1
|
Abstract
Since the discovery of toxin-secreting killer yeasts more than 40 years ago, research into this phenomenon has provided insights into eukaryotic cell biology and virus-host-cell interactions. This review focuses on the most recent advances in our understanding of the basic biology of virus-carrying killer yeasts, in particular the toxin-encoding killer viruses, and the intracellular processing, maturation and toxicity of the viral protein toxins. The strategy of using eukaryotic viral toxins to effectively penetrate and eventually kill a eukaryotic target cell will be discussed, and the cellular mechanisms of self-defence and protective immunity will also be addressed.
Collapse
Affiliation(s)
- Manfred J Schmitt
- Applied Molecular Biology, University of the Saarland, D-66041 Saarbrücken, Germany.
| | | |
Collapse
|
2
|
|
3
|
Li H, Pagé N, Bussey H. Actin patch assembly proteins Las17p and Sla1p restrict cell wall growth to daughter cells and interact with cis-Golgi protein Kre6p. Yeast 2002; 19:1097-112. [PMID: 12237851 DOI: 10.1002/yea.904] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cytoplasmic tail of Kre6p, a Golgi membrane protein involved in cell wall synthesis, interacts with the actin patch assembly components Las17p and Sla1p in a two-hybrid assay, and Kre6p co-immunoprecipitates with Las17p. Kre6p showed extensive co-localization with Och1p-containing cis-Golgi vesicles. The correct localization of Kre6p requires its cytoplasmic tail, Las17p, Sla1p and Vrp1p, suggesting that the cytoplasmic tail of Kre6p acts as a receptor, linking this cis-Golgi protein to Las17p and Sla1p. The actin patch assembly mutants las17 delta, sla1delta and vrp1 delta showed elevated levels of cell wall beta-1,6-glucan, and mutant cells were capable of only a limited number of cell divisions compared to wild-type. EM image analysis and beta-1,6-glucan localization indicated abnormal wall proliferation in the mother cells of these mutants. The pattern of cell wall hypertrophy indicates a failure to restrict cell wall growth to the bud.
Collapse
Affiliation(s)
- Huijuan Li
- Department of Biology, McGill University, Montreal H3A 1B1, Canada
| | | | | |
Collapse
|
4
|
Abstract
Since the initial discovery of the yeast killer system almost 40 years ago, intensive studies have substantially strengthened our knowledge in many areas of biology and provided deeper insights into basic aspects of eukaryotic cell biology as well as into virus-host cell interactions and general yeast virology. Analysis of killer toxin structure, synthesis and secretion has fostered understanding of essential cellular mechanisms such as post-translational prepro-protein processing in the secretory pathway. Furthermore, investigation of the receptor-mediated mode of toxin action proved to be an effective means for dissecting the molecular structure and in vivo assembly of yeast and fungal cell walls, providing important insights relevant to combating infections by human pathogenic yeasts. Besides their general importance in understanding eukaryotic cell biology, killer yeasts, killer toxins and killer viruses are also becoming increasingly interesting with respect to possible applications in biomedicine and gene technology. This review will try to address all these aspects.
Collapse
Affiliation(s)
- Manfred J Schmitt
- Angewandte Molekularbiologie (FR 8.3 -- Mikrobiologie), Universität des Saarlandes, Im Stadtwald, Gebäude 2, D-66123 Saarbrücken, Germany.
| | | |
Collapse
|
5
|
Azuma M, Levinson JN, Pagé N, Bussey H. Saccharomyces cerevisiae Big1p, a putative endoplasmic reticulum membrane protein required for normal levels of cell wall beta-1,6-glucan. Yeast 2002; 19:783-93. [PMID: 12112232 DOI: 10.1002/yea.873] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Deletion of Saccharomyces cerevisiae BIG1 causes an approximately 95% reduction in cell wall beta-1,6-glucan, an essential polymer involved in the cell wall attachment of many surface mannoproteins. The big1 deletion mutant grows very slowly, but growth can be enhanced if cells are given osmotic support. We have begun a cell biological and genetic analysis of its product. We demonstrate, using a Big1p-GFP fusion construct, that Big1p is an N-glycosylated integral membrane protein with a Type I topology that is located in the endoplasmic reticulum (ER). Some phenotypes of a big1Delta mutant resemble those of strains disrupted for KRE5, which encodes another ER protein affecting beta-l,6-glucan levels to a similar extent. In a big1Deltakre5Delta double mutant, both the growth and alkali-soluble beta-l,6-glucan levels were reduced as compared to either single mutant. Thus, while Big1p and Kre5p may have similar effects on beta-l,6-glucan synthesis, these effects are at least partially distinct. Residual beta-l,6-glucan levels in the big1Deltakre5Delta double mutant indicate that these gene products are unlikely to be beta-l,6-glucan synthase subunits, but rather may play some ancillary roles in beta-l,6-glucan synthase assembly or function, or in modifying proteins for attachment of beta-l,6-glucan.
Collapse
Affiliation(s)
- Masayuki Azuma
- Department of Bioapplied Chemistry, Osaka City University, 3-3-138 Sugimoto Sumiyoshi-ku Osaka, 558-8585, Japan
| | | | | | | |
Collapse
|
6
|
Dijkgraaf GJP, Abe M, Ohya Y, Bussey H. Mutations in Fks1p affect the cell wall content of beta-1,3- and beta-1,6-glucan in Saccharomyces cerevisiae. Yeast 2002; 19:671-90. [PMID: 12185837 DOI: 10.1002/yea.866] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fks1p and Fks2p are related proteins thought to be catalytic subunits of the beta-1,3-glucan synthase. Analysis of fks1 delta mutants showed a partial K1 killer toxin-resistant phenotype and a 30% reduction in alkali-soluble beta-1,3-glucan that was accompanied by a modest reduction in beta-1,6-glucan. The gas1 delta mutant lacking a 1,3-beta-glucanosyltransferase displayed a similar reduction in alkali-soluble beta-1,3-glucan but did not share the beta-1,6-glucan defect, indicating that beta-1,6-glucan reduction is not a general phenotype among beta-1,3-glucan biosynthetic mutants. Overexpression of FKS2 suppressed the killer toxin phenotype of fks1 delta mutants, implicating Fks2p in the biosynthesis of the residual beta-1,6-glucan present in fks1 delta cells. In addition, eight out of 12 fks1ts fks2 delta mutants had altered beta-glucan levels at the permissive temperature: the partial killer resistant FKS1F1258Y N1520D allele was severely affected in both polymers and displayed a 55% reduction in beta-1,6-glucan, while the in vitro hyperactive allele FKS1T605I M761T increased both beta-glucan levels. These beta-1,6-glucan phenotypes may be due to altered availability of, and structural changes in, the beta-1,3-glucan polymer, which might serve as a beta-1,6-glucan acceptor at the cell surface. Alternatively, Fks1p and Fks2p could actively participate in the biosynthesis of both polymers as beta-glucan transporters. We analysed Fks1p and Fks2p in beta-1,6-glucan deficient mutants and found that they were mislocalized and that the mutants had reduced in vitro glucan synthase activity, possibly contributing to the observed beta-1,6-glucan defects.
Collapse
Affiliation(s)
- Gerrit J P Dijkgraaf
- Department of Biology, McGill University, 1205 Dr. Penfield Ave., Montreal, Quebec, Canada H3A 1B1
| | | | | | | |
Collapse
|
7
|
Riffer F, Eisfeld K, Breinig F, Schmitt MJ. Mutational analysis of K28 preprotoxin processing in the yeast Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1317-28. [PMID: 11988505 DOI: 10.1099/00221287-148-5-1317] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
K28 killer strains of Saccharomyces cerevisiae are permanently infected with a cytoplasmic persisting dsRNA virus encoding a secreted alpha/beta heterodimeric protein toxin that kills sensitive cells by cell-cycle arrest and inhibition of DNA synthesis. In vivo processing of the 345 aa toxin precursor (preprotoxin; pptox) involves multiple internal and carboxy-terminal cleavage events by the prohormone convertases Kex2p and Kex1p. By site-directed mutagenesis of the preprotoxin gene and phenotypic analysis of its in vivo effects it is now demonstrated that secretion of a biological active virus toxin requires signal peptidase cleavage after Gly(36) and Kex2p-mediated processing at the alpha subunit N terminus (after Glu-Arg(49)), the alpha subunit C terminus (after Ser-Arg(149)) and at the beta subunit N terminus (after Lys-Arg(245)). The mature C terminus of the beta subunit is trimmed by Kex1p, which removes the terminal Arg(345) residue, thus uncovering the toxin's endoplasmic reticulum targeting signal (HDEL) which--in a sensitive target cell--is essential for retrograde toxin transport. Interestingly, both toxin subunits are covalently linked by a single disulfide bond between alpha-Cys(56) and beta-Cys(340), and expression of a mutant toxin in which beta-Cys(340) had been replaced by Ser(340) resulted in the secretion of a non-toxic alpha/beta heterodimer that is blocked in retrograde transport and incapable of entering the yeast cell cytosol, indicating that one important in vivo function of beta-Cys(340) might be to ensure accessibility of the toxin's beta subunit C terminus to the HDEL receptor of the target cell.
Collapse
Affiliation(s)
- Frank Riffer
- Angewandte Molekularbiologie, Universität des Saarlandes, FR 8.3, Gebäude 2, Postfach 151150, D-66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|
8
|
Levinson JN, Shahinian S, Sdicu AM, Tessier DC, Bussey H. Functional, comparative and cell biological analysis ofSaccharomyces cerevisiae Kre5p. Yeast 2002; 19:1243-59. [PMID: 12271460 DOI: 10.1002/yea.908] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae kre5delta mutants lack beta-1,6-glucan, a polymer required for proper cell wall assembly and architecture. A functional and cell biological analysis of Kre5p was conducted to further elucidate the role of this diverged protein glucosyltransferase-like protein in beta-1,6-glucan synthesis. Kre5p was found to be a primarily soluble N-glycoprotein of approximately 200 kDa, that localizes to the endoplasmic reticulum. The terminal phenotype of Kre5p-deficient cells was observed, and revealed a severe cell wall morphological defect. KRE6, encoding a glucanase-like protein, was identified as a multicopy suppressor of a temperature-sensitive kre5 allele, suggesting that these proteins may participate in a common beta-1,6-biosynthetic pathway. An analysis of truncated versions of Kre5p indicated that all major regions of the protein are required for viability. Finally, Candida albicans KRE5 was shown to partially restore growth to S. cerevisiae kre5delta cells, suggesting that these proteins are functionally related.
Collapse
Affiliation(s)
- Joshua N Levinson
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Shahinian S, Dijkgraaf GJ, Sdicu AM, Thomas DY, Jakob CA, Aebi M, Bussey H. Involvement of protein N-glycosyl chain glucosylation and processing in the biosynthesis of cell wall beta-1,6-glucan of Saccharomyces cerevisiae. Genetics 1998; 149:843-56. [PMID: 9611196 PMCID: PMC1460164 DOI: 10.1093/genetics/149.2.843] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
beta-1,6-Glucan plays a key structural role in the yeast cell wall. Of the genes involved in its biosynthesis, the activity of Cwh41p is known, i.e., the glucosidase I enzyme of protein N-chain glucose processing. We therefore examined the effects of N-chain glucosylation and processing mutants on beta-1,6-glucan biosynthesis and show that incomplete N-chain glucose processing results in a loss of beta-1,6-glucan, demonstrating a relationship between N-chain glucosylation/processing and beta-1,6-glucan biosynthesis. To explore the involvement of other N-chain-dependent events with beta-1,6-glucan synthesis, we investigated the Saccharomyces cerevisiae KRE5 and CNE1 genes, which encode homologs of the "quality control" components UDP-Glc:glycoprotein glucosyltransferase and calnexin, respectively. We show that the essential activity of Kre5p is separate from its possible role as a UDP-Glc:glycoprotein glucosyltransferase. We also observe a approximately 30% decrease in beta-1,6-glucan upon disruption of the CNE1 gene, a phenotype that is additive with other beta-1,6-glucan synthetic mutants. Analysis of the cell wall anchorage of the mannoprotein alpha-agglutinin suggests the existence of two beta-1,6-glucan biosynthetic pathways, one N-chain dependent, the other involving protein glycosylphosphatidylinositol modification.
Collapse
Affiliation(s)
- S Shahinian
- Department of Biology, McGill University, Montréal, Québec, Canada, H3A 1B1
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The KNH1 gene from Saccharomyces cerevisiae was identified as an open reading frame on the right arm of chromosome IV. The product encoded by the KNH1 gene, Knhlp, shares 46% overall identity with Kre9p, a protein required for cell surface beta 1,6-glucan synthesis. While disruption of the KNH1 locus had no effect on cell growth, killer toxin sensitivity or beta 1,6-glucan levels, overexpression of KNH1 was found to suppress the severe growth defect of a kre9 delta mutant and restored the level of alkali-insoluble beta 1,6-glucan to almost wild-type levels. Knhlp, like Kre9p, can be found in the extracellular culture medium as an O-glycoprotein, with a molecular mass of 45-61 kDa. Disruption of both KNH1 and KRE9 is lethal, and unlike single kre9 delta mutants, could not be rescued by overproducing SKN7, a putative transcription factor involved in the regulation of extracellular matrix assembly. Transcription of KNH1 was found to be carbon-source and kre9 delta dependent, but SKN7 independent, suggesting that KNH1 is subject to alternative transcriptional control.
Collapse
Affiliation(s)
- G J Dijkgraaf
- McGill University, Department of Biology, Montreal, Quebec, Canada
| | | | | |
Collapse
|
12
|
Jiang B, Sheraton J, Ram AF, Dijkgraaf GJ, Klis FM, Bussey H. CWH41 encodes a novel endoplasmic reticulum membrane N-glycoprotein involved in beta 1,6-glucan assembly. J Bacteriol 1996; 178:1162-71. [PMID: 8576053 PMCID: PMC177780 DOI: 10.1128/jb.178.4.1162-1171.1996] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
CWH41 encodes a novel type II integral membrane N-glycoprotein located in the endoplasmic reticulum. Disruption of the CWH41 gene leads to a K1 killer toxin-resistant phenotype and a 50% reduction in the cell wall beta 1,6-glucan level. CWH41 also displays strong genetic interactions with KRE1 and KRE6, two genes known to be involved in the beta 1,6-glucan biosynthetic pathway. The cwh41 delta kre6 delta double mutant is nonviable; and the cwh41 delta kre1 delta double mutation results in strong synergistic defects, with a severely slow-growth phenotype, a 75% reduction in beta 1,6-glucan level, and the secretion of a cell wall glucomannoprotein, Cwp1p. These results provide strong genetic evidence indicating that Cwh41p plays a functional role, possibly as a new synthetic component, in the assembly of cell wall beta 1,6-glucan.
Collapse
Affiliation(s)
- B Jiang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Jiang B, Ram AF, Sheraton J, Klis FM, Bussey H. Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:260-9. [PMID: 7565587 DOI: 10.1007/bf02191592] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Analysis of genes involved in yeast cell wall beta-glucan assembly has led to the isolation of EXG1, PBS2 and PTC1. EXG1 and PBS2 were isolated as genes that, when expressed from multicopy plasmids, led to a dominant killer toxin-resistant phenotype. The PTC1 gene was cloned by functional complementation of the calcofluor white-hypersensitive mutant cwh47-1. PTC1/CWH47 is the structural gene for a type 2C serine/threonine phosphatase, EXG1 codes for an exo-beta-glucanase, and PBS2 encodes a MAP kinase kinase in the Pbs2p-Hog1p signal transduction pathway. Overexpression of EXG1 on a 2 mu plasmid led to reduction in a cell wall beta 1,6-glucan and caused killer resistance in wild type cells; while the exg1 delta mutant displayed modest increases in killer sensitivity and beta 1,6-glucan levels. Disruption of PTC1/CWH47 and overexpression of PBS2 gave rise to similar beta-glucan related phenotypes, with higher levels of EXG1 transcription, increased exo-beta-glucanase activity, reduced beta 1,6-glucan levels, and resistance to killer toxin. Genetic analysis revealed that loss of function of the PBS2 gene was epistatic to PTC1/CWH47 disruption, indicating a functional role for the Ptc1p/Cwh47p phosphatase in the Pbs2p-Hog1p signal transduction pathway. These results suggest that Ptc1p/Cwh47p and Pbs2p play opposing regulatory roles in cell wall glucan assembly, and that this is effected in part by modulating Exg1p activity.
Collapse
Affiliation(s)
- B Jiang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
14
|
Jiang B, Brown JL, Sheraton J, Fortin N, Bussey H. A new family of yeast genes implicated in ergosterol synthesis is related to the human oxysterol binding protein. Yeast 1994; 10:341-53. [PMID: 8017104 DOI: 10.1002/yea.320100307] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have identified three yeast genes, KES1, HES1 and OSH1, whose products show homology to the human oxysterol binding protein (OSBP). Mutations in these genes resulted in pleiotropic sterol-related phenotypes. These include tryptophan-transport defects and nystatin resistance, shown by double and triple mutants. In addition, mutant combinations showed small but apparently cumulative reductions in membrane ergosterol levels. The three yeast genes are also functionally related as overexpression of HES1 or KES1 alleviated the tryptophan-transport defect in kes1 delta or osh1 delta mutants, respectively. Our study implicates this new yeast gene family in ergosterol synthesis and provides comparative evidence of a role for human OSBP in cholesterol synthesis.
Collapse
Affiliation(s)
- B Jiang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
15
|
Lussier M, Camirand A, Sdicu AM, Bussey H. KTR2: a new member of the KRE2 mannosyltransferase gene family. Yeast 1993; 9:1057-63. [PMID: 8256512 DOI: 10.1002/yea.320091004] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The KTR2 gene from Saccharomyces cerevisiae was identified by polymerase chain reaction amplification of genomic DNA using primers derived from regions of high homology between the products of three yeast genes, KRE2, YUR1 and KTR1. The product encoded by the KTR2 gene is a predicted type II membrane protein of 425 amino acid residues with a short cytoplasmic N-terminus, a membrane-spanning region and a large lumenal domain containing residues with a short cytoplasmic N-terminus, a membrane-spanning region and a large lumenal domain containing four potential N-glycosylation sites. Ktr2p has 58% identity with Yur1p, 39% with Ktr1p and 34% with Kre2p. One member of this gene family, KRE2 (also known as MNT1; Häusler and Robbins, 1992), encodes an alpha-1,2 mannosyltransferase which adds the third mannose onto O-linked glycoprotein side-chains (Häusler et al., 1992). In contrast to KRE2 null mutants, which produce shortened (two-mannose) chains, mutants harboring a KTR2 gene disruption synthesize O-linked chains with the wild-type patterns of five mannose residues. A null mutation in KTR2 leads to partial resistance to killer toxin and hints that KTR2, which encodes a putative mannosyltransferase, is involved in extracellular matrix assembly.
Collapse
Affiliation(s)
- M Lussier
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
16
|
Brown JL, Kossaczka Z, Jiang B, Bussey H. A mutational analysis of killer toxin resistance in Saccharomyces cerevisiae identifies new genes involved in cell wall (1-->6)-beta-glucan synthesis. Genetics 1993; 133:837-49. [PMID: 8462845 PMCID: PMC1205404 DOI: 10.1093/genetics/133.4.837] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recessive mutations leading to killer resistance identify the KRE9, KRE10 and KRE11 genes. Mutations in both the KRE9 and KRE11 genes lead to reduced levels of (1-->6)-beta-glucan in the yeast cell wall. The KRE11 gene encodes a putative 63-kD cytoplasmic protein, and disruption of the KRE11 locus leads to a 50% reduced level of cell wall (1-->6)-glucan. Structural analysis of the (1-->6)-beta-glucan remaining in a kre11 mutant indicates a polymer smaller in size than wild type, but containing a similar proportion of (1-->6)- and (1-->3)-linkages. Genetic interactions among cells harboring mutations at the KRE11, KRE6 and KRE1 loci indicate lethality of kre11 kre6 double mutants and that kre11 is epistatic to kre1, with both gene products required to produce the mature glucan polymer at wild-type levels. Analysis of these KRE genes should extend knowledge of the beta-glucan biosynthetic pathway, and of cell wall synthesis in yeast.
Collapse
Affiliation(s)
- J L Brown
- Biology Department, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
17
|
Cansado J, Velázquez JB, Calo P, Sieiro C, Longo E, Villa TG. Characterization of killer-resistant strains ofSaccharomyces cerevisiaeisolated from spontaneous fermentations. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05432.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Dignard D, Whiteway M, Germain D, Tessier D, Thomas DY. Expression in yeast of a cDNA copy of the K2 killer toxin gene. MOLECULAR & GENERAL GENETICS : MGG 1991; 227:127-36. [PMID: 2046653 DOI: 10.1007/bf00260717] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A cDNA copy of the M2 dsRNA encoding the K2 killer toxin of Saccharomyces cerevisiae was expressed in yeast using the yeast ADH1 promoter. This construct produced K2-specific killing and immunity functions. Efficient K2-specific killing was dependent on the action of the KEX2 endopeptidase and the KEX1 carboxypeptidase, while K2-specific immunity was independent of these proteases. Comparison of the K2 toxin sequence with that of the K1 toxin sequence shows that although they share a common processing pathway and are both encoded by cytoplasmic dsRNAs of similar basic structure, the two toxins are very different at the primary sequence level. Site-specific mutagenesis of the cDNA gene establishes that one of the two potential KEX2 cleavage sites is critical for toxin action but not for immunity. Immunity was reduced by an insertion of two amino acids in the hydrophobic amino-terminal region which left toxin activity intact, indicating an independence of toxin action and immunity.
Collapse
Affiliation(s)
- D Dignard
- Genetic Engineering Section, Biotechnology Research Institute, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
19
|
Polonelli L, Conti S, Gerloni M, Magliani W, Chezzi C, Morace G. Interfaces of the yeast killer phenomenon. Crit Rev Microbiol 1991; 18:47-87. [PMID: 1854433 DOI: 10.3109/10408419109113509] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new prophylactic and therapeutic antimicrobial strategy based on a specific physiological target that is effectively used by killer yeasts in their natural ecological competition is theorized. The natural system exploited is the yeast killer phenomenon previously adopted as an epidemiological marker for intraspecific differentiation of opportunistic yeasts, hyphomycetes, and bacteria. Pathogenic microorganisms (Candida albicans) may be susceptible to the activity of yeast killer toxins due to the presence of specific cell wall receptors. On the basis of the idiotypic network, we report that antiidiotypic antibodies, produced against a monoclonal antibody bearing the receptor-like idiotype, are in vivo protecting animals immunized through idiotypic vaccination and in vitro mimicking the antimicrobial activity of yeast killer toxins, thus acting as antibiotics.
Collapse
Affiliation(s)
- L Polonelli
- Institute of Microbiology, University of Parma, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Meaden P, Hill K, Wagner J, Slipetz D, Sommer SS, Bussey H. The yeast KRE5 gene encodes a probable endoplasmic reticulum protein required for (1----6)-beta-D-glucan synthesis and normal cell growth. Mol Cell Biol 1990; 10:3013-9. [PMID: 2188106 PMCID: PMC360665 DOI: 10.1128/mcb.10.6.3013-3019.1990] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Yeast kre mutants define a pathway of cell wall (1----6)-beta-D-glucan synthesis, and mutants in genes KRE5 and KRE6 appear to interact early in such a pathway. We have cloned KRE5, and the sequence predicts the product to be a large, hydrophilic, secretory glycoprotein which contains the COOH-terminal endoplasmic reticulum retention signal, HDEL. Deletion of the KRE5 gene resulted in cells with aberrant morphology and extremely compromised growth. Suppressors to the KRE5 deletions arose at a frequency of 1 in 10(7) to 1 in 10(8) and permitted an analysis of deletions which were found to contain no alkali-insoluble (1----6)-beta-D-glucan. These results indicate a role for (1----6)-beta-D-glucan in normal cell growth and suggest a model for sequential assembly of (1----6)-beta-D-glucan in the yeast secretory pathway.
Collapse
Affiliation(s)
- P Meaden
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Wingfield BD, Southgate VJ, Pretorius IS, van Vuuren HJ. A K2 neutral Saccharomyces cerevisiae strain contains a variant K2 M genome. Yeast 1990; 6:159-69. [PMID: 2183523 DOI: 10.1002/yea.320060210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
K2 neutral strain Saccharomyces cerevisiae USM12 was identified and characterized. This strain carried an M double-stranded RNA (dsRNA) genome encoding for resistance to K2 toxin. The M dsRNA was larger than the K2 killer yeast M dsRNA and homoduplex analysis of denatured and reannealed K2 neurtal M dsRNA revealed an inverted duplication. Heteroduplex analysis showed that two thirds of the K2 M genome had homology with the K2 neutral M genome. Hybridization showed that the USM12 M dsRNA had significant homology with the K2 M dsRNA. Protein profiles of extracellular proteins from USM12 and a cured strain indicated that USM12 did not secrete any toxin. This is the first time that a K2 neutral yeast strain has been characterized.
Collapse
Affiliation(s)
- B D Wingfield
- Department of Microbiology, University of Stellenbosch, South Africa
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- H Bussey
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Podila GK, Bozarth RF, Flurkey WH. Synthesis and processing of killer toxin from Ustilago maydis virus P4. Biochem Biophys Res Commun 1987; 149:391-7. [PMID: 3426580 DOI: 10.1016/0006-291x(87)90379-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis of toxin protein from Ustilago maydis virus (UmV) strain P4 was studied in vitro and in vivo. The protein synthesized in vitro and in vivo has a molecular weight of approximately 30 kd whereas the native toxin has a molecular weight of about 12 kd. In the presence of protease inhibitors and glycosylation inhibitors, toxin protein synthesized in vivo showed higher molecular weight products that could be immunoprecipitated with toxin antibodies. These results suggest that the UmV P4 toxin protein is synthesized as a preprotein, which upon processing results in the 12 kd secreted form toxin.
Collapse
Affiliation(s)
- G K Podila
- Dept. of Life Sciences, Indiana State University, Terre Haute 47809
| | | | | |
Collapse
|
24
|
Dmochowska A, Dignard D, Henning D, Thomas DY, Bussey H. Yeast KEX1 gene encodes a putative protease with a carboxypeptidase B-like function involved in killer toxin and alpha-factor precursor processing. Cell 1987; 50:573-84. [PMID: 3301004 DOI: 10.1016/0092-8674(87)90030-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The yeast KEX1 gene product has homology to yeast carboxypeptidase Y. A mutant replacing serine at the putative active site of the KEX1 protein abolished activity in vivo. A probable site of processing by the KEX1 product is the C-terminus of the alpha-subunit of killer toxin, where toxin is followed in the precursor by 2 basic residues. Processing involves endoproteolysis following these basic residues and trimming of their C-terminal by a carboxypeptidase. Consistent with the KEX1 product being this carboxypeptidase is its role in alpha-factor pheromone production. In wild-type yeast, KEX1 is not essential for alpha-factor production, as the final pheromone repeat needs no C-terminal processing. However, in a mutant in which alpha-factor production requires a carboxypeptidase, pheromone production is KEX1-dependent.
Collapse
|
25
|
Zhu H, Bussey H, Thomas DY, Gagnon J, Bell AW. Determination of the carboxyl termini of the alpha and beta subunits of yeast K1 killer toxin. Requirement of a carboxypeptidase B-like activity for maturation. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61024-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
|
27
|
Affiliation(s)
- N Gunge
- Kumamoto Institute of Technology, Department of Applied Microbial Technology, Japan
| |
Collapse
|
28
|
Boone C, Bussey H, Greene D, Thomas DY, Vernet T. Yeast killer toxin: site-directed mutations implicate the precursor protein as the immunity component. Cell 1986; 46:105-13. [PMID: 3521889 DOI: 10.1016/0092-8674(86)90864-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Yeast killer toxin and a component giving immunity to it are both encoded by a gene specifying a single 35 kd precursor polypeptide. This precursor is composed of a leader peptide, the alpha and beta subunits of the secreted toxin, and a glycosylated gamma peptide separating the latter. The toxin subunits are proteolytically processed from the precursor during toxin secretion. Using site-directed mutagenesis, we have identified a region of the precursor gene necessary for expression of the immunity phenotype. This immunity-coding region extends through the C-terminal half of the alpha subunit into the N-terminal part of the gamma glycopeptide. Mutations in other parts of the gene allow full immunity but produce precursors that fail to be processed. The precursor can therefore confer immunity, and we propose that it does so in the wild type by competing with mature toxin for binding to a membrane receptor.
Collapse
|
29
|
|
30
|
Bostian KA, Elliott Q, Bussey H, Burn V, Smith A, Tipper DJ. Sequence of the preprotoxin dsRNA gene of type I killer yeast: multiple processing events produce a two-component toxin. Cell 1984; 36:741-51. [PMID: 6697395 DOI: 10.1016/0092-8674(84)90354-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The preprotoxin gene of the 1.9 kb M1 dsRNA genome from type I killer yeast has been sequenced employing a partial-length cDNA derived from an in vivo transcript. A single open reading frame, commencing with AUG at M1 dsRNA bases 14-16, terminates with UAG at 963-965 and codes for a 316 amino acid protein, believed to be identical to the 34 kd preprotoxin species, M1-P1, synthesized by in vitro translation of denatured M1 dsRNA. N-terminal sequencing of M1-P1 confirms this prediction. Secreted toxin is shown to consist of two dissimilar, disulfide-bonded subunits, alpha and beta, of apparent size 9.5 and 9.0 kd, respectively, whose N-terminal sequences are also found in the predicted preprotoxin sequence. Its proposed domains consist of delta, a 44 amino acid N-terminal segment, followed by alpha and beta, which are separated by gamma, a large central glycosylated segment. Processing sites, domain functions, and the potential role of gamma in immunity are discussed.
Collapse
|
31
|
Abstract
Proteins fractionated by electrophoresis on 18% polyacrylamide gels with low crosslinking can be directly visualized by ultraviolet light-induced fluorescence and can be recovered by electroelution.
Collapse
|
32
|
Skipper N. Synthesis of a double-stranded cDNA transcript of the killer toxin-coding region of the yeast M1 double-stranded RNA. Biochem Biophys Res Commun 1983; 114:518-25. [PMID: 6349631 DOI: 10.1016/0006-291x(83)90811-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Reverse transcription of methylmercuryhydroxide-treated M1 double-stranded RNA of yeast produces several discrete single-stranded and double-stranded cDNA's from oligo (dT)12-18 primer. S1 nuclease analysis shows that the longest transcript of the 1.8 kb template, a 2.2 kb molecule, is a 1.1 kb duplex terminated at one end by a hairpin-like structure. The 1.1 kb ds cDNA contains a complete copy of the M1-1, toxin-coding, sequence of M1 double-stranded RNA, and its synthesis is primed from oligo (dT)12-18 that anneals to a sequence within the internal, AU-rich, region of the template.
Collapse
|
33
|
Wickner RB. Genetic control of replication of the double-stranded RNA segments of the killer systems in Saccharomyces cerevisiae. Arch Biochem Biophys 1983; 222:1-11. [PMID: 6340610 DOI: 10.1016/0003-9861(83)90496-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Bostian KA, Jayachandran S, Tipper DJ. A glycosylated protoxin in killer yeast: models for its structure and maturation. Cell 1983; 32:169-80. [PMID: 6337721 DOI: 10.1016/0092-8674(83)90507-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The type 1 killer phenotype in S. cerevisiae, mediated by secretion of an 11.5 kilodalton (kd) protein toxin, is cytoplasmically determined by the 1.9 kb M1-dsRNA plasmid. Maintenance of M1-dsRNA is dependent on the 4.5 kb L1-dsRNA because L1 encodes the capsid protein of the virus-like particles that separately encapsidate both dsRNA species. We have shown that in vitro translation of denatured M1-dsRNA produces M1-P1, a 32 kd protein containing the toxin peptides. We now demonstrate the presence of an unstable, 42 kd, membrane-associated, glycosylated protoxin in killer cells, probably derived from M1-P1 by cotranslational processing, and glycosylation. In vitro cotranslational processing of M1-P1, derived both from in vivo mRNAs and from denatured M1-dsRNA, produces a product resembling protoxin. Processing involves loss of 1.6 kd of protein, presumably an N-terminal leader peptide, and glycosylation. This information, together with data on in vitro expression of suppressive deletion mutants of M1-dsRNA, allows construction of testable models for the functional sequence of M1-P1 and for its maturation to toxin.
Collapse
|
35
|
|
36
|
Bussey H, Steinmetz O, Saville D. Protein secretion in yeast: Two chromosomal mutants that oversecrete killer toxin in Saccharomyces cerevisiae. Curr Genet 1983; 7:449-56. [DOI: 10.1007/bf00377610] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/1983] [Indexed: 11/29/2022]
|