1
|
González‐Garrido C, Prado F. Novel insights into the roles of Cdc7 in response to replication stress. FEBS J 2022. [DOI: 10.1111/febs.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Cristina González‐Garrido
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| |
Collapse
|
2
|
Aricthota S, Haldar D. DDK/Hsk1 phosphorylates and targets fission yeast histone deacetylase Hst4 for degradation to stabilize stalled DNA replication forks. eLife 2021; 10:70787. [PMID: 34608864 PMCID: PMC8565929 DOI: 10.7554/elife.70787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
In eukaryotes, paused replication forks are prone to collapse, which leads to genomic instability, a hallmark of cancer. Dbf4-dependent kinase (DDK)/Hsk1Cdc7 is a conserved replication initiator kinase with conflicting roles in replication stress response. Here, we show that fission yeast DDK/Hsk1 phosphorylates sirtuin, Hst4 upon replication stress at C-terminal serine residues. Phosphorylation of Hst4 by DDK marks it for degradation via the ubiquitin ligase SCFpof3. Phosphorylation-defective hst4 mutant (4SA-hst4) displays defective recovery from replication stress, faulty fork restart, slow S-phase progression and decreased viability. The highly conserved fork protection complex (FPC) stabilizes stalled replication forks. We found that the recruitment of FPC components, Swi1 and Mcl1 to the chromatin is compromised in the 4SA-hst4 mutant, although whole cell levels increased. These defects are dependent upon H3K56ac and independent of intra S-phase checkpoint activation. Finally, we show conservation of H3K56ac-dependent regulation of Timeless, Tipin, and And-1 in human cells. We propose that degradation of Hst4 via DDK increases H3K56ac, changing the chromatin state in the vicinity of stalled forks facilitating recruitment and function of FPC. Overall, this study identified a crucial role of DDK and FPC in the regulation of replication stress response with implications in cancer therapeutics.
Collapse
Affiliation(s)
- Shalini Aricthota
- Laboratory of Chromatin Biology and Epigenetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Devyani Haldar
- Laboratory of Chromatin Biology and Epigenetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
3
|
Kim SM, Tripathi VP, Shen KF, Forsburg SL. Checkpoint Regulation of Nuclear Tos4 Defines S Phase Arrest in Fission Yeast. G3 (BETHESDA, MD.) 2020; 10:255-266. [PMID: 31719112 PMCID: PMC6945033 DOI: 10.1534/g3.119.400726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023]
Abstract
From yeast to humans, the cell cycle is tightly controlled by regulatory networks that regulate cell proliferation and can be monitored by dynamic visual markers in living cells. We have observed S phase progression by monitoring nuclear accumulation of the FHA-containing DNA binding protein Tos4, which is expressed in the G1/S phase transition. We use Tos4 localization to distinguish three classes of DNA replication mutants: those that arrest with an apparent 1C DNA content and accumulate Tos4 at the restrictive temperature; those that arrest with an apparent 2C DNA content, that do not accumulate Tos4; and those that proceed into mitosis despite a 1C DNA content, again without Tos4 accumulation. Our data indicate that Tos4 localization in these conditions is responsive to checkpoint kinases, with activation of the Cds1 checkpoint kinase promoting Tos4 retention in the nucleus, and activation of the Chk1 damage checkpoint promoting its turnover. Tos4 localization therefore allows us to monitor checkpoint-dependent activation that responds to replication failure in early vs. late S phase.
Collapse
Affiliation(s)
- Seong M Kim
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Vishnu P Tripathi
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Kuo-Fang Shen
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| |
Collapse
|
4
|
Shen KF, Forsburg SL. Overlapping Roles in Chromosome Segregation for Heterochromatin Protein 1 (Swi6) and DDK in Schizosaccharomyces pombe. Genetics 2019; 212:417-430. [PMID: 31000521 PMCID: PMC6553818 DOI: 10.1534/genetics.119.302125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022] Open
Abstract
Fission yeast Swi6 is a human HP1 homolog that plays important roles in multiple cellular processes. In addition to its role in maintaining heterochromatin silencing, Swi6 is required for cohesin enrichment at the pericentromere. Loss of Swi6 leads to abnormal mitosis, including defects in the establishment of bioriented sister kinetochores and microtubule attachment. Swi6 interacts with Dfp1, a regulatory subunit of DBF4-dependent kinase (DDK), and failure to recruit Dfp1 to the pericentromere results in late DNA replication. Using the dfp1-3A mutant allele, which specifically disrupts Swi6-Dfp1 association, we investigated how interaction between Swi6 and Dfp1 affects chromosome dynamics. We find that disrupting the interaction between Swi6 and Dfp1 delays mitotic progression in a spindle assembly checkpoint-dependent manner. Artificially tethering Dfp1 back to the pericentromere is sufficient to restore normal spindle length and rescue segregation defects in swi6-deleted cells. However, Swi6 is necessary for centromeric localization of Rad21-GFP independent of DDK. Our data indicate that DDK contributes to mitotic chromosome segregation in pathways that partly overlap with, but can be separated from both, Swi6 and the other HP1 homolog, Chp2.
Collapse
Affiliation(s)
- Kuo-Fang Shen
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-2910
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-2910
| |
Collapse
|
5
|
Sasi NK, Coquel F, Lin YL, MacKeigan JP, Pasero P, Weinreich M. DDK Has a Primary Role in Processing Stalled Replication Forks to Initiate Downstream Checkpoint Signaling. Neoplasia 2018; 20:985-995. [PMID: 30157471 PMCID: PMC6111017 DOI: 10.1016/j.neo.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/05/2023]
Abstract
CDC7-DBF4 kinase (DDK) initiates DNA replication in eukaryotes by activating the replicative MCM helicase. DDK has diverse and apparently conflicting roles in the replication checkpoint response in various organisms, but the underlying mechanisms are far from settled. We show that human DDK promotes limited resection of newly synthesized DNA at stalled replication forks or sites of DNA damage to initiate replication checkpoint signaling. DDK is also required for efficient fork restart and G2/M cell cycle arrest. DDK exhibits genetic interactions with the ssDNA exonuclease EXO1 and phosphorylates EXO1 in vitro. EXO1 is also required for nascent strand degradation following exposure to HU, so DDK might regulate EXO1 directly. Lastly, sublethal DDK inhibition causes various mitotic abnormalities, which is consistent with a checkpoint deficiency. In summary, DDK has a primary and previously undescribed role in the replication checkpoint to promote ssDNA accumulation at stalled forks, which is required to initiate a robust checkpoint response and cell cycle arrest to maintain genome integrity.
Collapse
Affiliation(s)
- Nanda Kumar Sasi
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI 49503; Laboratory of Systems Biology, VARI; Graduate Program in Genetics, Michigan State University, East Lansing, MI 48824
| | - Flavie Coquel
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | - Yea-Lih Lin
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | | | - Philippe Pasero
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI 49503.
| |
Collapse
|
6
|
Ranatunga NS, Forsburg SL. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4. G3 (BETHESDA, MD.) 2016; 6:3049-3063. [PMID: 27473316 PMCID: PMC5068930 DOI: 10.1534/g3.116.033571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+ Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure.
Collapse
Affiliation(s)
- Nimna S Ranatunga
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
7
|
Abstract
The intra-S phase checkpoint kinase of metazoa and yeast, ATR/MEC1, protects chromosomes from DNA damage and replication stress by phosphorylating subunits of the replicative helicase, MCM2-7. Here we describe an unprecedented ATR-dependent pathway in Tetrahymena thermophila in which the essential pre-replicative complex proteins, Orc1p, Orc2p and Mcm6p are degraded in hydroxyurea-treated S phase cells. Chromosomes undergo global changes during HU-arrest, including phosphorylation of histone H2A.X, deacetylation of histone H3, and an apparent diminution in DNA content that can be blocked by the deacetylase inhibitor sodium butyrate. Most remarkably, the cell cycle rapidly resumes upon hydroxyurea removal, and the entire genome is replicated prior to replenishment of ORC and MCMs. While stalled replication forks are elongated under these conditions, DNA fiber imaging revealed that most replicating molecules are produced by new initiation events. Furthermore, the sole origin in the ribosomal DNA minichromosome is inactive and replication appears to initiate near the rRNA promoter. The collective data raise the possibility that replication initiation occurs by an ORC-independent mechanism during the recovery from HU-induced replication stress. DNA damage and replication stress activate cell cycle checkpoint responses that protect the integrity of eukaryotic chromosomes. A well-conserved response involves the reversible phosphorylation of the replicative helicase, MCM2-7, which together with the origin recognition complex (ORC) dictates when and where replication initiates in chromosomes. The central role of ORC and MCMs in DNA replication is illustrated by the fact that small changes in abundance of these pre-replicative complex (pre-RC) components are poorly tolerated from yeast to humans. Here we describe an unprecedented replication stress checkpoint response in the early branching eukaryote, Tetrahymena thermophila, that is triggered by the depletion of dNTP pools with hydroxyurea (HU). Instead of transiently phosphorylating MCM subunits, ORC and MCM proteins are physically degraded in HU-treated Tetrahymena. Unexpectedly, upon HU removal the genome is completely and effortlessly replicated prior to replenishment of ORC and MCM components. Using DNA fiber imaging and 2D gel electrophoresis, we show that ORC-dependent mechanisms are bypassed during the recovery phase to produce bidirectional replication forks throughout the genome. Our findings suggest that Tetrahymena enlists an alternative mechanism for replication initiation, and that the underlying process can operate on a genome-wide scale.
Collapse
Affiliation(s)
- Pamela Y. Sandoval
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Po-Hsuen Lee
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xiangzhou Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Geoffrey M. Kapler
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Hsk1 (homologue of Cdc7 kinase 1) of the fission yeast is a member of the conserved Cdc7 (cell division cycle 7) kinase family, and promotes initiation of chromosome replication by phosphorylating Mcm (minichromosome maintenance) subunits, essential components for the replicative helicase. Recent studies, however, indicate more diverse roles for Hsk1/Cdc7 in regulation of various chromosome dynamics, including initiation of meiotic recombination, meiotic chromosome segregation, DNA repair, replication checkpoints, centromeric heterochromatin formation and so forth. Hsk1/Cdc7, with its unique target specificity, can now be regarded as an important modulator of various chromosome transactions.
Collapse
|
9
|
Blitzblau HG, Hochwagen A. ATR/Mec1 prevents lethal meiotic recombination initiation on partially replicated chromosomes in budding yeast. eLife 2013; 2:e00844. [PMID: 24137535 PMCID: PMC3787542 DOI: 10.7554/elife.00844] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/22/2013] [Indexed: 12/02/2022] Open
Abstract
During gamete formation, crossover recombination must occur on replicated DNA to ensure proper chromosome segregation in the first meiotic division. We identified a Mec1/ATR- and Dbf4-dependent replication checkpoint in budding yeast that prevents the earliest stage of recombination, the programmed induction of DNA double-strand breaks (DSBs), when pre-meiotic DNA replication was delayed. The checkpoint acts through three complementary mechanisms: inhibition of Mer2 phosphorylation by Dbf4-dependent Cdc7 kinase, preclusion of chromosomal loading of Rec114 and Mre11, and lowered abundance of the Spo11 nuclease. Without this checkpoint, cells formed DSBs on partially replicated chromosomes. Importantly, such DSBs frequently failed to be repaired and impeded further DNA synthesis, leading to a rapid loss in cell viability. We conclude that a checkpoint-dependent constraint of DSB formation to duplicated DNA is critical not only for meiotic chromosome assortment, but also to protect genome integrity during gametogenesis. DOI:http://dx.doi.org/10.7554/eLife.00844.001 Most cells in an organism contain two sets of chromosomes, one inherited from the mother and the other from the father. However, sexual reproduction relies on the production of gametes—eggs and sperm—which contain only one set of chromosomes. These are produced through a specialized form of cell division called meiosis. Meiosis begins with a cell replicating its entire genome. Maternal and paternal versions of each chromosome then pair up and swap sections of their DNA through a process known as homologous recombination. This gives rise to chromosomes with new combinations of maternal and paternal genes. Finally, the cell undergoes two successive rounds of division—the first to produce a cell with two nuclei containing two sets of chromosomes each, and the second to produce four gametes, each containing a single set of chromosomes. Homologous recombination requires the formation of double-strand breaks in the DNA, but it is essential that these do not form before DNA replication is complete. Now, Blitzblau and Hochwagen have used yeast, which is easy to maintain in the lab and to manipulate genetically, to reveal the molecular components of a checkpoint that controls this process. Blitzblau and Hochwagen first used an inhibitor called hydroxyurea to block DNA replication in yeast cells, and confirmed that this treatment also suppressed the formation of double-strand breaks. By selectively inhibiting the activity of individual proteins, it was shown that break formation was controlled by a checkpoint that relies on two conserved proteins, the checkpoint kinase Mec1 (homologous to the human tumour suppressor ATR) and the cell-division kinase DDK. Moreover, when double-strand breaks were allowed to form on partially replicated chromosomes, DNA replication stalled and meiosis could not proceed normally, with lethal results for the yeast. These results explain how DNA replication and recombination are coordinated during meiosis in yeast. Moreover, because the genes that control meiosis are highly conserved from yeast to humans, they have implications for research into human fertility. DOI:http://dx.doi.org/10.7554/eLife.00844.002
Collapse
|
10
|
Sabatinos SA, Green MD, Forsburg SL. Continued DNA synthesis in replication checkpoint mutants leads to fork collapse. Mol Cell Biol 2012; 32:4986-97. [PMID: 23045396 PMCID: PMC3510540 DOI: 10.1128/mcb.01060-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/01/2012] [Indexed: 01/06/2023] Open
Abstract
Hydroxyurea (HU) treatment activates the intra-S phase checkpoint proteins Cds1 and Mrc1 to prevent replication fork collapse. We found that prolonged DNA synthesis occurs in cds1Δ and mrc1Δ checkpoint mutants in the presence of HU and continues after release. This is coincident with increased DNA damage measured by phosphorylated histone H2A in whole cells during release. High-resolution live-cell imaging shows that mutants first accumulate extensive replication protein A (RPA) foci, followed by increased Rad52. Both DNA synthesis and RPA accumulation require the MCM helicase. We propose that a replication fork "collapse point" in HU-treated cells describes the point at which accumulated DNA damage and instability at individual forks prevent further replication. After this point, cds1Δ and mrc1Δ forks cannot complete genome replication. These observations establish replication fork collapse as a dynamic process that continues after release from HU block.
Collapse
Affiliation(s)
- Sarah A Sabatinos
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA.
| | | | | |
Collapse
|
11
|
Discovery of XL413, a potent and selective CDC7 inhibitor. Bioorg Med Chem Lett 2012; 22:3727-31. [PMID: 22560567 DOI: 10.1016/j.bmcl.2012.04.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/29/2012] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
Abstract
CDC7 is a serine/threonine kinase that has been shown to be required for the initiation and maintenance of DNA replication. Up-regulation of CDC7 is detected in multiple tumor cell lines, with inhibition of CDC7 resulting in cell cycle arrest. In this paper, we disclose the discovery of a potent and selective CDC7 inhibitor, XL413 (14), which was advanced into Phase 1 clinical trials. Starting from advanced lead 3, described in a preceding communication, we optimized the CDC7 potency and selectivity to demonstrate in vitro CDC7 dependent cell cycle arrest and in vivo tumor growth inhibition in a Colo-205 xenograft model.
Collapse
|
12
|
Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev 2012; 26:137-50. [PMID: 22279046 PMCID: PMC3273838 DOI: 10.1101/gad.178491.111] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/14/2011] [Indexed: 11/24/2022]
Abstract
One of the long-standing questions in eukaryotic DNA replication is the mechanisms that determine where and when a particular segment of the genome is replicated. Cdc7/Hsk1 is a conserved kinase required for initiation of DNA replication and may affect the site selection and timing of origin firing. We identified rif1Δ, a null mutant of rif1(+), a conserved telomere-binding factor, as an efficient bypass mutant of fission yeast hsk1. Extensive deregulation of dormant origins over a wide range of the chromosomes occurs in rif1Δ in the presence or absence of hydroxyurea (HU). At the same time, many early-firing, efficient origins are suppressed or delayed in firing timing in rif1Δ. Rif1 binds not only to telomeres, but also to many specific locations on the arm segments that only partially overlap with the prereplicative complex assembly sites, although Rif1 tends to bind in the vicinity of the late/dormant origins activated in rif1Δ. The binding to the arm segments occurs through M to G1 phase in a manner independent of Taz1 and appears to be essential for the replication timing program during the normal cell cycle. Our data demonstrate that Rif1 is a critical determinant of the origin activation program on the fission yeast chromosomes.
Collapse
Affiliation(s)
- Motoshi Hayano
- Genome Dynamics, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8613, Japan
| | - Yutaka Kanoh
- Genome Dynamics, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8613, Japan
| | - Seiji Matsumoto
- Genome Dynamics, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8613, Japan
| | - Claire Renard-Guillet
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hisao Masai
- Genome Dynamics, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8613, Japan
| |
Collapse
|
13
|
Lee AYL, Chiba T, Truong LN, Cheng AN, Do J, Cho MJ, Chen L, Wu X. Dbf4 is direct downstream target of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) protein to regulate intra-S-phase checkpoint. J Biol Chem 2011; 287:2531-43. [PMID: 22123827 DOI: 10.1074/jbc.m111.291104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dbf4/Cdc7 (Dbf4-dependent kinase (DDK)) is activated at the onset of S-phase, and its kinase activity is required for DNA replication initiation from each origin. We showed that DDK is an important target for the S-phase checkpoint in mammalian cells to suppress replication initiation and to protect replication forks. We demonstrated that ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) proteins directly phosphorylate Dbf4 in response to ionizing radiation and replication stress. We identified novel ATM/ATR phosphorylation sites on Dbf4 and showed that ATM/ATR-mediated phosphorylation of Dbf4 is critical for the intra-S-phase checkpoint to inhibit DNA replication. The kinase activity of DDK, which is not suppressed upon DNA damage, is required for fork protection under replication stress. We further demonstrated that ATM/ATR-mediated phosphorylation of Dbf4 is important for preventing DNA rereplication upon loss of replication licensing through the activation of the S-phase checkpoint. These studies indicate that DDK is a direct substrate of ATM and ATR to mediate the intra-S-phase checkpoint in mammalian cells.
Collapse
Affiliation(s)
- Alan Yueh-Luen Lee
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Matsumoto S, Hayano M, Kanoh Y, Masai H. Multiple pathways can bypass the essential role of fission yeast Hsk1 kinase in DNA replication initiation. ACTA ACUST UNITED AC 2011; 195:387-401. [PMID: 22024164 PMCID: PMC3206344 DOI: 10.1083/jcb.201107025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A number of different genetic backgrounds and growth conditions bypass DNA replication defects caused by the absence of yeast Hsk1 kinase, demonstrating the plasticity of the eukaryotic DNA replication program. Cdc7/Hsk1 is a conserved kinase required for initiation of DNA replication that potentially regulates timing and locations of replication origin firing. Here, we show that viability of fission yeast hsk1Δ cells can be restored by loss of mrc1, which is required for maintenance of replication fork integrity, by cds1Δ, or by a checkpoint-deficient mutant of mrc1. In these mutants, normally inactive origins are activated in the presence of hydroxyurea and binding of Cdc45 to MCM is stimulated. mrc1Δ bypasses hsk1Δ more efficiently because of its checkpoint-independent inhibitory functions. Unexpectedly, hsk1Δ is viable at 37°C. More DNA is synthesized, and some dormant origins fire in the presence of hydroxyurea at 37°C. Furthermore, hsk1Δ bypass strains grow poorly at 25°C compared with higher temperatures. Our results show that Hsk1 functions for DNA replication can be bypassed by different genetic backgrounds as well as under varied physiological conditions, providing additional evidence for plasticity of the replication program in eukaryotes.
Collapse
Affiliation(s)
- Seiji Matsumoto
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8613, Japan
| | | | | | | |
Collapse
|
15
|
Stead BE, Brandl CJ, Davey MJ. Phosphorylation of Mcm2 modulates Mcm2-7 activity and affects the cell's response to DNA damage. Nucleic Acids Res 2011; 39:6998-7008. [PMID: 21596784 PMCID: PMC3167627 DOI: 10.1093/nar/gkr371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The S-phase kinase, DDK controls DNA replication through phosphorylation of the replicative helicase, Mcm2–7. We show that phosphorylation of Mcm2 at S164 and S170 is not essential for viability. However, the relevance of Mcm2 phosphorylation is demonstrated by the sensitivity of a strain containing alanine at these positions (mcm2AA) to methyl methanesulfonate (MMS) and caffeine. Consistent with a role for Mcm2 phosphorylation in response to DNA damage, the mcm2AA strain accumulates more RPA foci than wild type. An allele with the phosphomimetic mutations S164E and S170E (mcm2EE) suppresses the MMS and caffeine sensitivity caused by deficiencies in DDK function. In vitro, phosphorylation of Mcm2 or Mcm2EE reduces the helicase activity of Mcm2–7 while increasing DNA binding. The reduced helicase activity likely results from the increased DNA binding since relaxing DNA binding with salt restores helicase activity. The finding that the ATP site mutant mcm2K549R has higher DNA binding and less ATPase than mcm2EE, but like mcm2AA results in drug sensitivity, supports a model whereby a specific range of Mcm2–7 activity is required in response to MMS and caffeine. We propose that phosphorylation of Mcm2 fine-tunes the activity of Mcm2–7, which in turn modulates DNA replication in response to DNA damage.
Collapse
Affiliation(s)
- Brent E Stead
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1
| | | | | |
Collapse
|
16
|
Dolan WP, Le AH, Schmidt H, Yuan JP, Green M, Forsburg SL. Fission yeast Hsk1 (Cdc7) kinase is required after replication initiation for induced mutagenesis and proper response to DNA alkylation damage. Genetics 2010; 185:39-53. [PMID: 20176980 PMCID: PMC2870973 DOI: 10.1534/genetics.109.112284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/16/2010] [Indexed: 11/18/2022] Open
Abstract
Genome stability in fission yeast requires the conserved S-phase kinase Hsk1 (Cdc7) and its partner Dfp1 (Dbf4). In addition to their established function in the initiation of DNA replication, we show that these proteins are important in maintaining genome integrity later in S phase and G2. hsk1 cells suffer increased rates of mitotic recombination and require recombination proteins for survival. Both hsk1 and dfp1 mutants are acutely sensitive to alkylation damage yet defective in induced mutagenesis. Hsk1 and Dfp1 are associated with the chromatin even after S phase, and normal response to MMS damage correlates with the maintenance of intact Dfp1 on chromatin. A screen for MMS-sensitive mutants identified a novel truncation allele, rad35 (dfp1-(1-519)), as well as alleles of other damage-associated genes. Although Hsk1-Dfp1 functions with the Swi1-Swi3 fork protection complex, it also acts independently of the FPC to promote DNA repair. We conclude that Hsk1-Dfp1 kinase functions post-initiation to maintain replication fork stability, an activity potentially mediated by the C terminus of Dfp1.
Collapse
Affiliation(s)
- William P. Dolan
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Anh-Huy Le
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Henning Schmidt
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Ji-Ping Yuan
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Marc Green
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Susan L. Forsburg
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| |
Collapse
|
17
|
Abstract
Histone protein synthesis is activated as cells enter S phase to allow packaging of the newly replicated DNA into chromatin. In this issue of Developmental Cell, Takayama and coworkers elucidate a mechanism for silencing histone expression at the end of S phase in S. pombe. Failure to shut off histone expression disrupts centromeric chromatin structure.
Collapse
Affiliation(s)
- William F Marzluff
- The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
18
|
Takayama Y, Mamnun YM, Trickey M, Dhut S, Masuda F, Yamano H, Toda T, Saitoh S. Hsk1- and SCF(Pof3)-dependent proteolysis of S. pombe Ams2 ensures histone homeostasis and centromere function. Dev Cell 2010; 18:385-96. [PMID: 20230746 PMCID: PMC2880248 DOI: 10.1016/j.devcel.2009.12.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/03/2009] [Accepted: 12/22/2009] [Indexed: 12/18/2022]
Abstract
Schizosaccharomyces pombe GATA factor Ams2 is responsible for cell cycle-dependent transcriptional activation of all the core histone genes peaking at G1/S phase. Intriguingly, its own protein level also fluctuates concurrently. Here, we show that Ams2 is ubiquitylated and degraded through the SCF (Skp1-Cdc53/Cullin-1-F-box) ubiquitin ligase, in which F box protein Pof3 binds this protein. Ams2 is phosphorylated at multiple sites, which is required for SCF(Pof3)-dependent proteolysis. Hsk1/Cdc7 kinase physically associates with and phosphorylates Ams2. Even mild overexpression of Ams2 induces constitutive histone expression and chromosome instability, and its toxicity is exaggerated when Hsk1 function is compromised. This is partly attributable to abnormal incorporation of canonical H3 into the central CENP-A/Cnp1-rich centromere, thereby reversing specific chromatin structures to apparently normal nucleosomes. We propose that Hsk1 plays a vital role during post S phase in genome stability via SCF(Pof3)-mediated degradation of Ams2, thereby maintaining centromere integrity.
Collapse
Affiliation(s)
- Yuko Takayama
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Yasmine M. Mamnun
- Laboratory of Cell Regulation, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Michelle Trickey
- Cell Cycle Control Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK
| | - Susheela Dhut
- Laboratory of Cell Regulation, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Fumie Masuda
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Hiroyuki Yamano
- Cell Cycle Control Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK
| | - Takashi Toda
- Laboratory of Cell Regulation, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Shigeaki Saitoh
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| |
Collapse
|
19
|
Shimmoto M, Matsumoto S, Odagiri Y, Noguchi E, Russell P, Masai H. Interactions between Swi1-Swi3, Mrc1 and S phase kinase, Hsk1 may regulate cellular responses to stalled replication forks in fission yeast. Genes Cells 2009; 14:669-82. [PMID: 19422421 PMCID: PMC2837079 DOI: 10.1111/j.1365-2443.2009.01300.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Swi1-Swi3 replication fork protection complex and Mrc1 protein are required for stabilization of stalled replication forks in fission yeast. Hsk1 kinase also plays roles in checkpoint responses elicited by arrested replication forks. We show that both Swi1 and Swi3, the abundance of which are interdependent, are required for chromatin association of Mrc1. Co-immunoprecipitation experiments show the interactions of Swi1-Swi3, Mrc1 and Hsk1. Mrc1 interacts with Swi3 and Hsk1 proteins through its central segment (378-879) containing a SQ/TQ cluster, and this segment is sufficient for checkpoint reaction. The SQ/TQ cluster segment (536-673) is essential but not sufficient for the interactions and for resistance to replication inhibitor hydroxyurea. Mrc1 protein level is increased in hsk1-89 cells due to apparent stabilization, and we have identified a potential phosphodegron sequence. These results suggest that interactions of the Swi1-Swi3 complex and Hsk1 kinase with Mrc1 may play a role in cellular responses to stalled replication forks in fission yeast.
Collapse
Affiliation(s)
- Michie Shimmoto
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | - Seiji Matsumoto
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | - Yukari Odagiri
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - Paul Russell
- Departments of Molecular Biology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| |
Collapse
|
20
|
Sawa M, Masai H. Drug design with Cdc7 kinase: a potential novel cancer therapy target. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:255-64. [PMID: 19920912 PMCID: PMC2761190 DOI: 10.2147/dddt.s4303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Identification of novel molecular targets is critical in development of new and efficient cancer therapies. Kinases are one of the most common drug targets with a potential for cancer therapy. Cell cycle progression is regulated by a number of kinases, some of which are being developed to treat cancer. Cdc7 is a serine-threonine kinase originally discovered in budding yeast, which has been shown to be necessary to initiate the S phase. Inhibition of Cdc7 in cancer cells retards the progression of the S phase, accumulates DNA damage, and induces p53-independent cell death, but the same treatment in normal cells does not significantly affect of less than viability. Low-molecular-weight compounds that inhibit Cdc7 kinase with an IC50 10 nM have been identified, and shown to be effective in the inhibition of tumor growth in animal models. Thus Cdc7 kinase can be recognized as a novel molecular target for cancer therapy.
Collapse
|
21
|
Abstract
We discuss the mechanisms regulating entry into and progression through S phase in eukaryotic cells. Methods to study the G1/S transition are briefly reviewed and an overview of G1/S-checkpoints is given, with particular emphasis on fission yeast. Thereafter we discuss different aspects of the intra-S checkpoint and introduce the main molecular players and mechanisms.
Collapse
Affiliation(s)
- Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | | | | |
Collapse
|
22
|
Patel PK, Kommajosyula N, Rosebrock A, Bensimon A, Leatherwood J, Bechhoefer J, Rhind N. The Hsk1(Cdc7) replication kinase regulates origin efficiency. Mol Biol Cell 2008; 19:5550-8. [PMID: 18799612 PMCID: PMC2592646 DOI: 10.1091/mbc.e08-06-0645] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/28/2008] [Accepted: 09/08/2008] [Indexed: 11/11/2022] Open
Abstract
Origins of DNA replication are generally inefficient, with most firing in fewer than half of cell cycles. However, neither the mechanism nor the importance of the regulation of origin efficiency is clear. In fission yeast, origin firing is stochastic, leading us to hypothesize that origin inefficiency and stochasticity are the result of a diffusible, rate-limiting activator. We show that the Hsk1-Dfp1 replication kinase (the fission yeast Cdc7-Dbf4 homologue) plays such a role. Increasing or decreasing Hsk1-Dfp1 levels correspondingly increases or decreases origin efficiency. Furthermore, tethering Hsk1-Dfp1 near an origin increases the efficiency of that origin, suggesting that the effective local concentration of Hsk1-Dfp1 regulates origin firing. Using photobleaching, we show that Hsk1-Dfp1 is freely diffusible in the nucleus. These results support a model in which the accessibility of replication origins to Hsk1-Dfp1 regulates origin efficiency and provides a potential mechanistic link between chromatin structure and replication timing. By manipulating Hsk1-Dfp1 levels, we show that increasing or decreasing origin firing rates leads to an increase in genomic instability, demonstrating the biological importance of appropriate origin efficiency.
Collapse
Affiliation(s)
- Prasanta K. Patel
- *Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Naveen Kommajosyula
- *Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Adam Rosebrock
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794
| | - Aaron Bensimon
- Genomes Stability Unit, Pasteur Institute, 75724 Paris, France; and
| | - Janet Leatherwood
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Nicholas Rhind
- *Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
23
|
Checkpoint-dependent regulation of origin firing and replication fork movement in response to DNA damage in fission yeast. Mol Cell Biol 2008; 29:602-11. [PMID: 19001087 DOI: 10.1128/mcb.01319-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To elucidate the checkpoint mechanism responsible for slowing passage through S phase when fission yeast cells are treated with the DNA-damaging agent methyl methanesulfonate (MMS), we carried out two-dimensional gel analyses of replication intermediates in cells synchronized by cdc10 block (in G(1)) followed by release into synchronous S phase. The results indicated that under these conditions early-firing centromeric origins were partially delayed but late-firing telomeric origins were not delayed. Replication intermediates persisted in MMS-treated cells, suggesting that replication fork movement was inhibited. These effects were dependent on the Cds1 checkpoint kinase and were abolished in cells overexpressing the Cdc25 phosphatase, suggesting a role for the Cdc2 cyclin-dependent kinase. We conclude that both partial inhibition of the firing of a subset of origins and inhibition of replication fork movement contribute to the slowing of S phase in MMS-treated fission yeast cells.
Collapse
|
24
|
Szyjka SJ, Aparicio JG, Viggiani CJ, Knott S, Xu W, Tavaré S, Aparicio OM. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae. Genes Dev 2008; 22:1906-20. [PMID: 18628397 DOI: 10.1101/gad.1660408] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Replication fork stalling at a DNA lesion generates a damage signal that activates the Rad53 kinase, which plays a vital role in survival by stabilizing stalled replication forks. However, evidence that Rad53 directly modulates the activity of replication forks has been lacking, and the nature of fork stabilization has remained unclear. Recently, cells lacking the Psy2-Pph3 phosphatase were shown to be defective in dephosphorylation of Rad53 as well as replication fork restart after DNA damage, suggesting a mechanistic link between Rad53 deactivation and fork restart. To test this possibility we examined the progression of replication forks in methyl-methanesulfonate (MMS)-damaged cells, under different conditions of Rad53 activity. Hyperactivity of Rad53 in pph3Delta cells slows fork progression in MMS, whereas deactivation of Rad53, through expression of dominant-negative Rad53-KD, is sufficient to allow fork restart during recovery. Furthermore, combined deletion of PPH3 and PTC2, a second, unrelated Rad53 phosphatase, results in complete replication fork arrest and lethality in MMS, demonstrating that Rad53 deactivation is a key mechanism controlling fork restart. We propose a model for regulation of replication fork progression through damaged DNA involving a cycle of Rad53 activation and deactivation that coordinates replication restart with DNA repair.
Collapse
Affiliation(s)
- Shawn J Szyjka
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Crosstalk between Nap1 protein and Cds1 checkpoint kinase to maintain chromatin integrity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1595-604. [PMID: 18474252 DOI: 10.1016/j.bbamcr.2008.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 11/22/2022]
Abstract
The nucleosome assembly protein Nap1 has been implicated in various cellular functions such as histone shuttling into the nucleus, nucleosome assembly, chromatin remodelling, transcriptional control and cell-cycle regulation in Saccharomyces cerevisiae. In Schizosaccharomyces pombe nap1 null mutant cells are viable but they showed a delay in the onset of mitosis which is rescued by the absence of the replication Cds1 checkpoint kinase. In contrast, the absence of the DNA-damage Chk1 checkpoint kinase is unable to rescue the delay. Moreover, the double nap1 cds1 mutant cells lose viability and cells show positive H2AX phosphorylation, suggesting that the viability of nap1-deleted cells is due to the Cds1 kinase. We also show that overexpression of Nap1 protein blocks the cell cycle in G1 phase.
Collapse
|
26
|
Díaz-Cuervo H, Bueno A. Cds1 controls the release of Cdc14-like phosphatase Flp1 from the nucleolus to drive full activation of the checkpoint response to replication stress in fission yeast. Mol Biol Cell 2008; 19:2488-99. [PMID: 18385517 DOI: 10.1091/mbc.e07-08-0737] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Cdc14p-like phosphatase Flp1p (also known as Clp1p) is regulated by cell cycle-dependent changes in its subcellular localization. Flp1p is restricted to the nucleolus and spindle pole body until prophase, when it is dispersed throughout the nucleus, mitotic spindle, and medial ring. Once released, Flp1p antagonizes Cdc2p/cyclin activity by reverting Cdc2p-phosphorylation sites on Cdc25p. On replication stress, ataxia-telangiectasia mutated/ATM/Rad3-related kinase Rad3p activates Cds1p, which phosphorylates key proteins ensuring the stability of stalled DNA replication forks. Here, we show that replication stress induces changes in the subcellular localization of Flp1p in a checkpoint-dependent manner. Active Cds1p checkpoint kinase is required to release Flp1p into the nucleus. Consistently, a Flp1p mutant (flp1-9A) lacking all potential Cds1p phosphorylation sites fails to relocate in response to replication blocks and, similarly to cells lacking flp1 (Deltaflp1), presents defects in checkpoint response to replication stress. Deltaflp1 cells accumulate reduced levels of a less active Cds1p kinase in hydroxyurea (HU), indicating that nuclear Flp1p regulates Cds1p full activation. Consistently, Deltaflp1 and flp1-9A have an increased percentage of Rad22p-recombination foci during HU treatment. Together, our data show that by releasing Flp1p into the nucleus Cds1p checkpoint kinase modulates its own full activation during replication stress.
Collapse
Affiliation(s)
- Helena Díaz-Cuervo
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| | | |
Collapse
|
27
|
Bailis JM, Luche DD, Hunter T, Forsburg SL. Minichromosome maintenance proteins interact with checkpoint and recombination proteins to promote s-phase genome stability. Mol Cell Biol 2008; 28:1724-38. [PMID: 18180284 PMCID: PMC2258774 DOI: 10.1128/mcb.01717-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/19/2007] [Accepted: 12/19/2007] [Indexed: 12/14/2022] Open
Abstract
The minichromosome maintenance (MCM) complex plays essential, conserved roles throughout DNA synthesis: first, as a component of the prereplication complex at origins and, then, as a helicase associated with replication forks. Here we use fission yeast (Schizosaccharomyces pombe) as a model to demonstrate a role for the MCM complex in protecting replication fork structure and promoting recovery from replication arrest. Loss of MCM function generates lethal double-strand breaks at sites of DNA synthesis during replication elongation, suggesting replication fork collapse. MCM function also maintains the stability of forks stalled by hydroxyurea that activate the replication checkpoint. In cells where the checkpoint is activated, Mcm4 binds the Cds1 kinase and undergoes Cds1-dependent phosphorylation. MCM proteins also interact with proteins involved in homologous recombination, which promotes recovery from arrest by ensuring normal mitosis. We suggest that the MCM complex links replication fork stabilization with checkpoint arrest and recovery through direct interactions with checkpoint and recombination proteins and that this role in S-phase genome stability is conserved from yeast to human cells.
Collapse
Affiliation(s)
- Julie M Bailis
- Molecular and Computational Biology Section, University of Southern California, 1050 Childs Way RRI 201B, Los Angeles, CA 90089-2910, USA
| | | | | | | |
Collapse
|
28
|
Ogi H, Wang CZ, Nakai W, Kawasaki Y, Masumoto H. The role of the Saccharomyces cerevisiae Cdc7-Dbf4 complex in the replication checkpoint. Gene 2008; 414:32-40. [PMID: 18372119 DOI: 10.1016/j.gene.2008.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 02/03/2008] [Accepted: 02/11/2008] [Indexed: 01/23/2023]
Abstract
The Cdc7-Dbf4 complex is a conserved serine/threonine protein kinase essential for the initiation of eukaryotic DNA replication. Although an mcm5-bob1 mutation bypasses lethality conferred by mutations in CDC7 or DBF4, the Deltacdc7 mcm5-bob1 mutant is sensitive to hydroxyurea (HU), which induces replication stress. To elucidate the reasons for HU sensitivity conferred by deletion of CDC7, we examined the role of Cdc7-Dbf4 in the replication checkpoint. We found that in Cdc7-Dbf4-deficient cells exposed to replication stress, Rad53 remains in a hypophosphorylated form, anaphase spindle is elongated, and checkpoint-specific transcription is not induced. The hypophosphorylated Rad53 exhibits a low autophosphorylation activity, and recombinant Cdc7-Dbf4 phosphorylates Rad53 in vitro. These results suggest that Cdc7-Dbf4 is required for full activation of Rad53 in response to replication stress.
Collapse
Affiliation(s)
- Hiroo Ogi
- Laboratories for Biomolecular Networks, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of prereplication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage.
Collapse
Affiliation(s)
- R. A. Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045; ,
| | - T. M. Holzen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045; ,
| |
Collapse
|
30
|
Barkley LR, Ohmori H, Vaziri C. Integrating S-phase checkpoint signaling with trans-lesion synthesis of bulky DNA adducts. Cell Biochem Biophys 2007; 47:392-408. [PMID: 17652783 PMCID: PMC3103048 DOI: 10.1007/s12013-007-0032-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/12/2023]
Abstract
Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression.
Collapse
Affiliation(s)
- Laura R Barkley
- Department of Genetics and Genomics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
31
|
Ogino K, Hirota K, Matsumoto S, Takeda T, Ohta K, Arai KI, Masai H. Hsk1 kinase is required for induction of meiotic dsDNA breaks without involving checkpoint kinases in fission yeast. Proc Natl Acad Sci U S A 2006; 103:8131-6. [PMID: 16698922 PMCID: PMC1472441 DOI: 10.1073/pnas.0602498103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Indexed: 11/18/2022] Open
Abstract
Cdc7 kinase, conserved through evolution, is known to be essential for mitotic DNA replication. The role of Cdc7 in meiotic recombination was suggested in Saccharomyces cerevisiae, but its precise role has not been addressed. Here, we report that Hsk1, the Cdc7-related kinase in Schizosaccharomyces pombe, plays a crucial role during meiosis. In a hsk1 temperature-sensitive strain (hsk1-89), meiosis is arrested with one nucleus state before meiosis I in most of the cells and meiotic recombination frequency is reduced by one order of magnitude, whereas premeiotic DNA replication is delayed but is apparently completed. Strikingly, formation of meiotic dsDNA breaks (DSBs) are largely impaired in the mutant, and Hsk1 kinase activity is essential for these processes. Deletion of all three checkpoint kinases, namely Cds1, Chk1, and Mek1, does not restore DSB formation, meiosis, or Cdc2 activation, which is suppressed in hsk1-89, suggesting that these aberrations are not caused by known checkpoint pathways but that Hsk1 may regulate DSB formation and meiosis. Whereas transcriptional induction of some rec genes and horsetail movement are normal, chromatin remodeling at ade6-M26, a recombination hotspot, which is prerequisite for subsequent DSB formation at this locus, is not observed in hsk1-89. These results indicate unique and essential roles of Hsk1 kinase in the initiation of meiotic recombination and meiosis.
Collapse
Affiliation(s)
| | - Kouji Hirota
- Genetic System Regulation Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01, Japan; and
| | | | - Tadayuki Takeda
- Computational and Experimental Systems Biology Group, The Institute of Physical and Chemical Research (RIKEN), Genomic Sciences Center, Yokohama, Kanagawa 230-0045, Japan
| | - Kunihiro Ohta
- Genetic System Regulation Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01, Japan; and
| | - Ken-ichi Arai
- Department of Integrated Life Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan
| | | |
Collapse
|
32
|
Xu YJ, Davenport M, Kelly TJ. Two-stage mechanism for activation of the DNA replication checkpoint kinase Cds1 in fission yeast. Genes Dev 2006; 20:990-1003. [PMID: 16618806 PMCID: PMC1472306 DOI: 10.1101/gad.1406706] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 02/09/2006] [Indexed: 11/24/2022]
Abstract
The DNA replication checkpoint is a complex signal transduction pathway, present in all eukaryotic cells, that functions to maintain genomic integrity and cell viability when DNA replication is perturbed. In Schizosaccharomyces pombe the major effector of the replication checkpoint is the protein kinase Cds1. Activation of Cds1 is known to require the upstream kinase Rad3 and the mediator Mrc1, but the biochemical mechanism of activation is not well understood. We report that the replication checkpoint is activated in two stages. In the first stage, Mrc1 recruits Cds1 to stalled replication forks by interactions between the FHA domain of Cds1 and specific phosphorylated Rad3 consensus sites in Mrc1. Cds1 is then primed for activation by Rad3-dependent phosphorylation. In the second stage, primed Cds1 molecules dimerize via phospho-specific interactions mediated by the FHA domains and are activated by autophosphorylation. This two-stage activation mechanism for the replication checkpoint allows for rapid activation with a high signal-to-noise ratio.
Collapse
Affiliation(s)
- Yong-jie Xu
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
33
|
Abstract
There has been remarkable progress in the last 20 years in defining the molecular mechanisms that regulate initiation of DNA synthesis in eukaryotic cells. Replication origins in the DNA nucleate the ordered assembly of protein factors to form a prereplication complex (preRC) that is poised for DNA synthesis. Transition of the preRC to an active initiation complex is regulated by cyclin-dependent kinases and other signaling molecules, which promote further protein assembly and activate the mini chromosome maintenance helicase. We will review these mechanisms and describe the state of knowledge about the proteins involved. However, we will also consider an additional layer of complexity. The DNA in the cell is packaged with histone proteins into chromatin. Chromatin structure provides an additional layer of heritable information with associated epigenetic modifications. Thus, we will begin by describing chromatin structure, and how the cell generally controls access to the DNA. Access to the DNA requires active chromatin remodeling, specific histone modifications, and regulated histone deposition. Studies in transcription have revealed a variety of mechanisms that regulate DNA access, and some of these are likely to be shared with DNA replication. We will briefly describe heterochromatin as a model for an epigenetically inherited chromatin state. Next, we will describe the mechanisms of replication initiation and how these are affected by constraints of chromatin. Finally, chromatin must be reassembled with appropriate modifications following passage of the replication fork, and our third major topic will be the reassembly of chromatin and its associated epigenetic marks. Thus, in this chapter, we seek to bring together the studies of replication initiation and the studies of chromatin into a single holistic narrative.
Collapse
Affiliation(s)
- Angel P Tabancay
- Molecular and Computational Biology Section University of Southern California Los Angeles, California 90089, USA
| | | |
Collapse
|
34
|
Valentin G, Schwob E, Della Seta F. Dual role of the Cdc7-regulatory protein Dbf4 during yeast meiosis. J Biol Chem 2005; 281:2828-34. [PMID: 16319063 DOI: 10.1074/jbc.m510626200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Dbf4-dependent Cdc7 kinase (DDK) is essential for chromosome duplication in all eukaryotes, but was proposed to be dispensable for yeast pre-meiotic DNA replication. This discrepancy led us to investigate the role of the unstable Cdc7-regulatory protein Dbf4 in meiosis. We show that, when Dbf4 is depleted at the time of meiotic induction, cells enter the meiotic program but do not replicate their chromosomes. Surprisingly when Dbf4 is depleted after the initiation of DNA synthesis, S phase goes to completion, but most cells arrest before anaphase I. Deletion of the cohesin Rec8 suppresses this phenotype, suggesting a distinct role of DDK for meiotic chromosome segregation. As after Cdc5 depletion, a fraction of cells undergo a single equational division suggesting a failure to mono-orient sister kinetochores. Our results demonstrate that Dbf4 is essential for DNA replication during meiosis like in vegetative cells and provide evidence for an additional role in setting up the reductional division of meiosis I.
Collapse
Affiliation(s)
- Guillaume Valentin
- Institute of Molecular Genetics and Université Montpellier II, CNRS UMR5535-1919, Route de Mende, F-34293 Montpellier Cedex 5, France
| | | | | |
Collapse
|
35
|
Matsumoto S, Ogino K, Noguchi E, Russell P, Masai H. Hsk1-Dfp1/Him1, the Cdc7-Dbf4 kinase in Schizosaccharomyces pombe, associates with Swi1, a component of the replication fork protection complex. J Biol Chem 2005; 280:42536-42. [PMID: 16263721 DOI: 10.1074/jbc.m510575200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The protein kinase Hsk1 is essential for DNA replication in Schizosaccharomyces pombe. It associates with Dfp1/Him1 to form an active complex equivalent to the Cdc7-Dbf4 protein kinase in Saccharomyces cerevisiae. Swi1 and Swi3 are subunits of the replication fork protection complex in S. pombe that is homologous to the Tof1-Csm3 complex in S. cerevisiae. The fork protection complex helps to preserve the integrity of stalled replication forks and is important for activation of the checkpoint protein kinase Cds1 in response to fork arrest. Here we describe physical and genetic interactions involving Swi1 and Hsk1-Dfp1/Him1. Dfp1/Him1 was identified in a yeast two-hybrid screen with Swi1. Hsk1 and Dfp1/Him1 both co-immunoprecipitate with Swi1. Swi1 is required for growth of a temperature-sensitive hsk1 (hsk1ts) mutant at its semi-permissive temperature. Hsk1ts cells accumulate Rad22 (Rad52 homologue) DNA repair foci at the permissive temperature, as previously observed in swi1 cells, indicating that abnormal single-stranded DNA regions form near the replication fork in hsk1ts cells. hsk1ts cells were also unable to properly delay S-phase progression in the presence of a DNA alkylating agent and were partially defective in mating type switching. These data suggest that Hsk1-Dfp1/Him1 and Swi1-Swi3 complexes have interrelated roles in stabilization of arrested replication forks.
Collapse
Affiliation(s)
- Seiji Matsumoto
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | | | | | | | |
Collapse
|
36
|
Guo B, Romero J, Kim BJ, Lee H. High levels of Cdc7 and Dbf4 proteins can arrest cell-cycle progression. Eur J Cell Biol 2005; 84:927-38. [PMID: 16325502 DOI: 10.1016/j.ejcb.2005.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 09/07/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022] Open
Abstract
Cdc7-Dbf4 serine/threonine kinase is essential for initiation of DNA replication. It was previously found that overexpression of certain replication proteins such as Cdc6 and Cdt1 in fission yeast resulted in multiple rounds of DNA replication in the absence of mitosis. Since this phenomenon is dependent upon the presence of wild-type Cdc7/Hsk1, we hypothesized that high levels of Cdc7 and/or Dbf4 could also cause multiple rounds of DNA replication, or could facilitate entry into S phase. To test this hypothesis, we transiently overexpressed hamster Cdc7, Dbf4 or both in CHO cells. Direct observations of individual cells by fluorescence microscopy and flow cytometric analysis on cell populations suggest that overexpression of Cdc7 and/or Dbf4 does not result in multiple rounds of DNA replication or facilitating entry into S phase. In contrast, moderately increased levels of Dbf4, but not Cdc7, cause cell-cycle arrest in G2/M. This G2/M arrest coincides with hyperphosphorylation of Cdc2/Cdk1 at Tyr-15, raising the possibility that high levels of Dbf4 may activate a G2/M cell-cycle checkpoint. Further increase in Cdc7 and/or Dbf4 by 2-4 fold can arrest cells in G1 and significantly slow down S-phase progression for the cells already in S phase.
Collapse
Affiliation(s)
- Baoqing Guo
- Department of Research, Northeastern Ontario Regional Cancer Centre, Sudbury, Canada
| | | | | | | |
Collapse
|
37
|
Huang HK, Bailis JM, Leverson JD, Gómez EB, Forsburg SL, Hunter T. Suppressors of Bir1p (Survivin) identify roles for the chromosomal passenger protein Pic1p (INCENP) and the replication initiation factor Psf2p in chromosome segregation. Mol Cell Biol 2005; 25:9000-15. [PMID: 16199877 PMCID: PMC1265766 DOI: 10.1128/mcb.25.20.9000-9015.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/07/2005] [Accepted: 07/21/2005] [Indexed: 11/20/2022] Open
Abstract
Fission yeast Bir1p/Cut17p/Pbh1p, the homolog of human Survivin, is a conserved chromosomal passenger protein that is required for cell division and cytokinesis. To study how Bir1p promotes accurate segregation of chromosomes, we generated and analyzed a temperature-sensitive allele, bir1-46, and carried out genetic screens to find genes that interact with bir1(+). We identified Psf2p, a component of the GINS complex required for DNA replication initiation, as a high-copy-number suppressor of the bir1-46 growth defect. Loss of Psf2p function by depletion or deletion or by use of a temperature-sensitive allele, psf2-209, resulted in chromosome missegregation that was associated with mislocalization of Bir1p. We also found that the human homolog of Psf2p, PSF2, was required for proper chromosome segregation. In addition, we observed that high-copy-number expression of Pic1p, the fission yeast homolog of INCENP (inner centromere protein), suppressed bir1-46. Pic1p exhibited a localization pattern typical of chromosomal passenger proteins. Deletion of pic1(+) caused chromosome missegregation phenotypes similar to those of bir1-46. Our data suggest that Bir1p and Pic1p act as part of a conserved chromosomal passenger complex and that Psf2p/GINS indirectly affects the localization and function of this complex in chromosome segregation, perhaps through an S-phase role in centromere replication.
Collapse
Affiliation(s)
- Han-Kuei Huang
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
38
|
Masai H, You Z, Arai KI. Control of DNA replication: regulation and activation of eukaryotic replicative helicase, MCM. IUBMB Life 2005; 57:323-35. [PMID: 16036617 DOI: 10.1080/15216540500092419] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA replication is a key event of cell proliferation and the final target of signal transduction induced by growth factor stimulation. It is also strictly regulated during the ongoing cell cycle so that it occurs only once during S phase and that all the genetic materials are faithfully duplicated. DNA replication may be arrested or temporally inhibited due to a varieties of internal and external causes. Cells have developed intricate mechanisms to cope with the arrested replication forks to minimize the adversary effect on the stable maintenance of genetic materials. Helicases play a central role in DNA replication. In eukaryotes, MCM (minichromosome maintenance) protein complex plays essential roles as a replicative helicase. MCM4-6-7 complex possesses intrinsic DNA helicase activity which translocates on single-stranded DNA form 3' to 5'. Mammalian MCM4-6-7 helicase and ATPase activities are specifically stimulated by the presence of thymine-rich single-stranded DNA sequences onto which it is loaded. The activation appears to depend on the thymine content of this single-strand, and sequences derived from human replication origins can serve as potent activators of the MCM helicase. MCM is a prime target of Cdc7 kinase, known to be essential for activation of replication origins. We will discuss how the MCM may be activated at the replication origins by template DNA, phosphorylation, and interaction with other replicative proteins, and will present a model of how activation of MCM helicase by specific sequences may contribute to selection of replication initiation sites in higher eukaryotes.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | |
Collapse
|
39
|
Lambert S, Carr AM. Checkpoint responses to replication fork barriers. Biochimie 2005; 87:591-602. [PMID: 15989976 DOI: 10.1016/j.biochi.2004.10.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Accepted: 10/22/2004] [Indexed: 10/26/2022]
Abstract
The fidelity of DNA replication is of paramount importance to the maintenance of genome integrity. When an active replication fork is perturbed, multiple cellular pathways are recruited to stabilize the replication apparatus and to help to bypass or correct the causative problem. However, if the problem is not corrected, the fork may collapse, exposing free DNA ends to potentially inappropriate processing. In prokaryotes, replication fork collapse promotes the activity of recombination proteins to restore a replication fork. Recent work has demonstrated that recombination is also intimately linked to replication in eukaryotic cells, and that recombination proteins are recruited to collapsed, but not stalled, replication forks. In this review we discuss the different types of potential replication fork barriers (RFB) and how these distinct RFBs can result in different DNA structures at the stalled replication fork. The DNA structure checkpoints which act within S phase respond to different RFBs in different ways and we thus discuss the processes that are controlled by the DNA replication checkpoints, paying particular attention to the function of the intra-S phase checkpoint that stabilises the stalled fork.
Collapse
Affiliation(s)
- Sarah Lambert
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | | |
Collapse
|
40
|
Sommariva E, Pellny TK, Karahan N, Kumar S, Huberman JA, Dalgaard JZ. Schizosaccharomyces pombe Swi1, Swi3, and Hsk1 are components of a novel S-phase response pathway to alkylation damage. Mol Cell Biol 2005; 25:2770-84. [PMID: 15767681 PMCID: PMC1061638 DOI: 10.1128/mcb.25.7.2770-2784.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Swi1 and Swi3 proteins are required for mat1 imprinting and mating-type switching in Schizosaccharomyces pombe, where they mediate a pause of leading-strand replication in response to a lagging-strand signal. In addition, Swi1 has been demonstrated to be involved in the checkpoint response to stalled replication forks, as was described for the Saccharomyces cerevisiae homologue Tof1. This study addresses the roles of Swi1 and Swi3 during a replication process perturbed by the presence of template bases alkylated by methyl methanesulfonate (MMS). Both the swi1 and swi3 mutations have additive effects on MMS sensitivity and on the MMS-induced damage checkpoint response when combined with chk1 and cds1, but they are nonadditive with hsk1. Cells with swi1, swi3, or hsk1 mutations are also defective in slowing progression through S phase in response to MMS damage. Moreover, swi1 and swi3 strains show increased levels of genomic instability even in the absence of exogenously induced DNA damage. Chromosome fragmentation, increased levels of single-stranded DNA, increased recombination, and instability of replication forks stalled in the presence of hydroxyurea are observed, consistent with the possibility that the replication process is affected in these mutants. In conclusion, Swi1, Swi3, and Hsk1 act in a novel S-phase checkpoint pathway that contributes to replication fork maintenance and to survival of alkylation damage.
Collapse
Affiliation(s)
- Elena Sommariva
- Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Pessoa-Brandão L, Sclafani RA. CDC7/DBF4 functions in the translesion synthesis branch of the RAD6 epistasis group in Saccharomyces cerevisiae. Genetics 2005; 167:1597-610. [PMID: 15342501 PMCID: PMC1471023 DOI: 10.1534/genetics.103.021675] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CDC7 and DBF4 encode the essential Cdc7-Dbf4 protein kinase required for DNA replication in eukaryotes from yeast to human. Cdc7-Dbf4 is also required for DNA damage-induced mutagenesis, one of several postreplicational DNA damage tolerance mechanisms mediated by the RAD6 epistasis group. Several genes have been determined to function in separate branches within this group, including RAD5, REV3/REV7 (Pol zeta), RAD30 (Pol eta), and POL30 (PCNA). An extensive genetic analysis of the interactions between CDC7 and REV3, RAD30, RAD5, or POL30 in response to DNA damage was done to determine its role in the RAD6 pathway. CDC7, RAD5, POL30, and RAD30 were found to constitute four separate branches of the RAD6 epistasis group in response to UV and MMS exposure. CDC7 is also shown to function separately from REV3 in response to MMS. However, they belong in the same pathway in response to UV. We propose that the Cdc7-Dbf4 kinase associates with components of the translesion synthesis pathway and that this interaction is dependent upon the type of DNA damage. Finally, activation of the DNA damage checkpoint and the resulting cell cycle delay is intact in cdc7Delta mcm5-bob1 cells, suggesting a direct role for CDC7 in DNA repair/damage tolerance.
Collapse
Affiliation(s)
- Luis Pessoa-Brandão
- Molecular Biology Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
42
|
Williams DR, McIntosh JR. Mcl1p is a polymerase alpha replication accessory factor important for S-phase DNA damage survival. EUKARYOTIC CELL 2005; 4:166-77. [PMID: 15643072 PMCID: PMC544150 DOI: 10.1128/ec.4.1.166-177.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 10/26/2004] [Indexed: 01/25/2023]
Abstract
Mcl1p is an essential fission yeast chromatin-binding protein that belongs to a family of highly conserved eukaryotic proteins important for sister chromatid cohesion. The essential function is believed to result from its role as a Pol1p (polymerase alpha) accessory protein, a conclusion based primarily on analogy to Ctf4p's interaction with Pol1p. In this study, we show that Mcl1p also binds to Pol1p with high affinity for the N terminus of Pol1p during S phase and DNA damage. Characterization of an inducible allele of mcl1+, (nmt41)mcl1-MH, shows that altered expression levels of Mcl1p lead to sensitivity to DNA-damaging agents and synthetic lethality with the replication checkpoint mutations rad3Delta, rqh1Delta, and hsk1-1312. Further, we find that the overexpression of the S-phase checkpoint kinase, Cds1, or the loss of Hsk1 kinase activity can disrupt Mcl1p's interaction with chromatin and Pol1p during replication arrest with hydroxyurea. We take these data to mean that Mcl1p is a dynamic component of the polymerase alpha complex during replication and is important for the replication stress response in fission yeast.
Collapse
Affiliation(s)
- Dewight R Williams
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA.
| | | |
Collapse
|
43
|
Luciani MG, Oehlmann M, Blow JJ. Characterization of a novel ATR-dependent, Chk1-independent, intra-S-phase checkpoint that suppresses initiation of replication in Xenopus. J Cell Sci 2004; 117:6019-30. [PMID: 15536124 PMCID: PMC2701543 DOI: 10.1242/jcs.01400] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In most eukaryotes, replication origins fire asynchronously throughout S-phase according to a precise timing programme. When replication fork progression is inhibited, an intra-S-phase checkpoint is activated that blocks further origin firing and stabilizes existing replication forks to prevent them undergoing irreversible collapse. We show that chromatin incubated in Xenopus egg extracts displays a replication-timing programme in which firing of new replication origins during S phase depends on the continued activity of S-phase-inducing cyclin-dependent kinases. We also show that low concentrations of the DNA-polymerase inhibitor aphidicolin, which only slightly slows replication-fork progression, strongly suppress further initiation events. This intra-S-phase checkpoint can be overcome by caffeine, an inhibitor of the ATM/ATR checkpoint kinases, or by neutralizing antibodies to ATR. However, depletion or inhibition of Chk1 did not abolish the checkpoint. We could detect no significant effect on fork stability when this intra-S-phase checkpoint was inhibited. Interestingly, although caffeine could prevent the checkpoint from being activated, it could not rescue replication if added after the timing programme would normally have been executed. This suggests that special mechanisms might be necessary to reverse the effects of the intra-S-phase checkpoint once it has acted on particular origins.
Collapse
Affiliation(s)
- M Gloria Luciani
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | |
Collapse
|
44
|
Abstract
The MCM2-7 complex, which may act as a replicative helicase during DNA synthesis, plays a central role in S-phase genome stability. MCM proteins are required for processive DNA replication and are a target of S-phase checkpoints. Loss of MCM function causes DNA damage and genome instability. MCM expression is upregulated in proliferating cells, providing a diagnostic marker for both cancerous cells and cells with the potential to become malignant. The role of the MCM complex in genome integrity reflects its activity both at active replication forks and away from forks.
Collapse
Affiliation(s)
- Julie M Bailis
- Molecular and Cell Biology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
45
|
Ishimi Y, Komamura-Kohno Y, Karasawa-Shimizu K, Yamada K. Levels of MCM4 phosphorylation and DNA synthesis in DNA replication block checkpoint control. J Struct Biol 2004; 146:234-41. [PMID: 15037254 DOI: 10.1016/j.jsb.2003.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 11/19/2003] [Indexed: 10/26/2022]
Abstract
Blockage of a DNA replication fork movement not only stabilizes the fork structure but also prevents initiation of DNA replication. We reported that MCM4, a subunit of a putative replicative DNA helicase, is extensively phosphorylated in the presence of hydroxyurea (HU) or after exposure to UV irradiation. Here we examined the relationship between levels of MCM4 phosphorylation and DNA synthesis during DNA replication checkpoint control and after release of the control. The results suggest that there is roughly inverse correlation between these two levels; namely the higher the level of MCM4 phosphorylation, the lower the level of DNA synthesis. The presence of HU or UV irradiation can stimulate phosphorylation at several cyclin-dependent kinase (CDK) sites in MCM4, which can lead to inhibition of MCM4/6/7 helicase activity. These results are consistent with the notion that the phosphorylation of MCM4 is involved in regulation of DNA synthesis in the checkpoint control.
Collapse
Affiliation(s)
- Yukio Ishimi
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | | | | | |
Collapse
|
46
|
Abstract
The minichromosome maintenance (or MCM) protein family is composed of six related proteins that are conserved in all eukaryotes. They were first identified by genetic screens in yeast and subsequently analyzed in other experimental systems using molecular and biochemical methods. Early data led to the identification of MCMs as central players in the initiation of DNA replication. More recent studies have shown that MCM proteins also function in replication elongation, probably as a DNA helicase. This is consistent with structural analysis showing that the proteins interact together in a heterohexameric ring. However, MCMs are strikingly abundant and far exceed the stoichiometry of replication origins; they are widely distributed on unreplicated chromatin. Analysis of mcm mutant phenotypes and interactions with other factors have now implicated the MCM proteins in other chromosome transactions including damage response, transcription, and chromatin structure. These experiments indicate that the MCMs are central players in many aspects of genome stability.
Collapse
Affiliation(s)
- Susan L Forsburg
- Molecular & Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
47
|
Bailis JM, Bernard P, Antonelli R, Allshire RC, Forsburg SL. Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres. Nat Cell Biol 2003; 5:1111-6. [PMID: 14625560 DOI: 10.1038/ncb1069] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 10/23/2003] [Indexed: 02/05/2023]
Abstract
Heterochromatin performs a central role in chromosome segregation and stability by promoting cohesion at centromeres. Establishment of both heterochromatin-mediated silencing and cohesion requires passage through S phase, although the mechanism is unknown. Here we demonstrate that Schizosaccharomyces pombe Hsk1 (CDC7), a conserved Dbf4-dependent protein kinase (DDK) that regulates replication initiation, interacts with and phosphorylates the heterochromatin protein 1 (HP1) equivalent Swi6 (ref. 6). Hsk1 and its regulatory subunit Dfp1 function downstream of Swi6 localization to promote heterochromatin function and cohesion specifically at centromeres. This role for Hsk1-Dfp1 is separable from its replication initiation activity, providing a temporal link between S phase and centromere cohesion that is mediated by heterochromatin.
Collapse
Affiliation(s)
- Julie M Bailis
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
48
|
Catlett MG, Forsburg SL. Schizosaccharomyces pombe Rdh54 (TID1) acts with Rhp54 (RAD54) to repair meiotic double-strand breaks. Mol Biol Cell 2003; 14:4707-20. [PMID: 14551247 PMCID: PMC266785 DOI: 10.1091/mbc.e03-05-0288] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 07/24/2003] [Accepted: 07/25/2003] [Indexed: 11/11/2022] Open
Abstract
We report the characterization of rdh54+, the second fission yeast Schizosaccharomyces pombe Rad54 homolog. rdh54+ shares sequence and functional homology to budding yeast RDH54/TID1. Rdh54p is present during meiosis with appropriate timing for a meiotic recombination factor. It interacts with Rhp51 and the meiotic Rhp51 homolog Dmc1 in yeast two-hybrid assays. Deletion of rdh54+ has no effect on DNA damage repair during the haploid vegetative cell cycle. In meiosis, however, rdh54Delta shows decreased spore viability and homologous recombination with a concomitant increase in sister chromatid exchange. The rdh54Delta single mutant repairs meiotic breaks with similar timing to wild type, suggesting redundancy of meiotic recombination factors. Consistent with this, the rdh54Delta rhp54Delta double mutant fails to repair meiotic double strand breaks. Live cell analysis shows that rdh54Delta rhp54Delta asci do not arrest, but undergo both meiotic divisions with near normal timing, suggesting that failure to repair double strand breaks in S. pombe meiosis does not result in checkpoint arrest.
Collapse
Affiliation(s)
- Michael G Catlett
- Molecular & Cell Biology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
49
|
Yanow SK, Gold DA, Yoo HY, Dunphy WG. Xenopus Drf1, a regulator of Cdc7, displays checkpoint-dependent accumulation on chromatin during an S-phase arrest. J Biol Chem 2003; 278:41083-92. [PMID: 12897072 DOI: 10.1074/jbc.m307144200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have cloned a Xenopus Dbf4-related factor named Drf1 and characterized this protein by using Xenopus egg extracts. Drf1 forms an active complex with the kinase Cdc7. However, most of the Cdc7 in egg extracts is not associated with Drf1, which raises the possibility that some or all of the remaining Cdc7 is bound to another Dbf4-related protein. Immunodepletion of Drf1 does not prevent DNA replication in egg extracts. Consistent with this observation, Cdc45 can still associate with chromatin in Drf1-depleted extracts, albeit at significantly reduced levels. Nonetheless, Drf1 displays highly regulated binding to replicating chromatin. Treatment of egg extracts with aphidicolin results in a substantial accumulation of Drf1 on chromatin. This accumulation is blocked by addition of caffeine and by immunodepletion of either ATR or Claspin. These observations suggest that the increased binding of Drf1 to aphidicolin-treated chromatin is an active process that is mediated by a caffeine-sensitive checkpoint pathway containing ATR and Claspin. Abrogation of this pathway also leads to a large increase in the binding of Cdc45 to chromatin. This increase is substantially reduced in the absence of Drf1, which suggests that regulation of Drf1 might be involved in the suppression of Cdc45 loading during replication arrest. We also provide evidence that elimination of this checkpoint causes resumed initiation of DNA replication in both Xenopus tissue culture cells and egg extracts. Taken together, these observations argue that Drf1 is regulated by an intra-S-phase checkpoint mechanism that down-regulates the loading of Cdc45 onto chromatin containing DNA replication blocks.
Collapse
Affiliation(s)
- Stephanie K Yanow
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
50
|
Bondar T, Mirkin EV, Ucker DS, Walden WE, Mirkin SM, Raychaudhuri P. Schizosaccharomyces pombe Ddb1 is functionally linked to the replication checkpoint pathway. J Biol Chem 2003; 278:37006-37014. [PMID: 12857752 DOI: 10.1074/jbc.m303003200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizosaccharomyces pombe Ddb1 is homologous to the mammalian DDB1 protein, which has been implicated in damaged-DNA recognition and global genomic repair. However, a recent study suggested that the S. pombe Ddb1 is involved in cell division and chromosomal segregation. Here, we provide evidence that the S. pombe Ddb1 is functionally linked to the replication checkpoint control gene cds1. We show that the S. pombe strain lacking ddb1 has slow growth due to delayed replication progression. Flow cytometric analysis shows an extensive heterogeneity in DNA content. Furthermore, the Deltaddb1 strain is hypersensitive to UV irradiation in S phase and is unable to tolerate a prolonged replication block imposed by hydroxyurea. Interestingly, the Deltaddb1 strain exhibits a high level of the Cds1 kinase activity during passage through S phase. Moreover, mutation of the cds1 gene relieves the defects observed in Deltaddb1 strain. The results suggest that many of the defects observed in Deltaddb1 cells are linked to an aberrant activation of Cds1, and that Ddb1 is functionally linked to Cds1.
Collapse
Affiliation(s)
- Tanya Bondar
- Department of Biochemistry, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|