1
|
Yao H, Wu Y, Zhong Y, Huang C, Guo Z, Jin Y, Wang X. Role of c-Fos in DNA damage repair. J Cell Physiol 2024; 239:e31216. [PMID: 38327128 DOI: 10.1002/jcp.31216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
c-Fos, a member of the immediate early gene, serves as a widely used marker of neuronal activation induced by various types of brain damage. In addition, c-Fos is believed to play a regulatory role in DNA damage repair. This paper reviews the literature on c-Fos' involvement in the regulation of DNA damage repair and indicates that genes of the Fos family can be induced by various forms of DNA damage. In addition, cells lacking c-Fos have difficulties in DNA repair. c-Fos is involved in tumorigenesis and progression as a proto-oncogene that maintains cancer cell survival, which may also be related to DNA repair. c-Fos may impact the repair of DNA damage by regulating the expression of downstream proteins, including ATR, ERCC1, XPF, and others. Nonetheless, the underlying mechanisms necessitate further exploration.
Collapse
Affiliation(s)
- Haiyang Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilun Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxuan Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zimo Guo
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Zanin A, Meneghetti G, Menilli L, Tesoriere A, Argenton F, Mognato M. Analysis of Radiation Toxicity in Mammalian Cells Stably Transduced with Mitochondrial Stat3. Int J Mol Sci 2023; 24:8232. [PMID: 37175941 PMCID: PMC10179518 DOI: 10.3390/ijms24098232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
A coordinated action between nuclear and mitochondrial activities is essential for a proper cellular response to genotoxic stress. Several nuclear transcription factors, including STAT3, translocate to mitochondria to exert mitochondrial function regulation; however, the role of mitochondrial STAT3 (mitoSTAT3) under stressed conditions is still poorly understood. In this study, we examined whether the stable expression of mitoSTAT3 wild-type or mutated at the conserved serine residue (Ser727), which is involved in the mitochondrial function of STAT3, can affect the DNA damage response to UVC radiation. To address this issue, we generated mammalian cells (NIH-3T3 and HCT-116 cells) stably transduced to express the mitochondrial-targeted Stat3 gene in its wild-type or Ser727 mutated forms. Our results show that cell proliferation is enhanced in mitoStat3-transduced cells under both non-stressed and stressed conditions. Once irradiated with UVC, cells expressing wild-type mitoSTAT3 showed the highest cell survival, which was associated with a significant decrease in cell death. Low levels of oxidative stress were detected in UVC-irradiated NIH-3T3 cells expressing mitoSTAT3 wild-type or serine-related dominant active form (Ser727D), confirming a role of mitochondrial STAT3 in minimizing oxidant cellular stress that provides an advantage for cell survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (A.Z.); (G.M.); (L.M.); (A.T.); (F.A.)
| |
Collapse
|
3
|
Huang X, Dai Z, Li Q, Lin X, Huang Q, Zeng T. Roles and regulatory mechanisms of KIN17 in cancers (Review). Oncol Lett 2023; 25:137. [PMID: 36909374 PMCID: PMC9996293 DOI: 10.3892/ol.2023.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
KIN17, which is known as a DNA and RNA binding protein, is highly expressed in numerous types of human cancers and was discovered to participate in several vital cell behaviors, including DNA replication, damage repair, regulation of cell cycle and RNA processing. Furthermore, KIN17 is associated with cancer cell proliferation, migration, invasion and cell cycle regulation by regulating pathways including the p38 MAPK, NF-κB-Snail and TGF-β/Smad2 signaling pathways. In addition, knockdown of KIN17 was found to enhance the sensitivity of tumor cells to chemotherapeutic agents. Immunohistochemical analysis revealed that there were significant differences in the expression of KIN17 between cancer tissues and adjacent tissues. Both the Kaplan-Meier survival analysis and multivariate Cox regression analysis indicated that KIN17 is aberrantly high expressed in various tumor tissues and is also associated with poor prognosis in patients with various tumor types. Taken together, KIN17 has key roles in tumorigenesis and cancer development. Investigating the relationship between KIN17 and neoplasms will provide a vital theoretical basis for KIN17 to serve as a diagnostic and prognostic biomarker for cancer patients and as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Xueran Huang
- Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zichang Dai
- Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiuyan Li
- Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Qiyuan Huang
- Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Tao Zeng
- Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
4
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Reduced levels of prostaglandin I 2 synthase: a distinctive feature of the cancer-free trichothiodystrophy. Proc Natl Acad Sci U S A 2021; 118:2024502118. [PMID: 34155103 DOI: 10.1073/pnas.2024502118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cancer-free photosensitive trichothiodystrophy (PS-TTD) and the cancer-prone xeroderma pigmentosum (XP) are rare monogenic disorders that can arise from mutations in the same genes, namely ERCC2/XPD or ERCC3/XPB Both XPD and XPB proteins belong to the 10-subunit complex transcription factor IIH (TFIIH) that plays a key role in transcription and nucleotide excision repair, the DNA repair pathway devoted to the removal of ultraviolet-induced DNA lesions. Compelling evidence suggests that mutations affecting the DNA repair activity of TFIIH are responsible for the pathological features of XP, whereas those also impairing transcription give rise to TTD. By adopting a relatives-based whole transcriptome sequencing approach followed by specific gene expression profiling in primary fibroblasts from a large cohort of TTD or XP cases with mutations in ERCC2/XPD gene, we identify the expression alterations specific for TTD primary dermal fibroblasts. While most of these transcription deregulations do not impact on the protein level, very low amounts of prostaglandin I2 synthase (PTGIS) are found in TTD cells. PTGIS catalyzes the last step of prostaglandin I2 synthesis, a potent vasodilator and inhibitor of platelet aggregation. Its reduction characterizes all TTD cases so far investigated, both the PS-TTD with mutations in TFIIH coding genes as well as the nonphotosensitive (NPS)-TTD. A severe impairment of TFIIH and RNA polymerase II recruitment on the PTGIS promoter is found in TTD but not in XP cells. Thus, PTGIS represents a biomarker that combines all PS- and NPS-TTD cases and distinguishes them from XP.
Collapse
|
6
|
Tailor D, Resendez A, Garcia-Marques FJ, Pandrala M, Going CC, Bermudez A, Kumar V, Rafat M, Nambiar DK, Honkala A, Le QT, Sledge GW, Graves E, Pitteri SJ, Malhotra SV. Y box binding protein 1 inhibition as a targeted therapy for ovarian cancer. Cell Chem Biol 2021; 28:1206-1220.e6. [PMID: 33713600 DOI: 10.1016/j.chembiol.2021.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
Y box binding protein 1 (YB-1) is a multifunctional protein associated with tumor progression and the emergence of treatment resistance (TR). Here, we report an azopodophyllotoxin small molecule, SU056, that potently inhibits tumor growth and progression via YB-1 inhibition. This YB-1 inhibitor inhibits cell proliferation, resistance to apoptosis in ovarian cancer (OC) cells, and arrests in the G1 phase. Inhibitor treatment leads to enrichment of proteins associated with apoptosis and RNA degradation pathways while downregulating spliceosome pathway. In vivo, SU056 independently restrains OC progression and exerts a synergistic effect with paclitaxel to further reduce disease progression with no observable liver toxicity. Moreover, in vitro mechanistic studies showed delayed disease progression via inhibition of drug efflux and multidrug resistance 1, and significantly lower neurotoxicity as compared with etoposide. These data suggest that YB-1 inhibition may be an effective strategy to reduce OC progression, antagonize TR, and decrease patient mortality.
Collapse
Affiliation(s)
- Dhanir Tailor
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Angel Resendez
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Fernando Jose Garcia-Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Mallesh Pandrala
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Catherine C Going
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Vineet Kumar
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Marjan Rafat
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Dhanya K Nambiar
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Alexander Honkala
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - George W Sledge
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Edward Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sanjay V Malhotra
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
7
|
Murphy MR, Kleiman FE. Connections between 3' end processing and DNA damage response: Ten years later. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1571. [PMID: 31657151 PMCID: PMC7295566 DOI: 10.1002/wrna.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
Ten years ago we reviewed how the cellular DNA damage response (DDR) is controlled by changes in the functional and structural properties of nuclear proteins, resulting in a timely coordinated control of gene expression that allows DNA repair. Expression of genes that play a role in DDR is regulated not only at transcriptional level during mRNA biosynthesis but also by changing steady-state levels due to turnover of the transcripts. The 3' end processing machinery, which is important in the regulation of mRNA stability, is involved in these gene-specific responses to DNA damage. Here, we review the latest mechanistic connections described between 3' end processing and DDR, with a special emphasis on alternative polyadenylation, microRNA and RNA binding proteins-mediated deadenylation, and discuss the implications of deregulation of these steps in DDR and human disease. This article is categorized under: RNA Processing > 3' End Processing RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Michael Robert Murphy
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| | - Frida Esther Kleiman
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| |
Collapse
|
8
|
Targeting the upstream transcriptional activator of PD-L1 as an alternative strategy in melanoma therapy. Oncogene 2018; 37:4941-4954. [PMID: 29786078 DOI: 10.1038/s41388-018-0314-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 04/10/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
Abstract
Programmed cell death ligand 1 (PD-L1) interacts with programmed cell death protein-1 (PD-1) as an immune checkpoint. Reactivating the immune response by inhibiting PD-L1 using therapeutic antibodies provides substantial clinical benefits in many, though not all, melanoma patients. However, transcriptional suppression of PD-L1 expression as an alternative therapeutic anti-melanoma strategy has not been exploited. Here we provide biochemical evidence demonstrating that ultraviolet radiation (UVR) induction of PD-L1 in skin is directly controlled by nuclear factor E2-related transcription factor 2 (NRF2). Depletion of NRF2 significantly induces tumor infiltration by both CD8+ and CD4+ T cells to suppress melanoma progression, and combining NRF2 inhibition with anti-PD-1 treatment enhanced its anti-tumor function. Our studies identify a critical and targetable PD-L1 upstream regulator and provide an alternative strategy to inhibit the PD-1/PD-L1 signaling in melanoma treatment.
Collapse
|
9
|
Goetz AE, Wilkinson M. Stress and the nonsense-mediated RNA decay pathway. Cell Mol Life Sci 2017; 74:3509-3531. [PMID: 28503708 PMCID: PMC5683946 DOI: 10.1007/s00018-017-2537-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 01/09/2023]
Abstract
Cells respond to internal and external cellular stressors by activating stress-response pathways that re-establish homeostasis. If homeostasis is not achieved in a timely manner, stress pathways trigger programmed cell death (apoptosis) to preserve organism integrity. A highly conserved stress pathway is the unfolded protein response (UPR), which senses excessive amounts of unfolded proteins in the ER. While a physiologically beneficial pathway, the UPR requires tight regulation to provide a beneficial outcome and avoid deleterious consequences. Recent work has demonstrated that a conserved and highly selective RNA degradation pathway-nonsense-mediated RNA decay (NMD)-serves as a major regulator of the UPR pathway. NMD degrades mRNAs encoding UPR components to prevent UPR activation in response to innocuous ER stress. In response to strong ER stress, NMD is inhibited by the UPR to allow for a full-magnitude UPR response. Recent studies have indicated that NMD also has other stress-related functions, including promoting the timely termination of the UPR to avoid apoptosis; NMD also regulates responses to non-ER stressors, including hypoxia, amino-acid deprivation, and pathogen infection. NMD regulates stress responses in species across the phylogenetic scale, suggesting that it has conserved roles in shaping stress responses. Stress pathways are frequently constitutively activated or dysregulated in human disease, raising the possibility that "NMD therapy" may provide clinical benefit by downmodulating stress responses.
Collapse
Affiliation(s)
- Alexandra E Goetz
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, USA
| | - Miles Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, USA.
| |
Collapse
|
10
|
Bonaventura R, Matranga V. Overview of the molecular defense systems used by sea urchin embryos to cope with UV radiation. MARINE ENVIRONMENTAL RESEARCH 2017; 128:25-35. [PMID: 27252015 DOI: 10.1016/j.marenvres.2016.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 05/20/2023]
Abstract
The sea urchin embryo is a well-recognized developmental biology model and its use in toxicological studies has been widely appreciated. Many studies have focused on the evaluation of the effects of chemical stressors and their mixture in marine ecosystems using sea urchin embryos. These are well equipped with defense genes used to cope with chemical stressors. Recently, ultraviolet radiation (UVR), particularly UVB (280-315 nm), received more attention as a physical stressor. Mainly in the Polar Regions, but also at temperate latitudes, the penetration of UVB into the oceans increases as a consequence of the reduction of the Earth's ozone layer. In general, UVR induces oxidative stress in marine organisms affecting molecular targets such as DNA, proteins, and lipids. Depending on the UVR dose, developing sea urchin embryos show morphological perturbations affecting mainly the skeleton formation and patterning. Nevertheless, embryos are able to protect themselves against excessive UVR, using mechanisms acting at different levels: transcriptional, translational and post-translational. In this review, we recommend the sea urchin embryo as a suitable model for testing physical stressors such as UVR and summarize the mechanisms adopted to deal with UVR. Moreover, we review UV-induced apoptotic events and the combined effects of UVR and other stressors.
Collapse
Affiliation(s)
- Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
11
|
Tani H, Sato H, Torimura M. Rapid monitoring of RNA degradation activity in vivo for mammalian cells. J Biosci Bioeng 2017; 123:523-527. [PMID: 28038925 DOI: 10.1016/j.jbiosc.2016.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022]
Abstract
We have developed a rapid fluorescence assay based on fluorescence resonance energy transfer (FRET) for the monitoring of RNA degradation activity in mammalian cells. In this technique, double-stranded RNA (dsRNA) fluorescent probes are used. The dsRNA fluorescent probes consist of a 5' fluorophore-labeled strand hybridized to a 3' quencher-labeled strand, and the fluorescent dye is quenched by a quencher dye. When the dsRNA is degraded by nascent RNases in cells, the fluorescence emission of the fluorophore is induced following the degradation of the double strands. The degradation rates of the dsRNA are decelerated in response to chemical or environmental toxicity; therefore, in the case of cellular toxicity, the dsRNA is not degraded and remains intact, thus quenching the fluorescence. Unlike in conventional cell-counting assays, this new assay eliminates time-consuming steps, and can be used to simply evaluate the cellular toxicity via a single reaction. Our results demonstrate that this assay can rapidly quantify the RNA degradation rates in vivo within 4 h for three model chemicals. We propose that this assay will be useful for monitoring cellular toxicity in high-throughput applications.
Collapse
Affiliation(s)
- Hidenori Tani
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Hiroaki Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Masaki Torimura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
12
|
Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome. Sci Rep 2016; 6:28075. [PMID: 27354008 PMCID: PMC4926211 DOI: 10.1038/srep28075] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions.
Collapse
|
13
|
Ankers JM, Awais R, Jones NA, Boyd J, Ryan S, Adamson AD, Harper CV, Bridge L, Spiller DG, Jackson DA, Paszek P, Sée V, White MR. Dynamic NF-κB and E2F interactions control the priority and timing of inflammatory signalling and cell proliferation. eLife 2016; 5. [PMID: 27185527 PMCID: PMC4869934 DOI: 10.7554/elife.10473] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 04/13/2016] [Indexed: 01/07/2023] Open
Abstract
Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle. DOI:http://dx.doi.org/10.7554/eLife.10473.001 Investigating how cells adapt to the constantly changing environment inside the body is vitally important for understanding how the body responds to an injury or infection. One of the ways in which human cells adapt is by dividing to produce new cells. This takes place in a repeating pattern of events, known as the cell cycle, through which a cell copies its DNA (in a stage known as S-phase) and then divides to make two daughter cells. Each stage of the cell cycle is tightly controlled; for example, a family of proteins called E2 factors control the entry of the cell into S phase. “Inflammatory” signals produced by a wound or during an infection can activate a protein called Nuclear Factor-kappaB (NF-κB), which controls the activity of genes that allow cells to adapt to the situation. Research shows that the activity of NF-κB is also regulated by the cell cycle, but it has not been clear how this works. Here, Ankers et al. investigated whether the stage of the cell cycle might affect how NF-κB responds to inflammatory signals. The experiments show that the NF-κB response was stronger in cells that were just about to enter S-phase than in cells that were already copying their DNA. An E2 factor called E2F-1 –which accumulates in the run up to S-phase – interacts with NF-κB and can alter the activity of certain genes. However, during S-phase, another E2 factor family member called E2F-4 binds to NF-κB and represses its activation. Next, Ankers et al. used a mathematical model to understand how these protein interactions can affect the response of cells to inflammatory signals. These findings suggest that direct interactions between E2 factor proteins and NF-κB enable cells to decide whether to divide or react in different ways to inflammatory signals. The research tools developed in this study, combined with other new experimental techniques, will allow researchers to accurately predict how cells will respond to inflammatory signals at different points in the cell cycle. DOI:http://dx.doi.org/10.7554/eLife.10473.002
Collapse
Affiliation(s)
- John M Ankers
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom
| | - Raheela Awais
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom.,Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Nicholas A Jones
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - James Boyd
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Sheila Ryan
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom.,Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Antony D Adamson
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Claire V Harper
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Lloyd Bridge
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom.,Department of Mathematics, University of Swansea, Swansea, United Kingdom
| | - David G Spiller
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Dean A Jackson
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Pawel Paszek
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Violaine Sée
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom
| | - Michael Rh White
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| |
Collapse
|
14
|
Retroviral cyclin controls cyclin-dependent kinase 8-mediated transcription elongation and reinitiation. J Virol 2015; 89:5450-61. [PMID: 25741012 DOI: 10.1128/jvi.00464-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Walleye dermal sarcoma virus (WDSV) infection is associated with the seasonal development and regression of walleye dermal sarcoma. Previous work showed that the retroviral cyclin (RV-cyclin), encoded by WDSV, has separable cyclin box and transcription activation domains. It binds to cyclin-dependent kinase 8 (CDK8) and enhances its kinase activity. CDK8 is evolutionarily conserved and is frequently overexpressed in human cancers. It is normally activated by cyclin C and is required for transcription elongation of the serum response genes (immediate early genes [IEGs]) FOS, EGR1, and cJUN. The IEGs drive cell proliferation, and their expression is brief and highly regulated. Here we show that constitutive expression of RV-cyclin in the HCT116 colon cancer cell line significantly increases the level of IEG expression in response to serum stimulation. Quantitative reverse transcription-PCR (RT-PCR) and nuclear run-on assays provide evidence that RV-cyclin does not alter the initiation of IEG transcription but does enhance the overall rate of transcription elongation and maintains transcription reinitiation. RV-cyclin does not increase activating phosphorylation events in the mitogen-activated protein kinase pathway and does not inhibit decay of IEG mRNAs. At the EGR1 gene locus, RV-cyclin increases and maintains RNA polymerase II (Pol II) occupancy after serum stimulation, in conjunction with increased and extended EGR1 gene expression. The RV-cyclin increases CDK8 occupancy at the EGR1 gene locus before and after serum stimulation. Both of RV-cyclin's functional domains, i.e., the cyclin box and the activation domain, are necessary for the overall enhancement of IEG expression. RV-cyclin presents a novel and ancient mechanism of retrovirus-induced oncogenesis. IMPORTANCE The data reported here are important to both virology and cancer biology. The novel mechanism pinpoints CDK8 in the development of walleye dermal sarcoma and sheds light on CDK8's role in many human cancers. CDK8 controls expression from highly regulated genes, including the interferon-stimulated genes. Its function is likely the target of many viral interferon-resistance mechanisms. CDK8 also controls cellular responses to metabolic stimuli, stress, and hypoxia, in addition to the serum response. The retroviral cyclin (RV-cyclin) represents a highly selected probe of CDK8 function. RV-cyclin does not control CDK8 specificity but instead enhances CDK8's effects on regulated genes, an important distinction for its use to delineate natural CDK8 targets. The outcomes of this research are applicable to investigations of normal and abnormal CDK8 functions. The mechanisms defined here will contribute directly to the dermal sarcoma model in fish and clarify an important path for oncogenesis and innate resistance to viruses.
Collapse
|
15
|
Yoo BH, Masson O, Li Y, Khan IA, Gowda PS, Rosen KV. Anoikis of colon carcinoma cells triggered by β-catenin loss can be enhanced by tumor necrosis factor receptor 1 antagonists. Oncogene 2014; 34:4939-51. [PMID: 25531320 DOI: 10.1038/onc.2014.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 12/16/2022]
Abstract
Detachment of non-malignant epithelial cells from the extracellular matrix causes their apoptosis, a phenomenon called anoikis. By contrast, carcinoma cells are anoikis-resistant, and this resistance is thought to be critical for tumor progression. Many oncogenes trigger not only anti- but also pr-apoptotic signals. The proapoptotic events represent an aspect of a phenomenon called oncogenic stress, which acts as a safeguard mechanism blocking tumor initiation. In cells that become malignant, oncogene-induced antiapoptotic signals outbalance the proapoptotic ones. It is now thought that treatments blocking the antiapoptotic events but preserving the proapoptotic signals can be particularly effective in killing tumor cells. Whether or not oncogenes induce any proanoikis signals that can be used for enhancing the efficiency of approaches aimed at triggering anoikis of cancer cells has never been explored. β-Catenin is a major oncoprotein that is often activated in colorectal cancer and promotes tumor progression via mechanisms that are understood only in part. We found here that β-catenin triggers both anti- and proanoikis signals in colon cancer cells. We observed that the antianoikis signals prevail and the cells become anoikis-resistant. We further established that one proanoikis signal in these cells is triggered by β-catenin-induced downregulation of an apoptosis inhibitor tumor necrosis factor receptor 1 (TNFR1) and subsequent reduction of the activity of a transcription factor NF-κB (nuclear factor-κB), a mediator of TNFR1 signaling. We also found that the effect of β-catenin on TNFR1 requires the presence of transcription factor TCF1, a β-catenin effector. We demonstrated that ablation of β-catenin in colon cancer cells triggers their anoikis and that this anoikis is enhanced even further if low TNFR1 or NF-κB activity is artificially preserved in the β-catenin-deprived cells. Thus, inhibition of TNFR1 or NF-κB activity can be expected to enhance the efficiency of approaches aimed at blocking β-catenin-driven anoikis resistance of colon carcinoma cells.
Collapse
Affiliation(s)
- B H Yoo
- Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Haifax, NS, Canada
| | - O Masson
- Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Haifax, NS, Canada
| | - Y Li
- Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Haifax, NS, Canada
| | - I A Khan
- Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Haifax, NS, Canada
| | - P S Gowda
- Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Haifax, NS, Canada
| | - K V Rosen
- Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Haifax, NS, Canada
| |
Collapse
|
16
|
Adjibade P, Mazroui R. Control of mRNA turnover: implication of cytoplasmic RNA granules. Semin Cell Dev Biol 2014; 34:15-23. [PMID: 24946962 DOI: 10.1016/j.semcdb.2014.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/21/2014] [Indexed: 12/15/2022]
Abstract
The control of mRNA turnover is essential for the cell to rationalize its mRNA content both under physiological conditions and upon stress. Several mechanisms involved in the control of mRNA turnover have been elucidated. These include surveillance mechanisms such as nonsense-mediated decay, non-stop mediated decay and non-go-mediated decay that eliminate aberrant mRNAs, and regulatory mechanisms including AU-mediated decay, GU-mediated decay, and CDE-mediated decay that ensure mRNA plasticity. In general, the mechanisms of RNA decay rely on interactions between specific cis-acting RNA elements and selected RNA-binding proteins that either prevent the degradation of mRNA targets or induce the recruitment of decaying effectors leading to mRNA degradation. Formation of cytoplasmic RNA granules including processing bodies, stress granules, UV granules, and exosome granules have recently emerged as an additional mechanism that control mRNA turnover of selected mRNAs. Here we will review briefly review the main mechanisms that control mRNA decay and highlight possible implication of RNA granules in such mechanisms.
Collapse
Affiliation(s)
- Pauline Adjibade
- Centre de recherche du CHU de Québec, Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, PQ, Canada
| | - Rachid Mazroui
- Centre de recherche du CHU de Québec, Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, PQ, Canada.
| |
Collapse
|
17
|
Kou WZ, Xu SL, Wang Y, Wang LW, Wang L, Chai XY, Hua QL. Expression of Kin17 promotes the proliferation of hepatocellular carcinoma cells in vitro and in vivo.. Oncol Lett 2014; 8:1190-1194. [PMID: 25120685 PMCID: PMC4114639 DOI: 10.3892/ol.2014.2244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/04/2014] [Indexed: 11/06/2022] Open
Abstract
Kin17 protein is ubiquitously expressed in mammals and is correlated with vital biological functions. However, little is known about the role of Kin17 in the proliferation of hepatocellular carcinoma cells. The aim of the present study was to investigate whether the upregulation of Kin17 can promote the growth of hepatocellular carcinoma cells. A series of assays was performed to study the effect of Kin17 in the proliferation of hepatocellular carcinoma cells in vitro and in vivo. The western blotting results revealed that Kin17 expression was increased in hepatocellular carcinoma tissues compared with that of the corresponding normal tissues. Moreover, ectopic upregulation of Kin17 expression promoted the growth of hepatocellular carcinoma cells in vitro and in vivo. These results indicated that Kin17 is involved in the tumorigenesis of hepatocellular carcinoma, and that Kin17 has the potential to serve as a therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wei-Zheng Kou
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Su-Ling Xu
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Ying Wang
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Li-Wei Wang
- Department of Ultrasound, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Lei Wang
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiao-Yan Chai
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Qin-Liang Hua
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
18
|
Ethanol-induced transcriptional activation of programmed cell death 4 (Pdcd4) is mediated by GSK-3β signaling in rat cortical neuroblasts. PLoS One 2014; 9:e98080. [PMID: 24837604 PMCID: PMC4024002 DOI: 10.1371/journal.pone.0098080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/28/2014] [Indexed: 01/20/2023] Open
Abstract
Ingestion of ethanol (ETOH) during pregnancy induces grave abnormalities in developing fetal brain. We have previously reported that ETOH induces programmed cell death 4 (PDCD4), a critical regulator of cell growth, in cultured fetal cerebral cortical neurons (PCNs) and in the cerebral cortex in vivo and affect protein synthesis as observed in Fetal Alcohol Spectrum Disorder (FASD). However, the mechanism which activates PDCD4 in neuronal systems is unclear and understanding this regulation may provide a counteractive strategy to correct the protein synthesis associated developmental changes seen in FASD. The present study investigates the molecular mechanism by which ethanol regulates PDCD4 in cortical neuroblasts, the immediate precursor of neurons. ETOH treatment significantly increased PDCD4 protein and transcript expression in spontaneously immortalized rat brain neuroblasts. Since PDCD4 is regulated at both the post-translational and post-transcriptional level, we assessed ETOH's effect on PDCD4 protein and mRNA stability. Chase experiments demonstrated that ETOH does not significantly impact either PDCD4 protein or mRNA stabilization. PDCD4 promoter-reporter assays confirmed that PDCD4 is transcriptionally regulated by ETOH in neuroblasts. Given a critical role of glycogen synthase kinase 3β (GSK-3β) signaling in regulating protein synthesis and neurotoxic mechanisms, we investigated the involvement of GSK-3β and showed that multifunctional GSK-3β was significantly activated in response to ETOH in neuroblasts. In addition, we found that ETOH-induced activation of PDCD4 was inhibited by pharmacologic blockade of GSK-3β using inhibitors, lithium chloride (LiCl) and SB-216763 or siRNA mediated silencing of GSK-3β. These results suggest that ethanol transcriptionally upregulates PDCD4 by enhancing GSK-3β signaling in cortical neuroblasts. Further, we demonstrate that canonical Wnt-3a/GSK-3β signaling is involved in regulating PDCD4 protein expression. Altogether, we provide evidence that GSK-3β/PDCD4 network may represent a critical modulatory point to manage the protein synthetic anomalies and growth aberrations of neural cells seen in FASD.
Collapse
|
19
|
Abstract
SIGNIFICANCE Production of proteins requires the synthesis, maturation, and export of mRNAs before their translation in the cytoplasm. Endogenous and exogenous sources of DNA damage pose a challenge to the co-ordinated regulation of gene expression, because the integrity of the DNA template can be compromised by DNA lesions. Cells recognize and respond to this DNA damage through a variety of DNA damage responses (DDRs). Failure to deal with DNA damage appropriately can lead to genomic instability and cancer. RECENT ADVANCES The p53 tumor suppressor plays a dominant role in DDR-dependent changes in gene expression, but this transcription factor is not solely responsible for all changes. Recent evidence indicates that RNA metabolism is integral to DDRs as well. In particular, post-transcriptional processes are emerging as important contributors to these complex responses. CRITICAL ISSUES Transcriptional, post-transcriptional, and translational regulation of gene expression is subject to changes in response to DNA damage. How these processes are intertwined in the unfolding of DDR is not fully understood. FUTURE DIRECTIONS Many complex regulatory responses combine to determine cell fate after DNA damage. Understanding how transcriptional, post-transcriptional, and translational processes interdigitate to create a web of regulatory interactions will be one of the key challenges to fully understand DDRs.
Collapse
Affiliation(s)
- Bruce C McKay
- Department of Biology, Institute of Biochemistry, Carleton University , Ottawa, Canada
| |
Collapse
|
20
|
Russo R, Bonaventura R, Matranga V. Time- and dose-dependent gene expression in sea urchin embryos exposed to UVB. MARINE ENVIRONMENTAL RESEARCH 2014; 93:85-92. [PMID: 24011617 DOI: 10.1016/j.marenvres.2013.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
The increase of UVB radiation reaching marine environment has harmful effects on living organisms. Paracentrotus lividus sea urchin embryos living in shallow water are exposed to radiations, providing a good model for studying the molecular mechanisms activated upon UV stress. Here, we report the modulated time- and dose-dependent expression of six genes, known to be involved in stress response, in embryos exposed at cleavage to 400 and 800 J/m(2) UVB, and collected at early (morula) and later (gastrula) stages. We analyzed their mRNA levels by QPCR and found that Pl-14-3-3 showed a dose-dependent induction, both early and late in development; Pl-c-jun was up-regulated proportionally to the UVB dose at early stages and only at 800 J/m(2) UVB at later stages; Pl-XPB-ERCC3, Pl-MT and Pl-NF-kB were highly up-regulated later in development at the high dose, with the exception of Pl-XPB-ERCC3 whose mRNA levels were high also at the lower dose; Pl-FOXO expression was not affected by UVB radiation. We believe that the identification of UVB-responsive genes in irradiated sea urchin embryos, reported for the first time in this study, will be helpful for the understanding of the involved molecular pathways. The correlation between the impaired morphogenesis, affecting endo-mesoderm differentiation, and gene modulations described herewith is also discussed.
Collapse
Affiliation(s)
- Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
21
|
YANG PANPAN, ZHOU TIANSHOU. RECEPTOR-DEPENDENT SENSITIVITY OF NF-κB TO LOW PHYSIOLOGICAL LEVEL. J BIOL SYST 2013. [DOI: 10.1142/s0218339013500186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the NFκB signaling pathway, cells respond to different concentrations of the TNFα signal by means of NFκB transcription factors. Previous studies showed that most cells are activated under high-dose stimulations and NFκB activation results in oscillations in nuclear NFκB abundance. Here, by analyzing sensitivity gain for the response of the nuclear NFκB to the number of cell-surface receptors under low-dose stimulations, we show that changes in the receptor number can give rise to significant changes in the nonsaturation part of the dose–response curve, where the receptor activation rates are very sensitive to stimulations. In addition, the number of the activated receptors tends to increase in a large range of stimulation dose and can significantly influence the expression of the downstream genes. These results imply that the number of cell-surface receptors plays a role of information encoding like frequency or amplitude encoding described in previous studies.
Collapse
Affiliation(s)
- PANPAN YANG
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - TIANSHOU ZHOU
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
22
|
Christmann M, Kaina B. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res 2013; 41:8403-20. [PMID: 23892398 PMCID: PMC3794595 DOI: 10.1093/nar/gkt635] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA repair is the first barrier in the defense against genotoxic stress. In recent years, mechanisms that recognize DNA damage and activate DNA repair functions through transcriptional upregulation and post-translational modification were the focus of intensive research. Most DNA repair pathways are complex, involving many proteins working in discrete consecutive steps. Therefore, their balanced expression is important for avoiding erroneous repair that might result from excessive base removal and DNA cleavage. Amelioration of DNA repair requires both a fine-tuned system of lesion recognition and transcription factors that regulate repair genes in a balanced way. Transcriptional upregulation of DNA repair genes by genotoxic stress is counteracted by DNA damage that blocks transcription. Therefore, induction of DNA repair resulting in an adaptive response is only visible through a narrow window of dose. Here, we review transcriptional regulation of DNA repair genes in normal and cancer cells and describe mechanisms of promoter activation following genotoxic exposures through environmental carcinogens and anticancer drugs. The data available to date indicate that 25 DNA repair genes are subject to regulation following genotoxic stress in rodent and human cells, but for only a few of them, the data are solid as to the mechanism, homeostatic regulation and involvement in an adaptive response to genotoxic stress.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | |
Collapse
|
23
|
Abstract
Systemic response to DNA damage and other stresses is a complex process that includes changes in the regulation and activity of nearly all stages of gene expression. One gene regulatory mechanism used by eukaryotes is selection among alternative transcript isoforms that differ in polyadenylation [poly(A)] sites, resulting in changes either to the coding sequence or to portions of the 3' UTR that govern translation, stability, and localization. To determine the extent to which this means of regulation is used in response to DNA damage, we conducted a global analysis of poly(A) site usage in Saccharomyces cerevisiae after exposure to the UV mimetic, 4-nitroquinoline 1-oxide (4NQO). Two thousand thirty-one genes were found to have significant variation in poly(A) site distributions following 4NQO treatment, with a strong bias toward loss of short transcripts, including many with poly(A) sites located within the protein coding sequence (CDS). We further explored one possible mechanism that could contribute to the widespread differences in mRNA isoforms. The change in poly(A) site profile was associated with an inhibition of cleavage and polyadenylation in cell extract and a decrease in the levels of several key subunits in the mRNA 3'-end processing complex. Sequence analysis identified differences in the cis-acting elements that flank putatively suppressed and enhanced poly(A) sites, suggesting a mechanism that could discriminate between variable and constitutive poly(A) sites. Our analysis indicates that variation in mRNA length is an important part of the regulatory response to DNA damage.
Collapse
|
24
|
Yang CW, Lee YZ, Hsu HY, Wu CM, Chang HY, Chao YS, Lee SJ. c-Jun-mediated anticancer mechanisms of tylophorine. Carcinogenesis 2013; 34:1304-14. [PMID: 23385061 DOI: 10.1093/carcin/bgt039] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tylophorine, a phenanthroindolizidine alkaloid, is the major medicinal constituent of herb Tylophora indica. Tylophorine treatment increased the accumulation of c-Jun protein, a component of activator protein 1 (AP1), in carcinoma cells. An in vitro kinase assay revealed that the resultant c-Jun phosphorylation was primarily mediated via activated c-Jun N-terminal protein kinase (JNK). Moreover, flow cytometry indicated that ectopically overexpressed c-Jun in conjunction with tylophorine significantly increased the number of carcinoma cells that were arrested at the G1 phase. The tylophorine-mediated downregulation of cyclin A2 protein levels is known to be involved in the primary G1 arrest. Chromatin immunoprecipitation and reporter assays revealed that tylophorine enhanced the c-Jun downregulation of the cyclin A2 promoter activity upon increased binding of c-Jun to the deregulation AP1 site and decreased binding to the upregulation activating transcription factor (ATF) site in the cyclin A2 promoter, thereby reducing cyclin A2 expression. Further, biochemical studies using pharmacological inhibitors and RNA silencing approaches demonstrated that tylophorine-mediated elevation of the c-Jun protein level occurs primarily via two discrete prolonged signaling pathways: (i) the NF-κB/PKCδ_(MKK4)_JNK cascade, which phosphorylates c-Jun and increases its stability by slowing its ubiquitination, and (ii) the PI3K_PDK1_PP2A_eEF2 cascade, which sustains eukaryotic elongation factor 2 (eEF2) activity and thus c-Jun protein translation. To the best of our knowledge, this report is the first to demonstrate the involvement of c-Jun in the anticancer activity of tylophorine and the release of c-Jun translation from a global translational blockade via the PI3K_PDK1_eEF2 signaling cascade.
Collapse
Affiliation(s)
- Cheng-Wei Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Tani H, Torimura M, Akimitsu N. The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS One 2013; 8:e55684. [PMID: 23383264 PMCID: PMC3559549 DOI: 10.1371/journal.pone.0055684] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/28/2012] [Indexed: 01/02/2023] Open
Abstract
Studies of various mRNAs have revealed that changes in the abundance of transcripts, through mRNA degradation, act as a critical step in the control of various biological pathways. Similarly, the regulation of non-coding RNA (ncRNA) levels is also considered to be important for their biological functions; however, far less is known about the mechanisms and biological importance of ncRNA turnover for the regulation of ncRNA functions. The growth arrest-specific 5 (GAS5) ncRNA accumulates during growth arrest induced by serum starvation and its transcript is degraded by the well characterized nonsense-mediated RNA decay (NMD) pathway. Historically, NMD was discovered as a RNA quality control system to eliminate aberrant transcripts; however, accumulating evidence shows that NMD also regulates the abundance of physiological transcripts. Interestingly, the GAS5 transcript has the ability to bind the glucocorticoid receptor (GR), resulting in the inhibition of its ligand-dependent association with DNA. The GR binds the promoters of various glucocorticoid-responsive genes, including apoptosis-related genes. In this study, we examined whether the RNA degradation pathway can regulate this function of GAS5. We measured the steady-state abundance and the decay rate of GAS5 in UPF1-depleted human cells using the 5′-bromo-uridine immunoprecipitation chase (BRIC) method, an inhibitor-free method for directly measuring RNA stability. We found that levels of the GAS5 transcript were elevated owing to prolonged decay rates in response to UPF1 depletion, and consequently the apoptosis-related genes, cIAP2 and SGK1, were down-regulated. In addition, serum starvation also increased the transcript levels of GAS5 because of prolonged decay rates, and conversely decreased levels of cIAP2 and SGK1 mRNA. Taken together, we found that the RNA degradation pathway can regulate the function of the GAS5 ncRNA in mammalian cells.
Collapse
Affiliation(s)
- Hidenori Tani
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail: (HT); (NA)
| | - Masaki Torimura
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Nobuyoshi Akimitsu
- Radioisotope Center, The University of Tokyo, Bunkyo, Tokyo, Japan
- * E-mail: (HT); (NA)
| |
Collapse
|
26
|
Takeda S, Nishimura H, Koyachi K, Matsumoto K, Yoshida K, Okamoto Y, Amamoto T, Shindo M, Aramaki H. (-)-Xanthatin induces the prolonged expression of c-Fos through an N-acetyl-L-cysteine (NAC)-sensitive mechanism in human breast cancer MDA-MB-231 cells. J Toxicol Sci 2013; 38:547-57. [PMID: 23824011 DOI: 10.2131/jts.38.547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
We reported that (-)-xanthatin, a xanthanolide sesquiterpene lactone present in the Cocklebur plant, exhibited potent anti-proliferative effects on human breast cancer cells, in which GADD45γ, a novel tumor suppressor gene, was induced. Mechanistically, topoisomerase IIα (Topo IIα) inhibition by (-)-xanthatin was shown to be the upstream trigger that stimulated the expression of GADD45γ mRNA and concomitantly produced reactive oxygen species (ROS) to maintain this expression. Since the anti-cancer drug etoposide, a selective Topo IIα inhibitor, has also been shown to induce intracellular ROS, (-)-xanthatin may exert its anti-proliferative effects on cancer cells in a similar manner to those of etoposide. In the present study, to generalize its applicability to cancer therapy, we further investigated the biological activities of (-)-xanthatin by comparing its activities to those of the established anti-cancer drug etoposide. After the exposure of breast cancer cells to (-)-xanthatin or etoposide, a prolonged and marked up-regulation in the expression of c-fos, a proapoptotic molecule, was detected together with GADD45γ; and the expression of these molecules was stabilized by ROS and abrogated by the pretreatment with N-acetyl-L-cysteine (NAC), a potent ROS scavenger. (-)-Xanthatin in particular exhibited stronger anti-proliferative potential than that of etoposide, which underlies the marked induction of c-fos/GADD45γ and ROS production.
Collapse
Affiliation(s)
- Shuso Takeda
- Department of Molecular Biology, Daiichi University of Pharmacy, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tani H, Akimitsu N. Genome-wide technology for determining RNA stability in mammalian cells: historical perspective and recent advantages based on modified nucleotide labeling. RNA Biol 2012; 9:1233-8. [PMID: 23034600 DOI: 10.4161/rna.22036] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Changing the abundance of transcripts by regulated RNA degradation is a critical step in the control of various biological pathways. Recently, genome-wide inhibitor-free technologies for determining RNA stabilities in mammalian cells have been developed. In these methods, endogenous RNAs are pulse labeled by uridine analogs [e.g., 4-thiouridine (4sU), 5-etyniluridine (EU) and 5'-bromo-uridine (BrU)], followed by purification of labeled de novo RNAs. These technologies have revealed that the specific half-life of each mRNA is closely related to its physiological function. Genes with short-lived mRNAs are significantly enriched among regulatory genes, while genes with long-lived mRNAs are enriched among housekeeping genes. This review describes the recent progress of experimental procedures for measuring RNA stability.
Collapse
Affiliation(s)
- Hidenori Tani
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
28
|
Analysing the role of UVB-induced translational inhibition and PP2Ac deactivation in NF-κB signalling using a minimal mathematical model. PLoS One 2012; 7:e40274. [PMID: 22815735 PMCID: PMC3399864 DOI: 10.1371/journal.pone.0040274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/03/2012] [Indexed: 02/08/2023] Open
Abstract
Activation of nuclear factor κB (NF-κB) by interleukin-1β (IL-1) usually results in an anti-apoptotic activity that is rapidly terminated by a negative feedback loop involving NF-κB dependent resynthesis of its own inhibitor IκBα. However, apoptosis induced by ultraviolet B radiation (UVB) is not attenuated, but significantly enhanced by co-stimulation with IL-1 in human epithelial cells. Under these conditions NF-κB remains constitutively active and turns into a pro-apoptotic factor by selectively repressing anti-apoptotic genes. Two different mechanisms have been separately proposed to explain UV-induced lack of IκBα recurrence: global translational inhibition as well as deactivation of the Ser/Thr phosphatase PP2Ac. Using mathematical modelling, we show that the systems behaviour requires a combination of both mechanisms, and we quantify their contribution in different settings. A mathematical model including both mechanisms is developed and fitted to various experimental data sets. A comparison of the model results and predictions with model variants lacking one of the mechanisms shows that both mechanisms are present in our experimental setting. The model is successfully validated by the prediction of independent data. Weak constitutive IKKβ phosphorylation is shown to be a decisive process in IκBα degradation induced by UVB stimulation alone, but irrelevant for (co-)stimulations with IL-1. In silico knockout experiments show that translational inhibition is predominantly responsible for lack of IκBα recurrence following IL-1+UVB stimulation. In case of UVB stimulation alone, cooperation of both processes causes the observed decrease of IκBα. This shows that the processes leading to activation of transcription factor NF-κB upon stimulation with ultraviolet B radiation with and without interleukin-1 costimulation are more complex than previously thought, involving both a cross talk of UVB induced translational inhibition and PP2Ac deactivation. The importance of each of the mechanisms depends on the specific cellular setting.
Collapse
|
29
|
Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscato P, Dinger ME, Mattick JS. Genome-wide analysis of long noncoding RNA stability. Genome Res 2012; 22:885-98. [PMID: 22406755 PMCID: PMC3337434 DOI: 10.1101/gr.131037.111] [Citation(s) in RCA: 427] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcriptomic analyses have identified tens of thousands of intergenic, intronic, and cis-antisense long noncoding RNAs (lncRNAs) that are expressed from mammalian genomes. Despite progress in functional characterization, little is known about the post-transcriptional regulation of lncRNAs and their half-lives. Although many are easily detectable by a variety of techniques, it has been assumed that lncRNAs are generally unstable, but this has not been examined genome-wide. Utilizing a custom noncoding RNA array, we determined the half-lives of ∼800 lncRNAs and ∼12,000 mRNAs in the mouse Neuro-2a cell line. We find only a minority of lncRNAs are unstable. LncRNA half-lives vary over a wide range, comparable to, although on average less than, that of mRNAs, suggestive of complex metabolism and widespread functionality. Combining half-lives with comprehensive lncRNA annotations identified hundreds of unstable (half-life < 2 h) intergenic, cis-antisense, and intronic lncRNAs, as well as lncRNAs showing extreme stability (half-life > 16 h). Analysis of lncRNA features revealed that intergenic and cis-antisense RNAs are more stable than those derived from introns, as are spliced lncRNAs compared to unspliced (single exon) transcripts. Subcellular localization of lncRNAs indicated widespread trafficking to different cellular locations, with nuclear-localized lncRNAs more likely to be unstable. Surprisingly, one of the least stable lncRNAs is the well-characterized paraspeckle RNA Neat1, suggesting Neat1 instability contributes to the dynamic nature of this subnuclear domain. We have created an online interactive resource (http://stability.matticklab.com) that allows easy navigation of lncRNA and mRNA stability profiles and provides a comprehensive annotation of ∼7200 mouse lncRNAs.
Collapse
Affiliation(s)
- Michael B Clark
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tani H, Mizutani R, Salam KA, Tano K, Ijiri K, Wakamatsu A, Isogai T, Suzuki Y, Akimitsu N. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res 2012; 22:947-56. [PMID: 22369889 PMCID: PMC3337439 DOI: 10.1101/gr.130559.111] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mammalian genomes produce huge numbers of noncoding RNAs (ncRNAs). However, the functions of most ncRNAs are unclear, and novel techniques that can distinguish functional ncRNAs are needed. Studies of mRNAs have revealed that the half-life of each mRNA is closely related to its physiological function, raising the possibility that the RNA stability of an ncRNA reflects its function. In this study, we first determined the half-lives of 11,052 mRNAs and 1418 ncRNAs in HeLa Tet-off (TO) cells by developing a novel genome-wide method, which we named 5′-bromo-uridine immunoprecipitation chase–deep sequencing analysis (BRIC-seq). This method involved pulse-labeling endogenous RNAs with 5′-bromo-uridine and measuring the ongoing decrease in RNA levels over time using multifaceted deep sequencing. By analyzing the relationship between RNA half-lives and functional categories, we found that RNAs with a long half-life (t1/2 ≥ 4 h) contained a significant proportion of ncRNAs, as well as mRNAs involved in housekeeping functions, whereas RNAs with a short half-life (t1/2 < 4 h) included known regulatory ncRNAs and regulatory mRNAs. The stabilities of a significant set of short-lived ncRNAs are regulated by external stimuli, such as retinoic acid treatment. In particular, we identified and characterized several novel long ncRNAs involved in cell proliferation from the group of short-lived ncRNAs. We designated this novel class of ncRNAs with a short half-life as Short-Lived noncoding Transcripts (SLiTs). We propose that the strategy of monitoring RNA half-life will provide a powerful tool for investigating hitherto functionally uncharacterized regulatory RNAs.
Collapse
Affiliation(s)
- Hidenori Tani
- Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Giles N, Pavey S, Pinder A, Gabrielli B. Multiple melanoma susceptibility factors function in an ultraviolet radiation response pathway in skin. Br J Dermatol 2011; 166:362-71. [DOI: 10.1111/j.1365-2133.2011.10635.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Yang Z, Norwood KA, Smith JE, Kerl JG, Wood JR. Genes involved in the immediate early response and epithelial-mesenchymal transition are regulated by adipocytokines in the female reproductive tract. Mol Reprod Dev 2011; 79:128-37. [PMID: 22128093 DOI: 10.1002/mrd.22006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/14/2011] [Indexed: 12/18/2022]
Abstract
Obesity increases the risk of female reproductive tract cancers, but the underlying mechanistic link between the two is ill-defined. Thus, the objective of the current study was to identify obesity-dependent changes in the expression of immediate early (IE) genes that contribute to cell proliferation and differentiation, and epithelial-mesenchymal transition (EMT) genes that promote cell migration. When HeLa cells were treated for 0-48 hr with IGF-1, leptin, TNFα, or IL-6, each individual adipocytokine altered the abundance of IE (cJUN, cFOS, and cMYC) and EMT (SNAI1, SNAI2, and TWIST1) mRNA abundance. For example, IGF-1 increased cJUN and cFOS and decreased cMYC; leptin increased cFOS; IL-6 increased cFOS and cMYC; and TNFα increased cJUN and cFOS mRNA abundance. Likewise, EMT gene expression was altered by IGF-1, TNFα, and IL-6. SNAI1 was increased by IGF-1 and IL-6; SNAI2 was increased by IGF-1 and TNFα; and TWIST1 was increased by TNFα and IL-6. Chronic exposure to adipocytokines also altered EMT gene expression in the whole uterus of obese compared to normal-weight mice. Specifically, there was no difference in cJun, cFos, or cMyc mRNA abundance between normal-weight and obese animals. Snai1, Snai2, and Twist1 mRNA abundance, however, was increased in the uterus of obese females and correlated with increased circulating IGF-1 levels. These data indicate that obesity-dependent alterations in adipocytokine levels regulate the expression of genes associated with cell proliferation and migration, and therefore may provide a plausible mechanism for obesity-dependent increases in cancers of the female reproductive tract.
Collapse
Affiliation(s)
- Zhufeng Yang
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USA
| | | | | | | | | |
Collapse
|
33
|
Altered Inhibitory κB Alpha Expression in LPS-Stimulated Alveolar Macrophages Following Resuscitated Hemorrhagic Shock. Shock 2011; 35:171-7. [DOI: 10.1097/shk.0b013e3181f21d2d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Zhang X, Virtanen A, Kleiman FE. To polyadenylate or to deadenylate: that is the question. Cell Cycle 2010; 9:4437-49. [PMID: 21084869 DOI: 10.4161/cc.9.22.13887] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
mRNA polyadenylation and deadenylation are important processes that allow rapid regulation of gene expression in response to different cellular conditions. Almost all eukaryotic mRNA precursors undergo a co-transcriptional cleavage followed by polyadenylation at the 3' end. After the signals are selected, polyadenylation occurs to full extent, suggesting that this first round of polyadenylation is a default modification for most mRNAs. However, the length of these poly(A) tails changes by the activation of deadenylation, which might regulate gene expression by affecting mRNA stability, mRNA transport, or translation initiation. The mechanisms behind deadenylation activation are highly regulated and associated with cellular conditions such as development, mRNA surveillance, DNA damage response, cell differentiation and cancer. After deadenylation, depending on the cellular response, some mRNAs might undergo an extension of the poly(A) tail or degradation. The polyadenylation/deadenylation machinery itself, miRNAs, or RNA binding factors are involved in the regulation of polyadenylation/deadenylation. Here, we review the mechanistic connections between polyadenylation and deadenylation and how the two processes are regulated in different cellular conditions. It is our conviction that further studies of the interplay between polyadenylation and deadenylation will provide critical information required for a mechanistic understanding of several diseases, including cancer development.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Chemistry Department, Hunter College, City University of New York, NY, USA
| | | | | |
Collapse
|
35
|
Spangler B, Vardimon L, Bosserhoff AK, Kuphal S. Post-transcriptional regulation controlled by E-cadherin is important for c-Jun activity in melanoma. Pigment Cell Melanoma Res 2010; 24:148-64. [PMID: 20977688 DOI: 10.1111/j.1755-148x.2010.00787.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A central event in the development of malignant melanoma is the loss of the tumor-suppressor protein E-cadherin. Here, we report that this loss is linked to the activation of the proto-oncogene c-Jun, a key player in tumorigenesis. In vivo, malignant melanomas show strong expression of the c-Jun protein in contrast to melanocytes. Interestingly, c-Jun mRNA levels did not differ in the melanoma cell lines when compared to melanocytes, suggesting that c-Jun could be regulated at the post-transcriptional level. To uncover the link between E-cadherin and c-Jun, we re-expressed E-cadherin in melanoma cells and detected decreased protein expression and activity of c-Jun. Furthermore, c-Jun accumulation is dependent on active E-cadherin-mediated cell-cell adhesion and regulated via the cytoskeleton. Additionally, we determined that, with respect to c-Jun regulation, there are two melanoma subgroups. One subgroup regulates c-Jun expression via the newly discovered E-cadherin-dependent signaling pathway, whereas the other subgroup uses the MAPKinases to regulate its expression. In summary, our data provide novel insights into the tumor-suppressor function of E-cadherin, which contributes to the suppression of c-Jun protein translation and transcriptional activity independent of MAPKinases.
Collapse
Affiliation(s)
- B Spangler
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
36
|
Delayed c-Fos activation in human cells triggers XPF induction and an adaptive response to UVC-induced DNA damage and cytotoxicity. Cell Mol Life Sci 2010; 68:1785-98. [PMID: 20976523 PMCID: PMC3078315 DOI: 10.1007/s00018-010-0546-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/16/2023]
Abstract
The oncoprotein c-Fos has been commonly found differently expressed in cancer cells. Our previous work showed that mouse cells lacking the immediate-early gene c-fos are hypersensitive to ultraviolet (UVC) light. Here, we demonstrate that in human diploid fibroblasts UV-triggered induction of c-Fos protein is a delayed and long-lasting event. Sustained upregulation of c-Fos goes along with transcriptional stimulation of the NER gene xpf, which harbors an AP-1 binding site in the promoter. Data gained on c-Fos knockdown and c-Fos overexpressing human cells provide evidence that c-Fos/AP-1 stimulates upregulation of XPF, thereby increasing the cellular repair capacity protecting from UVC-induced DNA damage. When these cells are pre-exposed to a low non-toxic UVC dose and challenged with a subsequent high dose of UVC irradiation, they show accelerated repair of UVC-induced DNA adducts and reduced cell kill. The data indicate a protective role of c-Fos induction by triggering an adaptive response pathway.
Collapse
|
37
|
Ljungman M. The DNA damage response--repair or despair? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:879-889. [PMID: 20818630 DOI: 10.1002/em.20597] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The term "the DNA damage response" (DDR) encompasses a sophisticated array of cellular initiatives set in motion as cells are exposed to DNA-damaging events. It has been known for over half a century that all organisms have the ability to restore genomic integrity through DNA repair. More recent discoveries of signal transduction pathways linking DNA damage to cell cycle arrest and apoptosis have greatly expanded our views of how cells and tissues limit mutagenesis and tumorigenesis. DNA repair not only plays a pivotal role in suppressing mutagenesis but also in the reversal of signals inducing the stress response. If repair is faulty or the cell is overwhelmed by damage, chances are that the cell will despair and be removed by apoptosis. This final fate is determined by intricate cellular dosimeters that are yet to be fully understood. Here, key findings leading to our current view of DDR are discussed as well as potential areas of importance for future studies.
Collapse
Affiliation(s)
- Mats Ljungman
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
38
|
Cevher MA, Kleiman FE. Connections between 3'-end processing and DNA damage response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:193-9. [PMID: 21956914 DOI: 10.1002/wrna.20] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cellular DNA damage response (DDR) involves changes in the functional and structural properties of a number of nuclear proteins, resulting in a coordinated control of gene expression and DNA repair. This response includes functional interactions of the DNA repair, transcription, and RNA processing machineries. Following DNA damage, cellular levels of polyadenylated transcripts are transiently decreased and normal recovery depends on transcription-coupled repair (TCR). In addition, DNA damage has gene-specific effects regulating the mRNA levels of factors involved in the DDR itself at different times after the damage. The 3'-end processing machinery, which is important in the regulation of mRNA stability, is involved in these general and gene-specific responses to DNA damage. The role of 3'-end processing in DDR supports the idea that the steady-state levels of different mRNAs change upon DNA-damaging conditions as a result of regulation of not only their biosynthesis but also their turnover. Here, we review the mechanistic connections between 3'-end processing and DDR, and discuss the implications of deregulation of this important step of mRNA maturation in the cellular recovery after DNA-damaging treatment. The relevance of these functional connections is illustrated by the increasing number of reports on this relatively unexplored field.
Collapse
Affiliation(s)
- Murat A Cevher
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | | |
Collapse
|
39
|
Nuclear deadenylation/polyadenylation factors regulate 3' processing in response to DNA damage. EMBO J 2010; 29:1674-87. [PMID: 20379136 DOI: 10.1038/emboj.2010.59] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 03/05/2010] [Indexed: 12/23/2022] Open
Abstract
We previously showed that mRNA 3' end cleavage reaction in cell extracts is strongly but transiently inhibited under DNA-damaging conditions. The cleavage stimulation factor-50 (CstF-50) has a role in this response, providing a link between transcription-coupled RNA processing and DNA repair. In this study, we show that CstF-50 interacts with nuclear poly(A)-specific ribonuclease (PARN) using in vitro and in extracts of UV-exposed cells. The CstF-50/PARN complex formation has a role in the inhibition of 3' cleavage and activation of deadenylation upon DNA damage. Extending these results, we found that the tumour suppressor BARD1, which is involved in the UV-induced inhibition of 3' cleavage, strongly activates deadenylation by PARN in the presence of CstF-50, and that CstF-50/BARD1 can revert the cap-binding protein-80 (CBP80)-mediated inhibition of PARN activity. We also provide evidence that PARN along with the CstF/BARD1 complex participates in the regulation of endogenous transcripts under DNA-damaging conditions. We speculate that the interplay between polyadenylation, deadenylation and tumour-suppressor factors might prevent the expression of prematurely terminated messengers, contributing to control of gene expression under different cellular conditions.
Collapse
|
40
|
Alternative splicing of human papillomavirus type-16 E6/E6* early mRNA is coupled to EGF signaling via Erk1/2 activation. Proc Natl Acad Sci U S A 2010; 107:7006-11. [PMID: 20351270 DOI: 10.1073/pnas.1002620107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Certain types of human papillomaviruses (HPVs) are etiologically linked to cervical cancer. Their transforming capacity is encoded by a polycistronic premRNA, where alternative splicing leads to the translation of functional distinct proteins such as E6, E6*, and E7. Here we show that splicing of HPV16 E6/E7 ORF cassette is regulated by the epidermal growth factor (EGF) pathway. The presence of EGF was coupled to preferential E6 expression, whereas depletion of EGF, or treatment with EGF receptor (EGFR) neutralizing antibodies or the EGFR inhibitor tyrphostin AG1478, resulted in E6 exon exclusion in favor of E6*. As a consequence, increased p53 levels and enhanced translation of E7 with a subsequent reduction of the retinoblastoma protein pRb could be discerned. E6 exon exclusion upon EGF depletion was independent from promoter usage, mRNA stability, or selective mRNA transport. Time-course experiments and incubation with cycloheximide demonstrated that E6 alternative splicing is a direct and reversible effect of EGF signal transduction, not depending on de novo protein synthesis. Within this process, Erk1/2-kinase activation was the critical event for E6 exon inclusion, mediated by the upstream MAP kinase MEK1/2. Moreover, siRNA knockdown experiments revealed an involvement of splicing factors hnRNPA1 and hnRNPA2 in E6 exon exclusion, whereas the splicing factors Brm and Sam68 were found to promote E6 exon inclusion. Because there is a natural gradient of EGF and EGF receptor expression in the stratified epithelium, it is reasonable to assume that EGF modulates E6/E7 splicing during the viral life cycle and transformation.
Collapse
|
41
|
Friedel CC, Kaufmann S, Dölken L, Zimmer R. HALO--a Java framework for precise transcript half-life determination. Bioinformatics 2010; 26:1264-6. [PMID: 20299326 DOI: 10.1093/bioinformatics/btq117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Recent improvements in experimental technologies now allow measurements of de novo transcription and/or RNA decay at whole transcriptome level and determination of precise transcript half-lives. Such transcript half-lives provide important insights into the regulation of biological processes and the relative contributions of RNA decay and de novo transcription to differential gene expression. In this article, we present HALO (Half-life Organizer), the first software for the precise determination of transcript half-lives from measurements of RNA de novo transcription or decay determined with microarrays or RNA-seq. In addition, methods for quality control, filtering and normalization are supplied. HALO provides a graphical user interface, command-line tools and a well-documented Java application programming interface (API). Thus, it can be used both by biologists to determine transcript half-lives fast and reliably with the provided user interfaces as well as software developers integrating transcript half-life analysis into other gene expression profiling pipelines. AVAILABILITY Source code, executables and documentation are available at http://www.bio.ifi.lmu.de/software/halo.
Collapse
Affiliation(s)
- Caroline C Friedel
- Institut für Informatik, Ludwig-Maximilians-Universität München, München, Germany.
| | | | | | | |
Collapse
|
42
|
Friedel CC, Dölken L. Metabolic tagging and purification of nascent RNA: implications for transcriptomics. MOLECULAR BIOSYSTEMS 2009; 5:1271-8. [PMID: 19823741 DOI: 10.1039/b911233b] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene expression profiling to analyze cellular responses against different stimuli or conditions is generally performed at the total cellular RNA level. This results in poor resolution of the temporal kinetics of the cellular response and a bias towards detecting up-regulation of short-lived transcripts. Furthermore, changes in transcription rate and RNA stability cannot be distinguished. These problems can be addressed by analyzing nascent RNA instead of total cellular RNA. Throughout the last few years methods have been developed for metabolic tagging and purification of nascent RNA. In this article, we review these experimental procedures and discuss their implications for large-scale gene expression profiling.
Collapse
Affiliation(s)
- Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-University Munich, Amalienstr. 17, 80333 München, Germany.
| | | |
Collapse
|
43
|
Friedel CC, Dölken L, Ruzsics Z, Koszinowski UH, Zimmer R. Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res 2009; 37:e115. [PMID: 19561200 PMCID: PMC2761256 DOI: 10.1093/nar/gkp542] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNA levels in a cell are regulated by the relative rates of RNA synthesis and decay. We recently developed a new approach for measuring both RNA synthesis and decay in a single experimental setting by biosynthetic labeling of newly transcribed RNA. Here, we show that this provides measurements of RNA half-lives from microarray data with a so far unreached accuracy. Based on such measurements of RNA half-lives for human B-cells and mouse fibroblasts, we identified conserved regulatory principles for a large number of biological processes. We show that different regulatory patterns between functionally similar proteins are characterized by differences in the half-life of the corresponding transcripts and can be identified by measuring RNA half-life. We identify more than 100 protein families which show such differential regulatory patterns in both species. Additionally, we provide strong evidence that the activity of protein complexes consisting of subunits with overall long transcript half-lives can be regulated by transcriptional regulation of individual key subunits with short-lived transcripts. Based on this observation, we predict more than 100 key regulatory subunits for human complexes of which 28% could be confirmed in mice (P < 10−9). Therefore, this atlas of transcript half-lives provides new fundamental insights into many cellular processes.
Collapse
Affiliation(s)
- Caroline C. Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich 80333 and Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich 80337, Germany
- *To whom correspondence should be addressed. Tel: +49-89-2180-4056; Fax: +49-89-2180-4054; Correspondence may also be addressed to Dr Lars Dölken. Tel: +49-89-5160-5290; Fax: +49-89-5160-5292;
| | - Lars Dölken
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich 80333 and Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich 80337, Germany
- *To whom correspondence should be addressed. Tel: +49-89-2180-4056; Fax: +49-89-2180-4054; Correspondence may also be addressed to Dr Lars Dölken. Tel: +49-89-5160-5290; Fax: +49-89-5160-5292;
| | - Zsolt Ruzsics
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich 80333 and Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Ulrich H. Koszinowski
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich 80333 and Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich 80333 and Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| |
Collapse
|
44
|
Mao LC, Wang HM, Lin YY, Chang TK, Hsin YH, Chueh PJ. Stress-induced down-regulation of tumor-associated NADH oxidase during apoptosis in transformed cells. FEBS Lett 2008; 582:3445-50. [PMID: 18789934 DOI: 10.1016/j.febslet.2008.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/22/2008] [Accepted: 09/03/2008] [Indexed: 12/11/2022]
Abstract
Tumor-associated NADH oxidase (tNOX) is a growth-related protein expressed in transformed cells. tNOX knockdown using RNA interference leads to a significant reduction in HeLa cell proliferation and migration, indicating an important role for tNOX in growth regulation and the cancer phenotype. Here, we show that tNOX is down-regulated during apoptosis in HCT116 cells. Treatment with diverse stresses induced a dose- and time-dependent decrease in tNOX expression that was concurrent with apoptosis. Moreover, shRNA-mediated tNOX knockdown rendered cells susceptible to apoptosis, whereas re-expression of tNOX partially recovered cell proliferation. Our results indicate that tNOX is suppressed during apoptosis and demonstrate that tNOX down-regulation sensitizes cells to stress-induced growth reduction, suggesting that tNOX is required for transformed cell growth.
Collapse
Affiliation(s)
- Liang-Chi Mao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
45
|
AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proc Natl Acad Sci U S A 2008; 105:11206-11. [PMID: 18695251 DOI: 10.1073/pnas.0800297105] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AIMP2/p38 is a scaffolding protein required for the assembly of the macromolecular tRNA synthetase complex. Here, we describe a previously unknown function for AIMP2 as a positive regulator of p53 in response to genotoxic stresses. Depletion of AIMP2 increased resistance to DNA damage-induced apoptosis, and introduction of AIMP2 into AIMP2-deficient cells restored the susceptibility to apoptosis. Upon DNA damage, AIMP2 was phosphorylated, dissociated from the multi-tRNA synthetase complex, and translocated into the nuclei of cells. AIMP2 directly interacts with p53, thereby preventing MDM2-mediated ubiquitination and degradation of p53. Mutations in AIMP2, affecting its interaction with p53, hampered its ability to activate p53. Nutlin-3 recovered the level of p53 and the susceptibility to UV-induced cell death in AIMP2-deficient cells. This work demonstrates that AIMP2, a component of the translational machinery, functions as proapoptotic factor via p53 in response to DNA damage.
Collapse
|
46
|
Matsouka P, Mylonas P, Papandoniou E, Dimitropoulou I, Floratou K, Alexandridis T, Kardamakis D. Abdominal radiation initiates apoptotic mechanism in rat femur bone marrow cells in vivo that is reversed by IGF-1 administration. JOURNAL OF RADIATION RESEARCH 2008; 49:41-7. [PMID: 18049035 DOI: 10.1269/jrr.07041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PURPOSE Radiation induces apoptosis as a result of damage to cellular DNA and RNA. The aim of our work was to study the effect of radiation on rat bone marrow cells (as a neighboring tissue) in the context of a model of experimental radiation enteritis in rats. The effect of systematic administration in irradiated animals of r-IGF-1 and GH was also studied. MATERIALS AND METHODS Wistar type, normal rats, were divided in 4 groups. One control group and the other 3 groups were irradiated in the abdomen. The measured scattered irradiation in the femur ranged from 16.5 to 47.3 cGy. In 2 groups of irradiated animals, rIGF-1 (0.1 microg/g of body weight twice/d) and rGH (0.25 microg/g of body weight /d) were administered. Bone marrow cells were harvested from both femurs. DNA and RNA were analyzed in specific gels. The m-RNA was hybridized for c-fos proto-oncogene expression. RESULTS The calculated low dose of radiation that affected the femurs of the animals induced reduction in bone marrow cell numbers and endonuclease activation manifested by subsequent fragmentation of DNA and RNA. This phenomenon was reversed by rGH and rIGF-1 administration. The c-fos proto-oncogene expression was upregulated by irradiation. CONCLUSION These observations indicate that scattered low dose radiation is capable of initiating apoptosis in rat bone marrow cells and rGH and rIGF-1 administration reverse this process.
Collapse
|
47
|
Li B, Si J, DeWille JW. Ultraviolet radiation (UVR) activates p38 MAP kinase and induces post-transcriptional stabilization of the C/EBPδ mRNA in G0 growth arrested mammary epithelial cells. J Cell Biochem 2008; 103:1657-69. [PMID: 17902160 DOI: 10.1002/jcb.21554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The G(0) growth arrest (quiescent) state is highly conserved in evolution to promote survival under adverse environmental conditions. To maintain viability, G(0) growth arrested cells limit gene expression to essential growth control and pro-survival genes. CCAAT enhancer binding protein delta (C/EBPdelta), a member of the C/EBP family of nuclear proteins, is highly expressed in G(0) growth arrested mammary epithelial cells (MECs). Although C/EBPdelta gene transcription is elevated during G(0) growth arrest, C/EBPdelta mRNA and protein are relatively short lived, suggesting tight control of the cellular C/EBPdelta content in unstressed, quiescent cells. Treatment of G(0) growth arrested MECs with ultraviolet radiation (UVR) dramatically increases the C/EBPdelta mRNA half-life (approximately 4-fold) and protein content (approximately 3-fold). The mRNA stabilizing effects of UVR treatment are mediated by the C/EBPdelta mRNA 3'untranslated region, which contains an AU rich element. UVR increased p38 MAP kinase (MAPK) activation and SB203580, a p38 MAPK inhibitor, blocked UVR-induced C/EBPdelta mRNA stabilization. UVR increased the nuclear to cytoplasmic translocation of HuR, an ARE-binding protein that functions in mRNA stabilization. Finally, HuR siRNA treatment blocked UVR-induced stabilization of the C/EBPdelta and C/EBPbeta mRNAs but had no effect on C/EBPzeta (CHOP) mRNA stability. In summary, G(0) growth arrested MECs respond to UVR treatment by activating p38 MAPK, increasing HuR translocation and HuR/C/EBPdelta mRNA binding and stabilizing the C/EBPdelta mRNA. These results identify post-transcriptional stabilization of the C/EBPdelta mRNA as a mechanism to increase C/EBPdelta levels in the stress response of quiescent cells to UVR.
Collapse
Affiliation(s)
- Bin Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
48
|
Chen HY, Chu X, Yan CL, Chen XH, Sun M, Wang YJ, Wang CB, Yu WG. Polypeptide from Chlamys farreri attenuates murine thymocytes damage induced by ultraviolet B. Acta Pharmacol Sin 2007; 28:1665-70. [PMID: 17883955 DOI: 10.1111/j.1745-7254.2007.00621.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM Polypeptide from Chlamys farreri (PCF, molecular mass is 879) is a new marine polypeptide compound isolated from Chlamys farreri. This study investigates the possible protective roles and the mechanism of PCF against ultraviolet B (UVB)-induced apoptosis in murine thymocytes. METHODS The rate of apoptosis and caspase-3 activation was measured by flow cytometry. The expression of stress-response genes c-fos and c-jun was observed by RT-PCR. Western blot analysis was performed to determine the release of cytochrome c. RESULTS It was found that UVB induced murine thymocyte death. The cells treated with UVB showed an increase in cytochrome c release, caspase-3 activity, as well as in the expression of c-fos and c-jun. In addition, all were involved in UVB-induced cell apoptosis. CONCLUSION Our present observations pointed to the ability of PCF to avert UVB-induced apoptosis in thymocytes by modulating c-fos and c-jun expression, cytochrome c release, and the consequent activation of caspase-3, which were essential components of the UV-induced cell apoptotic pathway. The results suggested that PCF is a promising protective substance against UV radiation.
Collapse
Affiliation(s)
- Hai-Ying Chen
- Department of Pharmacochemistry, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gowrishankar G, Winzen R, Bollig F, Ghebremedhin B, Redich N, Ritter B, Resch K, Kracht M, Holtmann H. Inhibition of mRNA deadenylation and degradation by ultraviolet light. Biol Chem 2006; 386:1287-93. [PMID: 16336123 DOI: 10.1515/bc.2005.146] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Post-transcriptional mechanisms contribute to the changes in gene expression induced by cell stress. The effect of UV-B light on mRNA degradation in HeLa cells was investigated using a transcriptional chase system to determine the decay kinetics of tet-off vector-derived mRNAs containing or lacking a destabilizing AU-rich element. Degradation of both mRNAs was strongly inhibited in cells exposed to UV-B light. Removal of the poly(A)-tail, considered a crucial step in mRNA degradation, was strikingly impaired. UV light also inhibited deadenylation and degradation of endogenous mRNA of the chemoattractant cytokine interleukin (IL)-8. Both effects occurred rapidly and independently of newly induced genes. Importantly, stabilization of IL-8 mRNA was accompanied by a strong increase in the duration of IL-8 protein formation. Furthermore, general inhibition of protein synthesis, a hallmark of the response to cell stress, required far higher doses of UV-B than inhibition of mRNA deadenylation and degradation. The difference in sensitivity of cells to these effects of UV-B light establishes a dose range in which mRNA stabilization can lead to dramatically enhanced expression of proteins derived from normally unstable mRNAs, such as those of inflammatory cytokines, growth factors and proto-oncogenes, and thereby have a major impact on the response to UV light.
Collapse
Affiliation(s)
- Gayatri Gowrishankar
- Institute of Biochemistry, Medical School Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gowrishankar G, Winzen R, Dittrich-Breiholz O, Redich N, Kracht M, Holtmann H. Inhibition of mRNA deadenylation and degradation by different types of cell stress. Biol Chem 2006; 387:323-7. [PMID: 16542155 DOI: 10.1515/bc.2006.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously observed rapid and strong inhibition of mRNA deadenylation and degradation in response to UV-B light [Gowrishankar et al., Biol. Chem. 386 (2005), pp. 1287-1293]. Expression analysis using a microarray for inflammatory genes showed that UV-B light induces stabilization of all short-lived mRNAs assayed. Stabilization was observed in HeLa cells, as well as in the keratinocyte line HaCaT. It affected constitutively expressed mRNA species, as well as species induced by the inflammatory cytokine IL-1. Many of the latter encode proteins involved in inflammation, suggesting that stress-induced inhibition of mRNA deadenylation contributes to changes in inflammatory gene expression. Deadenylation and degradation of tet-off-expressed mRNAs were also inhibited upon exposure to H2O2. However, scavengers of reactive oxygen species did not interfere with UV-B-induced inhibition of degradation, arguing against the involvement of UV-induced H2O2 in these effects of UV-B light. Heat shock and hyperosmolarity also inhibited mRNA deadenylation and degradation, whereas gamma-radiation did not. Thus, inhibition of mRNA deadenylation and degradation is a cellular response elicited by several but not all inducers of cell stress.
Collapse
Affiliation(s)
- Gayatri Gowrishankar
- Institute of Biochemistry, Medical School Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|