1
|
Zeng L, Sun M, Fasullo M. Checkpoint and recombination pathways independently suppress rates of spontaneous homology-directed chromosomal translocations in budding yeast. Front Genet 2025; 16:1479307. [PMID: 40255487 PMCID: PMC12006765 DOI: 10.3389/fgene.2025.1479307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Homologous recombination between short repeated sequences, such as Alu sequences, can generate pathogenic chromosomal rearrangements. We used budding yeast to measure homologous recombination between short repeated his3 sequences located on non-homologous chromosomes to identify pathways that suppress spontaneous and radiation-associated translocations. Previous published data demonstrated that genes that participate in RAD9-mediated G2 arrest, the S phase checkpoint, and recombinational repair of double-strand breaks (DSBs) suppressed ectopic recombination between small repeats. We determined whether these pathways are independent in suppressing recombination by measuring frequencies of spontaneous recombination in single and double mutants. In the wild-type diploid, the rate of spontaneous recombination was (3 ± 1.2) × 10-8. This rate was increased 10-30-fold in the rad51, rad55, rad57, mre11, rad50, and xrs2 mutants, seven-fold in the rad9 checkpoint mutant, and 23-fold in the mec1-21 S phase checkpoint mutant. Double mutants defective in both RAD9 and in either RAD51, RAD55, or RAD57 increased spontaneous recombination rates by ∼40 fold, while double mutants defective in both the MEC1 (ATR/ATM ortholog) and RAD51 genes increased rates ∼100 fold. Compared to frequencies of radiation-associated translocations in wild type, radiation-associated frequencies increased in mre11, rad50, xrs2, rad51, rad55 and rad9 rad51 diploid mutants; an increase in radiation-associated frequencies was detected in the rad9 rad51 diploid after exposure to 100 rads X rays. These data indicate that the S phase and G2 checkpoint pathways are independent from the recombinational repair pathway in suppressing homology-directed translocations in yeast.
Collapse
Affiliation(s)
- Li Zeng
- New York State Department of Public Health, Albany, NY, United States
- Ordway Research Institute, Albany, NY, United States
| | - Mingzeng Sun
- Ordway Research Institute, Albany, NY, United States
- School of Public of Health, University at Albany, Albany, NY, United States
| | | |
Collapse
|
2
|
Functional interplay between the oxidative stress response and DNA damage checkpoint signaling for genome maintenance in aerobic organisms. J Microbiol 2019; 58:81-91. [DOI: 10.1007/s12275-020-9520-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
|
3
|
Sanvisens N, Romero AM, Zhang C, Wu X, An X, Huang M, Puig S. Yeast Dun1 Kinase Regulates Ribonucleotide Reductase Small Subunit Localization in Response to Iron Deficiency. J Biol Chem 2016; 291:9807-17. [PMID: 26970775 DOI: 10.1074/jbc.m116.720862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 12/25/2022] Open
Abstract
Ribonucleotide reductase (RNR) is an essential iron-dependent enzyme that catalyzes deoxyribonucleotide synthesis in eukaryotes. Living organisms have developed multiple strategies to tightly modulate RNR function to avoid inadequate or unbalanced deoxyribonucleotide pools that cause DNA damage and genome instability. Yeast cells activate RNR in response to genotoxic stress and iron deficiency by facilitating redistribution of its small heterodimeric subunit Rnr2-Rnr4 from the nucleus to the cytoplasm, where it forms an active holoenzyme with large Rnr1 subunit. Dif1 protein inhibits RNR by promoting nuclear import of Rnr2-Rnr4. Upon DNA damage, Dif1 phosphorylation by the Dun1 checkpoint kinase and its subsequent degradation enhances RNR function. In this report, we demonstrate that Dun1 kinase triggers Rnr2-Rnr4 redistribution to the cytoplasm in response to iron deficiency. We show that Rnr2-Rnr4 relocalization by low iron requires Dun1 kinase activity and phosphorylation site Thr-380 in the Dun1 activation loop, but not the Dun1 forkhead-associated domain. By using different Dif1 mutant proteins, we uncover that Dun1 phosphorylates Dif1 Ser-104 and Thr-105 residues upon iron scarcity. We observe that the Dif1 phosphorylation pattern differs depending on the stimuli, which suggests different Dun1 activating pathways. Importantly, the Dif1-S104A/T105A mutant exhibits defects in nucleus-to-cytoplasm redistribution of Rnr2-Rnr4 by iron limitation. Taken together, these results reveal that, in response to iron starvation, Dun1 kinase phosphorylates Dif1 to stimulate Rnr2-Rnr4 relocalization to the cytoplasm and promote RNR function.
Collapse
Affiliation(s)
- Nerea Sanvisens
- From the Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia 46980, Spain and
| | - Antonia M Romero
- From the Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia 46980, Spain and
| | - Caiguo Zhang
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Xiaorong Wu
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Xiuxiang An
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Mingxia Huang
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Sergi Puig
- From the Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia 46980, Spain and
| |
Collapse
|
4
|
Pijuan J, María C, Herrero E, Bellí G. Impaired mitochondrial Fe-S cluster biogenesis activates the DNA damage response through different signaling mediators. J Cell Sci 2015; 128:4653-65. [DOI: 10.1242/jcs.178046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023] Open
Abstract
Fe-S cluster biogenesis machinery is required for multiple DNA metabolism processes. In this work we show that defects at different stages of the mitochondrial Fe-S cluster assembly machinery (ISC) result in increased spontaneous mutation rate and hyperrecombination, accompanied by an increment in Rad52-associated DNA repair foci and a higher phosphorylated state of γH2A histone, altogether supporting the presence of constitutive DNA lesions. Furthermore, ISC assembly machinery deficiency elicits a DNA damage response that upregulates ribonucleotide reductase activity by promoting the reduction of Sml1 levels and the cytosolic redistribution of Rnr2/4 enzyme subunits. Depending on the impaired stage of the ISC machinery, different signaling pathway mediators contribute to such response, converging in Dun1. Thus, cells lacking Grx5 glutaredoxin, which are compromised at the core ISC system, show Mec1/Rad53-independent Dun1 activation, whereas both Mec1 and Chk1 are required when the non-core ISC member Iba57 is absent. Grx5-less cells exhibit a strong dependence on the error-free post-replication repair and the homologous recombination pathways, demonstrating that a DNA damage response is required to be activated upon ISC impairment to preserve cell viability.
Collapse
Affiliation(s)
- Jordi Pijuan
- Department of Basic Medical Sciences, IRBLleida, University of Lleida, 25198 Lleida, Spain
| | - Carlos María
- Department of Basic Medical Sciences, IRBLleida, University of Lleida, 25198 Lleida, Spain
| | - Enrique Herrero
- Department of Basic Medical Sciences, IRBLleida, University of Lleida, 25198 Lleida, Spain
| | - Gemma Bellí
- Department of Basic Medical Sciences, IRBLleida, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
5
|
Yeast Dun1 kinase regulates ribonucleotide reductase inhibitor Sml1 in response to iron deficiency. Mol Cell Biol 2014; 34:3259-71. [PMID: 24958100 DOI: 10.1128/mcb.00472-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox-active cofactor in many biological processes, including DNA replication and repair. Eukaryotic ribonucleotide reductases (RNRs) are Fe-dependent enzymes that catalyze deoxyribonucleoside diphosphate (dNDP) synthesis. We show here that the levels of the Sml1 protein, a yeast RNR large-subunit inhibitor, specifically decrease in response to both nutritional and genetic Fe deficiencies in a Dun1-dependent but Mec1/Rad53- and Aft1-independent manner. The decline of Sml1 protein levels upon Fe starvation depends on Dun1 forkhead-associated and kinase domains, the 26S proteasome, and the vacuolar proteolytic pathway. Depletion of core components of the mitochondrial iron-sulfur cluster assembly leads to a Dun1-dependent diminution of Sml1 protein levels. The physiological relevance of Sml1 downregulation by Dun1 under low-Fe conditions is highlighted by the synthetic growth defect observed between dun1Δ and fet3Δ fet4Δ mutants, which is rescued by SML1 deletion. Consistent with an increase in RNR function, Rnr1 protein levels are upregulated upon Fe deficiency. Finally, dun1Δ mutants display defects in deoxyribonucleoside triphosphate (dNTP) biosynthesis under low-Fe conditions. Taken together, these results reveal that the Dun1 checkpoint kinase promotes RNR function in response to Fe starvation by stimulating Sml1 protein degradation.
Collapse
|
6
|
|
7
|
Lee S, Gaspar ML, Aregullin MA, Jesch SA, Henry SA. Activation of protein kinase C-mitogen-activated protein kinase signaling in response to inositol starvation triggers Sir2p-dependent telomeric silencing in yeast. J Biol Chem 2013; 288:27861-71. [PMID: 23943620 DOI: 10.1074/jbc.m113.493072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Depriving wild type yeast of inositol, a soluble precursor for phospholipid, phosphoinositide, and complex sphingolipid synthesis, activates the protein kinase C (PKC)-MAPK signaling pathway, which plays a key role in the activation of NAD(+)-dependent telomeric silencing. We now report that triggering PKC-MAPK signaling by inositol deprivation or by blocking inositol-containing sphingolipid synthesis with aureobasidin A results in increased telomeric silencing regulated by the MAPK, Slt2p, and the NAD(+)-dependent deacetylase, Sir2p. Consistent with the dependence on NAD(+) in Sir2p-regulated silencing, we found that inositol depletion induces the expression of BNA2, which is required for the de novo synthesis of NAD(+). Moreover, telomeric silencing is greatly reduced in bna2Δ and npt1Δ mutants, which are defective in de novo and salvage pathways for NAD(+) synthesis, respectively. Surprisingly, however, omitting nicotinic acid from the growth medium, which reduces cellular NAD(+) levels, leads to increased telomeric silencing in the absence of inositol and/or at high temperature. This increase in telomeric silencing in response to inositol starvation is correlated to chronological life span extension but is Sir2p-independent. We conclude that activation of the PKC-MAPK signaling by interruption of inositol sphingolipid synthesis leads to increased Sir2p-dependent silencing and is dependent upon the de novo and salvage pathways for NAD(+) synthesis but is not correlated with cellular NAD(+) levels.
Collapse
Affiliation(s)
- Sojin Lee
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | | | | | | | | |
Collapse
|
8
|
Depleting components of the THO complex causes increased telomere length by reducing the expression of the telomere-associated protein Rif1p. PLoS One 2012; 7:e33498. [PMID: 22448247 PMCID: PMC3308969 DOI: 10.1371/journal.pone.0033498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/14/2012] [Indexed: 12/23/2022] Open
Abstract
Telomere length is regulated mostly by proteins directly associated with telomeres. However, genome-wide analysis of Saccharomyces cerevisiae mutants has revealed that deletion of Hpr1p, a component of the THO complex, also affects telomere length. The THO complex comprises four protein subunits, namely, Tho2p, Hpr1p, Mft1p, and Thp2p. These subunits interplay between transcription elongation and co-transcriptional assembly of export-competent mRNPs. Here we found that the deletion of tho2 or hpr1 caused telomere lengthening by ∼50–100 bps, whereas that of mft1 or thp2 did not affect telomere length. Since the THO complex functions in transcription elongation, we analyzed the expression of telomere-associated proteins in mutants depleted of complex components. We found that both the mRNA and protein levels of RIF1 were decreased in tho2 and hpr1 cells. RIF1 encodes a 1917-amino acid polypeptide that is involved in regulating telomere length and the formation of telomeric heterochromatin. Hpr1p and Tho2p appeared to affect telomeres through Rif1p, as increased Rif1p levels suppressed the telomere lengthening in tho2 and hpr1 cells. Moreover, yeast cells carrying rif1 tho2 or rif1 hpr1 double mutations showed telomere lengths and telomere silencing effects similar to those observed in the rif1 mutant. Thus, we conclude that mutations of components of the THO complex affect telomere functions by reducing the expression of a telomere-associated protein, Rif1p.
Collapse
|
9
|
Rossmann MP, Luo W, Tsaponina O, Chabes A, Stillman B. A common telomeric gene silencing assay is affected by nucleotide metabolism. Mol Cell 2011; 42:127-36. [PMID: 21474074 DOI: 10.1016/j.molcel.2011.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/21/2010] [Accepted: 02/16/2011] [Indexed: 01/06/2023]
Abstract
Telomere-associated position-effect variegation (TPEV) in budding yeast has been used as a model for understanding epigenetic inheritance and gene silencing. A widely used assay to identify mutants with improper TPEV employs the URA3 gene at the telomere of chromosome VII-L that can be counterselected with 5-fluoroorotic acid (5-FOA). 5-FOA resistance has been inferred to represent lack of transcription of URA3 and therefore to represent heterochromatin-induced gene silencing. For two genes implicated in telomere silencing, POL30 and DOT1, we show that the URA3 telomere reporter assay does not reflect their role in heterochromatin formation. Rather, an imbalance in ribonucleotide reductase (RNR), which is induced by 5-FOA, and the specific promoter of URA3 fused to ADH4 at telomere VII-L are jointly responsible for the variegated phenotype. We conclude that metabolic changes caused by the drug employed and certain mutants being studied are incompatible with the use of certain prototrophic markers for TPEV.
Collapse
|
10
|
Kozhina TN, Kozhin SA, Korolev VG. Gene RAD31 is identical to gene MEC1 of yeast Saccharomyces cerevisiae. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411020104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Differential nuclear localization does not determine the silencing status of Saccharomyces cerevisiae telomeres. Genetics 2008; 177:2019-29. [PMID: 18073421 DOI: 10.1534/genetics.107.079848] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, genes near telomeres are transcriptionally repressed, a phenomenon termed telomere position effect (TPE). Yeast telomeres cluster near the nuclear periphery, as do foci of proteins essential for TPE: Rap1p, Sir2-4p, and yKu70p/yKu80p. However, it is not clear if localization of telomeres to the periphery actually contributes to TPE. We examined the localization patterns of two telomeres with different levels of TPE: truncated VII-L and native VI-R. For both telomeres, localization to the nuclear periphery or to the silencing foci was neither necessary nor sufficient for TPE. Moreover, there was no correlation between TPE levels and the extent of localization. Tethering the truncated VII-L telomere to the nuclear periphery resulted in a modest increase in TPE. However, tethering did not bypass the roles of yKu70p, Sir4p, or Esc1p in TPE. Using mutations in RIF genes that bypass the role of Ku in TPE, a correlation between the level of silencing and the number of Rap1p foci present in the nucleus was observed, suggesting that Sir protein levels at telomeres determine both the level of TPE and the number of foci.
Collapse
|
12
|
Ottaviani A, Gilson E, Magdinier F. Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie 2007; 90:93-107. [PMID: 17868970 DOI: 10.1016/j.biochi.2007.07.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 07/25/2007] [Indexed: 01/28/2023]
Abstract
Alteration of the epigenome is associated with a wide range of human diseases. Therefore, deciphering the pathways that regulate the epigenetic modulation of gene expression is a major milestone for the understanding of diverse biological mechanisms and subsequently human pathologies. Although often evoked, little is known on the implication of telomeric position effect, a silencing mechanism combining telomere architecture and classical heterochromatin features, in human cells. Nevertheless, this particular silencing mechanism has been investigated in different organisms and several ingredients are likely conserved during evolution. Subtelomeres are highly dynamic regions near the end of the chromosomes that are prone to recombination and may buffer or facilitate the spreading of silencing that emanates from the telomere. Therefore, the composition and integrity of these regions also concur to the propensity of telomeres to regulate the expression, replication and recombination of adjacent regions. Here we describe the similarities and disparities that exist among the different species at chromosome ends with regard to telomeric silencing regulation with a special accent on its implication in numerous human pathologies.
Collapse
Affiliation(s)
- Alexandre Ottaviani
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, UCBL1, IFR128, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
13
|
Usui T, Petrini JHJ. The Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 directly influence the DNA damage-dependent functions of Rad53. Proc Natl Acad Sci U S A 2007; 104:2797-802. [PMID: 17299042 PMCID: PMC1797148 DOI: 10.1073/pnas.0611259104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we mutated autophosphorylation sites in Rad53 based on their conservation with previously identified autophosphorylation sites in the mammalian Rad53 ortholog, Chk2. As with wild-type Rad53, the autophosphorylation mutant, rad53-TA, undergoes Mec1/Tel1-dependent interactions with Rad9 and Dun1 in response to genotoxic stress. Whereas rad53-TA in vitro kinase activity is severely impaired, the rad53-TA strains are not completely deficient for cell-cycle checkpoint functions, indicating that the mutant kinase retains a basal level of function. We describe a genetic interaction among Rad53, Dun1, and the 14-3-3 proteins Bmh1 and Bmh2 and present evidence that 14-3-3 proteins directly facilitate Rad53 function in vivo. The data presented account for the previously observed checkpoint defects associated with 14-3-3 mutants in Saccharomyces pombe and Saccharomyces cerevisiae. The 14-3-3 functional interaction appears to modulate Rad53 activity, reminiscent of 14-3-3's effect on human Raf1 kinase and distinct from the indirect mode of regulation by 14-3-3 observed for Chk1 or Cdc25.
Collapse
Affiliation(s)
- Takehiko Usui
- *Laboratory of Chromosome Biology, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021; and
| | - John H. J. Petrini
- *Laboratory of Chromosome Biology, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021; and
- Weill Medical College, Cornell University Graduate School of Medical Sciences, 445 East 69th Street, New York, NY 10021
- To whom correspondence should be addressed at:
Laboratory of Chromosome Biology, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, RRL 901C, New York, NY 10021. E-mail:
| |
Collapse
|
14
|
Tringe SG, Willis J, Liberatore KL, Ruby SW. The WTM genes in budding yeast amplify expression of the stress-inducible gene RNR3. Genetics 2006; 174:1215-28. [PMID: 16980392 PMCID: PMC1667055 DOI: 10.1534/genetics.106.062042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular responses to DNA damage and inhibited replication are evolutionarily conserved sets of pathways that are critical to preserving genome stability. To identify new participants in these responses, we undertook a screen for regulators that, when present on a high-copy vector, alter expression of a DNA damage-inducible RNR3-lacZ reporter construct in Saccharomyces cerevisiae. From this screen we isolated a plasmid encoding two closely related paralogs, WTM1 and WTM2, that greatly increases constitutive expression of RNR3-lacZ. Moderate overexpression of both genes together, or high-level expression of WTM2 alone from a constitutive promoter, upregulates RNR3-lacZ in the absence of DNA damage. Overexpressed, tagged Wtm2p is associated with the RNR3 promoter, indicating that this effect is likely direct. Further investigation reveals that Wtm2p and Wtm1p, previously described as regulators of meiotic gene expression and transcriptional silencing, amplify transcriptional induction of RNR3 in response to replication stress and modulate expression of genes encoding other RNR subunits.
Collapse
Affiliation(s)
- Susannah Green Tringe
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
15
|
Corda Y, Lee SE, Guillot S, Walther A, Sollier J, Arbel-Eden A, Haber JE, Géli V. Inactivation of Ku-mediated end joining suppresses mec1Delta lethality by depleting the ribonucleotide reductase inhibitor Sml1 through a pathway controlled by Tel1 kinase and the Mre11 complex. Mol Cell Biol 2005; 25:10652-64. [PMID: 16287875 PMCID: PMC1291227 DOI: 10.1128/mcb.25.23.10652-10664.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RAD53 and MEC1 are essential Saccharomyces cerevisiae genes required for the DNA replication and DNA damage checkpoint responses. Their lethality can be suppressed by increasing the intracellular pool of deoxynucleotide triphosphates. We report that deletion of YKU70 or YKU80 suppresses mec1Delta, but not rad53Delta, lethality. We show that suppression of mec1Delta lethality is not due to Ku--associated telomeric defects but rather results from the inability of Ku- cells to efficiently repair DNA double strand breaks by nonhomologous end joining. Consistent with these results, mec1Delta lethality is also suppressed by lif1Delta, which like yku70Delta and yku80Delta, prevents nonhomologous end joining. The viability of yku70Delta mec1Delta and yku80Delta mec1Delta cells depends on the ATM-related Tel1 kinase, the Mre11-Rad50-Xrs2 complex, and the DNA damage checkpoint protein Rad9. We further report that this Mec1-independent pathway converges with the Rad53/Dun1-regulated checkpoint kinase cascade and leads to the degradation of the ribonucleotide reductase inhibitor Sml1.
Collapse
Affiliation(s)
- Yves Corda
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, IBSM, CNRS, 31 chemin Joseph Aiguier, 13402 Marseille, Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bi X, Srikanta D, Fanti L, Pimpinelli S, Badugu R, Kellum R, Rong YS. Drosophila ATM and ATR checkpoint kinases control partially redundant pathways for telomere maintenance. Proc Natl Acad Sci U S A 2005; 102:15167-72. [PMID: 16203987 PMCID: PMC1257705 DOI: 10.1073/pnas.0504981102] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 09/02/2005] [Indexed: 01/05/2023] Open
Abstract
In higher eukaryotes, the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) checkpoint kinases play distinct, but partially overlapping, roles in DNA damage response. Yet their interrelated function has not been defined for telomere maintenance. We discover in Drosophila that the two proteins control partially redundant pathways for telomere protection: the loss of ATM leads to the fusion of some telomeres, whereas the loss of both ATM and ATR renders all telomeres susceptible to fusion. The ATM-controlled pathway includes the Mre11 and Nijmegen breakage syndrome complex but not the Chk2 kinase, whereas the ATR-regulated pathway includes its partner ATR-interacting protein but not the Chk1 kinase. This finding suggests that ATM and ATR regulate different molecular events at the telomeres compared with the sites of DNA damage. This compensatory relationship between ATM and ATR is remarkably similar to that observed in yeast despite the fact that the biochemistry of telomere elongation is completely different in the two model systems. We provide evidence suggesting that both the loading of telomere capping proteins and normal telomeric silencing requires ATM and ATR in Drosophila and propose that ATM and ATR protect telomere integrity by safeguarding chromatin architecture that favors the loading of telomere-elongating, capping, and silencing proteins.
Collapse
Affiliation(s)
- Xiaolin Bi
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Sharp JA, Rizki G, Kaufman PD. Regulation of histone deposition proteins Asf1/Hir1 by multiple DNA damage checkpoint kinases in Saccharomyces cerevisiae. Genetics 2005; 171:885-99. [PMID: 16020781 PMCID: PMC1456847 DOI: 10.1534/genetics.105.044719] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
CAF-1, Hir proteins, and Asf1 are histone H3/H4 binding proteins important for chromatin-mediated transcriptional silencing. We explored genetic and physical interactions between these proteins and S-phase/DNA damage checkpoint kinases in the budding yeast Saccharomyces cerevisiae. Although cells lacking checkpoint kinase Mec1 do not display defects in telomeric gene silencing, silencing was dramatically reduced in cells lacking both Mec1 and the Cac1 subunit of CAF-1. Silencing was restored in cac1Delta and cac1Delta mec1Delta cells upon deletion of Rad53, the kinase downstream of Mec1. Restoration of silencing to cac1Delta cells required both Hir1 and Asf1, suggesting that Mec1 counteracts functional sequestration of the Asf1/Hir1 complex by Rad53. Consistent with this idea, the degree of suppression of silencing defects by rad53 alleles correlated with effects on Asf1 binding. Furthermore, deletion of the Dun1 kinase, a downstream target of Rad53, also suppressed the silencing defects of cac1Delta cells and reduced the levels of Asf1 associated with Rad53 in vivo. Loss of Mec1 and Rad53 did not alter telomere lengths or Asf1 protein levels, nuclear localization, or chromosome association. We conclude that the Mec1 and Dun1 checkpoint kinases regulate the Asf1-Rad53 interaction and therefore affect the activity of the Asf1/Hir complex in vivo.
Collapse
Affiliation(s)
- Judith A Sharp
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|
18
|
Abstract
Telomeres are essential for genome stability in all eukaryotes. Changes in telomere functions and the associated chromosomal abnormalities have been implicated in human aging and cancer. Telomeres are composed of repetitive sequences that can be maintained by telomerase, a complex containing a reverse transcriptase (hTERT in humans and Est2 in budding yeast), a template RNA (hTERC in humans and Tlc1 in yeast), and accessory factors (the Est1 proteins and dyskerin in humans and Est1, Est3, and Sm proteins in budding yeast). Telomerase is regulated in cis by proteins that bind to telomeric DNA. This regulation can take place at the telomere terminus, involving single-stranded DNA-binding proteins (POT1 in humans and Cdc13 in budding yeast), which have been proposed to contribute to the recruitment of telomerase and may also regulate the extent or frequency of elongation. In addition, proteins that bind along the length of the telomere (TRF1/TIN2/tankyrase in humans and Rap1/Rif1/Rif2 in budding yeast) are part of a negative feedback loop that regulates telomere length. Here we discuss the details of telomerase and its regulation by the telomere.
Collapse
|
19
|
Oikemus SR, McGinnis N, Queiroz-Machado J, Tukachinsky H, Takada S, Sunkel CE, Brodsky MH. Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev 2004; 18:1850-61. [PMID: 15256487 PMCID: PMC517405 DOI: 10.1101/gad.1202504] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Terminal deletions of Drosophila chromosomes can be stably protected from end-to-end fusion despite the absence of all telomere-associated sequences. The sequence-independent protection of these telomeres suggests that recognition of chromosome ends might contribute to the epigenetic protection of telomeres. In mammals, Ataxia Telangiectasia Mutated (ATM) is activated by DNA damage and acts through an unknown, telomerase-independent mechanism to regulate telomere length and protection. We demonstrate that the Drosophila homolog of ATM is encoded by the telomere fusion (tefu) gene. In the absence of ATM, telomere fusions occur even though telomere-specific Het-A sequences are still present. High levels of spontaneous apoptosis are observed in ATM-deficient tissues, indicating that telomere dysfunction induces apoptosis in Drosophila. Suppression of this apoptosis by p53 mutations suggests that loss of ATM activates apoptosis through a DNA damage-response mechanism. Loss of ATM reduces the levels of heterochromatin protein 1 (HP1) at telomeres and suppresses telomere position effect. We propose that recognition of chromosome ends by ATM prevents telomere fusion and apoptosis by recruiting chromatin-modifying complexes to telomeres.
Collapse
Affiliation(s)
- Sarah R Oikemus
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Mallory JC, Bashkirov VI, Trujillo KM, Solinger JA, Dominska M, Sung P, Heyer WD, Petes TD. Amino acid changes in Xrs2p, Dun1p, and Rfa2p that remove the preferred targets of the ATM family of protein kinases do not affect DNA repair or telomere length in Saccharomyces cerevisiae. DNA Repair (Amst) 2003; 2:1041-64. [PMID: 12967660 DOI: 10.1016/s1568-7864(03)00115-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In eukaryotes, mutations in a number of genes that affect DNA damage checkpoints or DNA replication also affect telomere length [Curr. Opin. Cell Biol. 13 (2001) 281]. Saccharomyces cerevisae strains with mutations in the TEL1 gene (encoding an ATM-like protein kinase) have very short telomeres, as do strains with mutations in XRS2, RAD50, or MRE11 (encoding members of a trimeric complex). Xrs2p and Mre11p are phosphorylated in a Tel1p-dependent manner in response to DNA damage [Genes Dev. 15 (2001) 2238; Mol. Cell 7 (2001) 1255]. We found that Xrs2p, but not Mre11p or Rad50p, is efficiently phosphorylated in vitro by immunopreciptated Tel1p. Strains with mutations eliminating all SQ and TQ motifs in Xrs2p (preferred targets of the ATM kinase family) had wild-type length telomeres and wild-type sensitivity to DNA damaging agents. We also showed that Rfa2p (a subunit of RPA) and the Dun1p checkpoint kinase, which are required for DNA damage repair and which are phosphorylated in response to DNA damage in vivo, are in vitro substrates of the Tel1p and Mec1p kinases. In addition, Dun1p substrates with no SQ or TQ motifs are phosphorylated by Mec1p in vitro very inefficiently, but retain most of their ability to be phosphorylated by Tel1p. We demonstrated that null alleles of DUN1 and certain mutant alleles of RFA2 result in short telomeres. As observed with Xrs2p, however, strains with mutations of DUN1 or RFA2 that eliminate SQ motifs have no effect on telomere length or DNA damage sensitivity.
Collapse
Affiliation(s)
- Julia C Mallory
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2003; 36:617-56. [PMID: 12429704 DOI: 10.1146/annurev.genet.36.060402.113540] [Citation(s) in RCA: 627] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA checkpoints play a significant role in cancer pathology, perhaps most notably in maintaining genome stability. This review summarizes the genetic and molecular mechanisms of checkpoint activation in response to DNA damage. The major checkpoint proteins common to all eukaryotes are identified and discussed, together with how the checkpoint proteins interact to induce arrest within each cell cycle phase. Also discussed are the molecular signals that activate checkpoint responses, including single-strand DNA, double-strand breaks, and aberrant replication forks. We address the connection between checkpoint proteins and damage repair mechanisms, how cells recover from an arrest response, and additional roles that checkpoint proteins play in DNA metabolism. Finally, the connection between checkpoint gene mutation and genomic instability is considered.
Collapse
Affiliation(s)
- Kara A Nyberg
- Molecular and Cellular Biology Department, University of Arizona, Tucson, Arizona, 85721, USA.
| | | | | | | |
Collapse
|
22
|
DuBois ML, Diede SJ, Stellwagen AE, Gottschling DE. All things must end: telomere dynamics in yeast. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:281-96. [PMID: 12760042 DOI: 10.1101/sqb.2000.65.281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M L DuBois
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
23
|
Qi H, Li TK, Kuo D, Nur-E-Kamal A, Liu LF. Inactivation of Cdc13p triggers MEC1-dependent apoptotic signals in yeast. J Biol Chem 2003; 278:15136-41. [PMID: 12569108 DOI: 10.1074/jbc.m212808200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Inactivation of the budding yeast telomere binding protein Cdc13 results in abnormal telomeres (exposed long G-strands) and activation of the DNA damage checkpoint. In the current study, we show that inactivation of Cdc13p induces apoptotic signals in yeast, as evidenced by caspase activation, increased reactive oxygen species production, and flipping of phosphatidylserine in the cytoplasmic membrane. These apoptotic signals were suppressed in a mitochondrial (rho(o)) mutant. Moreover, mitochondrial proteins (e.g. MTCO3) were identified as multicopy suppressors of cdc13-1, suggesting the involvement of mitochondrial functions in telomere-initiated apoptotic signaling. These telomere-initiated apoptotic signals were also shown to depend on MEC1, but not TEL1, and were antagonized by MRE11. Our results are consistent with a model in which single-stranded G-tails in the cdc13-1 mutant trigger MEC1-dependent apoptotic signaling in yeast.
Collapse
Affiliation(s)
- Haiyan Qi
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | | | | | |
Collapse
|
24
|
Hand RA, Jia N, Bard M, Craven RJ. Saccharomyces cerevisiae Dap1p, a novel DNA damage response protein related to the mammalian membrane-associated progesterone receptor. EUKARYOTIC CELL 2003; 2:306-17. [PMID: 12684380 PMCID: PMC154842 DOI: 10.1128/ec.2.2.306-317.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The response to damage is crucial for cellular survival, and eukaryotic cells require a broad array of proteins for an intact damage response. We have found that the YPL170W (DAP1 [for damage response protein related to membrane-associated progesterone receptors]) gene is required for growth in the presence of the methylating agent methyl methanesulfonate (MMS). The DAP1 open reading frame shares homology with a broadly conserved family of membrane-associated progesterone receptors (MAPRs). Deletion of DAP1 leads to sensitivity to MMS, elongated telomeres, loss of mitochondrial function, and partial arrest in sterol synthesis. Sensitivity of dap1 strains to MMS is not due to loss of damage checkpoints. Instead, dap1 cells are arrested as unbudded cells after MMS treatment, suggesting that Dap1p is required for cell cycle progression following damage. Dap1p also directs resistance to itraconazole and fluconazole, inhibitors of sterol synthesis. We have found that dap1 cells have slightly decreased levels of ergosterol but increased levels of the ergosterol intermediates squalene and lanosterol, indicating that dap1 cells have a partial defect in sterol synthesis. This is the first evidence linking a MAPR family member to sterol regulation or the response to damage, and these functions are probably conserved in a variety of eukaryotes.
Collapse
Affiliation(s)
- Randal A Hand
- Department of Surgery, Division of Surgical Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
25
|
Bashkirov VI, Bashkirova EV, Haghnazari E, Heyer WD. Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase. Mol Cell Biol 2003; 23:1441-52. [PMID: 12556502 PMCID: PMC141154 DOI: 10.1128/mcb.23.4.1441-1452.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2002] [Accepted: 10/31/2002] [Indexed: 11/20/2022] Open
Abstract
The serine-threonine kinase Dun1 contains a forkhead-associated (FHA) domain and functions in the DNA damage checkpoint pathway of Saccharomyces cerevisiae. It belongs to the Chk2 family of checkpoint kinases, which includes S. cerevisiae Rad53 and Mek1, Schizosaccharomyces pombe Cds1, and human Chk2. Dun1 is required for DNA damage-induced transcription of certain target genes, transient G(2)/M arrest after DNA damage, and DNA damage-induced phosphorylation of the DNA repair protein Rad55. Here we report that the FHA phosphoprotein recognition domain of Dun1 is required for direct phosphorylation of Dun1 by Rad53 kinase in vitro and in vivo. trans phosphorylation by Rad53 does not require the Dun1 kinase activity and is likely to involve only a transient interaction between the two kinases. The checkpoint functions of Dun1 kinase in DNA damage-induced transcription, G(2)/M cell cycle arrest, and Rad55 phosphorylation are severely compromised in an FHA domain mutant of Dun1. As a consequence, the Dun1 FHA domain mutant displays enhanced sensitivity to genotoxic stress induced by UV, methyl methanesulfonate, and the replication inhibitor hydroxyurea. We show that the Dun1 FHA domain is critical for direct kinase-to-kinase signaling from Rad53 to Dun1 in the DNA damage checkpoint pathway.
Collapse
Affiliation(s)
- Vladimir I Bashkirov
- Section of Microbiology and Center for Genetics and Development, Division of Biological Sciences, University of California, Davis, Davis, California 95616-8665, USA
| | | | | | | |
Collapse
|
26
|
Clarke DJ. Establishment of dependence relationships between genome replication and mitosis. J Cell Biochem 2003; 88:95-103. [PMID: 12461778 DOI: 10.1002/jcb.10324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although budding yeast cell biology and genetics provided a powerful system to isolate S-phase checkpoint mutants, initial studies relied on a defect not likely to be relevant in higher eukaryotes. The first mutants were isolated for their inability to restrain mitotic spindle elongation in S-phase. Since most eukaryotes do not assemble spindles until prometaphase the validity of this approach might have been questioned. However, these early studies were designed with a highly valid assumption in mind; that checkpoints have a variety of targets, but comprise conserved kinase cascades that make up these signaling pathways. The task that lies ahead is to determine targets of the S-phase checkpoint relevant to mammals. One step forward might be the realization that the budding yeast S-phase checkpoint prevents loss of sister chromatid cohesion while DNA replication is ongoing. If this mechanism is conserved in mammals, it could prove vital for chromosome segregation fidelity.
Collapse
Affiliation(s)
- Duncan J Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, 420 Washington Avenue SE, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
27
|
Giannattasio M, Sommariva E, Vercillo R, Lippi-Boncambi F, Liberi G, Foiani M, Plevani P, Muzi-Falconi M. A dominant-negative MEC3 mutant uncovers new functions for the Rad17 complex and Tel1. Proc Natl Acad Sci U S A 2002; 99:12997-3002. [PMID: 12271137 PMCID: PMC130575 DOI: 10.1073/pnas.202463999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Rad17-Mec3-Ddc1 complex is essential for the cellular response to genotoxic agents and is thought to be important for sensing DNA lesions. Deletion of any of the RAD17, MEC3 or DDC1 genes abolishes the G(1) and G(2) and impairs the intra-S DNA-damage checkpoints. We characterize a dominant-negative mec3-dn mutation that has an unexpected phenotype. It inactivates the G(1) checkpoint while it leaves the G(2) response functional, thus revealing a difference in the requirements of the DNA-damage response in different phases of the cell cycle. In an attempt to identify the molecular defect imparted by the mutation, we dissected step-by-step the signaling cascade, which is triggered by DNA lesions and requires the activity of Mec1 and Rad53 kinases. The analysis of the phosphorylation state of checkpoint factors and critical protein interactions showed that, in mec3-dn cells, the signal transduction cascade is triggered normally, and the central kinase Mec1 can be activated. In G(1) cells expressing the mutation, the signaling cannot proceed any further along the pathway, indicating that the Rad17 complex acts after the activation of Mec1, possibly recruiting targets for the kinase. We also show that the function of the G(2) checkpoint in mutant cells is maintained by an uncharacterized activity of Tel1, the yeast homologue of ATM. This work thus reports a previously undiscovered role for Tel1 in checkpoint control.
Collapse
Affiliation(s)
- Michele Giannattasio
- Dipartimento di Genetica e Biologia dei Microrganismi, Universitá degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Enomoto S, Glowczewski L, Berman J. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Mol Biol Cell 2002; 13:2626-38. [PMID: 12181334 PMCID: PMC117930 DOI: 10.1091/mbc.02-02-0012] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
When telomerase is absent and/or telomeres become critically short, cells undergo a progressive decline in viability termed senescence. The telomere checkpoint model predicts that cells will respond to a damaged or critically short telomere by transiently arresting and activating repair of the telomere. We examined the senescence of telomerase-deficient Saccharomyces cerevisiae at the cellular level to ask if the loss of telomerase activity triggers a checkpoint response. As telomerase-deficient mutants were serially subcultured, cells exhibited a progressive decline in average growth rate and an increase in the number of cells delayed in the G2/M stage of the cell cycle. MEC3, MEC1, and DDC2, genes important for the DNA damage checkpoint response, were required for the cell cycle delay in telomerase-deficient cells. In contrast, TEL1, RAD9, and RAD53, genes also required for the DNA damage checkpoint response, were not required for the G2/M delay in telomerase-deficient cells. We propose that the telomere checkpoint is distinct from the DNA damage checkpoint and requires a specific set of gene products to delay the cell cycle and presumably to activate telomerase and/or other telomere repair activities.
Collapse
Affiliation(s)
- Shinichiro Enomoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul 55108, USA
| | | | | |
Collapse
|
29
|
Craven RJ, Greenwell PW, Dominska M, Petes TD. Regulation of genome stability by TEL1 and MEC1, yeast homologs of the mammalian ATM and ATR genes. Genetics 2002; 161:493-507. [PMID: 12072449 PMCID: PMC1462148 DOI: 10.1093/genetics/161.2.493] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In eukaryotes, a family of related protein kinases (the ATM family) is involved in regulating cellular responses to DNA damage and telomere length. In the yeast Saccharomyces cerevisiae, two members of this family, TEL1 and MEC1, have functionally redundant roles in both DNA damage repair and telomere length regulation. Strains with mutations in both genes are very sensitive to DNA damaging agents, have very short telomeres, and undergo cellular senescence. We find that strains with the double mutant genotype also have approximately 80-fold increased rates of mitotic recombination and chromosome loss. In addition, the tel1 mec1 strains have high rates of telomeric fusions, resulting in translocations, dicentrics, and circular chromosomes. Similar chromosome rearrangements have been detected in mammalian cells with mutations in ATM (related to TEL1) and ATR (related to MEC1) and in mammalian cells that approach cell crisis.
Collapse
Affiliation(s)
- Rolf J Craven
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | |
Collapse
|
30
|
Myung K, Kolodner RD. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2002; 99:4500-7. [PMID: 11917116 PMCID: PMC123677 DOI: 10.1073/pnas.062702199] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cancer cells show increased genome rearrangements, although it is unclear what defects cause these rearrangements. Previous studies have implicated the Saccharomyces cerevisiae replication checkpoint in the suppression of spontaneous genome rearrangements. In the present study, low doses of methyl methane sulfonate that activate the intra-S checkpoint but not the G1 or G2 DNA damage checkpoints were found to cause increased accumulation of genome rearrangements in both wild-type strains and to an even greater extent in strains containing mutations causing defects in the intra-S checkpoint. The rearrangements were primarily translocations or events resulting in deletion of a portion of a chromosome arm along with the addition of a new telomere. Combinations of mutations causing individual defects in the RAD24 or SGS1 branches of the intra-S checkpoint or the replication checkpoint showed synergistic interactions with regard to the spontaneous genome instability rate. PDS1 and the RAD50-MRE11-XRS2 complex were found to be important members of all the S-phase checkpoints in suppressing genome instability, whereas RAD53 only seemed to play a role in the intra-S checkpoints. Combinations of mutations that seem to result in inactivation of the S-phase checkpoints and critical effectors resulted in as much as 12,000-14,000-fold increases in the genome instability rate. These data support the view that spontaneous genome rearrangements result from DNA replication errors and indicate that there is a high degree of redundancy among the checkpoints that act in S phase to suppress such genome instability.
Collapse
Affiliation(s)
- Kyungjae Myung
- Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
31
|
Huang Y. Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 2002; 30:1465-82. [PMID: 11917007 PMCID: PMC101825 DOI: 10.1093/nar/30.7.1465] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Revised: 01/28/2002] [Accepted: 01/28/2002] [Indexed: 11/13/2022] Open
Abstract
Transcriptional silencing is a heritable form of gene inactivation that involves the assembly of large regions of DNA into a specialized chromatin structure that inhibits transcription. This phenomenon is responsible for inhibiting transcription at silent mating-type loci, telomeres and rDNA repeats in both budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe, as well as at centromeres in fission yeast. Although transcriptional silencing in both S.cerevisiae and S.pombe involves modification of chromatin, no apparent amino acid sequence similarities have been reported between the proteins involved in establishment and maintenance of silent chromatin in these two distantly related yeasts. Silencing in S.cerevisiae is mediated by Sir2p-containing complexes, whereas silencing in S.pombe is mediated primarily by Swi6-containing complexes. The Swi6 complexes of S.pombe contain proteins closely related to their counterparts in higher eukaryotes, but have no apparent orthologs in S.cerevisiae. Silencing proteins from both yeasts are also actively involved in other chromosome-related nuclear functions, including DNA repair and the regulation of chromatin structure.
Collapse
|
32
|
Zhao X, Rothstein R. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc Natl Acad Sci U S A 2002; 99:3746-51. [PMID: 11904430 PMCID: PMC122595 DOI: 10.1073/pnas.062502299] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell cycle checkpoints are evolutionarily conserved surveillance systems that protect genomic stability and prevent oncogenesis in mammals. One important target of checkpoint control is ribonucleotide reductase (RNR), which catalyzes the rate-limiting step in dNTP and DNA synthesis. In both yeast and humans, RNR is transcriptionally induced after DNA damage via Mec1/Rad53 (yeast) and ATM/CHK2 (human) checkpoint pathways. In addition, yeast checkpoint proteins Mec1 and Rad53 also regulate the RNR inhibitor Sml1. After DNA damage or at S phase, Mec1 and Rad53 control the phosphorylation and concomitant degradation of Sml1 protein. This new layer of control contributes to the increased dNTP production likely necessary for DNA repair and replication; however, the molecular mechanism is unclear. Here we show that Dun1, a downstream kinase of Mec1/Rad53, genetically and physically interacts with Sml1 in vivo. The absence of Dun1 activity leads to the accumulation of Sml1 protein at S phase and after DNA damage. As a result, dun1Delta strains need more time to finish DNA replication, are defective in mitochondrial DNA propagation, and are sensitive to DNA-damaging agents. Moreover, phospho-Sml1 is absent or dramatically reduced in dun1Delta cells. Finally, Dun1 can phosphorylate Sml1 in vitro. These results suggest that Dun1 kinase function is the last step required in the Mec1/Rad53 cascade to remove Sml1 during S phase and after DNA damage.
Collapse
Affiliation(s)
- Xiaolan Zhao
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032-2704, USA
| | | |
Collapse
|
33
|
Abstract
One of the cornerstones of the web of signaling pathways governing cellular life and differentiation is the DNA damage response. It spans a complex network of pathways, ranging from DNA repair to modulation of numerous processes in the cell. DNA double-strand breaks (DSBs), which are formed as a result of genotoxic stress or normal recombinational processes, are extremely lethal lesions that rapidly mobilize this intricate defense system. The master controller that pilots cellular responses to DSBs is the ATM protein kinase, which turns on this network by phosphorylating key players in its various branches. ATM is the protein product of the gene mutated in the human genetic disorder ataxia-telangiectasia (A-T), which is characterized by neuronal degeneration, immunodeficiency, sterility, genomic instability, cancer predisposition, and radiation sensitivity. The clinical and cellular phenotype of A-T attests to the numerous roles of ATM, on the one hand, and to the link between the DNA damage response and developmental processes on the other hand. Recent studies of this protein and its effectors, combined with a thorough investigation of animal models of A-T, have led to new insights into the mode of action of this master controller of the DNA damage response. The evidence that ATM is involved in signaling pathways other than those related to damage response, particularly ones relating to cellular growth and differentiation, reinforces the multifaceted nature of this protein, in which genome stability, developmental processes, and cancer cross paths.
Collapse
Affiliation(s)
- Y Shiloh
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Israel
| | | |
Collapse
|
34
|
Tham WH, Zakian VA. Transcriptional silencing at Saccharomyces telomeres: implications for other organisms. Oncogene 2002; 21:512-21. [PMID: 11850776 DOI: 10.1038/sj.onc.1205078] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Telomeres are the natural ends of eukaryotic chromosomes. In most organisms, telomeres consist of simple, repeated DNA with the strand running 5' to 3' towards the end of the chromosome being rich in G residues. In cases where the very end of the chromosome has been examined, the G-strand is extended to form a short, single stranded tail. The chromatin structure of telomeric regions often has features that distinguish them from other parts of the genome. Because telomeres protect chromosome ends from degradation and end-to-end fusions and prevent the loss of terminal DNA by serving as a substrate for telomerase, they are essential for the stable maintenance of eukaryotic chromosomes. In addition to their essential functions, telomeres in diverse organisms are specialized sites for gene expression. Transcription of genes located next to telomeres is repressed, a phenomenon termed telomere position effect (TPE). TPE is best characterized in the yeast Saccharomyces cerevisiae. This article will focus on the silencing properties of Saccharomyces telomeres and end with speculation on the role of TPE in yeasts and other organisms.
Collapse
Affiliation(s)
- Wai-Hong Tham
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, NJ 08544, USA
| | | |
Collapse
|
35
|
Tercero JA, Diffley JF. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 2001; 412:553-7. [PMID: 11484057 DOI: 10.1038/35087607] [Citation(s) in RCA: 535] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The checkpoint kinase proteins Mec1 and Rad53 are required in the budding yeast, Saccharomyces cerevisiae, to maintain cell viability in the presence of drugs causing damage to DNA or arrest of DNA replication forks. It is thought that they act by inhibiting cell cycle progression, allowing time for DNA repair to take place. Mec1 and Rad53 also slow S phase progression in response to DNA alkylation, although the mechanism for this and its relative importance in protecting cells from DNA damage have not been determined. Here we show that the DNA-alkylating agent methyl methanesulphonate (MMS) profoundly reduces the rate of DNA replication fork progression; however, this moderation does not require Rad53 or Mec1. The accelerated S phase in checkpoint mutants, therefore, is primarily a consequence of inappropriate initiation events. Wild-type cells ultimately complete DNA replication in the presence of MMS. In contrast, replication forks in checkpoint mutants collapse irreversibly at high rates. Moreover, the cytotoxicity of MMS in checkpoint mutants occurs specifically when cells are allowed to enter S phase with DNA damage. Thus, preventing damage-induced DNA replication fork catastrophe seems to be a primary mechanism by which checkpoints preserve viability in the face of DNA alkylation.
Collapse
Affiliation(s)
- J A Tercero
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | | |
Collapse
|
36
|
Krause SA, Loupart ML, Vass S, Schoenfelder S, Harrison S, Heck MM. Loss of cell cycle checkpoint control in Drosophila Rfc4 mutants. Mol Cell Biol 2001; 21:5156-68. [PMID: 11438670 PMCID: PMC87240 DOI: 10.1128/mcb.21.15.5156-5168.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two alleles of the Drosophila melanogaster Rfc4 (DmRfc4) gene, which encodes subunit 4 of the replication factor C (RFC) complex, cause striking defects in mitotic chromosome cohesion and condensation. These mutations produce larval phenotypes consistent with a role in DNA replication but also result in mitotic chromosomal defects appearing either as premature chromosome condensation-like or precocious sister chromatid separation figures. Though the DmRFC4 protein localizes to all replicating nuclei, it is dispersed from chromatin in mitosis. Thus the mitotic defects appear not to be the result of a direct role for RFC4 in chromosome structure. We also show that the mitotic defects in these two DmRfc4 alleles are the result of aberrant checkpoint control in response to DNA replication inhibition or damage to chromosomes. Not all surveillance function is compromised in these mutants, as the kinetochore attachment checkpoint is operative. Intriguingly, metaphase delay is frequently observed with the more severe of the two alleles, indicating that subsequent chromosome segregation may be inhibited. This is the first demonstration that subunit 4 of RFC functions in checkpoint control in any organism, and our findings additionally emphasize the conserved nature of RFC's involvement in checkpoint control in multicellular eukaryotes.
Collapse
Affiliation(s)
- S A Krause
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J 2001; 20:3544-53. [PMID: 11432841 PMCID: PMC125510 DOI: 10.1093/emboj/20.13.3544] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2001] [Revised: 05/08/2001] [Accepted: 05/09/2001] [Indexed: 01/08/2023] Open
Abstract
The evolutionarily conserved protein kinases Mec1 and Rad53 are required for checkpoint response and growth. Here we show that their role in growth is to remove the ribonucleotide reductase inhibitor Sml1 to ensure DNA replication. Sml1 protein levels fluctuate during the cell cycle, being lowest during S phase. The disappearance of Sml1 protein in S phase is due to post-transcriptional regulation and is associated with protein phosphorylation. Both phosphorylation and diminution of Sml1 require MEC1 and RAD53. More over, failure to remove Sml1 in mec1 and rad53 mutants results in incomplete DNA replication, defective mitochondrial DNA propagation, decreased dNTP levels and cell death. Interestingly, similar regulation of Sml1 also occurs after DNA damage. In this case, the regulation requires MEC1 and RAD53, as well as other checkpoint genes. Therefore, Sml1 is a new target of the DNA damage checkpoint and its removal is a conserved function of Mec1 and Rad53 during growth and after damage.
Collapse
Affiliation(s)
- Xiaolan Zhao
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA and Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA Corresponding author e-mail:
| | - Andrei Chabes
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA and Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA Corresponding author e-mail:
| | - Vladimir Domkin
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA and Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA Corresponding author e-mail:
| | - Lars Thelander
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA and Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA Corresponding author e-mail:
| | - Rodney Rothstein
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA and Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA Corresponding author e-mail:
| |
Collapse
|
38
|
Abstract
We envision multiple steps in telomere maintenance, based largely on genetic data from budding yeast. First, the telomere must unfold or open itself such that the free end is accessible to the appropriate enzymatic machinery. Second, telomerase must be recruited, together with the DNA replication machinery that synthesizes the C-rich strand. The processivity of telomerase is regulated both by a length-sensing feedback mechanism and by second-strand synthesis. Finally, the telosome refolds into a protective end structure. If telomerase is nonfunctional, recombination may occur once telomeres are open. Multiple pathways regulate these different steps, producing a highly dynamic chromosomal cap.
Collapse
Affiliation(s)
- K Dubrana
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, CH-1066 Epalinges/Lausanne, Switzerland
| | | | | |
Collapse
|
39
|
Abstract
Yeast defective in the checkpoint kinase Rad53 fail to recover from transient DNA replication blocks and synthesize intact chromosomes. The effectors of Rad53 relevant to this recovery process are unknown. Here we report that overproduction of the chromatin assembly factor Asf1 can suppress the Ts phenotype of mrc1rad53 double mutants and the HU sensitivity of rad53 mutants. Eliminating silencing also suppresses this lethality, further implicating chromatin structure in checkpoint function. We find that Asf1 and Rad53 exist in a dynamic complex that dissociates in response to replication blocks and DNA damage. Thus, checkpoint pathways directly regulate chromatin assembly to promote survival in response to DNA damage and replication blocks.
Collapse
Affiliation(s)
- F Hu
- Verna and Mars McLean Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
40
|
Craven RJ, Petes TD. The Saccharomyces cerevisiae suppressor of choline sensitivity (SCS2) gene is a multicopy Suppressor of mec1 telomeric silencing defects. Genetics 2001; 158:145-54. [PMID: 11333225 PMCID: PMC1461656 DOI: 10.1093/genetics/158.1.145] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mec1p is a cell cycle checkpoint protein related to the ATM protein kinase family. Certain mec1 mutations or overexpression of Mec1p lead to shortened telomeres and loss of telomeric silencing. We conducted a multicopy suppressor screen for genes that suppress the loss of silencing in strains overexpressing Mec1p. We identified SCS2 (suppressor of choline sensitivity), a gene previously isolated as a suppressor of defects in inositol synthesis. Deletion of SCS2 resulted in decreased telomeric silencing, and the scs2 mutation increased the rate of cellular senescence observed for mec1-21 tel1 double mutant cells. Genetic analysis revealed that Scs2p probably acts through a different telomeric silencing pathway from that affected by Mec1p.
Collapse
Affiliation(s)
- R J Craven
- Department of Biology, Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
41
|
Abstract
Recent advances in our understanding of the specialized chromatin structure at telomeres, the ends of eukaryotic chromosomes, have focused on three separate areas: replication of telomeres through the coordinated action of conventional DNA polymerases and the telomerase enzyme, protection of the chromosome end from DNA damage checkpoint sensors and DNA-repair processes, and the discovery of a novel deacetylase enzyme (Sir2p) required for the establishment and maintenance of telomeric heterochromatin. Although the number of proteins and the complexity of their interactions at telomeres continues to grow, a picture of at least some of the major players and mechanisms underlying telomere replication, end 'capping' and chromatin assembly is beginning to emerge.
Collapse
Affiliation(s)
- D Shore
- University of Geneva, Switzerland.
| |
Collapse
|
42
|
Myung K, Datta A, Kolodner RD. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 2001; 104:397-408. [PMID: 11239397 DOI: 10.1016/s0092-8674(01)00227-6] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer cells show increased genome rearrangements, although it is unclear what defects cause these rearrangements. Mutations in Saccharomyces cerevisiae RFC5, DPB11, MEC1, DDC2 MEC3, RAD53, CHK1, PDS1, and DUN1 increased the rate of genome rearrangements up to 200-fold whereas mutations in RAD9, RAD17, RAD24, BUB3, and MAD3 had little effect. The rearrangements were primarily deletion of a portion of a chromosome arm along with TEL1-dependent addition of a new telomere. tel1 mutations increased the proportion of translocations observed, and in some cases showed synergistic interactions when combined with mutations that increased the genome rearrangement rate. These data suggest that one role of S phase checkpoint functions in normal cells is to suppress spontaneous genome rearrangements resulting from DNA replication errors.
Collapse
Affiliation(s)
- K Myung
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California-San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
43
|
Mallory JC, Petes TD. Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase. Proc Natl Acad Sci U S A 2000; 97:13749-54. [PMID: 11095737 PMCID: PMC17647 DOI: 10.1073/pnas.250475697] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae proteins Tel1p and Mec1p are involved in telomere length regulation and cellular responses to DNA damage. The closest relative of these proteins is the human Ataxia Telangiectasia Mutated (ATM) protein, a wortmannin-sensitive protein kinase that primarily phosphorylates serines in an SQ motif. We constructed yeast strains containing functional epitope-tagged versions of Tel1p and Mec1p. We showed that immunoprecipitated Tel1p and Mec1p were capable of in vitro phosphorylation of the mammalian protein PHAS-I (Phosphorylated Heat and Acid Stable protein). These activities are sensitive to wortmannin. Tel1p phosphorylates serine in an SQ motif in PHAS-I. Mutations in the kinase domains of Tel1p and Mec1p result in loss of in vitro kinase activity and the in vivo phenotypes associated with the null tel1 and mec1 mutations.
Collapse
Affiliation(s)
- J C Mallory
- Department of Biology and Curriculum in Genetics and Molecular Biology, CB #3280, Coker Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
44
|
San-Segundo PA, Roeder GS. Role for the silencing protein Dot1 in meiotic checkpoint control. Mol Biol Cell 2000; 11:3601-15. [PMID: 11029058 PMCID: PMC15018 DOI: 10.1091/mbc.11.10.3601] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During the meiotic cell cycle, a surveillance mechanism called the "pachytene checkpoint" ensures proper chromosome segregation by preventing meiotic progression when recombination and chromosome synapsis are defective. The silencing protein Dot1 (also known as Pch1) is required for checkpoint-mediated pachytene arrest of the zip1 and dmc1 mutants of Saccharomyces cerevisiae. In the absence of DOT1, the zip1 and dmc1 mutants inappropriately progress through meiosis, generating inviable meiotic products. Other components of the pachytene checkpoint include the nucleolar protein Pch2 and the heterochromatin component Sir2. In dot1, disruption of the checkpoint correlates with the loss of concentration of Pch2 and Sir2 in the nucleolus. In addition to its checkpoint function, Dot1 blocks the repair of meiotic double-strand breaks by a Rad54-dependent pathway of recombination between sister chromatids. In vegetative cells, mutation of DOT1 results in delocalization of Sir3 from telomeres, accounting for the impaired telomeric silencing in dot1.
Collapse
Affiliation(s)
- P A San-Segundo
- Howard Hughes Medical Institute, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
45
|
Longhese MP, Paciotti V, Neecke H, Lucchini G. Checkpoint proteins influence telomeric silencing and length maintenance in budding yeast. Genetics 2000; 155:1577-91. [PMID: 10924458 PMCID: PMC1461196 DOI: 10.1093/genetics/155.4.1577] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A complex network of surveillance mechanisms, called checkpoints, interrupts cell cycle progression when damage to the genome is detected or when cells fail to complete DNA replication, thus ensuring genetic integrity. In budding yeast, components of the DNA damage checkpoint regulatory network include the RAD9, RAD17, RAD24, MEC3, DDC1, RAD53, and MEC1 genes that are proposed to be involved in different aspects of DNA metabolism. We provide evidence that some DNA damage checkpoint components play a role in maintaining telomere integrity. In fact, rad53 mutants specifically enhance repression of telomere-proximal transcription via the Sir-mediated pathway, suggesting that Rad53 might be required for proper chromatin structure at telomeres. Moreover, Rad53, Mec1, Ddc1, and Rad17 are necessary for telomere length maintenance, since mutations in all of these genes cause a decrease in telomere size. The telomeric shortening in rad53 and mec1 mutants is further enhanced in the absence of SIR genes, suggesting that Rad53/Mec1 and Sir proteins contribute to chromosome end protection by different pathways. The finding that telomere shortening, but not increased telomeric repression of gene expression in rad53 mutants, can be suppressed by increasing dNTP synthetic capacity in these strains suggests that transcriptional silencing and telomere integrity involve separable functions of Rad53.
Collapse
Affiliation(s)
- M P Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy.
| | | | | | | |
Collapse
|