1
|
Della Valle F, Reddy P, Aguirre Vazquez A, Izpisua Belmonte JC. Reactivation of retrotransposable elements is associated with environmental stress and ageing. Nat Rev Genet 2025:10.1038/s41576-025-00829-y. [PMID: 40175591 DOI: 10.1038/s41576-025-00829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Retrotransposable elements (RTEs) are interspersed repetitive sequences that represent a large portion of eukaryotic genomes. Ancestral expansions of RTEs directly contributed to the shaping of these genomes and to the evolution of different species, particularly mammals. RTE activity is tightly regulated by different epigenetic mechanisms but this control becomes compromised as cells age and RTEs are reactivated. This dysregulation of RTEs leads to perturbation of cell function and organ and organismal homeostasis, which drives ageing and age-related disease. Environmental stress is associated with both ageing-related characteristics and the epigenetic mechanisms that control RTE activity, with accumulating evidence indicating that RTE reactivation mediates the effects of environmental stressors on ageing onset and progression. A better understanding of how RTEs are reactivated and their subsequent biological roles may help the development of therapies against ageing-related phenotypes and diseases.
Collapse
Affiliation(s)
| | - Pradeep Reddy
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | | | | |
Collapse
|
2
|
Chopra A, Feldman M, Levy D. Orchestrating epigenetics: a comprehensive review of the methyltransferase SETD6. Exp Mol Med 2025; 57:533-544. [PMID: 40102573 PMCID: PMC11958702 DOI: 10.1038/s12276-025-01423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 03/20/2025] Open
Abstract
Transcription is regulated by an intricate and extensive network of regulatory factors that impinge upon target genes. This process involves crosstalk between a plethora of factors that include chromatin structure, transcription factors and posttranslational modifications (PTMs). Among PTMs, lysine methylation has emerged as a key transcription regulatory PTM that occurs on histone and non-histone proteins, and several enzymatic regulators of lysine methylation are attractive targets for disease intervention. SET domain-containing protein 6 (SETD6) is a mono-methyltransferase that promotes the methylation of multiple transcription factors and other proteins involved in the regulation of gene expression programs. Many of these SETD6 substrates, such as the canonical SETD6 substrate RELA, are linked to cellular pathways that are highly relevant to human health and disease. Furthermore, SETD6 regulates numerous cancerous phenotypes and guards cancer cells from apoptosis. In the past 15 years, our knowledge of SETD6 substrate methylation and the biological roles of this enzyme has grown immensely. Here we provide a comprehensive overview of SETD6 that will enhance our understanding of this enzyme's role in chromatin and in selective transcriptional control, the contextual biological roles of this enzyme, and the molecular mechanisms and pathways in which SETD6 is involved, and we highlight the major trends in the SETD6 field.
Collapse
Affiliation(s)
- Anand Chopra
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Michal Feldman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
3
|
Ni L, Li H, Cui Y, Xiong W, Chen S, Huang H, Wang Z, Zhao H, Wang B. Construction of a circadian rhythm-related gene signature for predicting the prognosis and immune infiltration of breast cancer. Front Mol Biosci 2025; 12:1540672. [PMID: 39981438 PMCID: PMC11839441 DOI: 10.3389/fmolb.2025.1540672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Objectives In this study, we constructed a model based on circadian rhythm associated genes (CRRGs) to predict prognosis and immune infiltration in patients with breast cancer (BC). Materials and methods By using TCGA and CGDB databases, we conducted a comprehensive analysis of circadian rhythm gene expression and clinicopathological data. Three different machine learning algorithms were used to screen out the characteristic circadian genes associated with BC prognosis. On this basis, a circadian gene prediction model about BC prognosis was constructed and validated. We also evaluated the association of the model's risk score with immune cells and immune checkpoint genes, and analyzed prognostic genes and drug sensitivity in this model. Results We screened 62 DEGs, including 30 upregulated genes and 32 downregulated genes, and performed GO and KEGG analysis on them. The above 62 DEGs were included in Cox analysis, LASSO regression, Random Forest and SVMV-RFE, respectively, and then the intersection was used to obtain 5 prognostic related characteristic genes (SUV39H2, OPN4, RORB, FBXL6 and SIAH2). The Risk Score of each sample was calculated according to the expression level and risk coefficient of 5 genes, Risk Score= (SUV39H2 expression level ×0.0436) + (OPN4 expression level ×1.4270) + (RORB expression level ×0.1917) + (FBXL6 expression level ×0.3190) + (SIAH2 expression level × -0.1984). Conclusion SUV39H2, OPN4, RORB and FBXL6 were positively correlated with Risk Score, while SIAH2 was negatively correlated with Risk Score. The above five circadian rhythm genes can construct a risk model for predicting the prognosis and immune invasion of BC.
Collapse
Affiliation(s)
- Lin Ni
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - He Li
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
| | - Yanqi Cui
- Department of Cardiothoracic surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
| | - Wanqiu Xiong
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
| | - Shuming Chen
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
| | - Hancong Huang
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
| | - Zhiwei Wang
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Hu Zhao
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
- Department of General Surgery, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Bing Wang
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
- Department of General Surgery, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| |
Collapse
|
4
|
Wu S, Ren W, Hong J, Yang Y, Lu Y. Ablation of histone methyltransferase Suv39h2 in hepatocytes attenuates NASH in mice. Life Sci 2024; 343:122524. [PMID: 38401627 DOI: 10.1016/j.lfs.2024.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
AIMS Non-alcoholic steatohepatitis (NASH) is characterized by aberrant lipid metabolism in hepatocytes. We investigated the involvement of a histone H3K9 methyltransferase Suv39h2 in the pathogenesis of NASH. METHODS AND MATERIALS NASH is induced by feeding the mice with a high-fat high-carbohydrate (HFHC) diet or a high-fat choline-deficient amino acid defined (HFD-CDAA) diet. The Suv39h2f/f mice were crossbred with the Alb-Cre mice to specifically delete Suv39h2 in hepatocytes. KEY FINDINGS Ablation of Suv39h2 in hepatocytes improved insulin sensitivity of the mice fed either the HFHC diet or the CDAA-HFD diet. Importantly, Suv39h2 deletion significantly ameliorated NAFLD as evidenced by reduced lipid accumulation, inflammation, and fibrosis in the liver. RNA-seq uncovered Vanin-1 (Vnn1) as a novel transcriptional target for Suv39h2. Mechanistically, Suv39h2 repressed Vnn1 transcription in hepatocytes exposed to free fatty acids. Consistently, Vanin-1 knockdown normalized lipid accumulation in Suv39h2-null hepatocytes. Importantly, a significant correlation between Suv39h2, Vanin-1, and hepatic triglyceride levels was identified in NASH patients. SIGNIFICANCE Our study uncovers a novel mechanism whereby Suv39h2 may contribute to NASH pathogenesis and suggests that targeting the Suv39h2-Vanin-1 axis may yield novel therapeutic solutions against NASH.
Collapse
Affiliation(s)
- Shiqiang Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenjing Ren
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiameng Hong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Yunjie Lu
- Suzhou Medical College, Soochow University, Suzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the third Affiliated Hospital of Soochow University, Changzhou, China; Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, USA.
| |
Collapse
|
5
|
Wang J, Tan S, Zhang Y, Xu J, Li Y, Cheng Q, Ding C, Liu X, Chang J. Set7/9 aggravates ischemic brain injury via enhancing glutamine metabolism in a blocking Sirt5 manner. Cell Death Differ 2024; 31:511-523. [PMID: 38365969 PMCID: PMC11043079 DOI: 10.1038/s41418-024-01264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
The aberrant expression of methyltransferase Set7/9 plays a role in various diseases. However, the contribution of Set7/9 in ischemic stroke remains unclear. Here, we show ischemic injury results in a rapid elevation of Set7/9, which is accompanied by the downregulation of Sirt5, a deacetylase reported to protect against injury. Proteomic analysis identifies the decrease of chromobox homolog 1 (Cbx1) in knockdown Set7/9 neurons. Mechanistically, Set7/9 promotes the binding of Cbx1 to H3K9me2/3 and forms a transcription repressor complex at the Sirt5 promoter, ultimately repressing Sirt5 transcription. Thus, the deacetylation of Sirt5 substrate, glutaminase, which catalyzes the hydrolysis of glutamine to glutamate and ammonia, is decreased, promoting glutaminase expression and triggering excitotoxicity. Blocking Set7/9 eliminates H3K9me2/3 from the Sirt5 promoter and normalizes Sirt5 expression and Set7/9 knockout efficiently ameliorates brain ischemic injury by reducing the accumulation of ammonia and glutamate in a Sirt5-dependent manner. Collectively, the Set7/9-Sirt5 axis may be a promising epigenetic therapeutic target.
Collapse
Affiliation(s)
- Jinghuan Wang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Subei Tan
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 201203, China
| | - Yuyu Zhang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jie Xu
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Yuhui Li
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Qianwen Cheng
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 201203, China.
| | - Xinhua Liu
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Jun Chang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
6
|
Koryakov DE. Diversity and functional specialization of H3K9-specific histone methyltransferases. Bioessays 2024; 46:e2300163. [PMID: 38058121 DOI: 10.1002/bies.202300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Histone modifications play a critical role in the control over activities of the eukaryotic genome; among these chemical alterations, the methylation of lysine K9 in histone H3 (H3K9) is one of the most extensively studied. The number of enzymes capable of methylating H3K9 varies greatly across different organisms: in fission yeast, only one such methyltransferase is present, whereas in mammals, 10 are known. If there are several such enzymes, each of them must have some specific function, and they can interact with one another. Thus arises a complex system of interchangeability, "division of labor," and contacts with each other and with diverse proteins. Histone methyltransferases specialize in the number of methyl groups that they attach and have different intracellular localizations as well as different distributions on chromosomes. Each also shows distinct binding to different types of sequences and has a specific set of nonhistone substrates.
Collapse
Affiliation(s)
- Dmitry E Koryakov
- Lab of Molecular Cytogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, Russia
| |
Collapse
|
7
|
Romanov SE, Shloma VV, Maksimov DA, Koryakov DE. SetDB1 and Su(var)3-9 are essential for late stages of larval development of Drosophila melanogaster. Chromosome Res 2023; 31:35. [PMID: 38099968 DOI: 10.1007/s10577-023-09743-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Methylation of H3K9 histone residue is a marker of gene silencing in eukaryotes. Three enzymes responsible for adding this modification - G9a, SetDB1/Egg, and Su(var)3-9 - are known in Drosophila. To understand how simultaneous mutations of SetDB1 and Su(var)3-9 may affect the fly development, appropriate combinations were obtained. Double mutants egg; Su(var)3-9 displayed pronounced embryonic lethality, slower larval growth and died before or during metamorphosis. Analysis of transcription in larval salivary glands and wing imaginal disks indicated that the effect of double mutation is tissue-specific. In salivary gland chromosomes, affected genes display low H3K9me2 enrichment and are rarely bound by SetDB1 or Su(var)3-9. We suppose that each of these enzymes directly or indirectly controls its own set of gene targets in different organs, and double mutation results in an imbalanced developmental program. This also indicates that SetDB1 and Su(var)3-9 may affect transcription via H3K9-independent mechanisms. Unexpectedly, in double and triple mutants, amount of di- and tri-methylated H3K9 is drastically reduced, but not completely absent. We hypothesize that this residual methylation implies the existence of additional H3K9-specific methyltransferase in Drosophila.
Collapse
Affiliation(s)
- Stanislav E Romanov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Viktor V Shloma
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Dmitry E Koryakov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia.
| |
Collapse
|
8
|
Djeghloul D, Dimond A, Cheriyamkunnel S, Kramer H, Patel B, Brown K, Montoya A, Whilding C, Wang YF, Futschik ME, Veland N, Montavon T, Jenuwein T, Merkenschlager M, Fisher AG. Loss of H3K9 trimethylation alters chromosome compaction and transcription factor retention during mitosis. Nat Struct Mol Biol 2023; 30:489-501. [PMID: 36941433 PMCID: PMC10113154 DOI: 10.1038/s41594-023-00943-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/13/2023] [Indexed: 03/23/2023]
Abstract
Recent studies have shown that repressive chromatin machinery, including DNA methyltransferases and polycomb repressor complexes, binds to chromosomes throughout mitosis and their depletion results in increased chromosome size. In the present study, we show that enzymes that catalyze H3K9 methylation, such as Suv39h1, Suv39h2, G9a and Glp, are also retained on mitotic chromosomes. Surprisingly, however, mutants lacking histone 3 lysine 9 trimethylation (H3K9me3) have unusually small and compact mitotic chromosomes associated with increased histone H3 phospho Ser10 (H3S10ph) and H3K27me3 levels. Chromosome size and centromere compaction in these mutants were rescued by providing exogenous first protein lysine methyltransferase Suv39h1 or inhibiting Ezh2 activity. Quantitative proteomic comparisons of native mitotic chromosomes isolated from wild-type versus Suv39h1/Suv39h2 double-null mouse embryonic stem cells revealed that H3K9me3 was essential for the efficient retention of bookmarking factors such as Esrrb. These results highlight an unexpected role for repressive heterochromatin domains in preserving transcription factor binding through mitosis and underscore the importance of H3K9me3 for sustaining chromosome architecture and epigenetic memory during cell division.
Collapse
Affiliation(s)
- Dounia Djeghloul
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| | - Andrew Dimond
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Sherry Cheriyamkunnel
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Bhavik Patel
- Flow Cytometry Facility, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Karen Brown
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alex Montoya
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Chad Whilding
- Microscopy Facility, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Yi-Fang Wang
- Bioinformatics, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Matthias E Futschik
- Bioinformatics, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Nicolas Veland
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Thomas Montavon
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Jenuwein
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
9
|
Meng X, Xiao W, Sun J, Li W, Yuan H, Yu T, Zhang X, Dong W. CircPTK2/PABPC1/SETDB1 axis promotes EMT-mediated tumor metastasis and gemcitabine resistance in bladder cancer. Cancer Lett 2023; 554:216023. [PMID: 36436682 DOI: 10.1016/j.canlet.2022.216023] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Bladder cancer (BCa), characterized by high invasion, metastasis, recurrence, and chemoresistance, is one of the most prevalent urologic malignant tumors. Recent studies have highlighted the potential impact of the circRNAs-protein complex in tumorigenesis. However, the mechanisms by which the circRNAs-protein complex regulates BCa metastasis and chemoresistance remain elusive. Herein, we identified an upregulated circRNA, circPTK2, which could regulate SETDB1 expression by analyzing the transcriptome by RNA-sequencing. Importantly, using circRNA pulldown assay and RNA-binding protein immunoprecipitation, we identified PABPC1 as a robust novel interacting protein of circPTK2. Mechanistically, circPTK2 could bind to PABPC1 and enhance its ability to stabilize SETDB1 mRNA, thereby specifically promoting SETDB1 expression and facilitating SETDB1-mediated epithelial-mesenchymal transition (EMT). Functionally, overexpression of the circPTK2-SETDB1 axis markedly promoted migration, invasion, and gemcitabine resistance in vitro and enhanced lymph node metastasis in vivo. Collectively, our findings clarified a hitherto unexplored mechanism of the circPTK2/PABPC1/SETDB1 axis in EMT-mediated tumor metastasis and gemcitabine resistance in BCa.
Collapse
Affiliation(s)
- Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiayin Sun
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongwei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tiexi Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wei Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
10
|
Li M. Sex body: A nest of protein mixture. Front Cell Dev Biol 2023; 11:1165745. [PMID: 37123420 PMCID: PMC10140345 DOI: 10.3389/fcell.2023.1165745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
During the pachytene stage in mammalian meiosis, the X and Y chromosomes remain largely unsynapsed outside the pseudoautosomal region, while autosomes are fully synapsed. Then, the sex chromosomes are compartmentalized into a "sex body" in the nucleus and are subjected to meiotic sex chromosome inactivation (MSCI). For decades, the formation and functioning of the sex body and MSCI have been subjects worth exploring. Notably, a series of proteins have been reported to be located on the sex body area and inferred to play an essential role in MSCI; however, the proteins that are actually located in this area and how these proteins promote sex body formation and establish MSCI remain unclear. Collectively, the DNA damage response factors, downstream fanconi anemia proteins, and other canonical repressive histone modifications have been reported to be associated with the sex body. Here, this study reviews the factors located on the sex body area and tries to provide new insights into studying this mysterious domain.
Collapse
|
11
|
Levinsky AJ, McEdwards G, Sethna N, Currie MA. Targets of histone H3 lysine 9 methyltransferases. Front Cell Dev Biol 2022; 10:1026406. [PMID: 36568972 PMCID: PMC9768651 DOI: 10.3389/fcell.2022.1026406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Histone H3 lysine 9 di- and trimethylation are well-established marks of constitutively silenced heterochromatin domains found at repetitive DNA elements including pericentromeres, telomeres, and transposons. Loss of heterochromatin at these sites causes genomic instability in the form of aberrant DNA repair, chromosome segregation defects, replication stress, and transposition. H3K9 di- and trimethylation also regulate cell type-specific gene expression during development and form a barrier to cellular reprogramming. However, the role of H3K9 methyltransferases extends beyond histone methylation. There is a growing list of non-histone targets of H3K9 methyltransferases including transcription factors, steroid hormone receptors, histone modifying enzymes, and other chromatin regulatory proteins. Additionally, two classes of H3K9 methyltransferases modulate their own function through automethylation. Here we summarize the structure and function of mammalian H3K9 methyltransferases, their roles in genome regulation and constitutive heterochromatin, as well as the current repertoire of non-histone methylation targets including cases of automethylation.
Collapse
Affiliation(s)
- Aidan J. Levinsky
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Gregor McEdwards
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nasha Sethna
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mark A. Currie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada,*Correspondence: Mark A. Currie,
| |
Collapse
|
12
|
Yang S, Chen W, Jin S, Luo G, Jing X, Liu Q, Reinach PS, Qu J, Yan D. SUV39H1 regulates corneal epithelial wound healing via H3K9me3-mediated repression of p27. EYE AND VISION 2022; 9:4. [PMID: 35101125 PMCID: PMC8805298 DOI: 10.1186/s40662-022-00275-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/09/2022] [Indexed: 11/23/2022]
Abstract
Background Corneal epithelial wound healing (CEWH) is vital for maintaining the integrity and barrier function of the cornea. Although histone modifications mediating gene expression patterns is fundamental in some other tissues, it remains unclear whether these gene regulation patterns underlie CEWH. Suppressor of variegation 3-9 homolog 1 (SUV39H1) plays a vital role in mediating gene silencing via histone H3 trimethylation of lysine 9 (H3K9me3). This study aims to characterize the comprehensive signature of epigenetic modifiers and determine the role of SUV39H1 in CEWH. Methods NanoString nCounter technology was used to detect the differentially expressed epigenetic modifiers during CEWH. Bioinformatic analyses were performed to reveal their involvement in this process. After knockdown of SUV39H1 with siRNA transfection, we determined the function of SUV39H1 on cell proliferation and migration in human corneal epithelial cells (HCECs) via MTS, EdU, and wound-healing assay, respectively. Flow cytometry analysis further confirmed the effect of SUV39H1 on the cell cycle of HCECs. Loss-of-function assays for SUV39H1 with siRNA injection or chaetocin assessed the role of SUV39H1 on CEWH in vivo. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting characterized the expression of SUV39H1 and its target genes. Chromatin immunoprecipitation assay was used to evaluate the distributions of H3K9me3 marks at the promoters of SUV39H1 target genes. Results We first identified 92 differentially expressed epigenetic modifiers and revealed their involvement during CEWH. SUV39H1 was confirmed to be upregulated in response to corneal injury. Its downregulation significantly inhibited HCEC proliferation and retarded in vivo CEWH. Furthermore, knockdown of SUV39H1 upregulated the p27 expression level and reduced H3K9me3 marks at p27 promoter in HCECs. In addition, p27 was remarkably downregulated with elevated H3K9me3 marks at its promoter during in vivo CEWH. Conclusions SUV39H1 plays a critical role in regulating corneal epithelial cell proliferation via H3K9me3-mediated suppression of p27 during CEWH. Our findings suggest that epigenetic modifiers such as SUV39H1 can be potential therapeutic approaches to accelerate corneal repair. Supplementary Information The online version contains supplementary material available at 10.1186/s40662-022-00275-5.
Collapse
|
13
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
14
|
Su R, Wu X, Tao L, Wang C. The role of epigenetic modifications in Colorectal Cancer Metastasis. Clin Exp Metastasis 2022; 39:521-539. [PMID: 35429301 PMCID: PMC9338907 DOI: 10.1007/s10585-022-10163-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/18/2022] [Indexed: 12/19/2022]
Abstract
Distant metastasis is the major contributor to the high mortality rate of colorectal cancer (CRC). To overcome the poor prognosis caused by distant metastasis, the mechanisms of CRC metastasis should be further explored. Epigenetic events are the main mediators of gene regulation and further affect tumor progression. Recent studies have found that some epigenetic enzymes are often dysregulated or mutated in multiple tumor types, which prompted us to study the roles of these enzymes in CRC metastasis. In this review, we summarized the alteration of enzymes related to various modifications, including histone modification, nonhistone modification, DNA methylation, and RNA methylation, and their epigenetic mechanisms during the progression of CRC metastasis. Existing data suggest that targeting epigenetic enzymes is a promising strategy for the treatment of CRC metastasis.
Collapse
Affiliation(s)
- Riya Su
- Department of pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinlin Wu
- Department of General Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Liang Tao
- Department of pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Changshan Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
15
|
Feoli A, Viviano M, Cipriano A, Milite C, Castellano S, Sbardella G. Lysine methyltransferase inhibitors: where we are now. RSC Chem Biol 2022; 3:359-406. [PMID: 35441141 PMCID: PMC8985178 DOI: 10.1039/d1cb00196e] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Protein lysine methyltransferases constitute a large family of epigenetic writers that catalyse the transfer of a methyl group from the cofactor S-adenosyl-l-methionine to histone- and non-histone-specific substrates. Alterations in the expression and activity of these proteins have been linked to the genesis and progress of several diseases, including cancer, neurological disorders, and growing defects, hence they represent interesting targets for new therapeutic approaches. Over the past two decades, the identification of modulators of lysine methyltransferases has increased tremendously, clarifying the role of these proteins in different physio-pathological states. The aim of this review is to furnish an updated outlook about the protein lysine methyltransferases disclosed modulators, reporting their potency, their mechanism of action and their eventual use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| |
Collapse
|
16
|
Hansen AM, Ge Y, Schuster MB, Pundhir S, Jakobsen JS, Kalvisa A, Tapia MC, Gordon S, Ambri F, Bagger FO, Pandey D, Helin K, Porse BT. H3K9 dimethylation safeguards cancer cells against activation of the interferon pathway. SCIENCE ADVANCES 2022; 8:eabf8627. [PMID: 35302840 PMCID: PMC8932663 DOI: 10.1126/sciadv.abf8627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Activation of interferon genes constitutes an important anticancer pathway able to restrict proliferation of cancer cells. Here, we demonstrate that the H3K9me3 histone methyltransferase (HMT) suppressor of variegation 3-9 homolog 1 (SUV39H1) is required for the proliferation of acute myeloid leukemia (AML) and find that its loss leads to activation of the interferon pathway. Mechanistically, we show that this occurs via destabilization of a complex composed of SUV39H1 and the two H3K9me2 HMTs, G9A and GLP. Indeed, loss of H3K9me2 correlated with the activation of key interferon pathway genes, and interference with the activities of G9A/GLP largely phenocopied loss of SUV39H1. Last, we demonstrate that inhibition of G9A/GLP synergized with DNA demethylating agents and that SUV39H1 constitutes a potential biomarker for the response to hypomethylation treatment. Collectively, we uncovered a clinically relevant role for H3K9me2 in safeguarding cancer cells against activation of the interferon pathway.
Collapse
Affiliation(s)
- Anne Meldgaard Hansen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Janus Schou Jakobsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Adrija Kalvisa
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marta Cecylia Tapia
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sandra Gordon
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Francesca Ambri
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederik Otzen Bagger
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Deo Pandey
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Microbiology, Oslo University Hospital, NO-0373 Oslo, Norway
| | - Kristian Helin
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Center, New York, NY 10065, USA
- The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Bo Torben Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
17
|
Maeda R, Tachibana M. HP1 maintains protein stability of H3K9 methyltransferases and demethylases. EMBO Rep 2022; 23:e53581. [PMID: 35166421 PMCID: PMC8982598 DOI: 10.15252/embr.202153581] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Di- or tri-methylated H3K9 (H3K9me2/3) is an epigenetic mark of heterochromatin. Heterochromatin protein 1 (HP1) specifically recognizes H3K9me2/3, contributing to transcriptional suppression and spread of H3K9me2/3. Here, we demonstrate another role of HP1 in heterochromatin organization: regulation of protein stability of H3K9 methyltransferases (H3K9 MTs) and demethylases (H3K9 DMs). We show that HP1 interaction-defective mutants of H3K9 MTs, Suv39h1 and Setdb1, undergo protein degradation. We further establish mouse embryonic stem cell lines lacking all three HP1 paralogs. In the HP1-deficient cells, Suv39h1, Suv39h2, Setdb1, and G9a/GLP complex decrease at the protein level, and the enzymes are released from chromatin. HP1 mutants that cannot recognize H3K9me2/3 or form dimers cannot stabilize these enzymes, indicating that the tethering of H3K9 MTs to chromatin is critical for their protein stability. We show that HP1 also stabilizes H3K9 DMs, Jmjd1a and Jmjd1b. Our study indicates that mammalian HP1 forms a heterochromatin hub that governs protein stability of H3K9 MTs and H3K9 DMs.
Collapse
Affiliation(s)
- Ryo Maeda
- Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan,Institute of Advanced Medical SciencesTokushima UniversityTokushimaJapan
| | - Makoto Tachibana
- Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan,Institute of Advanced Medical SciencesTokushima UniversityTokushimaJapan
| |
Collapse
|
18
|
Sarkar S, Yadav S, Mehta P, Gupta G, Rajender S. Histone Methylation Regulates Gene Expression in the Round Spermatids to Set the RNA Payloads of Sperm. Reprod Sci 2022; 29:857-882. [PMID: 35015293 DOI: 10.1007/s43032-021-00837-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/19/2021] [Indexed: 12/30/2022]
Abstract
Gene expression during spermatogenesis undergoes significant changes due to a demanding sequence of mitosis, meiosis, and differentiation. We investigated the contribution of H3 histone modifications to gene regulation in the round spermatids. Round spermatids were purified from rat testes using centrifugal elutriation and Percoll density-gradient centrifugation. After enzymatic chromatin shearing, immuno-precipitation using antibodies against histone marks H3k4me3 and H3K9me3 was undertaken. The immunoprecipitated DNA fragments were subjected to massive parallel sequencing. Gene expression in round spermatids and sperm was analyzed by transcriptome sequencing using next-generation sequencing methods. ChIP-seq analysis showed significant peak enrichment in H3K4me3 marks in active chromatin regions and H3K9me3 peak enrichment in repressive regions. We found 53 genes which showed overlapping peak enrichment in both H3K4me3 and H3K9me3 marks. Some of the top H3K4me3-enriched genes were involved in sperm tail formation (Odf1, Odf3, Odf4, Oaz3, Ccdc42, Ccdc63, and Ccdc181), chromatin condensation (Dync1h1, Dynll1, and Kdm3a), and sperm functions such as acrosome reaction (Acrbp and Fabp9), energy generation (Gapdhs), and signaling for motility (Tssk1b, Tssk2, and Tssk4). Transcriptome sequencing in round spermatids found 64% transcripts of the H3K4me3-enriched genes at high levels and of about 25% of H3K9me3-enriched genes at very low levels. Transcriptome sequencing in sperm found that more than 99% of the ChIP-seq corresponding transcripts were also present in sperm. H3K4me3 enrichment in the round spermatids correlates significantly with gene expression and H3K9me3 correlates with gene silencing that contribute to sperm differentiation and setting the RNA payloads of sperm.
Collapse
Affiliation(s)
- Saumya Sarkar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Santosh Yadav
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gopal Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
19
|
Barral A, Pozo G, Ducrot L, Papadopoulos GL, Sauzet S, Oldfield AJ, Cavalli G, Déjardin J. SETDB1/NSD-dependent H3K9me3/H3K36me3 dual heterochromatin maintains gene expression profiles by bookmarking poised enhancers. Mol Cell 2022; 82:816-832.e12. [PMID: 35081363 PMCID: PMC8860380 DOI: 10.1016/j.molcel.2021.12.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Abstract
Gene silencing by heterochromatin plays a crucial role in cell identity. Here, we characterize the localization, the biogenesis, and the function of an atypical heterochromatin, which is simultaneously enriched in the typical H3K9me3 mark and in H3K36me3, a histone mark usually associated with gene expression. We identified thousands of dual regions in mouse embryonic stem (ES) cells that rely on the histone methyltransferases SET domain bifurcated 1 (SETDB1) and nuclear set domain (NSD)-containing proteins to generate H3K9me3 and H3K36me3, respectively. Upon SETDB1 removal, dual domains lose both marks, gain signatures of active enhancers, and come into contact with upregulated genes, suggesting that it might be an important pathway by which genes are controlled by heterochromatin. In differentiated tissues, a subset of these dual domains is destabilized and becomes enriched in active enhancer marks, providing a mechanistic insight into the involvement of heterochromatin in the maintenance of cell identity. H3K9me3 and H3K36me3 dual domains form on thousands of regions in ES cells Dual domains depend on SETDB1 and NSD enzymes Most upregulated genes in Setdb1 KO cells are not normally heterochromatinized Dual domains become enhancers for these genes upon Setdb1 loss
Collapse
|
20
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
21
|
Wang K, Zhu QZ, Ma XT, Cheng C. SUV39H2/KMT1B Inhibits the cardiomyocyte senescence phenotype by down-regulating BTG2/PC3. Aging (Albany NY) 2021; 13:22444-22458. [PMID: 34559682 PMCID: PMC8507256 DOI: 10.18632/aging.203551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/24/2021] [Indexed: 04/08/2023]
Abstract
Suppressor of variegation 3-9 homolog 2 (SUV39H2/KMT1B), a member of the SUV39 subfamily of lysine methyltransferases (KMTs), functions as an oncogene in various types of cancers. Here, we demonstrate a novel function of SUV39H2 that drives the cardiomyocyte aging process through BTG2. In our study, cardiomyocyte aging was induced by H2O2 and aging cells exhibited increases in SUV39H2. Knockdown of SUV39H2 accelerated cardiomyocyte senescence, while overexpression of SUV39H2 inhibited the cardiomyocyte senescence phenotype. These effects of SUV39H2 on cardiomyocytes were independent of DNA damage and mitochondrial dysfunction. Interestingly, RNA sequencing and bioinformatics analyses identified a strong correlation between SUV39H2 and BTG2. In addition to this, BTG2 protein levels were significantly increased in SUV39H2-deficient cardiomyocytes, and BTG2 knockdown virtually rescued the cardiomyocyte senescence phenotype induced by SUV39H2 knockdown. Taken together, these results indicate that SUV39H2 protects cardiomyocytes from H2O2 exposure-induced oxidative stress, DNA damage, and mitochondrial dysfunction by regulating the p53-BTG2 pathway. Our findings provide evidence that the activation of SUV39H2 has therapeutic or preventive potential against cardiac aging.
Collapse
Affiliation(s)
- Kan Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Qiang Zhang Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xian Tao Ma
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Cai Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
22
|
Xu Y, Qiao H. A Hypothesis: Linking Phase Separation to Meiotic Sex Chromosome Inactivation and Sex-Body Formation. Front Cell Dev Biol 2021; 9:674203. [PMID: 34485277 PMCID: PMC8415632 DOI: 10.3389/fcell.2021.674203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/22/2021] [Indexed: 01/12/2023] Open
Abstract
During meiotic prophase I, X and Y chromosomes in mammalian spermatocytes only stably pair at a small homologous region called the pseudoautosomal region (PAR). However, the rest of the sex chromosomes remain largely unsynapsed. The extensive asynapsis triggers transcriptional silencing - meiotic sex chromosome inactivation (MSCI). Along with MSCI, a special nuclear territory, sex body or XY body, forms. In the early steps of MSCI, DNA damage response (DDR) factors, such as BRCA1, ATR, and γH2AX, function as sensors and effectors of the silencing signals. Downstream canonical repressive histone modifications, including methylation, acetylation, ubiquitylation, and SUMOylation, are responsible for the transcriptional repression of the sex chromosomes. Nevertheless, mechanisms of the sex-body formation remain unclear. Liquid-liquid phase separation (LLPS) may drive the formation of several chromatin subcompartments, such as pericentric heterochromatin, nucleoli, inactive X chromosomes. Although several proteins involved in phase separation are found in the sex bodies, when and whether these proteins exert functions in the sex-body formation and MSCI is still unknown. Here, we reviewed recent publications on the mechanisms of MSCI and LLPS, pointed out the potential link between LLPS and the formation of sex bodies, and discussed its implications for future research.
Collapse
Affiliation(s)
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
23
|
Herlihy CP, Hahn S, Hermance NM, Crowley EA, Manning AL. Suv420 enrichment at the centromere limits Aurora B localization and function. J Cell Sci 2021; 134:jcs249763. [PMID: 34342353 PMCID: PMC8353524 DOI: 10.1242/jcs.249763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Centromere structure and function are defined by the epigenetic modification of histones at centromeric and pericentromeric chromatin. The constitutive heterochromatin found at pericentromeric regions is highly enriched for H3K9me3 and H4K20me3. Although mis-expression of the methyltransferase enzymes that regulate these marks, Suv39 and Suv420, is common in disease, the consequences of such changes are not well understood. Our data show that increased centromere localization of Suv39 and Suv420 suppresses centromere transcription and compromises localization of the mitotic kinase Aurora B, decreasing microtubule dynamics and compromising chromosome alignment and segregation. We find that inhibition of Suv420 methyltransferase activity partially restores Aurora B localization to centromeres and that restoration of the Aurora B-containing chromosomal passenger complex to the centromere is sufficient to suppress mitotic errors that result when Suv420 and H4K20me3 is enriched at centromeres. Consistent with a role for Suv39 and Suv420 in negatively regulating Aurora B, high expression of these enzymes corresponds with increased sensitivity to Aurora kinase inhibition in human cancer cells, suggesting that increased H3K9 and H4K20 methylation may be an underappreciated source of chromosome mis-segregation in cancer. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | | | - Amity L. Manning
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609USA
| |
Collapse
|
24
|
Weirich S, Khella MS, Jeltsch A. Structure, Activity and Function of the Suv39h1 and Suv39h2 Protein Lysine Methyltransferases. Life (Basel) 2021; 11:life11070703. [PMID: 34357075 PMCID: PMC8303541 DOI: 10.3390/life11070703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
SUV39H1 and SUV39H2 were the first protein lysine methyltransferases that were identified more than 20 years ago. Both enzymes introduce di- and trimethylation at histone H3 lysine 9 (H3K9) and have important roles in the maintenance of heterochromatin and gene repression. They consist of a catalytically active SET domain and a chromodomain, which binds H3K9me2/3 and has roles in enzyme targeting and regulation. The heterochromatic targeting of SUV39H enzymes is further enhanced by the interaction with HP1 proteins and repeat-associated RNA. SUV39H1 and SUV39H2 recognize an RKST motif with additional residues on both sides, mainly K4 in the case of SUV39H1 and G12 in the case of SUV39H2. Both SUV39H enzymes methylate different non-histone proteins including RAG2, DOT1L, SET8 and HupB in the case of SUV39H1 and LSD1 in the case of SUV39H2. Both enzymes are expressed in embryonic cells and have broad expression profiles in the adult body. SUV39H1 shows little tissue preference except thymus, while SUV39H2 is more highly expressed in the brain, testis and thymus. Both enzymes are connected to cancer, having oncogenic or tumor-suppressive roles depending on the tumor type. In addition, SUV39H2 has roles in the brain during early neurodevelopment.
Collapse
Affiliation(s)
- Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
| | - Mina S. Khella
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
- Correspondence:
| |
Collapse
|
25
|
Wang L, Chakraborty D, Iqbal K, Soares MJ. SUV39H2 controls trophoblast stem cell fate. Biochim Biophys Acta Gen Subj 2021; 1865:129867. [PMID: 33556426 PMCID: PMC8052280 DOI: 10.1016/j.bbagen.2021.129867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/31/2020] [Accepted: 02/01/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The placenta is formed by the coordinated expansion and differentiation of trophoblast stem (TS) cells along a multi-lineage pathway. Dynamic regulation of histone 3 lysine 9 (H3K9) methylation is pivotal to cell differentiation for many cell lineages, but little is known about its involvement in trophoblast cell development. METHODS Expression of H3K9 methyltransferases was surveyed in rat TS cells maintained in the stem state and following differentiation. The role of suppressor of variegation 3-9 homolog 2 (SUV39H2) in the regulation of trophoblast cell lineage development was investigated using a loss-of-function approach in rat TS cells and ex vivo cultured rat blastocysts. RESULTS Among the twelve-known H3K9 methyltransferases, only SUV39H2 exhibited robust differential expression in stem versus differentiated TS cells. SUV39H2 transcript and protein expression were high in the stem state and declined as TS cells differentiated. Disruption of SUV39H2 expression in TS cells led to an arrest in TS cell proliferation and activation of trophoblast cell differentiation. SUV39H2 regulated H3K9 methylation status at loci exhibiting differentiation-dependent gene expression. Analyses of SUV39H2 on ex vivo rat blastocyst development supported its role in regulating TS cell expansion and differentiation. We further identified SUV39H2 as a downstream target of caudal type homeobox 2, a master regulator of trophoblast lineage development. CONCLUSIONS Our findings indicate that SUV39H2 contributes to the maintenance of TS cells and restrains trophoblast cell differentiation. GENERAL SIGNIFICANCE SUV39H2 serves as a contributor to the epigenetic regulation of hemochorial placental development.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Damayanti Chakraborty
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America; Departments of Pediatrics and Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, United States of America; Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO, United States of America.
| |
Collapse
|
26
|
Davidovich C, Zhang Q. Allosteric regulation of histone lysine methyltransferases: from context-specific regulation to selective drugs. Biochem Soc Trans 2021; 49:591-607. [PMID: 33769454 PMCID: PMC8106495 DOI: 10.1042/bst20200238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Histone lysine methyltransferases (HKMTs) are key regulators of many cellular processes. By definition, HKMTs catalyse the methylation of lysine residues in histone proteins. The enzymatic activities of HKMTs are under precise control, with their allosteric regulation emerging as a prevalent paradigm. We review the molecular mechanisms of allosteric regulation of HKMTs using well-studied histone H3 (K4, K9, K27 and K36) methyltransferases as examples. We discuss the current advances and future potential in targeting allosteric sites of HKMTs for drug development.
Collapse
Affiliation(s)
- Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- EMBL-Australia and the ARC Centre of Excellence in Advanced Molecular Imaging, Clayton, Victoria, Australia
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Tu Z, Chen X, Tian T, Chen G, Huang M. Prognostic significance of epigenetic regulatory gene expression in patients with non-small-cell lung cancer. Aging (Albany NY) 2021; 13:7397-7415. [PMID: 33658396 PMCID: PMC7993691 DOI: 10.18632/aging.202600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
In this study, we used public databases to investigate the prognostic significance of epigenetic regulatory gene expression in patients with non small-cell lung cancer (NSCLC). Oncomine database analysis showed that the mRNA levels of seven epigenetic regulatory genes, UHRF1, EZH2, TTF2, SUV39H2, PCNA, WHSC1 and RAD54L, genes were significantly upregulated in NSCLC patients as compared to normal lung tissues. Functional enrichment analysis of these seven genes showed that the most enriched GO terms were DNA repair and rhythmic process, whereas, the most enriched KEGG pathway was lysine degradation pathway. The mRNA and protein expression levels of UHRF1, EZH2, TTF2, WHSC1 and RAD54L significantly correlated with tumor stage in NSCLC patients. Moreover, NSCLC patients exhibiting higher UHRF1, EZH2, WHSC1 and RAD54L mRNA and protein expression levels had poorer progression-free survival and overall survival. These findings demonstrate that UHRF1, EZH2, WHSC1 and RAD54L are potential prognostic biomarkers to distinguish high-risk from low-risk NSCLC patients.
Collapse
Affiliation(s)
- Zegui Tu
- Department of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,West China Medical School, Sichuan University, Chengdu 610041, P.R. China
| | - Xiancheng Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Tian Tian
- Department of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,West China Medical School, Sichuan University, Chengdu 610041, P.R. China
| | - Guo Chen
- Global Infotech Software Limited Corporation, Chengdu 610041, Sichuan, P.R. China
| | - Meijuan Huang
- Department of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,West China Medical School, Sichuan University, Chengdu 610041, P.R. China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| |
Collapse
|
28
|
Balmer P, Hariton WVJ, Sayar BS, Jagannathan V, Galichet A, Leeb T, Roosje P, Müller EJ. SUV39H2 epigenetic silencing controls fate conversion of epidermal stem and progenitor cells. J Cell Biol 2021; 220:211810. [PMID: 33604655 PMCID: PMC7898489 DOI: 10.1083/jcb.201908178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/04/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
Epigenetic histone trimethylation on lysine 9 (H3K9me3) represents a major molecular signal for genome stability and gene silencing conserved from worms to man. However, the functional role of the H3K9 trimethylases SUV39H1/2 in mammalian tissue homeostasis remains largely unknown. Here, we use a spontaneous dog model with monogenic inheritance of a recessive SUV39H2 loss-of-function variant and impaired differentiation in the epidermis, a self-renewing tissue fueled by stem and progenitor cell proliferation and differentiation. Our results demonstrate that SUV39H2 maintains the stem and progenitor cell pool by restricting fate conversion through H3K9me3 repressive marks on gene promoters encoding components of the Wnt/p63/adhesion axis. When SUV39H2 function is lost, repression is relieved, and enhanced Wnt activity causes progenitor cells to prematurely exit the cell cycle, a process mimicked by pharmacological Wnt activation in primary canine, human, and mouse keratinocytes. As a consequence, the stem cell growth potential of cultured SUV39H2-deficient canine keratinocytes is exhausted while epidermal differentiation and genome stability are compromised. Collectively, our data identify SUV39H2 and potentially also SUV39H1 as major gatekeepers in the delicate balance of progenitor fate conversion through H3K9me3 rate-limiting road blocks in basal layer keratinocytes.
Collapse
Affiliation(s)
- Pierre Balmer
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - William V J Hariton
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Beyza S Sayar
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Galichet
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Petra Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane J Müller
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Extreme disruption of heterochromatin is required for accelerated hematopoietic aging. Blood 2021; 135:2049-2058. [PMID: 32305044 DOI: 10.1182/blood.2019002990] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/22/2020] [Indexed: 12/22/2022] Open
Abstract
Loss of heterochromatin has been proposed as a universal mechanism of aging across different species and cell types. However, a comprehensive analysis of hematopoietic changes caused by heterochromatin loss is lacking. Moreover, there is conflict in the literature around the role of the major heterochromatic histone methyltransferase Suv39h1 in the aging process. Here, we use individual and dual deletion of Suv39h1 and Suv39h2 enzymes to examine the causal role of heterochromatin loss in hematopoietic cell development. Loss of neither Suv39h1 nor Suv39h2 individually had any effect on hematopoietic stem cell function or the development of mature lymphoid or myeloid lineages. However, deletion of both enzymes resulted in characteristic changes associated with aging such as reduced hematopoietic stem cell function, thymic involution and decreased lymphoid output with a skewing toward myeloid development, and increased memory T cells at the expense of naive T cells. These cellular changes were accompanied by molecular changes consistent with aging, including alterations in nuclear shape and increased nucleolar size. Together, our results indicate that the hematopoietic system has a remarkable tolerance for major disruptions in chromatin structure and reveal a role for Suv39h2 in depositing sufficient H3K9me3 to protect the entire hematopoietic system from changes associated with premature aging.
Collapse
|
30
|
Wang J, Yin X, He W, Xue W, Zhang J, Huang Y. SUV39H1 deficiency suppresses clear cell renal cell carcinoma growth by inducing ferroptosis. Acta Pharm Sin B 2021; 11:406-419. [PMID: 33643820 PMCID: PMC7893126 DOI: 10.1016/j.apsb.2020.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common kidney malignancy characterized by a poor prognosis. Suppressor of variegation 3-9 homolog 1 (SUV39H1), which encodes a histone H3 lysine 9 methyltransferase, has been reported to act as an oncogene in many cancers. However, it is unclear whether SUV39H1 is involved in ccRCC. Here, we report that SUV39H1 expression is frequently upregulated in ccRCC tumors and is significantly correlated with ccRCC progression. SUV39H1 expression level is an independent risk factor for cancer prognosis, and integration with several known prognostic factors predicted ccRCC patient prognosis with improved accuracy than the conventional SSIGN (stage, size, grade and necrosis) prognostic model. Mechanistically, we discovered that siRNA knockdown or pharmacological inhibition of SUV39H1 induced iron accumulation and lipid peroxidation, leading to ferroptosis that disrupted ccRCC cell growth in vitro and in vivo. We also show that SUV39H1 deficiency modulated the H3K9me3 status of the DPP4 (dipeptidyl-peptidase-4) gene promoter, resulting in upregulation of its expression that contributes to ferroptosis. Taken together, our findings provide the mechanistic insight into SUV39H1-dependent epigenetic control of ccRCC tumor growth and indicate that SUV39H1 may serve as a potential therapeutic target for ccRCC treatment.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaomao Yin
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei He
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
31
|
Parental nucleosome segregation and the inheritance of cellular identity. Nat Rev Genet 2021; 22:379-392. [PMID: 33500558 DOI: 10.1038/s41576-020-00312-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Gene expression programmes conferring cellular identity are achieved through the organization of chromatin structures that either facilitate or impede transcription. Among the key determinants of chromatin organization are the histone modifications that correlate with a given transcriptional status and chromatin state. Until recently, the details for the segregation of nucleosomes on DNA replication and their implications in re-establishing heritable chromatin domains remained unclear. Here, we review recent findings detailing the local segregation of parental nucleosomes and highlight important advances as to how histone methyltransferases associated with the establishment of repressive chromatin domains facilitate epigenetic inheritance.
Collapse
|
32
|
Kalashnikova DA, Maksimov DA, Romanov SE, Laktionov PP, Koryakov DE. SetDB1 and Su(var)3-9 play non-overlapping roles in somatic cell chromosomes of Drosophila melanogaster. J Cell Sci 2021; 134:jcs.253096. [PMID: 33288549 DOI: 10.1242/jcs.253096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
We explored functional roles of two H3K9-specific histone methyltransferases of Drosophila melanogaster, SetDB1 (also known as Eggless) and Su(var)3-9. Using the DamID approach, we generated the binding profile for SetDB1 in Drosophila salivary gland chromosomes, and matched it to the profile of Su(var)3-9. Unlike Su(var)3-9, SetDB1 turned out to be an euchromatic protein that is absent from repeated DNA compartments, and is largely restricted to transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of ubiquitously expressed genes. Significant SetDB1 association is also observed at binding sites for the insulator protein CP190. SetDB1 and H3K9 di- and tri-methylated (me2 and me3)-enriched sites tend to display poor overlap. At the same time, SetDB1 has a clear connection with the distribution of H3K27me3 mark. SetDB1 binds outside the domains possessing this modification, and about half of the borders of H3K27me3 domains are decorated by SetDB1 together with actively transcribed genes. On the basis of poor correlation between the distribution of SetDB1 and H3K9 methylation marks, we speculate that, in somatic cells, SetDB1 may contribute to the methylation of a broader set of chromosomal proteins than just H3K9. In addition, SetDB1 can be expected to play a role in the establishment of chromatin functional domains.
Collapse
Affiliation(s)
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| | - Stanislav E Romanov
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia.,Laboratory of Epigenetics, Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Petr P Laktionov
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia.,Laboratory of Epigenetics, Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry E Koryakov
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| |
Collapse
|
33
|
Her YR, Wang L, Chepelev I, Manterola M, Berkovits B, Cui K, Zhao K, Wolgemuth DJ. Genome-wide chromatin occupancy of BRDT and gene expression analysis suggest transcriptional partners and specific epigenetic landscapes that regulate gene expression during spermatogenesis. Mol Reprod Dev 2021; 88:141-157. [PMID: 33469999 DOI: 10.1002/mrd.23449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 11/09/2022]
Abstract
BRDT, a member of the BET family of double bromodomain-containing proteins, is essential for spermatogenesis in the mouse and has been postulated to be a key regulator of transcription in meiotic and post-meiotic cells. To understand the function of BRDT in these processes, we first characterized the genome-wide distribution of the BRDT binding sites, in particular within gene units, by ChIP-Seq analysis of enriched fractions of pachytene spermatocytes and round spermatids. In both cell types, BRDT binding sites were mainly located in promoters, first exons, and introns of genes. BRDT binding sites in promoters overlapped with several histone modifications and histone variants associated with active transcription, and were enriched for consensus sequences for specific transcription factors, including MYB, RFX, ETS, and ELF1 in pachytene spermatocytes, and JunD, c-Jun, CRE, and RFX in round spermatids. Subsequent integration of the ChIP-seq data with available transcriptome data revealed that stage-specific gene expression programs are associated with BRDT binding to their gene promoters, with most of the BDRT-bound genes being upregulated. Gene Ontology analysis further identified unique sets of genes enriched in diverse biological processes essential for meiosis and spermiogenesis between the two cell types, suggesting distinct developmentally stage-specific functions for BRDT. Taken together, our data suggest that BRDT cooperates with different transcription factors at distinctive chromatin regions within gene units to regulate diverse downstream target genes that function in male meiosis and spermiogenesis.
Collapse
Affiliation(s)
- Yoon Ra Her
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - Li Wang
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - Iouri Chepelev
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marcia Manterola
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Binyamin Berkovits
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Debra J Wolgemuth
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA.,Department Obstetrics & Gynecology, Columbia University Medical Center, New York, New York, USA.,Institute of Human Nutrition, Columbia University Medical Center, New York, New York, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
34
|
Saha N, Muntean AG. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1875:188498. [PMID: 33373647 DOI: 10.1016/j.bbcan.2020.188498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates histone H3 lysine 9 methylation in tumorigenesis. The SUV family of H3K9 methyltransferases, which include G9a, GLP, SETDB1, SETDB2, SUV39H1 and SUV39H2 deposit H3K9me1/2/3 marks at euchromatic and heterochromatic regions, catalyzed by their conserved SET domain. In cancer, this family of enzymes can be deregulated by genomic alterations and transcriptional mis-expression leading to alteration of transcriptional programs. In solid and hematological malignancies, studies have uncovered pro-oncogenic roles for several H3K9 methyltransferases and accordingly, small molecule inhibitors are being tested as potential therapies. However, emerging evidence demonstrate onco-suppressive roles for these enzymes in cancer development as well. Here, we review the role H3K9 methyltransferases play in tumorigenesis focusing on gene targets and biological pathways affected due to misregulation of these enzymes. We also discuss molecular mechanisms regulating H3K9 methyltransferases and their influence on cancer. Finally, we describe the impact of H3K9 methylation on therapy induced resistance in carcinoma. Converging evidence point to multi-faceted roles for H3K9 methyltransferases in development and cancer that encourages a deeper understanding of these enzymes to inform novel therapy.
Collapse
Affiliation(s)
- Nirmalya Saha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America.
| |
Collapse
|
35
|
Bruggeman JW, Irie N, Lodder P, van Pelt AMM, Koster J, Hamer G. Tumors Widely Express Hundreds of Embryonic Germline Genes. Cancers (Basel) 2020; 12:E3812. [PMID: 33348709 PMCID: PMC7766889 DOI: 10.3390/cancers12123812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
We have recently described a class of 756 genes that are widely expressed in cancers, but are normally restricted to adult germ cells, referred to as germ cell cancer genes (GC genes). We hypothesized that carcinogenesis involves the reactivation of biomolecular processes and regulatory mechanisms that, under normal circumstances, are restricted to germline development. This would imply that cancer cells share gene expression profiles with primordial germ cells (PGCs). We therefore compared the transcriptomes of human PGCs (hPGCs) and PGC-like cells (PGCLCs) with 17,382 samples from 54 healthy somatic tissues (GTEx) and 11,003 samples from 33 tumor types (TCGA), and identified 672 GC genes, expanding the known GC gene pool by 387 genes (51%). We found that GC genes are expressed in clusters that are often expressed in multiple tumor types. Moreover, the amount of GC gene expression correlates with poor survival in patients with lung adenocarcinoma. As GC genes specific to the embryonic germline are not expressed in any adult tissue, targeting these in cancer treatment may result in fewer side effects than targeting conventional cancer/testis (CT) or GC genes and may preserve fertility. We anticipate that our extended GC dataset enables improved understanding of tumor development and may provide multiple novel targets for cancer treatment development.
Collapse
Affiliation(s)
- Jan Willem Bruggeman
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.W.B.); (P.L.); (A.M.M.v.P.)
| | - Naoko Irie
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK;
| | - Paul Lodder
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.W.B.); (P.L.); (A.M.M.v.P.)
| | - Ans M. M. van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.W.B.); (P.L.); (A.M.M.v.P.)
| | - Jan Koster
- Department of Oncogenomics, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.W.B.); (P.L.); (A.M.M.v.P.)
| |
Collapse
|
36
|
Gong S, Maegawa S, Yang Y, Gopalakrishnan V, Zheng G, Cheng D. Licochalcone A is a Natural Selective Inhibitor of Arginine Methyltransferase 6. Biochem J 2020; 478:BCJ20200411. [PMID: 33245113 PMCID: PMC7850898 DOI: 10.1042/bcj20200411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Arginine methylation is a post-translational modification that is implicated in multiple biological functions including transcriptional regulation. The expression of protein arginine methyltransferases (PRMT) has been shown to be upregulated in various cancers. PRMTs have emerged as attractive targets for the development of new cancer therapies. Here, we describe the identification of a natural compound, licochalcone A, as a novel, reversible and selective inhibitor of PRMT6. Since expression of PRMT6 is upregulated in human breast cancers and is associated with oncogenesis, we used the human breast cancer cell line system to study the effect of licochalcone A treatment on PRMT6 activity, cell viability, cell cycle, and apoptosis. We demonstrated that licochalcone A is a non-S-adenosyl L-methionine (SAM) binding site competitive inhibitor of PRMT6. In MCF-7 cells, it inhibited PRMT6-dependent methylation of histone H3 at arginine 2 (H3R2), which resulted in a significant repression of estrogen receptor activity. Licochalcone A exhibited cytotoxicity towards human MCF-7 breast cancer cells, but not MCF-10A human breast epithelial cells, by upregulating p53 expression and blocking cell cycle progression at G2/M, followed by apoptosis. Thus, licochalcone A has potential for further development as a therapeutic agent against breast cancer.
Collapse
Affiliation(s)
- Shuai Gong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Shinji Maegawa
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Yanwen Yang
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Vidya Gopalakrishnan
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
- Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, U.S.A
| | - Donghang Cheng
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| |
Collapse
|
37
|
Singh SK, Bahal R, Rasmussen TP. Evidence that miR-152-3p is a positive regulator of SETDB1-mediated H3K9 histone methylation and serves as a toggle between histone and DNA methylation. Exp Cell Res 2020; 395:112216. [PMID: 32768498 DOI: 10.1016/j.yexcr.2020.112216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
SETDB1 is a histone methyltransferase that converts H3K9me2 to H3K9me3. SETDB1 activity and H3K9me3 are crucial for the formation of obligately silenced heterochromatin such as that of centromeres. Here we show that a microRNA, miR-152-3p, is involved in the regulation of SETDB1 protein levels, but surprisingly, miR-152-3p plays a positive regulatory role for SETDB1 expression. Inhibition of miR-152-3p by anti-miR treatment resulted in a robust reduction in SETDB1 protein levels, though SETDB1 mRNA levels were unaffected. This was also accompanied by a blockade of the biochemical pathway proceeding from H3K9me2 to H3K9me3 as evidenced by quantitative nucleosome ELISA assays that showed that H3K9me2 accumulates in cells treated with an anti-miR that targets miR-152-3p. In addition, the action of a miR-152-3p mimic increased flux of the reaction leading to H3K9me3. We also performed site-directed mutagenesis of three predicted miR-152-3p target recognition sequences to yield three precise deletions. Deletion of one of the three sites recapitulated the positive regulatory aspect of the action of miR-152-3p upon SETDB1 expression in a luciferase reporter assay. Previous studies have shown that miR-152-3p negatively regulates DNMT1, the sole maintenance DNA methyltransferase which is required for levels of 5-methylcytosine levels within DNA. Our results shown that miR-152-3p positively regulates the production of H3K9me3 by regulating the production of SETDB1. Therefore, our findings provide strong evidence that miR-152-3p can serve as a toggle switch that regulates the balance between DNA methylation and H3K9 histone methylation in constitutive heterochromatin.
Collapse
Affiliation(s)
- Supriya K Singh
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Theodore P Rasmussen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA; Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA; University of Connecticut Stem Cell Institute, Storrs/Farmington, CT, USA.
| |
Collapse
|
38
|
From 1957 to Nowadays: A Brief History of Epigenetics. Int J Mol Sci 2020; 21:ijms21207571. [PMID: 33066397 PMCID: PMC7588895 DOI: 10.3390/ijms21207571] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
Due to the spectacular number of studies focusing on epigenetics in the last few decades, and particularly for the last few years, the availability of a chronology of epigenetics appears essential. Indeed, our review places epigenetic events and the identification of the main epigenetic writers, readers and erasers on a historic scale. This review helps to understand the increasing knowledge in molecular and cellular biology, the development of new biochemical techniques and advances in epigenetics and, more importantly, the roles played by epigenetics in many physiological and pathological situations.
Collapse
|
39
|
Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat Cell Biol 2020; 22:767-778. [PMID: 32601371 PMCID: PMC7610380 DOI: 10.1038/s41556-020-0536-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/24/2020] [Indexed: 01/24/2023]
Abstract
Upon fertilization in mammals the gametes are reprogrammed to create a totipotent zygote, a process that involves de novo establishment of chromatin domains. A major feature occurring during preimplantation development is the dramatic remodeling of constitutive heterochromatin, although the functional relevance of this is unknown. Here we show that heterochromatin establishment relies on the stepwise expression and regulated activity of Suv39h enzymes. Enforcing precocious acquisition of constitutive heterochromatin results in compromised development and epigenetic reprogramming, demonstrating that heterochromatin remodeling is essential for natural reprogramming at fertilization. We find that de novo H3K9 trimethylation in the paternal pronucleus after fertilization is catalyzed by Suv39h2 and that pericentromeric RNAs inhibit Suv39h2 activity and reduce H3K9me3. De novo H3K9me3 is initially non-repressive for gene expression but instead can bookmark promoters for compaction. Overall, we uncover the functional importance for the restricted transmission of constitutive heterochromatin during reprogramming and a non-repressive role for H3K9me3.
Collapse
|
40
|
Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals. Genes (Basel) 2020; 11:genes11060595. [PMID: 32481609 PMCID: PMC7349813 DOI: 10.3390/genes11060595] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and repeat lengths. In spite of this sequence diversity, PCH is involved in many biological phenomena that are conserved among species, including centromere function, the preservation of genome integrity, the suppression of spurious recombination during meiosis, and the organization of genomic silent compartments in the nucleus. PCH organization and maintenance of its repressive state is tightly regulated by a plethora of factors, including enzymes (e.g., DNA methyltransferases, histone deacetylases, and histone methyltransferases), DNA and histone methylation binding factors (e.g., MECP2 and HP1), chromatin remodeling proteins (e.g., ATRX and DAXX), and non-coding RNAs. This evidence helps us to understand how PCH organization is crucial for genome integrity. It then follows that alterations to the molecular signature of PCH might contribute to the onset of many genetic pathologies and to cancer progression. Here, we describe the most recent updates on the molecular mechanisms known to underlie PCH organization and function.
Collapse
|
41
|
Bannoehr J, Balmer P, Stoffel MH, Jagannathan V, Gaschen V, Kühni K, Sayar B, Drögemüller M, Howald D, Wiener DJ, Leeb T, Welle MM, Müller EJ, Roosje PJ. Abnormal keratinocyte differentiation in the nasal planum of Labrador Retrievers with hereditary nasal parakeratosis (HNPK). PLoS One 2020; 15:e0225901. [PMID: 32119674 PMCID: PMC7051081 DOI: 10.1371/journal.pone.0225901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/14/2019] [Indexed: 01/16/2023] Open
Abstract
Hereditary nasal parakeratosis (HNPK) is an inherited disorder described in Labrador Retrievers and Greyhounds. It has been associated with breed-specific variants in the SUV39H2 gene encoding a histone 3 methyltransferase involved in epigenetic silencing. Formalin-fixed biopsies of the nasal planum of Labrador Retrievers were screened by immunofluorescence microscopy for the presence and distribution of epidermal proliferation and differentiation markers. Gene expression of these markers was further analysed using RNA sequencing (RNA-seq) and ultrastructural epidermal differences were investigated by electron microscopy. Differentiation of the nasal planum in the basal and suprabasal epidermal layers of HNPK-affected dogs (n = 6) was similar compared to control dogs (n = 6). In the upper epidermal layers, clear modifications were noticed. Loricrin protein was absent in HNPK-affected nasal planum sections in contrast to sections of the same location of control dogs. However, loricrin was present in the epidermis of paw pads and abdominal skin from HNPK dogs and healthy control dogs. The patterns of keratins K1, K10 and K14, were not markedly altered in the nasal planum of HNPK-affected dogs while the expression of the terminal differentiation marker involucrin appeared less regular. Based on RNA-seq, LOR and IVL expression levels were significantly decreased, while KRT1, KRT10 and KRT14 levels were up-regulated (log2fold-changes of 2.67, 3.19 and 1.71, respectively) in HNPK-affected nasal planum (n = 3) compared to control dogs (n = 3). Electron microscopical analysis revealed structural alterations in keratinocytes and stratum corneum, and disrupted keratinocyte adhesions and distended intercellular spaces in lesional samples (n = 3) compared to a sample of a healthy control dog (n = 1). Our findings demonstrate aberrant keratinocyte terminal differentiation of the nasal planum of HNPK-affected Labrador Retrievers and provide insights into biological consequences of this inactive SUV39H2 gene variant.
Collapse
Affiliation(s)
- Jeanette Bannoehr
- Division of Clinical Dermatology, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pierre Balmer
- Division of Clinical Dermatology, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael H. Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Véronique Gaschen
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kathrin Kühni
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Beyza Sayar
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Clinical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
| | | | - Denise Howald
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominique J. Wiener
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Monika M. Welle
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane J. Müller
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Clinical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Clinic for Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Petra J. Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
42
|
Aktary Z, Corvelo A, Estrin C, Larue L. Sequencing two Tyr::CreER T2 transgenic mouse lines. Pigment Cell Melanoma Res 2019; 33:426-434. [PMID: 31679174 DOI: 10.1111/pcmr.12842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 01/07/2023]
Abstract
The Cre/loxP system is a powerful tool that has allowed the study of the effects of specific genes of interest in various biological settings. The Tyr::CreERT2 system allows for the targeted expression and activity of the Cre enzyme in the melanocyte lineage following treatment with tamoxifen, thus providing spatial and temporal control of the expression of specific target genes. Two independent transgenic mouse models, each containing a Tyr::CreERT2 transgene, have been generated and are widely used to study melanocyte transformation. In this study, we performed whole genome sequencing (WGS) on genomic DNA from the two Tyr::CreERT2 mouse models and identified their sites of integration in the C57BL/6 genome. Based on these results, we designed PCR primers to accurately, and efficiently, genotype transgenic mice. Finally, we discussed some of the advantages of each transgenic mouse model.
Collapse
Affiliation(s)
- Zackie Aktary
- Institut Curie, INSERM U1021, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France.,Univ. Paris-Sud, Univ. Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, Orsay, France
| | | | - Camille Estrin
- Institut Curie, INSERM U1021, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France.,Univ. Paris-Sud, Univ. Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, Orsay, France
| | - Lionel Larue
- Institut Curie, INSERM U1021, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France.,Univ. Paris-Sud, Univ. Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, Orsay, France
| |
Collapse
|
43
|
Wang R, Cheng L, Yang X, Chen X, Miao Y, Qiu Y, Zhou Z. Histone methyltransferase SUV39H2 regulates cell growth and chemosensitivity in glioma via regulation of hedgehog signaling. Cancer Cell Int 2019; 19:269. [PMID: 31636512 PMCID: PMC6794832 DOI: 10.1186/s12935-019-0982-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022] Open
Abstract
Background Malignant glioma is one of the essentially incurable tumors with chemoresistance and tumor recurrence. As a histone methyltransferase, SUV39H2 can trimethylate H3K9. SUV39H2 is highly expressed in many types of human tumors, while the function of SUV39H2 in the development and progression of glioma has never been elucidated. Methods RT-qPCR and IHC were used to test SUV39H2 levels in glioma tissues and paired normal tissues. The clinical relevance of SUV39H2 in glioma was analyzed in a public database. Colony formation assays, CCK-8 assays, and flow cytometry were conducted to explore the role of SUV39H2 in the growth of glioma cells in vitro. A cell line-derived xenograft model was applied to explore SUV39H2’s role in U251 cell proliferation in vivo. Sphere formation assays, RT-qPCR, flow cytometry, and IF were conducted to illustrate the role of SUV39H2 in the stemness and chemosensitivity of glioma. Luciferase reporter assays and WB were applied to determine the function of SUV39H2 in Hh signaling. Results SUV39H2 was highly expressed in glioma tissues relative to normal tissues. SUV39H2 knockdown inhibited cell proliferation and stemness and promoted the chemosensitivity of glioma cells in vitro. In addition, SUV39H2 knockdown also significantly inhibited glioma cell growth in vivo. Moreover, we further uncovered that SUV39H2 regulated hedgehog signaling by repressing HHIP expression. Conclusions Our findings delineate the role of SUV39H2 in glioma cell growth and chemosensitivity as a pivotal regulator of the hedgehog signaling pathway and may support SUV39H2 as a potential target for diagnosis and therapy in glioma management.
Collapse
Affiliation(s)
- Ran Wang
- Department of Neurosurgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lilin Cheng
- Department of Neurosurgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Yang
- Department of Neurosurgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Chen
- Department of Neurosurgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Miao
- Department of Neurosurgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongming Qiu
- Department of Neurosurgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyi Zhou
- Department of Neurosurgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
44
|
Maksimov DA, Koryakov DE. Binding of SU(VAR)3-9 Partially Depends on SETDB1 in the Chromosomes of Drosophila melanogaster. Cells 2019; 8:cells8091030. [PMID: 31491894 PMCID: PMC6769583 DOI: 10.3390/cells8091030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
H3K9 methylation is known to play a critical role in gene silencing. This modification is established and maintained by several enzymes, but relationships between them are not fully understood. In the present study, we decipher the interplay between two Drosophila H3K9-specific histone methyltransferases, SU(VAR)3-9 and SETDB1. We asked whether SETDB1 is required for targeting of SU(VAR)3-9. Using DamID-seq, we obtained SU(VAR)3-9 binding profiles for the chromosomes from larval salivary glands and germline cells from adult females, and compared profiles between the wild type and SETDB1-mutant backgrounds. Our analyses indicate that the vast majority of single copy genes in euchromatin are targeted by SU(VAR)3-9 only in the presence of SETDB1, whereas SU(VAR)3-9 binding at repeated sequences in heterochromatin is largely SETDB1-independent. Interestingly, piRNA clusters 42AB and 38C in salivary gland chromosomes bind SU(VAR)3-9 regardless of SETDB1, whereas binding to the same regions in the germline cells is SETDB1-dependent. In addition, we compared SU(VAR)3-9 profiles in female germline cells at different developmental stages (germarium cells in juvenile ovaries and mature nurse cells). It turned out that SU(VAR)3-9 binding is influenced both by the presence of SETDB1, as well as by the differentiation stage.
Collapse
Affiliation(s)
- Daniil A Maksimov
- Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia.
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Dmitry E Koryakov
- Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia.
| |
Collapse
|
45
|
Monaghan L, Massett ME, Bunschoten RP, Hoose A, Pirvan PA, Liskamp RMJ, Jørgensen HG, Huang X. The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Front Oncol 2019; 9:705. [PMID: 31428579 PMCID: PMC6687838 DOI: 10.3389/fonc.2019.00705] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
Growing evidence has demonstrated that epigenetic dysregulation is a common pathological feature in human cancer cells. Global alterations in the epigenetic landscape are prevalent in malignant cells across different solid tumors including, prostate cancer, non-small-cell lung cancer, renal cell carcinoma, and in haemopoietic malignancy. In particular, DNA hypomethylation and histone hypoacetylation have been observed in acute myeloid leukemia (AML) patient blasts, with histone methylation being an emerging area of study. Histone 3 lysine 9 trimethylation (H3K9me3) is a post-translational modification known to be involved in the regulation of a broad range of biological processes, including the formation of transcriptionally silent heterochromatin. Following the observation of its aberrant methylation status in hematological malignancy and several other cancer phenotypes, recent studies have associated H3K9me3 levels with patient outcome and highlighted key molecular mechanisms linking H3K9me3 profile with AML etiology in a number of large-scale meta-analysis. Consequently, the development and application of small molecule inhibitors which target the histone methyltransferases or demethylase enzymes known to participate in the oncogenic regulation of H3K9me3 in AML represents an advancing area of ongoing study. Here, we provide a comprehensive review on how this particular epigenetic mark is regulated within cells and its emerging role as a potential therapeutic target in AML, along with an update on the current research into advancing the generation of more potent and selective inhibitors against known H3K9 methyltransferases and demethylases.
Collapse
Affiliation(s)
- Laura Monaghan
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew E. Massett
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Alex Hoose
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
46
|
Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts. PLoS One 2019; 14:e0217699. [PMID: 31269077 PMCID: PMC6608945 DOI: 10.1371/journal.pone.0217699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1), trimethylation of lysine 9 on histone H3 (H3K9me3) and the methylation of cytosine residues of DNA. HP1 binds directly to the H3K9me3 histone modification, and while DNA methyltransferases have been found in complex with histone methyltransferases and HP1, there remains much to be known about the relationship between DNA sequence and HP1 in differentiated mammalian cells. To further explore this interplay in a controlled system, we designed a system to test the effect of promoter CpG content on the formation kinetics and memory of an HP1-mediated heterochromatin domain in mouse embryo fibroblasts (MEF)s. To do this, we have constructed a side-by-side comparison of wild-type (CpGFull) and CpG-depleted (CpGDep) promoter-driven reporter constructs in the context of the Chromatin in vivo Assay (CiA), which uses chemically-induced proximity (CIP) to tether the chromoshadow domain of HP1α (csHP1α) to a fluorescent reporter gene in a reversible, chemically-dependent manner. By comparing the response of CpGFull and CpGDep reporter constructs, we discovered that the heterochromatin formation by recruitment of csHP1α is unaffected by the underlying CpG dinucleotide content of the promoter, as measured by the velocity of gene silencing or enrichment of H3K9me3 at the silenced gene. However, recovery from long-term silencing is measurably faster in the CpG-depleted reporter lines. These data provide evidence that the stability of the HP1 heterochromatin domain is reliant on the underlying DNA sequence. Moreover, these cell lines represent a new modular system with which to study the effect of the underlying DNA sequences on the efficacy of epigenetic modifiers.
Collapse
|
47
|
Abstract
The epigenetic control of gene expression could be affected by addition and/or removal of post-translational modifications such as phosphorylation, acetylation and methylation of histone proteins, as well as methylation of DNA (5-methylation on cytosines). Misregulation of these modifications is associated with altered gene expression, resulting in various disease conditions. G9a belongs to the protein lysine methyltransferases that specifically methylates the K9 residue of histone H3, leading to suppression of several tumor suppressor genes. In this review, G9a functions, role in various diseases, structural biology aspects for inhibitor design, structure-activity relationship among the reported inhibitors are discussed which could aid in the design and development of potent G9a inhibitors for cancer treatment in the future.
Collapse
|
48
|
Nakajo H, Ishibashi K, Aoyama K, Kubota S, Hasegawa H, Yamaguchi N, Yamaguchi N. Role for tyrosine phosphorylation of SUV39H1 histone methyltransferase in enhanced trimethylation of histone H3K9 via neuregulin-1/ErbB4 nuclear signaling. Biochem Biophys Res Commun 2019; 511:765-771. [PMID: 30833073 DOI: 10.1016/j.bbrc.2019.02.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 02/08/2023]
Abstract
Protein-tyrosine kinases transmit signals by phosphorylating their substrates in diverse cellular events. The receptor-type tyrosine kinase ErbB4, a member of the epidermal growth factor receptor subfamily, is activated and proteolytically cleaved upon ligand stimulation, and the cleaved ErbB4 intracellular domain (4ICD) is released into the cytoplasm and the nucleus. We previously showed that generation of nuclear 4ICD by neuregulin-1 (NRG-1) stimulation enhances the levels of trimethylation of histone H3 at lysine 9 (H3K9me3). However, it remains unclear how nuclear 4ICD enhances H3K9me3 levels. Here we show that the histone H3K9 methyltransferase SUV39H1 associates with NRG-1/ErbB4-mediated H3K9me3. Knockdown of SUV39H1 blocked NRG-1-mediated enhancement of the levels of H3K9me3. Nuclear 4ICD was found to phosphorylate SUV39H1 primarily at Tyr-297, -303, and -308 that are conserved among humans, mice, and flies. Furthermore, knockdown-rescue experiments showed that the unphosphorylatable SUV39H1 mutant (3 YF) was incapable of enhancing the levels of H3K9me3 upon NRG-1 stimulation. These results suggest that nuclear ErbB4 enhances H3K9me3 levels through tyrosine phosphorylation of SUV39H1 in NRG-1/ErbB4 signal-mediated chromatin remodeling.
Collapse
Affiliation(s)
- Haruna Nakajo
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Kenichi Ishibashi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Kazumasa Aoyama
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Sho Kubota
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Hitomi Hasegawa
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Noritaka Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|
49
|
Yu J, Yu Y, Li Q, Chen M, Shen H, Zhang R, Song M, Hu W. Comprehensive analysis of miRNA profiles reveals the role of Schistosoma japonicum miRNAs at different developmental stages. Vet Res 2019; 50:23. [PMID: 30947738 PMCID: PMC6449929 DOI: 10.1186/s13567-019-0642-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis is an important zoonotic disease affecting up to 40 kinds of animals and 250 million people. It has been reported that the miRNAs play a role in the metabolism, differentiation, development and reproduction in many organisms. However, the roles of miRNAs regulating the development, maturation and production in schistosome in both females and males remains unclear. Here we present the dynamic transcriptome analysis of all 79 known Schistosoma japonicum miRNAs from pairing to production, including 14 days post-infection (dpi), 16, 18, 20, 22, 24, 26, 28 dpi female and male, by small RNA sequencing. The miRNA expression profiles showed time-related characteristics in male and female from paring to production, which could be clustered into three patterns, characterized by pairing stage highly expressed (cluster 1), maturating stage highly expressed (cluster 2), and egg producing stage highly expressed (cluster 3). The enrichment of miRNA cluster targeted genes in female and male were distinctly different. Network analysis of miRNAs and their target regulation showed that cluster 1 had 15 miRNAs involved in the regulation of interaction, communication, immune response in female–male and parasite–host. The other 11 miRNAs were involved in gender differentiation and the meiotic cell cycle process. In cluster 2, 11 miRNAs were involved in development and sexual maturation. In cluster 3, 45 miRNAs possibly regulate metabolism and synthesis of the substance for egg production. Analysis of the miRNA regulation network would contribute to understanding the molecular mechanism in S. japonicum development and egg production.
Collapse
Affiliation(s)
- Jie Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.,State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qing Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Muxin Chen
- Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, National Institute of Parasitic Diseases, Shanghai, 200025, China
| | - Haimo Shen
- Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, National Institute of Parasitic Diseases, Shanghai, 200025, China
| | - RuiXiang Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. .,Heilongjiang Key Laboratory for Zoonosis, Harbin, 150030, China.
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, National Institute of Parasitic Diseases, Shanghai, 200025, China.
| |
Collapse
|
50
|
Kang S, Chovatiya G, Tumbar T. Epigenetic control in skin development, homeostasis and injury repair. Exp Dermatol 2019; 28:453-463. [PMID: 30624812 PMCID: PMC6488370 DOI: 10.1111/exd.13872] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/11/2018] [Accepted: 01/05/2019] [Indexed: 12/14/2022]
Abstract
Cell-type- and cell-state-specific patterns of covalent modifications on DNA and histone tails form global epigenetic profiles that enable spatiotemporal regulation of gene expression. These epigenetic profiles arise from coordinated activities of transcription factors and epigenetic modifiers, which result in cell-type-specific outputs in response to dynamic environmental conditions and signalling pathways. Recent mouse genetic and functional studies have highlighted the physiological significance of global DNA and histone epigenetic modifications in skin. Importantly, specific epigenetic profiles are emerging for adult skin stem cells that are associated with their cell fate plasticity and proper activity in tissue regeneration. We can now begin to draw a more comprehensive picture of how epigenetic modifiers orchestrate their cell-intrinsic role with microenvironmental cues for proper skin development, homeostasis and wound repair. The field is ripe to begin to implement these findings from the laboratory into skin therapies.
Collapse
Affiliation(s)
- Sangjo Kang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Gopal Chovatiya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|