1
|
Malnassy G, Ziolkowski L, Macleod KF, Oakes SA. The Integrated Stress Response in Pancreatic Development, Tissue Homeostasis, and Cancer. Gastroenterology 2024; 167:1292-1306. [PMID: 38768690 PMCID: PMC11570703 DOI: 10.1053/j.gastro.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Present in all eukaryotic cells, the integrated stress response (ISR) is a highly coordinated signaling network that controls cellular behavior, metabolism, and survival in response to diverse stresses. The ISR is initiated when any 1 of 4 stress-sensing kinases (protein kinase R-like endoplasmic reticulum kinase [PERK], general control non-derepressible 2 [GCN2], double-stranded RNA-dependent protein kinase [PKR], heme-regulated eukaryotic translation initiation factor 2α kinase [HRI]) becomes activated to phosphorylate the protein translation initiation factor eukaryotic translation initiation factor 2α (eIF2α), shifting gene expression toward a comprehensive rewiring of cellular machinery to promote adaptation. Although the ISR has been shown to play an important role in the homeostasis of multiple tissues, evidence suggests that it is particularly crucial for the development and ongoing health of the pancreas. Among the most synthetically dynamic tissues in the body, the exocrine and endocrine pancreas relies heavily on the ISR to rapidly adjust cell function to meet the metabolic demands of the organism. The hardwiring of the ISR into normal pancreatic functions and adaptation to stress may explain why it is a commonly used pro-oncogenic and therapy-resistance mechanism in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors. Here, we review what is known about the key roles that the ISR plays in the development, homeostasis, and neoplasia of the pancreas.
Collapse
Affiliation(s)
- Greg Malnassy
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Leah Ziolkowski
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| | - Scott A Oakes
- Department of Pathology, University of Chicago, Chicago, Illinois; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Bhattacharjee P, Wang D, Anderson D, Buckler JN, de Geus E, Yan F, Polekhina G, Schittenhelm R, Creek DJ, Harris LD, Sadler AJ. The immune response to RNA suppresses nucleic acid synthesis by limiting ribose 5-phosphate. EMBO J 2024; 43:2636-2660. [PMID: 38778156 PMCID: PMC11217295 DOI: 10.1038/s44318-024-00100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
During infection viruses hijack host cell metabolism to promote their replication. Here, analysis of metabolite alterations in macrophages exposed to poly I:C recognises that the antiviral effector Protein Kinase RNA-activated (PKR) suppresses glucose breakdown within the pentose phosphate pathway (PPP). This pathway runs parallel to central glycolysis and is critical to producing NADPH and pentose precursors for nucleotides. Changes in metabolite levels between wild-type and PKR-ablated macrophages show that PKR controls the generation of ribose 5-phosphate, in a manner distinct from its established function in gene expression but dependent on its kinase activity. PKR phosphorylates and inhibits the Ribose 5-Phosphate Isomerase A (RPIA), thereby preventing interconversion of ribulose- to ribose 5-phosphate. This activity preserves redox control but decreases production of ribose 5-phosphate for nucleotide biosynthesis. Accordingly, the PKR-mediated immune response to RNA suppresses nucleic acid production. In line, pharmacological targeting of the PPP during infection decreases the replication of the Herpes simplex virus. These results identify an immune response-mediated control of host cell metabolism and suggest targeting the RPIA as a potential innovative antiviral treatment.
Collapse
Affiliation(s)
- Pushpak Bhattacharjee
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Die Wang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joshua N Buckler
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Eveline de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases, Department of Clinical Hematology, Monash University, Clayton, VIC, 3004, Australia
| | - Galina Polekhina
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ralf Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Anthony J Sadler
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
3
|
Zhang R, Karijolich J. RNA recognition by PKR during DNA virus infection. J Med Virol 2024; 96:e29424. [PMID: 38285432 PMCID: PMC10832991 DOI: 10.1002/jmv.29424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Protein kinase R (PKR) is a double-stranded RNA (dsRNA) binding protein that plays a crucial role in innate immunity during viral infection and can restrict both DNA and RNA viruses. The potency of its antiviral function is further reflected by the large number of viral-encoded PKR antagonists. However, much about the regulation of dsRNA accumulation and PKR activation during viral infection remains unknown. Since DNA viruses do not have an RNA genome or RNA replication intermediates like RNA viruses do, PKR-mediated dsRNA detection in the context of DNA virus infection is particularly intriguing. Here, we review the current state of knowledge regarding the regulation of PKR activation and its antagonism during infection with DNA viruses.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Center for Immunobiology, Nashville. Nashville, TN 37232-2363, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Center for Immunobiology, Nashville. Nashville, TN 37232-2363, USA
| |
Collapse
|
4
|
Herting JR, König JH, Hadova K, Heinick A, Müller FU, Pauls P, Seidl MD, Soppa C, Kirchhefer U. Hypercontractile cardiac phenotype in mice overexpressing the regulatory subunit PR72 of protein phosphatase 2A. Front Cardiovasc Med 2023; 10:1239555. [PMID: 37868783 PMCID: PMC10590119 DOI: 10.3389/fcvm.2023.1239555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Background The activity, localization, and substrate specificity of the protein phosphatase 2A (PP2A) heterotrimer are controlled by various regulatory B subunits. PR72 belongs to the B'' gene family and has been shown to be upregulated in human heart failure. However, little is known about the functions of PR72 in the myocardium. Methods To address this issue, we generated a transgenic mouse model with heart-specific overexpression of PP2A-PR72. Biochemical and physiological methods were used to determine contractility, Ca2+ cycling parameters, and protein phosphorylation. Results A 2.5-fold increase in PR72 expression resulted in moderate cardiac hypertrophy. Maximal ventricular pressure was increased in catheterized transgenic mice (TG) compared to wild-type (WT) littermates. This was accompanied by an increased shortening of sarcomere length and faster relaxation at the single-cell level in TG. In parallel with these findings, the peak amplitude of Ca2+ transients was increased, and the decay in intracellular Ca2+ levels was shortened in TG compared to WT. The changes in Ca2+ cycling in TG were also evident from an increase in the full duration and width at half maximum of Ca2+ sparks. Consistent with the contractile data, phosphorylation of phospholamban at threonine-17 was higher in TG hearts. The lower expression of the Na+/Ca2+ exchanger may also contribute to the hypercontractile state in transgenic myocardium. Conclusion Our results suggest that PP2A-PR72 plays an important role in regulating cardiac contractile function and Ca2+ cycling, indicating that the upregulation of PR72 in heart failure is an attempt to compensate functionally.
Collapse
Affiliation(s)
- Julius R. Herting
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Jule H. König
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexander Heinick
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Frank U. Müller
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Paul Pauls
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Matthias D. Seidl
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Carolina Soppa
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| |
Collapse
|
5
|
Vertyshev AY, Akberdin IR, Kolpakov FA. Numerous Trigger-like Interactions of Kinases/Protein Phosphatases in Human Skeletal Muscles Can Underlie Transient Processes in Activation of Signaling Pathways during Exercise. Int J Mol Sci 2023; 24:11223. [PMID: 37446402 DOI: 10.3390/ijms241311223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Optimizing physical training regimens to increase muscle aerobic capacity requires an understanding of the internal processes that occur during exercise that initiate subsequent adaptation. During exercise, muscle cells undergo a series of metabolic events that trigger downstream signaling pathways and induce the expression of many genes in working muscle fibers. There are a number of studies that show the dependence of changes in the activity of AMP-activated protein kinase (AMPK), one of the mediators of cellular signaling pathways, on the duration and intensity of single exercises. The activity of various AMPK isoforms can change in different directions, increasing for some isoforms and decreasing for others, depending on the intensity and duration of the load. This review summarizes research data on changes in the activity of AMPK, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and other components of the signaling pathways in skeletal muscles during exercise. Based on these data, we hypothesize that the observed changes in AMPK activity may be largely related to metabolic and signaling transients rather than exercise intensity per se. Probably, the main events associated with these transients occur at the beginning of the exercise in a time window of about 1-10 min. We hypothesize that these transients may be partly due to putative trigger-like kinase/protein phosphatase interactions regulated by feedback loops. In addition, numerous dynamically changing factors, such as [Ca2+], metabolite concentration, and reactive oxygen and nitrogen species (RONS), can shift the switching thresholds and change the states of these triggers, thereby affecting the activity of kinases (in particular, AMPK and CaMKII) and phosphatases. The review considers the putative molecular mechanisms underlying trigger-like interactions. The proposed hypothesis allows for a reinterpretation of the experimental data available in the literature as well as the generation of ideas to optimize future training regimens.
Collapse
Affiliation(s)
| | - Ilya R Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Fedor A Kolpakov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Hollenstein DM, Veis J, Romanov N, Gérecová G, Ogris E, Hartl M, Ammerer G, Reiter W. PP2A Rts1 antagonizes Rck2-mediated hyperosmotic stress signaling in yeast. Microbiol Res 2022; 260:127031. [PMID: 35461031 DOI: 10.1016/j.micres.2022.127031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
In Saccharomyces cerevisiae, impairment of protein phosphatase PP2ARts1 leads to temperature and hyperosmotic stress sensitivity, yet the underlying mechanism and the scope of action of the phosphatase in the stress response remain elusive. Using a quantitative mass spectrometry-based approach we have identified a set of putative substrate proteins that show both hyperosmotic stress- and PP2ARts1-dependent changes in their phosphorylation pattern. A comparative analysis with published MS-shotgun data revealed that the phosphorylation status of many of these sites is regulated by the MAPKAP kinase Rck2, suggesting that the phosphatase antagonizes Rck2 signaling. Detailed gel mobility shift assays and protein-protein interaction analysis strongly indicate that Rck2 activity is directly regulated by PP2ARts1 via a SLiM B56-family interaction motif, revealing how PP2ARts1 influences the response to hyperosmotic stress in Yeast.
Collapse
Affiliation(s)
- D M Hollenstein
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - J Veis
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - N Romanov
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - G Gérecová
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - E Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - M Hartl
- Mass Spectrometry Facility, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - G Ammerer
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - W Reiter
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Mass Spectrometry Facility, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
7
|
Pluteanu F, Boknik P, Heinick A, König C, Müller FU, Weidlich A, Kirchhefer U. Activation of PKC results in improved contractile effects and Ca cycling by inhibition of PP2A-B56α. Am J Physiol Heart Circ Physiol 2022; 322:H427-H441. [PMID: 35119335 DOI: 10.1152/ajpheart.00539.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 2A (PP2A) represents a heterotrimer that is responsible for the dephosphorylation of important regulatory myocardial proteins. The present study was aimed to test whether the phosphorylation of PP2A-B56α at Ser41 by PKC is involved in the regulation of myocyte Ca2+ cycling and contraction. For this purpose, heart preparations of wild-type (WT) and transgenic mice overexpressing the non-phosphorylatable S41A mutant form (TG) were stimulated by administration of the direct PKC activator phorbol 12-myristate 13-acetate (PMA), and functional effects were studied. PKC activation was accompanied by the inhibition of PP2A activity in WT cardiomyocytes, whereas this effect was absent in TG. Consistently, the increase in the sarcomere length shortening and the peak amplitude of Ca2+ transients after PMA administration in WT cardiomyocytes was attenuated in TG. However, the co-stimulation with 1 µM isoprenaline was able to offset these functional deficits. Moreover, TG hearts did not show an increase in the phosphorylation of the myosin-binding protein C after administration of PMA but was detected in corresponding WT. PMA modulated voltage-dependent activation of the L-type Ca2+ channel (LTCC) differently in the two genotypes, shifting V1/2a by +1.5 mV in TG and by 2.4 mV in WT. In the presence of PMA, ICaL inactivation remained unchanged in TG, whereas it was slower in corresponding WT. Our data suggest that PKC-activated enhancement of myocyte contraction and intracellular Ca2+ signaling is mediated by phosphorylation of B56α at Ser41, leading to a decrease in PP2A activity.
Collapse
Affiliation(s)
- Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Peter Boknik
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Alexander Heinick
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Christiane König
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Adam Weidlich
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Yagyu K, Hasegawa Y, Sato M, Oh-Hashi K, Hirata Y. Activation of protein kinase R in the manganese-induced apoptosis of PC12 cells. Toxicology 2020; 442:152526. [PMID: 32574669 DOI: 10.1016/j.tox.2020.152526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022]
Abstract
Manganese neurotoxicity leads to Parkinson-like symptoms associated with the apoptotic cell death of dopaminergic neurons. Protein kinase R (PKR) is a serine/threonine-specific protein kinase that has been implicated in several cellular signal transduction pathways, including the induction of apoptosis. Here, we investigated the role of PKR in the manganese-induced apoptosis of dopamine-producing pheochromocytoma PC12 cells. Manganese (0.5 mM) induced the proteolytic cleavage of PKR and caspase-3, DNA fragmentation, and cell death, which were prevented by the co-treatment of PC12 cells with a PKR specific inhibitor, C16 in a concentration-dependent manner. C16 did not affect the manganese-induced activation of the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) pathway, indicating that PKR functions downstream of JNK and p38 MAPK. In contrast, C16 triggered the activation of the p44/42 MAPK (ERK1/2) pathway and induced hemoxygenase-1, both in the absence and presence of manganese. PKR is reportedly involved in endoplasmic reticulum (ER) stress-induced apoptosis. Manganese activated all three branches of the unfolded protein response in PC12 cells; however, this effect was very weak compared with the ER stress induced by the well-known ER stress inducers thapsigargin and tunicamycin. Moreover, C16 did not affect manganese-induced ER stress at concentrations that almost prevented caspase-3 activation and DNA fragmentation. These results suggest that PKR is involved in manganese-induced apoptotic cell death and stress response, such as the activation of the p44/42 MAPK pathway and the induction of hemoxygenase-1. Although manganese induced a faint, but typical, ER stress, these events contributed little to manganese-induced apoptosis.
Collapse
Affiliation(s)
- Kazuya Yagyu
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu, 501-1193, Japan
| | - Yuto Hasegawa
- Graduate School of Natural Science and Technology, Gifu University, Yanagido, Gifu, 501-1193, Japan
| | - Mina Sato
- Graduate School of Natural Science and Technology, Gifu University, Yanagido, Gifu, 501-1193, Japan
| | - Kentaro Oh-Hashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu, 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, Yanagido, Gifu, 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1193, Japan
| | - Yoko Hirata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu, 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, Yanagido, Gifu, 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
9
|
Polycystin-1 Inhibits Cell Proliferation through Phosphatase PP2A/B56 α. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2582401. [PMID: 31641668 PMCID: PMC6770331 DOI: 10.1155/2019/2582401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/21/2019] [Accepted: 08/21/2019] [Indexed: 01/15/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is associated with a number of cellular defects such as hyperproliferation, apoptosis, and dedifferentiation. Mutations in polycystin-1 (PC1) account for ∼85% of ADPKD. Here, we showed that wild-type (WT) or mutant PC1 composed of the last five transmembrane (TM) domains and the C-terminus (termed PC1-5TMC) inhibits cell proliferation and protein translation, as well as the downstream effectors of mTOR, consistent with previous reports. Knockdown of B56α, a subunit of the protein phosphatase 2A (PP2A) complex, or application of PP2A inhibitor okadaic acid or calyculin A, abolished the inhibitory effect of PC1 and PC1-5TMC on proliferation, indicating that PP2A/B56α mediates the regulation of cell proliferation by PC1. In addition to the phosphorylated S6 and 4EBP1, B56α was also downregulated by PC1 and PC1-5TMC. Furthermore, the downregulation of B56α, which may be mediated by mTOR but not AKT, can account for the dependence of PC1-inhibited proliferation on PP2A.
Collapse
|
10
|
Zhao JL, Zhang LQ, Liu N, Xu SL, Yue ZL, Zhang LL, Deng ZP, Burlingame AL, Sun DY, Wang ZY, Sun Y, Zhang SW. Mutual Regulation of Receptor-Like Kinase SIT1 and B'κ-PP2A Shapes the Early Response of Rice to Salt Stress. THE PLANT CELL 2019; 31:2131-2151. [PMID: 31221736 PMCID: PMC6751134 DOI: 10.1105/tpc.18.00706] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/22/2019] [Accepted: 06/14/2019] [Indexed: 05/03/2023]
Abstract
The receptor-like kinase SIT1 acts as a sensor in rice (Oryza sativa) roots, relaying salt stress signals via elevated kinase activity to enhance salt sensitivity. Here, we demonstrate that Protein Phosphatase 2A (PP2A) regulatory subunit B'κ constrains SIT1 activity under salt stress. B'κ-PP2A deactivates SIT1 directly by dephosphorylating the kinase at Thr515/516, a salt-induced phosphorylation site in the activation loop that is essential for SIT1 activity. B'κ overexpression suppresses the salt sensitivity of rice plants expressing high levels of SIT1, thereby contributing to salt tolerance. B'κ functions in a SIT1 kinase-dependent manner. During early salt stress, activated SIT1 phosphorylates B'κ; this not only enhances its binding with SIT1, it also promotes B'κ protein accumulation via Ser502 phosphorylation. Consequently, by blocking SIT1 phosphorylation, B'κ inhibits and fine-tunes SIT1 activity to balance plant growth and stress adaptation.
Collapse
Affiliation(s)
- Ji-Long Zhao
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Li-Qing Zhang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Ning Liu
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143
| | - Zhi-Liang Yue
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Lu-Lu Zhang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Zhi-Ping Deng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143
| | - Da-Ye Sun
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Ying Sun
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Sheng-Wei Zhang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| |
Collapse
|
11
|
Lee YS, Kunkeaw N, Lee YS. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1558. [PMID: 31231984 DOI: 10.1002/wrna.1558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yeon-Su Lee
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
12
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
13
|
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198:68-89. [PMID: 30797822 DOI: 10.1016/j.pharmthera.2019.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.
Collapse
Affiliation(s)
- I S Elgenaidi
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland.
| |
Collapse
|
14
|
Nakatsumi H, Oka T, Higa T, Shirane M, Nakayama KI. Nuclear-cytoplasmic shuttling protein PP2A B56 contributes to mTORC1-dependent dephosphorylation of FOXK1. Genes Cells 2018; 23:599-605. [PMID: 29845697 DOI: 10.1111/gtc.12597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) kinase is a master regulator of the cellular response to nutrition-related signals such as insulin and amino acids. mTORC1 is activated on the lysosomal membrane and induces phosphorylation of a variety of downstream molecules. We previously showed that activated mTORC1 induces protein phosphatase 2A (PP2A)-mediated dephosphorylation of the transcription factor forkhead box K1 (FOXK1). The mechanism underlying the signal transduction from the cytoplasmic mTORC1 to the nuclear FOXK1 has remained unclear, however, we now show that a nuclear-cytoplasmic transport system is necessary for the mTORC1-FOXK1 signal transduction. This reaction is mediated by a shuttling protein B56, which is a regulatory subunit of PP2A and plays an essential role in the mTORC1-dependent dephosphorylation of FOXK1. These results suggest that PP2AB56 phosphatase contributes to the signaling for mTORC1-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takeru Oka
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tsunaki Higa
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Michiko Shirane
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Mao Z, Liu C, Lin X, Sun B, Su C. PPP2R5A: A multirole protein phosphatase subunit in regulating cancer development. Cancer Lett 2018; 414:222-229. [DOI: 10.1016/j.canlet.2017.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
|
16
|
Gourmaud S, Mouton-Liger F, Abadie C, Meurs EF, Paquet C, Hugon J. Dual Kinase Inhibition Affords Extended in vitro Neuroprotection in Amyloid-β Toxicity. J Alzheimers Dis 2018; 54:1659-1670. [PMID: 27636848 DOI: 10.3233/jad-160509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Alzheimer's disease (AD), the amyloid cascade hypothesis proposes that amyloid-beta (Aβ) neurotoxicity leads to neuroinflammation, synaptic loss, and neuronal degeneration. In AD patients, anti-amyloid immunotherapies did not succeed because they were possibly administered late in AD progression. Modulating new targets associated with Aβ toxicity, such as PKR (double-stranded RNA dependent kinase), and JNK (c-Jun N-terminal kinase) is a major goal for neuroprotection. These two pro-apoptotic kinases are activated in AD brains and involved in Aβ production, tau phosphorylation, neuroinflammation, and neuronal death. In HEK cells transfected with siRNA directed against PKR, and in PKR knockout (PKR-/-) mice neurons, we showed that PKR triggers JNK activation. Aβ-induced neuronal apoptosis, measured by cleaved PARP (Poly ADP-ribose polymerase) and cleaved caspase 3 levels, was reduced in PKR-/- neurons. Two selective JNK inhibitory peptides also produced a striking reduction of Aβ toxicity. Finally, the dual inhibition of PKR and JNK nearly abolished Aβ toxicity in primary cultured neurons. These results reveal that dual kinase inhibition can afford neuroprotection and this approach is worth being tested in in vivo AD and oxidative stress models.
Collapse
Affiliation(s)
| | | | | | - Eliane F Meurs
- Institut Pasteur, Hepacivirus and Innate Immunity Unit, Paris, France
| | - Claire Paquet
- Inserm UMR-S 942, Paris, France.,Research Memory Centre, Paris Nord Ile de France Saint Louis Lariboisière Fernand Widal Hospital, Paris, France
| | - Jacques Hugon
- Inserm UMR-S 942, Paris, France.,Research Memory Centre, Paris Nord Ile de France Saint Louis Lariboisière Fernand Widal Hospital, Paris, France
| |
Collapse
|
17
|
Protein Phosphatase 2A: a Double-Faced Phosphatase of Cellular System and Its Role in Neurodegenerative Disorders. Mol Neurobiol 2017; 55:1750-1761. [PMID: 28224476 DOI: 10.1007/s12035-017-0444-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/03/2017] [Indexed: 12/17/2022]
Abstract
Protein phosphatase 2A (PP2A), a ubiquitously expressed serine/threonine phosphatase, is a vitally important phosphatase for the cellular system. Structurally, it is constituted of three different subunits, namely catalytic subunit (PP2Ac), structural scaffold subunit (PP2A-A), and regulatory subunit (PP2A-B). All subunits have various isoforms, and catalytic and scaffold subunits are ubiquitously expressed, whereas regulatory subunits are more specific to tissue and cell type. It is the numerous possibilities of PP2A holoenzyme assembly with varying isoform components that make it possess a dual nature of activator or the inhibitory character in different signaling pathways, namely neural developmental pathways, Akt/protein kinase B pathway, NF-kB pathway, MAPK pathway, apoptosis pathway, and cell cycle progression to name a few. Importantly, the expression of PP2A in the brain is highest among the serine phosphatases and is known to actively participate in the neural development process. However, the exact mechanism of action of PP2A is still debated and enunciating the holoenzyme components, especially the regulatory subunit of PP2A involved in regulating neural developmental process is still poorly understood. In this review, we try to throw some light on the involvement of various PP2A holoenzyme forms in the process of neurogenesis and progression of neurodegenerative diseases.
Collapse
|
18
|
Roles of PKR in differentiation and apoptosis of bone-related cells. Anat Sci Int 2016; 92:313-319. [DOI: 10.1007/s12565-016-0385-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/25/2016] [Indexed: 12/13/2022]
|
19
|
Arriazu E, Pippa R, Odero MD. Protein Phosphatase 2A as a Therapeutic Target in Acute Myeloid Leukemia. Front Oncol 2016; 6:78. [PMID: 27092295 PMCID: PMC4822158 DOI: 10.3389/fonc.2016.00078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignant disorder of hematopoietic progenitor cells in which several genetic and epigenetic aberrations have been described. Despite progressive advances in our understanding of the molecular biology of this disease, the outcome for most patients is poor. It is, therefore, necessary to develop more effective treatment strategies. Genetic aberrations affecting kinases have been widely studied in AML; however, the role of phosphatases remains underexplored. Inactivation of the tumor-suppressor protein phosphatase 2A (PP2A) is frequent in AML patients, making it a promising target for therapy. There are several PP2A inactivating mechanisms reported in this disease. Deregulation or specific post-translational modifications of PP2A subunits have been identified as a cause of PP2A malfunction, which lead to deregulation of proliferation or apoptosis pathways, depending on the subunit affected. Likewise, overexpression of either SET or cancerous inhibitor of protein phosphatase 2A, endogenous inhibitors of PP2A, is a recurrent event in AML that impairs PP2A activity, contributing to leukemogenesis progression. Interestingly, the anticancer activity of several PP2A-activating drugs (PADs) depends on interaction/sequestration of SET. Preclinical studies show that pharmacological restoration of PP2A activity by PADs effectively antagonizes leukemogenesis, and that these drugs have synergistic cytotoxic effects with conventional chemotherapy and kinase inhibitors, opening new possibilities for personalized treatment in AML patients, especially in cases with SET-dependent inactivation of PP2A. Here, we review the role of PP2A as a druggable tumor suppressor in AML.
Collapse
Affiliation(s)
- Elena Arriazu
- Hematology/Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Raffaella Pippa
- Centre for Gene Regulation and Expression, University of Dundee , Dundee , UK
| | - María D Odero
- Hematology/Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
20
|
Abstract
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| | - Yongna Xing
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
21
|
Hage Hassan R, Pacheco de Sousa AC, Mahfouz R, Hainault I, Blachnio-Zabielska A, Bourron O, Koskas F, Górski J, Ferré P, Foufelle F, Hajduch E. Sustained Action of Ceramide on the Insulin Signaling Pathway in Muscle Cells: IMPLICATION OF THE DOUBLE-STRANDED RNA-ACTIVATED PROTEIN KINASE. J Biol Chem 2015; 291:3019-29. [PMID: 26698173 DOI: 10.1074/jbc.m115.686949] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 11/06/2022] Open
Abstract
In vivo, ectopic accumulation of fatty acids in muscles leads to alterations in insulin signaling at both the IRS1 and Akt steps. However, in vitro treatments with saturated fatty acids or their derivative ceramide demonstrate an effect only at the Akt step. In this study, we adapted our experimental procedures to mimic the in vivo situation and show that the double-stranded RNA-dependent protein kinase (PKR) is involved in the long-term effects of saturated fatty acids on IRS1. C2C12 or human muscle cells were incubated with palmitate or directly with ceramide for short or long periods, and insulin signaling pathway activity was evaluated. PKR involvement was assessed through pharmacological and genetic studies. Short-term treatments of myotubes with palmitate, a ceramide precursor, or directly with ceramide induce an inhibition of Akt, whereas prolonged periods of treatment show an additive inhibition of insulin signaling through increased IRS1 serine 307 phosphorylation. PKR mRNA, protein, and phosphorylation are increased in insulin-resistant muscles. When PKR activity is reduced (siRNA or a pharmacological inhibitor), serine phosphorylation of IRS1 is reduced, and insulin-induced phosphorylation of Akt is improved. Finally, we show that JNK mediates ceramide-activated PKR inhibitory action on IRS1. Together, in the long term, our results show that ceramide acts at two distinct levels of the insulin signaling pathway (IRS1 and Akt). PKR, which is induced by both inflammation signals and ceramide, could play a major role in the development of insulin resistance in muscle cells.
Collapse
Affiliation(s)
- Rima Hage Hassan
- From INSERM, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Ana Catarina Pacheco de Sousa
- From INSERM, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Rana Mahfouz
- From INSERM, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Isabelle Hainault
- From INSERM, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Agnieszka Blachnio-Zabielska
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland, Assistance Publique-Hôpitaux de Paris
| | - Olivier Bourron
- From INSERM, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Département de Diabétologie et Maladies Métaboliques and
| | - Fabien Koskas
- Service de Chirurgie Vasculaire,Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Jan Górski
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland, Assistance Publique-Hôpitaux de Paris
| | - Pascal Ferré
- From INSERM, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Fabienne Foufelle
- From INSERM, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Eric Hajduch
- From INSERM, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Unité Mixte de Recherche_S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France,
| |
Collapse
|
22
|
PKR inhibits the DNA damage response, and is associated with poor survival in AML and accelerated leukemia in NHD13 mice. Blood 2015. [PMID: 26202421 DOI: 10.1182/blood-2015-03-635227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Increased expression of the interferon-inducible double-stranded RNA-activated protein kinase (PKR) has been reported in acute leukemia and solid tumors, but the role of PKR has been unclear. Now, our results indicate that high PKR expression in CD34(+) cells of acute myeloid leukemia (AML) patients correlates with worse survival and shortened remission duration. Significantly, we find that PKR has a novel and previously unrecognized nuclear function to inhibit DNA damage response signaling and double-strand break repair. Nuclear PKR antagonizes ataxia-telangiectasia mutated (ATM) activation by a mechanism dependent on protein phosphatase 2A activity. Thus, inhibition of PKR expression or activity promotes ATM activation, γ-H2AX formation, and phosphorylation of NBS1 following ionizing irradiation. PKR transgenic but not PKR null mice demonstrate a mutator phenotype characterized by radiation-induced and age-associated genomic instability that was partially reversed by short-term pharmacologic PKR inhibition. Furthermore, the age-associated accumulation of somatic mutations that occurs in the Nup98-HOXD13 (NHD13) mouse model of leukemia progression was significantly elevated by co-expression of a PKR transgene, whereas knockout of PKR expression or pharmacologic inhibition of PKR activity reduced the frequency of spontaneous mutations in vivo. Thus, PKR cooperated with the NHD13 transgene to accelerate leukemia progression and shorten survival. Taken together, these results indicate that increased nuclear PKR has an oncogenic function that promotes the accumulation of potentially deleterious mutations. Thus, PKR inhibition may be a therapeutically useful strategy to prevent leukemia progression or relapse, and improve clinical outcomes.
Collapse
|
23
|
Ábrahám E, Yu P, Farkas I, Darula Z, Varga E, Lukács N, Ayaydin F, Medzihradszky KF, Dombrádi V, Dudits D, Horváth GV. The B″ regulatory subunit of protein phosphatase 2A mediates the dephosphorylation of rice retinoblastoma-related protein-1. PLANT MOLECULAR BIOLOGY 2015; 87:125-141. [PMID: 25398395 DOI: 10.1007/s11103-014-0265-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
The phosphorylation of plant retinoblastoma-related (RBR) proteins by cyclin-dependent kinases (CDKs) is well documented, but the counteracting phosphatases have not been identified yet. We report here that rice retinoblastoma-related protein-1 (OsRBR1) interacted with the B″ subunit of rice protein phosphatase 2A (OsPP2A B″) and underwent reversible phosphorylation during the cell division cycle. The OsRBR1-OsPP2A B" association required B domain in OsRBR1 and the C-terminal region of OsPP2A B″. We found by immunoprecipitation that OsPP2A B″, OsPP2A catalytic subunit subtype II, PSTAIRE-type CDK and OsRBR1 were in the same protein complex, indicating a physical association between the phosphatase, the kinase and their common substrate. OsPP2A B″ contains three predicted CDK phosphorylation sites: Ser95, Ser102 and Ser119. The in vitro phosphorylation of Ser95 and Ser119 with PSTAIRE-kinases was verified by mass spectrometry. We generated a series of phosphorylation site mutants to mimic the dephosphorylated or phosphorylated states of OsPP2A B″, and confirmed that all of the three predicted sites can be phosphorylated. Yeast two-hybrid experiments suggested that the phosphorylation of OsPP2A B″ promoted the formation of the OsPP2A holoenzyme. A triple phosphorylation mimicking OsPP2A B″ mutant containing holoenzyme showed higher activity in phosphatase assays. Our data collectively show that the phosphatase activity of OsPP2A against OsRBR1 is regulated by the phosphorylation of its B″ regulatory subunit. However, the analysis of the effect of okadaic acid, a phosphatase inhibitor, in rice cell suspension cultures revealed that the dephosphorylation of OsRBR1 was completely inhibited only by high dose (300 nM) of the okadaic acid during the cell cycle progression. Therefore the role of the protein phosphatase 1 should be considered as an additional post translational regulatory component of RBR protein function in higher plants.
Collapse
Affiliation(s)
- Edit Ábrahám
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang X, Dong JH, Zhang WZ, Leng JJ, Cai SW, Chen MY, Yang X. Double stranded RNA-dependent protein kinase promotes the tumorigenic phenotype in HepG2 hepatocellular carcinoma cells by activating STAT3. Oncol Lett 2014; 8:2762-2768. [PMID: 25360179 PMCID: PMC4214393 DOI: 10.3892/ol.2014.2560] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 08/12/2014] [Indexed: 01/08/2023] Open
Abstract
Previously known as a first-response protein upon viral infection and other stress signals, double-stranded RNA-dependent protein kinase (PKR, also termed EIF2AK2) has been found to be differentially expressed in multiple types of tumor, including hepatocellular carcinoma, suggesting that PKR may be involved in tumor initiation and development. However, whether and how PKR promotes or suppresses the development of hepatocellular carcinoma remains controversial. In the present study, PKR expression was investigated using qPCR and western blot analysis, which revealed that PKR expression was upregulated in liver tumor tissues, when compared to that of adjacent normal tissues, which were obtained from four primary liver cancer patients. Furthermore, in vitro cellular assays revealed that PKR exerts a key role in maintaining the proliferation and migration of HepG2 human hepatocellular carcinoma cells. Mouse models with xenograft transplantations also confirmed a tumorigenic role of PKR in HepG2 cells. Furthermore, a transcription factor, signal transducer and activator of transcription 3 (STAT3), was revealed to mediate the tumor-promoting function of PKR in HepG2 cells, as shown by in vitro cellular proliferation and migration assays. In conclusion, the results suggested a tumorigenic role of PKR in liver cancer and a detailed mechanism involving an oncogenic transcription factor, STAT3, is described. Therefore, PKR may present a potential novel therapeutic target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Xun Wang
- Department of Hepatobiliary Surgery, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Jia-Hong Dong
- Department of Hepatobiliary Surgery, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Wen-Zhi Zhang
- Department of Hepatobiliary Surgery, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Jian-Jun Leng
- Department of Hepatobiliary Surgery, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Shou-Wang Cai
- Department of Hepatobiliary Surgery, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Ming-Yi Chen
- Department of Hepatobiliary Surgery, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
25
|
de la Cruz-Herrera CF, Campagna M, García MA, Marcos-Villar L, Lang V, Baz-Martínez M, Gutiérrez S, Vidal A, Rodríguez MS, Esteban M, Rivas C. Activation of the double-stranded RNA-dependent protein kinase PKR by small ubiquitin-like modifier (SUMO). J Biol Chem 2014; 289:26357-26367. [PMID: 25074923 PMCID: PMC4176227 DOI: 10.1074/jbc.m114.560961] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/11/2014] [Indexed: 01/07/2023] Open
Abstract
The dsRNA-dependent kinase PKR is an interferon-inducible protein with ability to phosphorylate the α subunit of the eukaryotic initiation factor (eIF)-2 complex, resulting in a shut-off of general translation, induction of apoptosis, and inhibition of virus replication. Here we analyzed the modification of PKR by the small ubiquitin-like modifiers SUMO1 and SUMO2 and evaluated the consequences of PKR SUMOylation. Our results indicate that PKR is modified by both SUMO1 and SUMO2, in vitro and in vivo. We identified lysine residues Lys-60, Lys-150, and Lys-440 as SUMOylation sites in PKR. We show that SUMO is required for efficient PKR-dsRNA binding, PKR dimerization, and eIF2α phosphorylation. Furthermore, we demonstrate that SUMO potentiates the inhibition of protein synthesis induced by PKR in response to dsRNA, whereas a PKR SUMOylation mutant is impaired in its ability to inhibit protein synthesis and shows reduced capability to control vesicular stomatitis virus replication and to induce apoptosis in response to vesicular stomatitis virus infection. In summary, our data demonstrate the important role of SUMO in processes mediated by the activation of PKR.
Collapse
Affiliation(s)
- Carlos F de la Cruz-Herrera
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Michela Campagna
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Maria A García
- Unidad de Investigación, Hospital Universitario Virgen de las Nieves, 18014 Granada
| | - Laura Marcos-Villar
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Valerie Lang
- Ubiquitylation and Cancer Molecular Biology Laboratory, Inbiomed, San Sebastian-Donostia, 20009 Gipuzkoa, Spain
| | - Maite Baz-Martínez
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela E15782
| | - Sylvia Gutiérrez
- Confocal Service of Centro Nacional de Biotecnología-CSIC, Darwin 3, Madrid 28049, and
| | - Anxo Vidal
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela E15782, Spain
| | - Manuel S Rodríguez
- Ubiquitylation and Cancer Molecular Biology Laboratory, Inbiomed, San Sebastian-Donostia, 20009 Gipuzkoa, Spain
| | - Mariano Esteban
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Carmen Rivas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049,; Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela E15782,.
| |
Collapse
|
26
|
Kirchhefer U, Heinick A, König S, Kristensen T, Müller FU, Seidl MD, Boknik P. Protein phosphatase 2A is regulated by protein kinase Cα (PKCα)-dependent phosphorylation of its targeting subunit B56α at Ser41. J Biol Chem 2013; 289:163-76. [PMID: 24225947 DOI: 10.1074/jbc.m113.507996] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of multifunctional serine/threonine phosphatases consisting of a catalytic C, a structural A, and a regulatory B subunit. The substrate and therefore the functional specificity of PP2A are determined by the assembly of the enzyme complex with the appropriate regulatory B subunit families, namely B55, B56, PR72, or PR93/PR110. It has been suggested that additional levels of regulating PP2A function may result from the phosphorylation of B56 isoforms. In this study, we identified a novel phosphorylation site at Ser(41) of B56α. This phosphoamino acid residue was efficiently phosphorylated in vitro by PKCα. We detected a 7-fold higher phosphorylation of B56α in failing human hearts compared with nonfailing hearts. Purified PP2A dimeric holoenzyme (subunits C and A) was able to dephosphorylate PKCα-phosphorylated B56α. The potency of B56α for PP2A inhibition was markedly increased by PKCα phosphorylation. PP2A activity was also reduced in HEK293 cells transfected with a B56α mutant, where serine 41 was replaced by aspartic acid, which mimics phosphorylation. More evidence for a functional role of PKCα-dependent phosphorylation of B56α was derived from Fluo-4 fluorescence measurements in phenylephrine-stimulated Flp293 cells. The endoplasmic reticulum Ca(2+) release was increased by 23% by expression of the pseudophosphorylated form compared with wild-type B56α. Taken together, our results suggest that PKCα can modify PP2A activity by phosphorylation of B56α at Ser(41). This interplay between PKCα and PP2A represents a new mechanism to regulate important cellular functions like cellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Uwe Kirchhefer
- From the Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
PKR negatively regulates leukemia progression in association with PP2A activation, Bcl-2 inhibition and increased apoptosis. Blood Cancer J 2013; 3:e144. [PMID: 24013665 PMCID: PMC3789206 DOI: 10.1038/bcj.2013.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 07/21/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023] Open
Abstract
Reduced expression and activity of the proapoptotic, double-stranded RNA-dependent protein kinase, PKR (protein kinase R) is observed in breast, lung and various leukemias, suggesting that loss of PKR potentiates transformation. Now we report that decreased PKR activity inhibits chemotherapy-induced apoptosis of leukemia cells both in vitro and in vivo. Inhibition of PKR expression or activity reduces protein phosphatase 2A (PP2A) activity, a B-cell lymphoma 2 (Bcl-2) phosphatase, resulting in enhanced Bcl-2 phosphorylation. Thus, inhibition of PKR activity leads to hyperphosphorylation of Bcl-2, stabilization of Bcl-2/Bax interaction and decreased Bax insertion into the outer mitochondrial membrane. Treatment with the PP2A activator, FTY720, restores Bcl-2 dephosphorylation and apoptosis in cells with reduced PKR expression following stress. Significantly, xenografts of REH leukemic cells with reduced PKR display significantly increased tumor volume, increased resistance to doxorubicin treatment and shorter survival. Importantly, FTY720 treatment restores sensitivity to chemotherapy and prolongs overall survival of these mice. Collectively, these findings suggest that PP2A activation is a downstream target of PKR and the PKR/PP2A signaling axis is required for rapid and potent stress-induced apoptosis. Importantly, loss of PKR promotes leukemia progression and may serve as a biomarker for predicting chemosensitivity.
Collapse
|
28
|
Taghavi N, Samuel CE. RNA-dependent protein kinase PKR and the Z-DNA binding orthologue PKZ differ in their capacity to mediate initiation factor eIF2α-dependent inhibition of protein synthesis and virus-induced stress granule formation. Virology 2013; 443:48-58. [PMID: 23706307 DOI: 10.1016/j.virol.2013.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/03/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023]
Abstract
Protein kinase R (PKR), a regulator of translation in mammalian cells, possesses two ds-RNA binding domains responsible for kinase activation. Protein kinase Z (PKZ), a PKR-like kinase present in fish, possesses two Z-DNA binding domains. A complementation strategy with cells stably deficient in PKR was used to compare the functions of PKR and PKZ. We found reporter expression was inhibited by wildtype (WT) PKR but not by either catalytic (K296R) or RNA-binding (K64E) mutants. PKZ, like PKR, more potently inhibited 5' cap-dependent compared to IRES-dependent reporter expression. However, in contrast to PKR-expressing cells, phosphorylation of initiation factor eIF2α was not detectably increased in PKZ-expressing cells. Furthermore, virus-induced stress granule formation was observed in PKR-deficient cells complemented with WT PKR but not K296R mutant PKR or WT PKZ. These results suggest that PKR and PKZ function by distinguishable mechanisms to modulate host responses including protein synthesis inhibition and stress granule formation.
Collapse
Affiliation(s)
- Nora Taghavi
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
29
|
Li Y, Xie J, Wu S, Xia J, Zhang P, Liu C, Zhang P, Huang X. Protein kinase regulated by dsRNA downregulates the interferon production in dengue virus- and dsRNA-stimulated human lung epithelial cells. PLoS One 2013; 8:e55108. [PMID: 23372823 PMCID: PMC3555826 DOI: 10.1371/journal.pone.0055108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dengue virus (DENV) is found in the tropical and subtropical regions and affects millions of people annually. Currently, no specific vaccine or antiviral treatment against dengue virus is available. Innate immunity has been shown to be important for host resistance to DENV infection. Although protein kinase regulated by double-stranded RNA (PKR) has been found to promote the innate signaling in response to infection by several viruses, its role in the innate response to DENV infection is still unclear. Our study aimed to investigate the role of PKR in DENV-induced innate immune responses. METHODOLOGY/PRINCIPAL FINDINGS By RNAi, silencing of PKR significantly enhanced the expression of interferon (IFN)-β in DENV infected human lung epithelial A549 cells. Western blot and immunofluorescence microscopy data showed that PKR knockdown upregulated the activation of innate signaling cascades including p38 and JNK mitogen-activated protein kinases (MAPKs), interferon regulatory factor-3 and NF-κB, following DENV2 infection. Likewise, a negative regulatory effect of PKR on the IFN production was also observed in poly(IC) challenged cells. Moreover, the PKR knockdown-mediated IFN induction was attenuated by RIG-I or IPS-1 silencing. Finally, overexpression of a catalytically inactive PKR mutant (K296R), but not of a mutant lacking dsRNA binding activity (K64E) or the double mutant (K64EK296R), reversed the IFN induction mediated by PKR knockdown, suggesting that the dsRNA binding activity is required for PKR to downregulate IFN production. CONCLUSIONS/SIGNIFICANCE PKR acts as a negative regulator of IFN induction triggered by DENVs and poly(IC), and this regulation relies on its dsRNA binding activity. These findings reveal a novel regulatory role for PKR in innate immunity, suggesting that PKR might be a promising target for anti-DENV treatments.
Collapse
Affiliation(s)
- Yuye Li
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiong Xie
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siyu Wu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jun Xia
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Peifen Zhang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chao Liu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Ping Zhang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xi Huang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
30
|
Abstract
Protein phosphatases of the type 2A family (PP2A) represent a major fraction of cellular Ser/Thr phosphatase activity in any given human tissue. In this review, we describe how the holoenzymic nature of PP2A and the existence of several distinct PP2A composing subunits allow for the generation of multiple structurally and functionally different PP2A complexes, explaining why PP2A is involved in the regulation of so many diverse cell biological and physiological processes. Moreover, in human disease, most notably in several cancers and Alzheimer's Disease, PP2A expression and/or activity have been found significantly decreased, underscoring its important functions as a major tumor suppressor and tau phosphatase. Hence, several recent preclinical studies have demonstrated that pharmacological restoration of PP2A activity, as well as pharmacological PP2A inhibition, under certain conditions, may be of significant future therapeutic value.
Collapse
|
31
|
Gallinetti J, Harputlugil E, Mitchell JR. Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 2013; 449:1-10. [PMID: 23216249 PMCID: PMC3695616 DOI: 10.1042/bj20121098] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DR (dietary restriction), or reduced food intake without malnutrition, is associated with extended longevity, improved metabolic fitness and increased stress resistance in a wide range of organisms. DR is often referred to as calorie restriction, implying that reduced energy intake is responsible for its widespread and evolutionarily conserved benefits. However, recent data indicate dietary amino acid restriction as a key mediator of DR benefits. In fruitflies, an imbalance in essential amino acid intake is thought to underlie longevity benefits of DR. In mammals, reduced dietary protein or essential amino acid intake can extend longevity, improve metabolic fitness and increase stress resistance. In the present paper we review two evolutionarily conserved signal transduction pathways responsible for sensing amino acid levels. The eIF2α (eukaryotic initiation factor 2α) kinase GCN2 (general amino acid control non-derepressible 2) senses the absence of one or more amino acids by virtue of direct binding to uncharged cognate tRNAs. The presence of certain amino acids, such as leucine, permits activation of the master growth regulating kinase TOR (target of rapamycin). These two signal transduction pathways react to amino acid deprivation by inhibiting general protein translation while at the same time increasing translation of specific mRNAs involved in restoring homoeostasis. Together, these pathways may contribute to the regulation of longevity, metabolic fitness and stress resistance.
Collapse
Affiliation(s)
| | | | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA 02115, U.S.A
| |
Collapse
|
32
|
Miller JP, Yates BE, Al-Ramahi I, Berman AE, Sanhueza M, Kim E, de Haro M, DeGiacomo F, Torcassi C, Holcomb J, Gafni J, Mooney SD, Botas J, Ellerby LM, Hughes RE. A genome-scale RNA-interference screen identifies RRAS signaling as a pathologic feature of Huntington's disease. PLoS Genet 2012; 8:e1003042. [PMID: 23209424 PMCID: PMC3510027 DOI: 10.1371/journal.pgen.1003042] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
A genome-scale RNAi screen was performed in a mammalian cell-based assay to identify modifiers of mutant huntingtin toxicity. Ontology analysis of suppressor data identified processes previously implicated in Huntington's disease, including proteolysis, glutamate excitotoxicity, and mitochondrial dysfunction. In addition to established mechanisms, the screen identified multiple components of the RRAS signaling pathway as loss-of-function suppressors of mutant huntingtin toxicity in human and mouse cell models. Loss-of-function in orthologous RRAS pathway members also suppressed motor dysfunction in a Drosophila model of Huntington's disease. Abnormal activation of RRAS and a down-stream effector, RAF1, was observed in cellular models and a mouse model of Huntington's disease. We also observe co-localization of RRAS and mutant huntingtin in cells and in mouse striatum, suggesting that activation of R-Ras may occur through protein interaction. These data indicate that mutant huntingtin exerts a pathogenic effect on this pathway that can be corrected at multiple intervention points including RRAS, FNTA/B, PIN1, and PLK1. Consistent with these results, chemical inhibition of farnesyltransferase can also suppress mutant huntingtin toxicity. These data suggest that pharmacological inhibition of RRAS signaling may confer therapeutic benefit in Huntington's disease.
Collapse
Affiliation(s)
- John P. Miller
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Bridget E. Yates
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ari E. Berman
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mario Sanhueza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Eugene Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francesco DeGiacomo
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Cameron Torcassi
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Jennifer Holcomb
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Juliette Gafni
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Sean D. Mooney
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lisa M. Ellerby
- The Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (LME); (REH)
| | - Robert E. Hughes
- The Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (LME); (REH)
| |
Collapse
|
33
|
Guergnon J, Godet AN, Galioot A, Falanga PB, Colle JH, Cayla X, Garcia A. PP2A targeting by viral proteins: a widespread biological strategy from DNA/RNA tumor viruses to HIV-1. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1498-507. [PMID: 21856415 DOI: 10.1016/j.bbadis.2011.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/22/2011] [Accepted: 07/05/2011] [Indexed: 12/27/2022]
Abstract
Protein phosphatase 2A (PP2A) is a large family of holoenzymes that comprises 1% of total cellular proteins and accounts for the majority of Ser/Thr phosphatase activity in eukaryotic cells. Although initially viewed as constitutive housekeeping enzymes, it is now well established that PP2A proteins represent a family of highly and sophistically regulated phosphatases. The past decade, multiple complementary studies have improved our knowledge about structural and functional regulation of PP2A holoenzymes. In this regard, after summarizing major cellular regulation, this review will mainly focus on discussing a particulate biological strategy, used by various viruses, which is based on the targeting of PP2A enzymes by viral proteins in order to specifically deregulate, for their own benefit, cellular pathways of their hosts. The impact of such PP2A targeting for research in human diseases, and in further therapeutic developments, is also discussed.
Collapse
Affiliation(s)
- Julien Guergnon
- Laboratoire E3 Phosphatases-Unité Signalisation Moléculaire et Activation Cellulaire, Institut Pasteur 25, rue du Dr Roux, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Cho H, Mukherjee S, Palasuberniam P, Pillow L, Bilgin B, Nezich C, Walton SP, Feig M, Chan C. Molecular mechanism by which palmitate inhibits PKR autophosphorylation. Biochemistry 2011; 50:1110-9. [PMID: 21192654 PMCID: PMC3035770 DOI: 10.1021/bi101923r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PKR (double-stranded RNA-activated protein kinase) is an important component of the innate immunity, antiviral, and apoptotic pathways. Recently, our group found that palmitate, a saturated fatty acid, is involved in apoptosis by reducing the autophosphorylation of PKR at the Thr451 residue; however, the molecular mechanism by which palmitate reduces PKR autophosphorylation is not known. Thus, we investigated how palmitate affects the phosphorylation of the PKR protein at the molecular and biophysical levels. Biochemical and computational studies show that palmitate binds to PKR, near the ATP-binding site, thereby inhibiting its autophosphorylation at Thr451 and Thr446. Mutation studies suggest that Lys296 and Asp432 in the ATP-binding site on the PKR protein are important for palmitate binding. We further confirmed that palmitate also interacts with other kinases, due to the conserved ATP-binding site. A better understanding of how palmitate interacts with the PKR protein, as well as other kinases, could shed light onto possible mechanisms by which palmitate mediates kinase signaling pathways that could have implications on the efficacy of current drug therapies that target kinases.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI 48824
| | - Shayantani Mukherjee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Pratheeba Palasuberniam
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Lisa Pillow
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI 48824
| | - Betul Bilgin
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI 48824
| | - Catherine Nezich
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - S. Patrick Walton
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI 48824
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Christina Chan
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
35
|
Pindel A, Sadler A. The Role of Protein Kinase R in the Interferon Response. J Interferon Cytokine Res 2011; 31:59-70. [DOI: 10.1089/jir.2010.0099] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Agnieszka Pindel
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | - Anthony Sadler
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|
36
|
Gharbi-Ayachi A, Labbé JC, Burgess A, Vigneron S, Strub JM, Brioudes E, Van-Dorsselaer A, Castro A, Lorca T. The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science 2010; 330:1673-1677. [PMID: 21164014 DOI: 10.1016/b978-0-12-374145-5.00168-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Initiation and maintenance of mitosis require the activation of protein kinase cyclin B-Cdc2 and the inhibition of protein phosphatase 2A (PP2A), which, respectively, phosphorylate and dephosphorylate mitotic substrates. The protein kinase Greatwall (Gwl) is required to maintain mitosis through PP2A inhibition. We describe how Gwl activation results in PP2A inhibition. We identified cyclic adenosine monophosphate-regulated phosphoprotein 19 (Arpp19) and α-Endosulfine as two substrates of Gwl that, when phosphorylated by this kinase, associate with and inhibit PP2A, thus promoting mitotic entry. Conversely, in the absence of Gwl activity, Arpp19 and α-Endosulfine are dephosphorylated and lose their capacity to bind and inhibit PP2A. Although both proteins can inhibit PP2A, endogenous Arpp19, but not α-Endosulfine, is responsible for PP2A inhibition at mitotic entry in Xenopus egg extracts.
Collapse
Affiliation(s)
- Aicha Gharbi-Ayachi
- Universités Montpellier 2 et 1, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, IFR 122, 1919 Route de Mende, 34293 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mouton-Liger F, Paquet C, Hugon J. Biogenesis and regulation of microRNA: implication in Alzheimer’s disease. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) represent an intriguing class of small, endogenous noncoding RNAs. miRNAs post-transcriptionally inhibit the expression of their specific target mRNAs, primarily by imperfect base pairing with the 3´ untranslated region. In the nervous system, interest in the functions of miRNAs has recently expanded to include their roles in neurodegeneration. Recent investigations have revealed the influence of miRNAs on neuronal death and in the β-amyloid cascade associated with Alzheimer’s disease.
Collapse
Affiliation(s)
| | - Claire Paquet
- Inserm UMRS 839 Institut du Fer à Moulin, Paris, France
- The Departments of Histology, Lariboisière Hospital, Paris, France
- The Clinical Memory Center, Lariboisière Hospital, Paris, France
- Paris VII University, 75010 Paris, France
| | - Jacques Hugon
- Inserm UMRS 839 Institut du Fer à Moulin, Paris, France
- The Departments of Histology, Lariboisière Hospital, Paris, France
- The Clinical Memory Center, Lariboisière Hospital, Paris, France
- Paris VII University, 75010 Paris, France
| |
Collapse
|
38
|
Yang X, Nath A, Opperman MJ, Chan C. The double-stranded RNA-dependent protein kinase differentially regulates insulin receptor substrates 1 and 2 in HepG2 cells. Mol Biol Cell 2010; 21:3449-58. [PMID: 20685959 PMCID: PMC2947480 DOI: 10.1091/mbc.e10-06-0481] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The RNA-dependent protein kinase (PKR), initially known as a virus infection response protein, is found to differentially regulate two major players in the insulin signaling pathway, IRS1 and IRS2. PKR up-regulates the inhibitory phosphorylation of IRS1 and the expression of IRS2 at the transcriptional level. Initially identified to be activated upon virus infection, the double-stranded RNA–dependent protein kinase (PKR) is best known for triggering cell defense responses by phosphorylating eIF-2α, thus suppressing RNA translation. We as well as others showed that the phosphorylation of PKR is down-regulated by insulin. In the present study, we further uncovered a novel function of PKR in regulating the IRS proteins. We found that PKR up-regulates the inhibitory phosphorylation of IRS1 at Ser312, which suppresses the tyrosine phosphorylation of IRS1. This effect of PKR on the phosphorylation of IRS1 is mediated by two other protein kinases, JNK and IKK. In contrast, PKR regulates IRS2, another major IRS family protein in the liver, at the transcriptional rather than the posttranslational level, and this effect is mediated by the transcription factor, FoxO1, which has been previously shown to be regulated by insulin and plays a significant role in glucose homeostasis and energy metabolism. In summary, we found for the first time that initially known as a virus infection response gene, PKR regulates the upstream central transmitters of insulin signaling, IRS1 and IRS2, through different mechanisms.
Collapse
Affiliation(s)
- Xuerui Yang
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
39
|
Groskreutz DJ, Babor EC, Monick MM, Varga SM, Hunninghake GW. Respiratory syncytial virus limits alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) phosphorylation to maintain translation and viral replication. J Biol Chem 2010; 285:24023-31. [PMID: 20519500 PMCID: PMC2911276 DOI: 10.1074/jbc.m109.077321] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 06/01/2010] [Indexed: 12/28/2022] Open
Abstract
The impact of respiratory syncytial virus (RSV) on morbidity and mortality is significant in that it causes bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and pneumonia in immunocompromised hosts. RSV activates protein kinase R (PKR), a cellular kinase relevant to limiting viral replication (Groskreutz, D. J., Monick, M. M., Powers, L. S., Yarovinsky, T. O., Look, D. C., and Hunninghake, G. W. (2006) J. Immunol. 176, 1733-1740). It is activated by autophosphorylation, likely triggered by a double-stranded RNA intermediate during replication of the virus. In most instances, ph-PKR targets the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) protein via phosphorylation, leading to an inhibition of translation of cellular and viral protein. However, we found that although ph-PKR increases in RSV infection, significant eIF2alpha phosphorylation is not observed, and inhibition of protein translation does not occur. RSV infection attenuates eIF2alpha phosphorylation by favoring phosphatase rather than kinase activity. Although PKR is activated, RSV sequesters PKR away from eIF2alpha by binding of the kinase to the RSV N protein. This occurs in conjunction with an increase in the association of the phosphatase, PP2A, with eIF2alpha following PKR activation. The result is limited phosphorylation of eIF2alpha and continued translation of cellular and viral proteins.
Collapse
Affiliation(s)
- Dayna J Groskreutz
- Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa Roy J, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
40
|
von Roretz C, Gallouzi IE. Protein kinase RNA/FADD/caspase-8 pathway mediates the proapoptotic activity of the RNA-binding protein human antigen R (HuR). J Biol Chem 2010; 285:16806-13. [PMID: 20353946 PMCID: PMC2878037 DOI: 10.1074/jbc.m109.087320] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/04/2010] [Indexed: 11/06/2022] Open
Abstract
The RNA-binding protein human antigen R (HuR) has been implicated in apoptosis in multiple ways. Several studies have shown that in response to a variety of stresses HuR promotes the expression of proapoptotic mRNAs, whereas others reported its regulatory effect on antiapoptotic messages. We recently showed that in response to severe stress, HuR is cleaved to generate two cleavage products (CPs), HuR-CP1 (24 kDa) and HuR-CP2 (8 kDa), by which it promotes apoptotic cell death. Here, we show that this cleavage event is dependent on protein kinase RNA (PKR). Surprisingly, although in response to the apoptotic inducer staurosporine PKR itself is not phosphorylated, PKR triggers the cleavage of HuR via its downstream effector FADD that in turn activates the caspase-8/caspase-3 pathway. This effect, however, does not require the phosphorylation of the eukaryotic translation initiation factor 2alpha. Additionally, we observed that these HuR-CPs are sufficient to trigger cell death in the absence of activation of the PKR pathway. Therefore, our results support a model whereby in response to lethal stress, PKR, without being phosphorylated, activates the FADD/caspase-8/caspase-3 pathway to trigger HuR cleavage, and the HuR-CPs are then capable of promoting apoptosis.
Collapse
Affiliation(s)
- Christopher von Roretz
- From the Biochemistry Department and Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, Ontario H3G 1Y6, Canada
| | - Imed-Eddine Gallouzi
- From the Biochemistry Department and Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, Ontario H3G 1Y6, Canada
| |
Collapse
|
41
|
Schulz O, Pichlmair A, Rehwinkel J, Rogers NC, Scheuner D, Kato H, Takeuchi O, Akira S, Kaufman RJ, Sousa CRE. Protein kinase R contributes to immunity against specific viruses by regulating interferon mRNA integrity. Cell Host Microbe 2010; 7:354-61. [PMID: 20478537 PMCID: PMC2919169 DOI: 10.1016/j.chom.2010.04.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 02/16/2010] [Accepted: 04/07/2010] [Indexed: 12/18/2022]
Abstract
Cytosolic viral RNA recognition by the helicases RIG-I and MDA5 is considered the major pathway for IFN-alpha/beta induction in response to RNA viruses. However, other cytoplasmic RNA sensors, including the double-stranded RNA-binding protein kinase R (PKR), have been implicated in IFN-alpha/beta production, although their relative contribution and mechanism have been unclear. Using cells expressing nonfunctional PKR or reduced levels of kinase, we show that PKR is required for production of IFN-alpha/beta proteins in response to a subset of RNA viruses including encephalomyocarditis, Theiler's murine encephalomyelitis, and Semliki Forest virus, but not influenza or Sendai virus. Surprisingly, although IFN-alpha/beta mRNA induction is largely normal in PKR-deficient cells, much of that mRNA lacks the poly(A) tail, indicating that its integrity is compromised. Our results suggest that PKR plays a nonredundant role in IFN-alpha/beta production in response to some but not all viruses, in part by regulating IFN-alpha/beta mRNA stability.
Collapse
Affiliation(s)
- Oliver Schulz
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Andreas Pichlmair
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Jan Rehwinkel
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Neil C. Rogers
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Donalyn Scheuner
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109-0650, USA
| | - Hiroki Kato
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka 565-0871, Japan
| | - Osamu Takeuchi
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka 565-0871, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka 565-0871, Japan
| | - Randal J. Kaufman
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109-0650, USA
- Department of Internal Medicine, Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109-0650, USA
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| |
Collapse
|
42
|
Blalock WL, Bavelloni A, Piazzi M, Faenza I, Cocco L. A role for PKR in hematologic malignancies. J Cell Physiol 2010; 223:572-91. [PMID: 20232306 DOI: 10.1002/jcp.22092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The double-stranded RNA-dependent kinase PKR has been described for many years as strictly a pro-apoptotic kinase. Recent data suggest that the main purpose of this kinase is damage control and repair following stress and, if all else fails, apoptosis. Aberrant activation of PKR has been reported in numerous neurodegenerative diseases and cancer. Although a subset of myelodysplastic syndromes (MDS) and chronic lymphocytic leukemia contain low levels of PKR expression and activity, elevated PKR activity and/or expression have been detected in a wide range of hematologic malignancies, from bone marrow failure disorders to acute leukemia. With the recent findings that cancers containing elevated PKR activity are highly sensitive to PKR inhibition, we explore the role of PKR in hematologic malignancies, signal transduction pathways affected by PKR, and how PKR may contribute to leukemic transformation.
Collapse
Affiliation(s)
- William L Blalock
- Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
43
|
A dynamic analysis of IRS-PKR signaling in liver cells: a discrete modeling approach. PLoS One 2009; 4:e8040. [PMID: 19956598 PMCID: PMC2779448 DOI: 10.1371/journal.pone.0008040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 10/12/2009] [Indexed: 12/11/2022] Open
Abstract
A major challenge in systems biology is to develop a detailed dynamic understanding of the functions and behaviors in a particular cellular system, which depends on the elements and their inter-relationships in a specific network. Computational modeling plays an integral part in the study of network dynamics and uncovering the underlying mechanisms. Here we proposed a systematic approach that incorporates discrete dynamic modeling and experimental data to reconstruct a phenotype-specific network of cell signaling. A dynamic analysis of the insulin signaling system in liver cells provides a proof-of-concept application of the proposed methodology. Our group recently identified that double-stranded RNA-dependent protein kinase (PKR) plays an important role in the insulin signaling network. The dynamic behavior of the insulin signaling network is tuned by a variety of feedback pathways, many of which have the potential to cross talk with PKR. Given the complexity of insulin signaling, it is inefficient to experimentally test all possible interactions in the network to determine which pathways are functioning in our cell system. Our discrete dynamic model provides an in silico model framework that integrates potential interactions and assesses the contributions of the various interactions on the dynamic behavior of the signaling network. Simulations with the model generated testable hypothesis on the response of the network upon perturbation, which were experimentally evaluated to identify the pathways that function in our particular liver cell system. The modeling in combination with the experimental results enhanced our understanding of the insulin signaling dynamics and aided in generating a context-specific signaling network.
Collapse
|
44
|
Blalock WL, Grimaldi C, Fala F, Follo M, Horn S, Basecke J, Martinelli G, Cocco L, Martelli AM. PKR activity is required for acute leukemic cell maintenance and growth: a role for PKR-mediated phosphatase activity to regulate GSK-3 phosphorylation. J Cell Physiol 2009; 221:232-41. [PMID: 19507191 DOI: 10.1002/jcp.21848] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent reports demonstrate that PKR is constitutively active in a variety of tumors and is required for tumor maintenance and growth. Here we report acute leukemia cell lines contain elevated levels of p-T451 PKR and PKR activity as compared to normal controls. Inhibition of PKR with a specific inhibitor, as well as overexpression of a dominant-negative PKR, inhibited cell proliferation and induced cell death. Interestingly, PKR inhibition using the specific inhibitor resulted in a time-dependent augmentation of AKT S473 and GSK-3alpha S21 phosphorylation, which was confirmed in patient samples. Increased phosphorylation of AKT and GSK-3alpha was not dependent on PI3K activity. PKR inhibition augmented levels of p-S473 AKT and p-S21/9 GSK-3alpha/beta in the presence of the PI3K inhibitor, LY294002, but was unable to augment GSK-3alpha or beta phosphorylation in the presence of the AKT inhibitor, A443654. Pre-treatment with the PKR inhibitor blocked the ability of A443654 and LY294002 to promote phosphorylation of eIF2alpha, indicating the mechanism leading to AKT phosphorylation and activation did not require eIF2alpha phosphorylation. The effects of PKR inhibition on AKT and GSK-3 phosphorylation were found to be, in part, PP2A-dependent. These data indicate that, in acute leukemia cell lines, constitutive basal activity of PKR is required for leukemic cell homeostasis and growth and functions as a negative regulator of AKT, thereby increasing the pool of potentially active GSK-3.
Collapse
Affiliation(s)
- William L Blalock
- Cell Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Song Y, Wang K, Chen DB, Magness RR, Zheng J. Suppression of protein phosphatase 2 differentially modulates VEGF- and FGF2-induced signaling in ovine fetoplacental artery endothelial cells. Placenta 2009; 30:907-13. [PMID: 19692121 DOI: 10.1016/j.placenta.2009.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
Vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) elicit cellular responses via activation of protein kinases and phosphatases. We have reported that the MEK1/2/ERK1/2 and PI3K/AKT1 pathways are critical for VEGF- and FGF2-stimulated ovine fetoplacental artery endothelial (OFPAE) cell proliferation. We have also shown that protein phosphatase 3 (PPP3) differentially modulates VEGF- and FGF2-stimulated cell proliferation and activation of ERK1/2 and AKT1 in OFPAE cells. Herein, we investigated if protein phosphatase 2 (PPP2) modulated VEGF- and FGF2-induced ERK1/2, AKT1, and p38 MAPK activation and VEGF- and FGF2-stimulated cell proliferation in OFPAE cells. Small interfering RNA (siRNA) specifically targeting human PPP2CA catalytic subunit alpha (PPP2CA) was used to suppress PPP2CA expression in OFPAE cells. When compared with scrambled siRNA, PPP2CA siRNA decreased (p<0.05) PPP2CA protein levels (approximately 70%) and activity (approximately 50%) without altering protein levels of PPP3 catalytic subunit alpha (PPP3CA), nitric oxide synthase 3 (NOS3), ERK1/2, AKT1, and p38 MAPK. FGF2, but not VEGF rapidly (< or =5 min) induced p38 MAPK phosphorylation. Suppression of PPP2CA enhanced (p<0.05) VEGF-induced AKT1, but not ERK1/2 phosphorylation, whereas inhibited (p<0.05) FGF2-induced ERK1/2 and p38 MAPK and slightly attenuated FGF2-induced AKT1 phosphorylation. Suppression of PPP2CA did not significantly affect VEGF- and FGF2-stimulated OFPAE cell proliferation. Thus, suppression of PPP2CA alone differentially modulated VEGF- and FGF2-induced ERK1/2, AKT1, and p38 MAPK activation, without altering VEGF- and FGF2-stimulated cell proliferation in OFPAE cells. These data also suggest that signaling molecules other than ERK1/2, AKT1, and p38 MAPK are important mediators for VEGF- and FGF2-stimulated OFPAE cell proliferation after PPP2CA suppression.
Collapse
Affiliation(s)
- Y Song
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, USA
| | | | | | | | | |
Collapse
|
46
|
Morel M, Couturier J, Lafay-Chebassier C, Paccalin M, Page G. PKR, the double stranded RNA-dependent protein kinase as a critical target in Alzheimer's disease. J Cell Mol Med 2009; 13:1476-88. [PMID: 19602051 PMCID: PMC3828860 DOI: 10.1111/j.1582-4934.2009.00849.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Amyloid β-peptide (Aβ) deposits and neurofibrillary tangles are key hallmarks in Alzheimer's disease (AD). Aβ stimulates many signal transducers involved in the neuronal death. However, many mechanisms remain to be elucidated because no definitive therapy of AD exists. Some studies have focused on the control of translation which involves eIF2 and eIF4E, main eukaryotic factors of initiation. The availability of these factors depends on the activation of the double-stranded RNA-dependent protein kinase (PKR) and the mammalian target of rapamycin (mTOR), respectively. mTOR positively regulates the translation while PKR results in a protein synthesis shutdown. Many studies demonstrated that the PKR signalling pathway is up-regulated in cellular and animal models of AD and in the brain of AD patients. Interestingly, our results showed that phosphorylated PKR and eIF2α levels were significantly increased in lymphocytes of AD patients. These modifications were significantly correlated with cognitive and memory test scores performed in AD patients. On the contrary, the mTOR signalling pathway is down-regulated in cellular and animal models of AD. Recently, we showed that p53, regulated protein in development and DNA damage response 1 and tuberous sclerosis complex 2 could represent molecular links between PKR and mTOR signalling pathways. PKR could be an early biomarker of the neuronal death and a critical target for a therapeutic programme in AD.
Collapse
Affiliation(s)
- Milena Morel
- Research Group on Brain Aging (EA 3808) University of Poitiers, Poitiers Cedex, France
| | | | | | | | | |
Collapse
|
47
|
Zhang P, Langland JO, Jacobs BL, Samuel CE. Protein kinase PKR-dependent activation of mitogen-activated protein kinases occurs through mitochondrial adapter IPS-1 and is antagonized by vaccinia virus E3L. J Virol 2009; 83:5718-25. [PMID: 19321614 PMCID: PMC2681938 DOI: 10.1128/jvi.00224-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/17/2009] [Indexed: 12/24/2022] Open
Abstract
The p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) play important roles in the host innate immune response. The protein kinase regulated by RNA (PKR) is implicated in p38 MAPK activation in response to proinflammatory signals in mouse embryonic fibroblasts. To test the role of PKR in the activation of p38 and JNK MAPKs in human cells following viral infection, HeLa cells made stably deficient in PKR by using an RNA interference strategy were compared to cells with sufficient PKR. The phosphorylation of both p38 and JNK in cells with sufficient PKR was activated following either infection with an E3L deletion (DeltaE3L) mutant of vaccinia virus or transfection with double-stranded RNA (dsRNA) in the absence of infection with wild-type vaccinia virus. The depletion of PKR by stable knockdown impaired the phosphorylation of both p38 and JNK induced by either the DeltaE3L mutant virus or dsRNA but not that induced by tumor necrosis factor alpha. The PKR-dependent activation of MAPKs in DeltaE3L mutant-infected cells was abolished by treatment with cytosine beta-d-arabinoside. The complementation of PKR-deficient cells with the human PKR wild-type protein, but not with the PKR catalytic mutant (K296R) protein, restored p38 and JNK phosphorylation following DeltaE3L mutant virus infection. Transient small interfering RNA knockdown established that the p38 and JNK kinase activation following DeltaE3L infection was dependent upon RIG-I-like receptor signal transduction pathway components, including the mitochondrial adapter IPS-1 protein.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
48
|
Kim KY, Baek A, Hwang JE, Choi YA, Jeong J, Lee MS, Cho DH, Lim JS, Kim KI, Yang Y. Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res 2009; 69:4018-26. [PMID: 19366811 DOI: 10.1158/0008-5472.can-08-2641] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low serum levels of adiponectin are a high risk factor for various types of cancer. Although adiponectin inhibits proliferation and metastasis of breast cancer cells, the underlying molecular mechanisms remain obscure. In this study, we show that adiponectin-activated AMPK reduces the invasiveness of MDA-MB-231 cells by stimulating dephosphorylation of AKT by increasing protein phosphatase 2A (PP2A) activity. Among the various regulatory B56 subunits, B56gamma was directly phosphorylated by AMPK at Ser(298) and Ser(336), leading to an increase of PP2A activity through dephosphorylation of PP2Ac at Tyr(307). We also show that both the blood levels of adiponectin and the tissue levels of PP2A activity were decreased in breast cancer patients and that the direct administration of adiponectin into tumor tissues stimulates PP2A activity. Taken together, these findings show that adiponectin, derived from adipocytes, negatively regulates the invasiveness of breast cancer cells by activating the tumor suppressor PP2A.
Collapse
Affiliation(s)
- Kun-yong Kim
- Department of Life Science, Research Center for Women's Diseases, Sookmyung Women's University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yang X, Chan C. Repression of PKR mediates palmitate-induced apoptosis in HepG2 cells through regulation of Bcl-2. Cell Res 2009; 19:469-86. [PMID: 19259124 PMCID: PMC2664847 DOI: 10.1038/cr.2009.25] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The present study shows that double-stranded RNA-dependent protein kinase (PKR) regulates the protein expression level and phosphorylation of Bcl-2 and plays an anti-apoptotic role in human hepatocellular carcinoma cells (HepG2). In various types of cells, saturated free fatty acids (FFAs), such as palmitate, have been shown to induce cellular apoptosis by several mechanisms. Palmitate down-regulates the activity of PKR and thereby decreases the level of Bcl-2 protein, mediated in part by reduced activation of the NF-kappaB transcription factor. In addition to the level of Bcl-2 protein, the phosphorylation of Bcl-2 at different amino acid residues, such as Ser70 and Ser87, is also important in regulating cellular apoptosis. The decrease in the phosphorylation of Bcl-2 at Ser70 upon exposure to palmitate is mediated by inhibition of PKR and possibly by c-Jun N-terminal kinase (JNK), whereas the phosphorylation of Bcl-2 at Ser87 is unaffected by palmitate or PKR. In summary, PKR mediates the regulation of the protein level and the phosphorylation status of Bcl-2, providing a novel mechanism of palmitate-induced apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Xuerui Yang
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
50
|
Magnusdottir A, Stenmark P, Flodin S, Nyman T, Kotenyova T, Gräslund S, Ogg D, Nordlund P. The structure of the PP2A regulatory subunit B56 gamma: the remaining piece of the PP2A jigsaw puzzle. Proteins 2009; 74:212-21. [PMID: 18618707 DOI: 10.1002/prot.22150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The PP2A serine/threonine phosphatase regulates a plethora of cellular processes. In the cell the predominant form of the enzyme is a heterotrimer, formed by a core dimer composed of a catalytic and a scaffolding subunit, which assemble together with one of a range of different regulatory B subunits. Here, we present the first structure of a free non-complexed B subunit, B56 gamma. Comparison with the recent structures of a heterotrimeric complex and the core dimer reveals several significant conformational changes in the interface region between the B56 gamma and the core dimer. These allow for an assembly scheme of the PP2A holoenzyme to be put forth where B56 gamma first complexes with the scaffolding subunit and subsequently binds to the catalytic subunit and this induces the formation of a binding site for the invariant C-terminus of the catalytic subunit that locks in the complex as a last step of assembly.
Collapse
Affiliation(s)
- Audur Magnusdottir
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|