1
|
Brison O, Gnan S, Azar D, Koundrioukoff S, Melendez-Garcia R, Kim SJ, Schmidt M, El-Hilali S, Jaszczyszyn Y, Lachages AM, Thermes C, Chen CL, Debatisse M. Mistimed origin licensing and activation stabilize common fragile sites under tight DNA-replication checkpoint activation. Nat Struct Mol Biol 2023; 30:539-550. [PMID: 37024657 DOI: 10.1038/s41594-023-00949-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/28/2023] [Indexed: 04/08/2023]
Abstract
Genome integrity requires replication to be completed before chromosome segregation. The DNA-replication checkpoint (DRC) contributes to this coordination by inhibiting CDK1, which delays mitotic onset. Under-replication of common fragile sites (CFSs), however, escapes surveillance, resulting in mitotic chromosome breaks. Here we asked whether loose DRC activation induced by modest stresses commonly used to destabilize CFSs could explain this leakage. We found that tightening DRC activation or CDK1 inhibition stabilizes CFSs in human cells. Repli-Seq and molecular combing analyses showed a burst of replication initiations implemented in mid S-phase across a subset of late-replicating sequences, including CFSs, while the bulk genome was unaffected. CFS rescue and extra-initiations required CDC6 and CDT1 availability in S-phase, implying that CDK1 inhibition permits mistimed origin licensing and firing. In addition to delaying mitotic onset, tight DRC activation therefore supports replication completion of late origin-poor domains at risk of under-replication, two complementary roles preserving genome stability.
Collapse
Affiliation(s)
- Olivier Brison
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Stefano Gnan
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
| | - Dana Azar
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Université Saint-Joseph, Beirut, Lebanon
| | - Stéphane Koundrioukoff
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Sorbonne University, Paris, France
| | - Rodrigo Melendez-Garcia
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Su-Jung Kim
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Mélanie Schmidt
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Sami El-Hilali
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
- Villefranche sur mer Developmental Biology Laboratory, CNRS UMR7009, Villefranche-sur-Mer, France
| | - Yan Jaszczyszyn
- Paris-Saclay University, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198CNRS, CEA, Paris-Sud University, Gif-sur-Yvette, France
| | - Anne-Marie Lachages
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- UTCBS, CNRS UMR 8258/ INSERM U 1267, Sorbonne-Paris-Cité University, Paris, France
| | - Claude Thermes
- Paris-Saclay University, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198CNRS, CEA, Paris-Sud University, Gif-sur-Yvette, France
| | - Chun-Long Chen
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
| | - Michelle Debatisse
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France.
- Sorbonne University, Paris, France.
| |
Collapse
|
2
|
de Lima Neto QA, Duarte Junior FF, Bueno PSA, Seixas FAV, Kowalski MP, Kheir E, Krude T, Fernandez MA. Structural and functional analysis of four non-coding Y RNAs from Chinese hamster cells: identification, molecular dynamics simulations and DNA replication initiation assays. BMC Mol Biol 2016; 17:1. [PMID: 26733090 PMCID: PMC4702372 DOI: 10.1186/s12867-015-0053-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/21/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The genes coding for Y RNAs are evolutionarily conserved in vertebrates. These non-coding RNAs are essential for the initiation of chromosomal DNA replication in vertebrate cells. However thus far, no information is available about Y RNAs in Chinese hamster cells, which have already been used to detect replication origins and alternative DNA structures around these sites. Here, we report the gene sequences and predicted structural characteristics of the Chinese hamster Y RNAs, and analyze their ability to support the initiation of chromosomal DNA replication in vitro. RESULTS We identified DNA sequences in the Chinese hamster genome of four Y RNAs (chY1, chY3, chY4 and chY5) with upstream promoter sequences, which are homologous to the four main types of vertebrate Y RNAs. The chY1, chY3 and chY5 genes were highly conserved with their vertebrate counterparts, whilst the chY4 gene showed a relatively high degree of diversification from the other vertebrate Y4 genes. Molecular dynamics simulations suggest that chY4 RNA is structurally stable despite its evolutionarily divergent predicted stem structure. Of the four Y RNA genes present in the hamster genome, we found that only the chY1 and chY3 RNA were strongly expressed in the Chinese hamster GMA32 cell line, while expression of the chY4 and chY5 RNA genes was five orders of magnitude lower, suggesting that they may in fact not be expressed. We synthesized all four chY RNAs and showed that any of these four could support the initiation of DNA replication in an established human cell-free system. CONCLUSIONS These data therefore establish that non-coding chY RNAs are stable structures and can substitute for human Y RNAs in a reconstituted cell-free DNA replication initiation system. The pattern of Y RNA expression and functionality is consistent with Y RNAs of other rodents, including mouse and rat.
Collapse
Affiliation(s)
- Quirino Alves de Lima Neto
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.
| | - Francisco Ferreira Duarte Junior
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.
| | | | | | | | - Eyemen Kheir
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Maria Aparecida Fernandez
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.
| |
Collapse
|
3
|
Gay S, Lachages AM, Millot GA, Courbet S, Letessier A, Debatisse M, Brison O. Nucleotide supply, not local histone acetylation, sets replication origin usage in transcribed regions. EMBO Rep 2010; 11:698-704. [PMID: 20671737 DOI: 10.1038/embor.2010.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 12/25/2022] Open
Abstract
In eukaryotes, only a fraction of replication origins fire at each S phase. Local histone acetylation was proposed to control firing efficiency of origins, but conflicting results were obtained. We report that local histone acetylation does not reflect origin efficiencies along the adenosine monophosphate deaminase 2 locus in mammalian fibroblasts. Reciprocally, modulation of origin efficiency does not affect acetylation. However, treatment with a deacetylase inhibitor changes the initiation pattern. We demonstrate that this treatment alters pyrimidine biosynthesis and decreases fork speed, which recruits latent origins. Our findings reconcile results that seemed inconsistent and reveal an unsuspected effect of deacetylase inhibitors on replication dynamics.
Collapse
Affiliation(s)
- Sophie Gay
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, 75248 Paris, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 2008; 455:557-60. [PMID: 18716622 DOI: 10.1038/nature07233] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/01/2008] [Indexed: 12/22/2022]
Abstract
Genome stability requires one, and only one, DNA duplication at each S phase. The mechanisms preventing origin firing on newly replicated DNA are well documented, but much less is known about the mechanisms controlling the spacing of initiation events(2,3), namely the completion of DNA replication. Here we show that origin use in Chinese hamster cells depends on both the movement of the replication forks and the organization of chromatin loops. We found that slowing the replication speed triggers the recruitment of latent origins within minutes, allowing the completion of S phase in a timely fashion. When slowly replicating cells are shifted to conditions of fast fork progression, although the decrease in the overall number of active origins occurs within 2 h, the cells still have to go through a complete cell cycle before the efficiency specific to each origin is restored. We observed a strict correlation between replication speed during a given S phase and the size of chromatin loops in the next G1 phase. Furthermore, we found that origins located at or near sites of anchorage of chromatin loops in G1 are activated preferentially in the following S phase. These data suggest a mechanism of origin programming in which replication speed determines the spacing of anchorage regions of chromatin loops, that, in turn, controls the choice of initiation sites.
Collapse
|
5
|
Toledo F, Buttin G, Debatisse M. The origin of chromosome rearrangements at early stages of AMPD2 gene amplification in Chinese hamster cells. Curr Biol 2005; 3:255-64. [PMID: 15335745 DOI: 10.1016/0960-9822(93)90175-n] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/1993] [Revised: 03/31/1993] [Accepted: 04/01/1993] [Indexed: 01/03/2023]
Abstract
BACKGROUND Gene amplification and chromosomal rearrangements are frequent properties of cancer cells, provoking considerable interest in the mechanism of gene amplification and its consequences - particularly its relationship to chromosomal rearrangements. We recently studied the amplification of the gene for adenylate deaminase 2 (AMPD2) in Chinese hamster cells. Using fluorescent in situ hybridization (FISH), we found that early amplification of the AMPD2 gene is based on unequal gene segregation at mitosis, rather than local over-replication. We observed large inverted repeats of the amplified sequences, consistent with an amplification mechanism involving cycles of chromatid breakage, followed by fusion after replication and, in mitosis, the formation of bridges between the fused sister chromatids that leads to further breaks - a process we refer to as chromatid breakage-fusion-bridge (BFB) cycles. Our previous work left open the question of how this mechanism of gene amplification is related, if at all, to the chromosomal rearrangements that generate the dicentric, ring and double-minute (DM) chromosomes observed in some AMPD2-amplified metaphase cells, which are not predicted intermediates of chromatid BFB cycles, although they could be generated by related chromosome BFB cycles. RESULTS We have addressed this question using FISH with probes for the AMPD2 gene and other markers on the same chromosome. Our results are not consistent with the chromosome BFB cycle mechanism, in which two chromatids break simultaneously and fuse to generate, after replication, a dicentric chromosome. Rather, they suggest that dicentric chromosomes are generated by secondary events that occur during chromatid BFB cycles. Our results also suggest that DM chromosomes are generated by the 'looping-out' of a chromosomal region, generating a circular DNA molecule lacking a centromere; in this case, gene amplification would result from the unequal segregation of DM chromosomes at mitosis. CONCLUSION We conclude that, at early stages of AMPD2 gene amplification, chromatid BFB cycles are a major source of both 'intrachromosomal' gene amplification and genomic rearrangement, which are first limited to a single chromosome but which can then potentially spread to any additional chromosome. It also seems that, occasionally, a DNA sequence including the AMPD2 gene can be excised, generating a DM chromosome and thus initiating an independent process of 'extrachromosomal' amplification.
Collapse
Affiliation(s)
- F Toledo
- Unité de Génétique Somatique (URA CNRS 361), Institut Pasteur 25, rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
6
|
Anglana M, Apiou F, Bensimon A, Debatisse M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 2003; 114:385-94. [PMID: 12914702 DOI: 10.1016/s0092-8674(03)00569-5] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selection of active origins and regulation of interorigin spacing are poorly understood in mammalian cells. Using tricolor analysis of combed DNA molecules, we studied an amplified locus containing the known origin, oriGNAI3. We visualized replication firing events at this and other discrete regions and established a strict correlation between AT richness and initiation sites. We found that oriGNAI3 is the prominent origin of the domain, the firing of which correlates with silencing of neighboring sites and establishes large interorigin distances. We demonstrate that cells reversibly respond to a reduction in nucleotide availability by slowing the rate of replication fork progression; in addition, the efficiency of initiation at oriGNAI3 is lowered while other normally dormant origins in the region are activated, which results in an overall increase in the density of initiation events. Thus, nucleotide pools are involved in the specification of active origins, which in turn defines their density along chromosomes.
Collapse
Affiliation(s)
- Mauro Anglana
- Institut Curie, FRE 2584, 26 rue d'Ulm, 75248 Paris, France
| | | | | | | |
Collapse
|
7
|
Lee H, Sun D, Larner JM, Wu FS. The tumor suppressor p53 can reduce stable transfection in the presence of irradiation. J Biomed Sci 1999; 6:285-92. [PMID: 10420086 DOI: 10.1007/bf02253570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The tumor suppressor p53 is believed to play an essential role in maintaining genome stability. Although it is currently unknown how p53 is involved in this important biological safeguard, several previous publications indicate that p53 can help to maintain genome integrity through the recombination-mediated DNA repair process. The integration of linearized plasmid DNA into the host chromosome utilizes the same repair process, and the frequency can be measured by clonogenic assays in which cells that were stably transfected by plasmid integration can be scored by their colony-forming abilities. To gain insight into whether p53 has a direct role in plasmid integration into the host chromosome, we determined the frequency of stable transfection with CHO cells expressing either wild-type or mutant p53 in the presence and absence of irradiation. We found that low-dose irradiation ( approximately 50 to 100 cGy) increased stable transfection frequencies in CHO cells regardless of their p53 status. However, the increase of transfection frequency was significantly lower in CHO cells expressing wild-type p53. Our data thus suggest that wild-type p53 can suppress plasmid DNA integration into the host genome. This p53 function may play a direct and significant role in maintaining genome stability.
Collapse
Affiliation(s)
- H Lee
- Northeastern Ontario Regional Cancer Centre, Sudbury, Canada.
| | | | | | | |
Collapse
|
8
|
Coquelle A, Pipiras E, Toledo F, Buttin G, Debatisse M. Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 1997; 89:215-25. [PMID: 9108477 DOI: 10.1016/s0092-8674(00)80201-9] [Citation(s) in RCA: 284] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Drug-selected intrachromosomal gene amplification by breakage-fusion-bridge (BFB) cycles is well documented in mammalian cells, but factors governing this mechanism are not clear. Here, we show that only some clastogenic drugs induce drug resistance through intrachromosomal amplification. We strictly correlate triggering of BFB cycles to induction of fragile site expression. We demonstrate a dual role for fragile sites in intrachromosomal amplification: a site telomeric to the selected gene is involved in initiation, while a centromeric site defines the size and organization of early amplified units. The positions of fragile sites relative to boundaries of amplicons found in human cancers support the hypothesis that fragile sites play a key role in the amplification of at least some oncogenes during tumor progression.
Collapse
Affiliation(s)
- A Coquelle
- Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
9
|
Abstract
We have cloned and sequenced Chinese hamster p53 cDNA and have compared the p53 sequence in different Chinese hamster cell lines to several relevant phenotypes. Our results indicate that a mutation in CHO cells that changes Thr211 to Lys211 abrogates the ability to arrest in G1 and apparently renders cells capable of amplifying DNA. However, this mutation has no effect on the G2 checkpoint or on acute down-regulation of DNA replication after a radiation challenge.
Collapse
Affiliation(s)
- H Lee
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | |
Collapse
|
10
|
Baron B, Fernandez MA, Carignon S, Toledo F, Buttin G, Debatisse M. GNAI3, GNAT2, AMPD2, GSTM are clustered in 120 kb of Chinese hamster chromosome 1q. Mamm Genome 1996; 7:429-32. [PMID: 8662225 DOI: 10.1007/s003359900127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We studied a polygenic region located on Chromosome (Chr) 1q in Chinese hamster cells that is coamplified along with the AMPD2 gene. Previous sequence analysis identified both members of the GSTM family and the GNAI3 gene within a cloned 120-kb region surrounding the AMPD2 locus. We show here that the GNAT2 gene, which is inactive in the fibroblastic cells, lies within the 20 kb separating the transcriptionally active GNAI3 and AMPD2 genes. We map most gene ends by sequence comparison with human homologs; one is inferred from the presence of an unmethylated CpG island. This Chinese hamster locus corresponds to a region of conserved linkage between human Chr 1 (locus 1p13) and mouse Chr 3 (position 52.5 cM), where Gnai-3 and Gnat-2 have been mapped. The AMPD2 gene is presently unlocalized in human genome; its proposed position on mouse Chr 3 is at 53.4 cM. Our results, obtained by physical mapping, strongly suggest that the order and possibly the tight linkage of these genes are conserved on all three genomes.
Collapse
Affiliation(s)
- B Baron
- Unité de Génétique Somatique, Départment d'Immunologie de l'Institut Pasteur (LA CNRS No. 1960), Paris France
| | | | | | | | | | | |
Collapse
|
11
|
Van den Berg C, Von Hoff DD. Use of hydroxyurea to alter drug resistance of human tumor cells. Cancer Treat Res 1995; 78:95-114. [PMID: 8595149 DOI: 10.1007/978-1-4615-2007-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor cell resistance to cancer chemotherapeutic agents is a well-recognized problem for clinicians. Efforts are being made to develop agents that are not affected by cross-resistance to other drugs, as observed with the mdr phenotype. Other efforts are focused on reversing drug resistance to enhance chemotherapeutic intervention. Gene amplification accounts for one mechanism through which tumor cells develop drug resistance. Since amplified genes may be unstable, the elimination of these genes is likely to be a promising new target for cancer chemotherapy. The use of HU at low concentrations either to reestablish tumor sensitivity to chemotherapeutic agents or to decrease tumorigenicity, accomplished by the reduction of oncogene copy number, continues to be investigated. Studies thus far all report similar effects of noncytotoxic concentrations of HU on unstably amplified genes (EC DNA elimination), regardless of what gene is harbored on the EC DNA. The next essential step in the evaluation of HU-induced EC DNA elimination is to study the phenomena in vivo. In spite of extensive tissue distribution, HU appears to have pharmacokinetic properties, due to its short half-life, that may limit investigators' ability to study its use in prototype animal tumor models such as the nude mouse. In contrast, HU's half-life in humans (3.5 to 4.5 hours) [122] is comparatively longer, and therefore clinical trials may prove less troublesome.
Collapse
Affiliation(s)
- C Van den Berg
- Univ. of Texas Health Center at San Antonio 78282-7884, USA
| | | |
Collapse
|
12
|
Toledo F, Smith KA, Buttin G, Debatisse M. The evolution of the amplified adenylate deaminase 2 domains in Chinese hamster cells suggests the sequential operation of different mechanisms of DNA amplification. Mutat Res 1992; 276:261-73. [PMID: 1374518 DOI: 10.1016/0165-1110(92)90012-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fluorescent in situ hybridization was used to localize the adenylate deaminase 2 (AMPD2) genes and flanking sequences on the chromosomes of the Chinese hamster line GMA32 and to study the distribution of additional copies of these genetic sequences in amplified mutants selected at several early stages of the amplification process. The synteny of AMPD2 genes and MDR1 genes, located on chromosomes 1, was demonstrated; in GMA32 the existence of a rearrangement positioning the two AMPD2 genes at different distances from the telomeres was disclosed. Using this structural marker, we showed that the amplified copies distribute along only one of the chromosomes 1. Their organization in different cells of clonal mutant populations at a very early stage of amplification was extremely heterogeneous; classes of organization could be recognized however. Their quantitative distribution at this stage and in cells which went through 10 more division cycles suggests an evolution pathway common to the mutant clones under study: as a rule, tandems of few units of identical and very large size (47 Mb) appear to be the first detected product of amplification; this organization is progressively overtaken by structures with more units of reduced and irregular size, while, in a growing number of cells, clusters of much shorter units can be observed. The nature of segregative amplification mechanisms operating in these processes and the possible involvement of replicative ones are discussed.
Collapse
Affiliation(s)
- F Toledo
- Unité de Génétique Somatique (URA CNRS 361), Institut Pasteur Paris, France
| | | | | | | |
Collapse
|
13
|
Hamlin JL, Leu TH, Vaughn JP, Ma C, Dijkwel PA. Amplification of DNA sequences in mammalian cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 41:203-39. [PMID: 1882075 DOI: 10.1016/s0079-6603(08)60010-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J L Hamlin
- Department of Biochemistry, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | |
Collapse
|
14
|
Robert de Saint Vincent B, Hyrien O, Debatisse M, Buttin G. Coamplification of mu class glutathione S-transferase genes and an adenylate deaminase gene in coformycin-resistant Chinese hamster fibroblasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:19-24. [PMID: 2226437 DOI: 10.1111/j.1432-1033.1990.tb19298.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In Chinese hamster fibroblasts, we previously detected an expressed gene located near the AMP deaminase gene. This gene was named Y1. Upon selection for resistance to coformycin, an inhibitor of AMP deaminase activity, both genes were amplified in several mutants. We have determined the complete nucleotide sequence of Y1 cDNA and identified the Y1 gene as a mu class glutathione S-transferase gene by comparison with sequences present in a data bank. Accordingly, Y1-amplified mutants express an increased glutathione S-transferase activity toward 1-chloro-2,4-dinitrobenzene; this activity, as well as the abundance of the corresponding RNA, appears, however, to reach a limit despite further increase in the Y1 gene copy number during successive amplification steps. Southern blot experiments showed that Y1 belongs to a multigene family, all or part of which has been amplified in mutant lines. These data provide a method to amplify and to overexpress the mu class of the glutathione S-transferase gene family on the basis of its linkage with the AMP deaminase gene.
Collapse
|
15
|
Meyer SL, Kvalnes-Krick KL, Schramm VL. Characterization of AMD, the AMP deaminase gene in yeast. Production of amd strain, cloning, nucleotide sequence, and properties of the protein. Biochemistry 1989; 28:8734-43. [PMID: 2690949 DOI: 10.1021/bi00448a009] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The structural gene for AMP deaminase (AMD) from Saccharomyces cerevisiae has been cloned and characterized. A yeast strain deficient in AMP deaminase activity was produced and shown to be deficient in AMP deaminase protein by Western blot analysis. The gene for AMP deaminase was located in a lambda gt11 library of yeast genomic DNA, and a DNA fragment from the lambda gt11 clone was used to locate homologous DNA in a yeast genomic library in the centromeric plasmid YCp50, a yeast-Escherichia coli shuttle vector. One plasmid was selected for its ability to restore AMP catalytic activity to the deficient strain. Yeast deficient in AMP deaminase or those overproducing the enzyme grow at near normal rates. The open reading frame corresponding to AMD codes for a protein of 810 amino acids, molecular weight 93,286. The yeast AMD transcript is 3.0 +/- 0.2 kb, and the transcriptional initiation sites have been identified. Western blot analysis of extracts prepared from actively growing yeast indicates a major band at approximately 96,000 molecular weight with several bands at lower molecular weight, including 83,000. When the AMD gene is expressed in E. coli, the large Mr form of AMP deaminase is produced. These results show that the purified enzyme (Mr = 83,000) is a truncated form of the full-length translation product. No adenine nucleotide binding sites were located based on the consensus sequence from other nucleotide binding proteins. No overall homology was found between yeast AMP deaminase and E. coli AMP nucleosidase. Although their metabolic roles and regulatory mechanisms are similar, these enzymes have arisen from separate ancestral proteins.
Collapse
Affiliation(s)
- S L Meyer
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | | | | |
Collapse
|
16
|
Cloning and sequence of rat myoadenylate deaminase cDNA. Evidence for tissue-specific and developmental regulation. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45213-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Waldman BC, Oliver C, Krag SS. A clonal derivative of tunicamycin-resistant Chinese hamster ovary cells with increased N-acetylglucosamine-phosphate transferase activity has altered asparagine-linked glycosylation. J Cell Physiol 1987; 131:302-17. [PMID: 3036885 DOI: 10.1002/jcp.1041310303] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A population of Chinese hamster ovary (CHO) cells resistant to the antibiotic tunicamycin (TM) had previously been isolated (Criscuolo, B.A., and Krag, S.S. (1982) J. Cell Biol. 94:586-591) by a stepwise selection procedure using progressive increments of TM added to the medium. TM inhibits asparagine-linked glycoprotein biosynthesis by blocking the transfer of N-acetylglucosamine-1-phosphate from the sugar nucleotide UDP-N-acetylglucosamine to the isoprenoid lipid carrier, dolichyl phosphate. Four clonal derivatives were isolated from the TM-resistant population in the presence of 27 micrograms TM/ml and were found to overproduce the N-acetylglucosamine-phosphate transferase activity to the same extent (approximately 15-fold compared to wild-type cells). One of these clones, 3E11, was greater than 550-fold more resistant to TM than wild-type cells. The resistance phenotype remained during at least 2.5 months of growth in the absence of TM. 3E11 cells exhibited chromosomal translocations, but no homogeneously staining regions (HSR) or double minute chromosomes. The N-acetylglucosamine-phosphate transferase activity in 3E11 cells was membrane-associated and was inhibited by TM. A 140,000-dalton membrane protein and at least four other membrane proteins were enriched in 3E11 cells. Mannosylphosphoryldolichol synthase and glucosylphosphoryldolichol synthase activities were not elevated in membranes prepared from 3E11 cells. Asparagine-linked glycosylation was altered such that 3E11 cells synthesized primarily a truncated oligosaccharide, Man5GlcNAc2, perhaps due to the reduced amount of mannosylphosphoryldolichol relative to wild-type cells.
Collapse
|
18
|
Abstract
Baby hamster kidney (BHK) cells selected simultaneously with N-phosphonacetyl-L-aspartate (PALA) and methotrexate (MTX) gave rise to doubly resistant colonies at frequencies 20 to 260 times greater than the product of the independent frequencies found with PALA or MTX alone. Double resistance was due to amplification of both target genes, CAD and DHFR. Four independent doubly resistant "MP" lines were selected and characterized. Cells resistant to coformycin, pyrazofurin, or ouabain were generated from all four MP lines at rates up to 25 times greater than the rates for BHK cells. These three drugs select cells that have amplified the genes for their target enzymes. Therefore, we conclude that the four MP lines have an amplificator phenotype. All four grew much more slowly than BHK cells, indicating that the amplificator phenotype may be linked to significant defects in metabolism or cell division.
Collapse
|
19
|
Laval M, Azou Y, Giorgi D, Rosset R. Overproduction of the first three enzymes of pyrimidine nucleotide biosynthesis in Drosophila cells resistant to N-phosphonacetyl-L-aspartate. Exp Cell Res 1986; 163:381-95. [PMID: 2869965 DOI: 10.1016/0014-4827(86)90069-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Drosophila cells were treated in vitro with N-phosphonacetyl-L-aspartate (PALA) which is a specific inhibitor of aspartate transcarbamylase, the second enzyme of the pyrimidine biosynthetic pathway. By stepwise selection using increasing amounts of this inhibitor, PALA-resistant (PALAr) stable clones have been isolated. Enzymatic activities of aspartate transcarbamylase, carbamyl phosphate synthetase and dihydro-orotase, borne by the same multifunctional protein, CAD, are increased 6-12-fold in these resistant clones compared with parental cells. The aspartate transcarbamylase in PALAr cells is shown by physical, kinetic and immunological criteria to be normal. The data from immunotitration and immunoblotting experiments indicate that the increased enzyme activities result from the overproduction of CAD.
Collapse
|
20
|
Hamlin JL, Milbrandt JD, Heintz NH, Azizkhan JC. DNA sequence amplification in mammalian cells. INTERNATIONAL REVIEW OF CYTOLOGY 1984; 90:31-82. [PMID: 6389416 DOI: 10.1016/s0074-7696(08)61487-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
|