 Helsinki, HUCH Laboratory Diagnostics, Helsinki University Central Hospital, PO Box 401, 00029 HYKS, Finland and Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9133, USA Corresponding author e-mail:
A.Londesborough and N.Korsisaari contributed equally to this work
| |
Collapse
|
34
|
Hautbergue G, Goguel V. Activation of the cyclin-dependent kinase CTDK-I requires the heterodimerization of two unstable subunits. J Biol Chem 2001; 276:8005-13. [PMID: 11118453 DOI: 10.1074/jbc.m010162200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II CTD kinases are key elements in the control of mRNA synthesis. They constitute a family of cyclin-dependent kinases activated by C-type cyclins. Unlike most cyclin-dependent kinase complexes, which are composed of a catalytic and a regulatory subunit, the yeast CTD kinase I complex contains three specific subunits: a kinase subunit (Ctk1), a cyclin subunit (Ctk2), and a third subunit (Ctk3) of unknown function that does not exhibit any similarity to known proteins. Like the Ctk2 cyclin that is regulated at the level of protein turnover, Ctk3 is an unstable protein processed through a ubiquitin-proteasome pathway. Interestingly, Ctk2 and Ctk3 physical interaction is required to protect both subunits from degradation, pointing to a new mechanism for cyclin turnover regulation. We also show that Ctk2 and Ctk3 can each interact independently with the kinase. However, despite the formation of CDK/cyclin complexes in vitro, the Ctk2 cyclin is unable to activate its CDK: both Ctk2 and Ctk3 are required for Ctk1 CTD kinase activation. The different specific features governing CTDK-I regulation probably reflect requirement for the transcriptional response to multiple growth conditions.
Collapse
Affiliation(s)
- G Hautbergue
- Service de Biochimie et Génétique Moléculaire, CEA/Saclay, Gif sur Yvette 91191, France
| | | |
Collapse
|
35
|
Hermand D, Westerling T, Pihlak A, Thuret JY, Vallenius T, Tiainen M, Vandenhaute J, Cottarel G, Mann C, Mäkelä TP. Specificity of Cdk activation in vivo by the two Caks Mcs6 and Csk1 in fission yeast. EMBO J 2001; 20:82-90. [PMID: 11226158 PMCID: PMC140202 DOI: 10.1093/emboj/20.1.82] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activating phosphorylation of cyclin-dependent kinases (Cdks) is mediated by at least two structurally distinct types of Cdk-activating kinases (Caks): the trimeric Cdk7-cyclin H-Mat1 complex in metazoans and the single-subunit Cak1 in budding yeast. Fission yeast has both Cak types: Mcs6 is a Cdk7 ortholog and Csk1 a single-subunit kinase. Both phosphorylate Cdks in vitro and rescue a thermosensitive budding yeast CAK1 strain. However, this apparent redundancy is not observed in fission yeast in vivo. We have identified mutants that exhibit phenotypes attributable to defects in either Mcs6-activating phosphorylation or in Cdc2-activating phosphorylation. Mcs6, human Cdk7 and budding yeast Cak1 were all active as Caks for Cdc2 when expressed in fission yeast. Although Csk1 could activate Mcs6, it was unable to activate Cdc2. Biochemical experiments supported these genetic results: budding yeast Cak1 could bind and phosphorylate Cdc2 from fission yeast lysates, whereas fission yeast Csk1 could not. These results indicate that Mcs6 is the direct activator of Cdc2, and Csk1 only activates Mcs6. This demonstrates in vivo specificity in Cdk activation by Caks.
Collapse
Affiliation(s)
- Damien Hermand
- Haartman Institute & Biocentrum Helsinki, University of Helsinki, 00014 Helsinki, HUCH Laboratory Diagnostics, 00029 HYKS, Finland, Laboratoire de Génétique Moléculaire (GEMO), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000 Namur, Belgium, Service de Biochimie et Genetique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France and Genome Therapeutics Corp., 100 Beaver Street, Waltham, MA 02154, USA Corresponding author e-mail: D.Hermand & T.Westerling and A.Pihlak & J.-Y.Thuret, respectively, contributed equally to this work
| | - Thomas Westerling
- Haartman Institute & Biocentrum Helsinki, University of Helsinki, 00014 Helsinki, HUCH Laboratory Diagnostics, 00029 HYKS, Finland, Laboratoire de Génétique Moléculaire (GEMO), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000 Namur, Belgium, Service de Biochimie et Genetique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France and Genome Therapeutics Corp., 100 Beaver Street, Waltham, MA 02154, USA Corresponding author e-mail: D.Hermand & T.Westerling and A.Pihlak & J.-Y.Thuret, respectively, contributed equally to this work
| | - Arno Pihlak
- Haartman Institute & Biocentrum Helsinki, University of Helsinki, 00014 Helsinki, HUCH Laboratory Diagnostics, 00029 HYKS, Finland, Laboratoire de Génétique Moléculaire (GEMO), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000 Namur, Belgium, Service de Biochimie et Genetique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France and Genome Therapeutics Corp., 100 Beaver Street, Waltham, MA 02154, USA Corresponding author e-mail: D.Hermand & T.Westerling and A.Pihlak & J.-Y.Thuret, respectively, contributed equally to this work
| | - Jean-Yves Thuret
- Haartman Institute & Biocentrum Helsinki, University of Helsinki, 00014 Helsinki, HUCH Laboratory Diagnostics, 00029 HYKS, Finland, Laboratoire de Génétique Moléculaire (GEMO), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000 Namur, Belgium, Service de Biochimie et Genetique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France and Genome Therapeutics Corp., 100 Beaver Street, Waltham, MA 02154, USA Corresponding author e-mail: D.Hermand & T.Westerling and A.Pihlak & J.-Y.Thuret, respectively, contributed equally to this work
| | - Tea Vallenius
- Haartman Institute & Biocentrum Helsinki, University of Helsinki, 00014 Helsinki, HUCH Laboratory Diagnostics, 00029 HYKS, Finland, Laboratoire de Génétique Moléculaire (GEMO), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000 Namur, Belgium, Service de Biochimie et Genetique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France and Genome Therapeutics Corp., 100 Beaver Street, Waltham, MA 02154, USA Corresponding author e-mail: D.Hermand & T.Westerling and A.Pihlak & J.-Y.Thuret, respectively, contributed equally to this work
| | - Marianne Tiainen
- Haartman Institute & Biocentrum Helsinki, University of Helsinki, 00014 Helsinki, HUCH Laboratory Diagnostics, 00029 HYKS, Finland, Laboratoire de Génétique Moléculaire (GEMO), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000 Namur, Belgium, Service de Biochimie et Genetique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France and Genome Therapeutics Corp., 100 Beaver Street, Waltham, MA 02154, USA Corresponding author e-mail: D.Hermand & T.Westerling and A.Pihlak & J.-Y.Thuret, respectively, contributed equally to this work
| | - Jean Vandenhaute
- Haartman Institute & Biocentrum Helsinki, University of Helsinki, 00014 Helsinki, HUCH Laboratory Diagnostics, 00029 HYKS, Finland, Laboratoire de Génétique Moléculaire (GEMO), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000 Namur, Belgium, Service de Biochimie et Genetique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France and Genome Therapeutics Corp., 100 Beaver Street, Waltham, MA 02154, USA Corresponding author e-mail: D.Hermand & T.Westerling and A.Pihlak & J.-Y.Thuret, respectively, contributed equally to this work
| | - Guillaume Cottarel
- Haartman Institute & Biocentrum Helsinki, University of Helsinki, 00014 Helsinki, HUCH Laboratory Diagnostics, 00029 HYKS, Finland, Laboratoire de Génétique Moléculaire (GEMO), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000 Namur, Belgium, Service de Biochimie et Genetique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France and Genome Therapeutics Corp., 100 Beaver Street, Waltham, MA 02154, USA Corresponding author e-mail: D.Hermand & T.Westerling and A.Pihlak & J.-Y.Thuret, respectively, contributed equally to this work
| | - Carl Mann
- Haartman Institute & Biocentrum Helsinki, University of Helsinki, 00014 Helsinki, HUCH Laboratory Diagnostics, 00029 HYKS, Finland, Laboratoire de Génétique Moléculaire (GEMO), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000 Namur, Belgium, Service de Biochimie et Genetique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France and Genome Therapeutics Corp., 100 Beaver Street, Waltham, MA 02154, USA Corresponding author e-mail: D.Hermand & T.Westerling and A.Pihlak & J.-Y.Thuret, respectively, contributed equally to this work
| | - Tomi P. Mäkelä
- Haartman Institute & Biocentrum Helsinki, University of Helsinki, 00014 Helsinki, HUCH Laboratory Diagnostics, 00029 HYKS, Finland, Laboratoire de Génétique Moléculaire (GEMO), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000 Namur, Belgium, Service de Biochimie et Genetique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France and Genome Therapeutics Corp., 100 Beaver Street, Waltham, MA 02154, USA Corresponding author e-mail: D.Hermand & T.Westerling and A.Pihlak & J.-Y.Thuret, respectively, contributed equally to this work
| |
Collapse
|
36
|
Garrett S, Barton WA, Knights R, Jin P, Morgan DO, Fisher RP. Reciprocal activation by cyclin-dependent kinases 2 and 7 is directed by substrate specificity determinants outside the T loop. Mol Cell Biol 2001; 21:88-99. [PMID: 11113184 PMCID: PMC88783 DOI: 10.1128/mcb.21.1.88-99.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) is the catalytic subunit of the metazoan CDK-activating kinase (CAK), which activates CDKs, such as CDC2 and CDK2, through phosphorylation of a conserved threonine residue in the T loop. Full activation of CDK7 requires association with a positive regulatory subunit, cyclin H, and phosphorylation of a conserved threonine residue at position 170 in its own T loop. We show that threonine-170 of CDK7 is phosphorylated in vitro by its targets, CDC2 and CDK2, which also phosphorylate serine-164 in the CDK7 T loop, a site that perfectly matches their consensus phosphorylation site. In contrast, neither CDK4 nor CDK7 itself can phosphorylate the CDK7 T loop in vitro. The ability of CDC2 or CDK2 and CDK7 to phosphorylate each other but not themselves implies that each kinase can discriminate among closely related sequences and can recognize a substrate site that diverges from its usual preferred site. To understand the basis for this paradoxical substrate specificity, we constructed a chimeric CDK with the T loop of CDK7 grafted onto the body of CDK2. Surprisingly, the hybrid enzyme, CDK2-7, was efficiently activated in cyclin A-dependent fashion by CDK7 but not at all by CDK2. CDK2-7, moreover, phosphorylated wild-type CDK7 but not CDK2. Our results suggest that the primary amino acid sequence of the T loop plays only a minor role, if any, in determining the specificity of cyclin-dependent CAKs for their CDK substrates and that protein-protein interactions involving sequences outside the T loop can influence substrate specificity both positively and negatively.
Collapse
Affiliation(s)
- S Garrett
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kaldis P, Cheng A, Solomon MJ. The effects of changing the site of activating phosphorylation in CDK2 from threonine to serine. J Biol Chem 2000; 275:32578-84. [PMID: 10931829 DOI: 10.1074/jbc.m003212200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) that control cell cycle progression are regulated in many ways, including activating phosphorylation of a conserved threonine residue. This essential phosphorylation is carried out by the CDK-activating kinase (CAK). Here we examine the effects of replacing this threonine residue in human CDK2 by serine. We found that cyclin A bound equally well to wild-type CDK2 (CDK2(Thr-160)) or to the mutant CDK2 (CDK2(Ser-160)). In the absence of activating phosphorylation, CDK2(Ser-160)-cyclin A complexes were more active than wild-type CDK2(Thr-160)-cyclin A complexes. In contrast, following activating phosphorylation, CDK2(Ser-160)-cyclin A complexes were less active than phosphorylated CDK2(Thr-160)-cyclin A complexes, reflecting a much smaller effect of activating phosphorylation on CDK2(Ser-160). The kinetic parameters for phosphorylating histone H1 were similar for mutant and wild-type CDK2, ruling out a general defect in catalytic activity. Interestingly, the CDK2(Ser-160) mutant was selectively defective in phosphorylating a peptide derived from the C-terminal domain of RNA polymerase II. CDK2(Ser-160) was efficiently phosphorylated by CAKs, both human p40(MO15)(CDK7)-cyclin H and budding yeast Cak1p. In fact, the k(cat) values for phosphorylation of CDK2(Ser-160) were significantly higher than for phosphorylation of CDK2(Thr-160), indicating that CDK2(Ser-160) is actually phosphorylated more efficiently than wild-type CDK2. In contrast, dephosphorylation proceeded more slowly with CDK2(Ser-160) than with wild-type CDK2, either in HeLa cell extract or by purified PP2Cbeta. Combined with the more efficient phosphorylation of CDK2(Ser-160) by CAK, we suggest that one reason for the conservation of threonine as the site of activating phosphorylation may be to favor unphosphorylated CDKs following the degradation of cyclins.
Collapse
Affiliation(s)
- P Kaldis
- Yale University School of Medicine, Department of Molecular Biophysics and Biochemistry, New Haven, Connecticut 06520-8114, USA.
| | | | | |
Collapse
|
38
|
Abstract
The cdk-activating kinase (CAK) activates cyclin-dependent kinases (cdks) that control cell-cycle progression by phosphorylating a threonine residue conserved in cdks. CAK from humans contains p40MO15 (cdk7), cyclin H and MAT1, which are also subunits of transcription factor IIH where they phosphorylate the C-terminal domain of the large subunit of RNA polymerase II. In contrast, budding yeast Cak1p is a monomeric enzyme without C-terminal domain kinase activity. Here, we analyze CAK activities in HeLa cells using cdk2-affinity chromatography. In addition to MO15, a second CAK activity was detected that runs on gel filtration at 30-40 kDa. This activity phosphorylated and activated cdk2 and cdk6. Furthermore, this 'small CAK' activity resembled Cak1p rather than MO15 in terms of substrate specificity, reactivity to antibodies against MO15 and Cak1p, and sensitivity to 5'-fluorosulfonylbenzoyladenosine, an irreversible inhibitory ATP analog. Our findings suggest the presence of at least two different CAK activities in human cells.
Collapse
Affiliation(s)
- P Kaldis
- Yale University School of Medicine, New Haven, USA
| | | |
Collapse
|
39
|
Wada T, Orphanides G, Hasegawa J, Kim DK, Shima D, Yamaguchi Y, Fukuda A, Hisatake K, Oh S, Reinberg D, Handa H. FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH. Mol Cell 2000; 5:1067-72. [PMID: 10912001 DOI: 10.1016/s1097-2765(00)80272-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report that the chromatin-specific transcription elongation factor FACT functions in conjunction with the RNA polymerase II CTD kinase P-TEFb to alleviate transcription inhibition by DSIF (DRB sensitivity-inducing factor) and NELF (negative elongation factor). We find that the kinase activity of TFIIH is dispensable for this activity, demonstrating that TFIIH-mediated CTD phosphorylation is not involved in the regulation of FACT and DSIF/NELF activities. Thus, we propose a novel transcriptional regulatory network in which DSIF/NELF inhibition of transcription is prevented by P-TEFb in cooperation with FACT. This study uncovers a novel role for FACT in the regulation of transcription on naked DNA that is independent of its activities on chromatin templates. In addition, this study reveals functional differences between P-TEFb and TFIIH in the regulation of transcription.
Collapse
Affiliation(s)
- T Wada
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Leclerc V, Raisin S, Léopold P. Dominant-negative mutants reveal a role for the Cdk7 kinase at the mid-blastula transition in Drosophila embryos. EMBO J 2000; 19:1567-75. [PMID: 10747025 PMCID: PMC310226 DOI: 10.1093/emboj/19.7.1567] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The metazoan cyclin-dependent kinase Cdk7 was purified originally as part of a biochemical activity called CAK (Cdk-activating kinase) capable of phosphorylating and activating in vitro the Cdks that promote the different cell cycle transitions. Cdk7 is also found in the transcription factor complex TFIIH, suggesting that it participates in vivo in the control of RNA polymerase II. We have examined the physiological role of Cdk7 during the course of Drosophila development. By expressing dominant-negative forms of the kinase, we were able to alter Cdk7 function at given developmental stages. Expression of Cdk7 mutants severely delayed the onset of zygotic transcription in the early embryo, but did not alter the timing of the first 13 embryonic nuclear cycles. These results implicate Cdk7 in the control of transcriptional machinery in vivo. While cell cycle regulation is not sensitive to our manipulations of Cdk7 activity, it suggests that a distinct pool of CAK activity that is unaffected by expression of the cdk7(DN) mutants is present in these embryos.
Collapse
Affiliation(s)
- V Leclerc
- Institute of Signaling, Developmental Biology and Cancer Research, UMR 6543 CNRS, Centre de Biochimie, Parc Valrose, 06108 Nice, Cedex 2, France
| | | | | |
Collapse
|
41
|
Cross FR, Levine K. Genetic analysis of the relationship between activation loop phosphorylation and cyclin binding in the activation of the Saccharomyces cerevisiae Cdc28p cyclin-dependent kinase. Genetics 2000; 154:1549-59. [PMID: 10747052 PMCID: PMC1461042 DOI: 10.1093/genetics/154.4.1549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We showed recently that a screen for mutant CDC28 with improved binding to a defective Cln2p G1 cyclin yielded a spectrum of mutations similar to those yielded by a screen for intragenic suppressors of the requirement for activation loop phosphorylation (T169E suppressors). Recombination among these mutations yielded CDC28 mutants that bypassed the G1 cyclin requirement. Here we analyze further the interrelationship between T169E suppression, interaction with defective cyclin, and G1 cyclin bypass. DNA shuffling of mutations from the various screens and recombination onto a T169E-encoding 3' end yielded CDC28 mutants with strong T169E suppression. Some of the strongest T169E suppressors could suppress the defective Cln2p G1 cyclin even while retaining T169E. The strong T169E suppressors did not exhibit bypass of the G1 cyclin requirement but did so when T169E was reverted to T. These results suggested that for these mutants, activation loop phosphorylation and cyclin binding might be alternative means of activation rather than independent requirements for activation (as with wild type). These results suggest mechanistic overlap between the conformational shift induced by cyclin binding and that induced by activation loop phosphorylation. This conclusion was supported by analysis of suppressors of a mutation in the Cdk phosphothreonine-binding pocket created by cyclin binding.
Collapse
Affiliation(s)
- F R Cross
- The Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
42
|
Rodriguez CR, Cho EJ, Keogh MC, Moore CL, Greenleaf AL, Buratowski S. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol Cell Biol 2000; 20:104-12. [PMID: 10594013 PMCID: PMC85066 DOI: 10.1128/mcb.20.1.104-112.2000] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cotranscriptional placement of the 7-methylguanosine cap on pre-mRNA is mediated by recruitment of capping enzyme to the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II. Immunoblotting suggests that the capping enzyme guanylyltransferase (Ceg1) is stabilized in vivo by its interaction with the CTD and that serine 5, the major site of phosphorylation within the CTD heptamer consensus YSPTSPS, is particularly important. We sought to identify the CTD kinase responsible for capping enzyme targeting. The candidate kinases Kin28-Ccl1, CTDK1, and Srb10-Srb11 can each phosphorylate a glutathione S-transferase-CTD fusion protein such that capping enzyme can bind in vitro. However, kin28 mutant alleles cause reduced Ceg1 levels in vivo and exhibit genetic interactions with a mutant ceg1 allele, while srb10 or ctk1 deletions do not. Therefore, only the TFIIH-associated CTD kinase Kin28 appears necessary for proper capping enzyme targeting in vivo. Interestingly, levels of the polyadenylation factor Pta1 are also reduced in kin28 mutants, while several other polyadenylation factors remain stable. Pta1 in yeast extracts binds specifically to the phosphorylated CTD, suggesting that this interaction may mediate coupling of polyadenylation and transcription.
Collapse
Affiliation(s)
- C R Rodriguez
- Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|