1
|
Rocha RO, Wilson RA. Essential, deadly, enigmatic: Polyamine metabolism and roles in fungal cells. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
2
|
Tao Y, Wang J, Miao J, Chen J, Wu S, Zhu J, Zhang D, Gu H, Cui H, Shi S, Xu M, Yao Y, Gong Z, Yang Z, Gu M, Zhou Y, Liang G. The Spermine Synthase OsSPMS1 Regulates Seed Germination, Grain Size, and Yield. PLANT PHYSIOLOGY 2018; 178:1522-1536. [PMID: 30190417 PMCID: PMC6288755 DOI: 10.1104/pp.18.00877] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 05/21/2023]
Abstract
Polyamines, including putrescine, spermidine, and spermine, play essential roles in a wide variety of prokaryotic and eukaryotic organisms. Rice (Oryza sativa) contains four putative spermidine/spermine synthase (SPMS)-encoding genes (OsSPMS1, OsSPMS2, OsSPMS3, and OsACAULIS5), but none have been functionally characterized. In this study, we used a reverse genetic strategy to investigate the biological function of OsSPMS1 We generated several homozygous RNA interference (RNAi) and overexpression (OE) lines of OsSPMS1 Phenotypic analysis indicated that OsSPMS1 negatively regulates seed germination, grain size, and grain yield per plant. The ratio of spermine to spermidine was significantly lower in the RNAi lines and considerably higher in the OE lines than in the wild type, suggesting that OsSPMS1 may function as a SPMS. S-Adenosyl-l-methionine is a common precursor of polyamines and ethylene biosynthesis. The 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene contents in seeds increased significantly in RNAi lines and decreased in OE lines, respectively, compared with the wild type. Additionally, the reduced germination rates and growth defects of OE lines could be rescued with ACC treatment. These data suggest that OsSPMS1 affects ethylene synthesis and may regulate seed germination and plant growth by affecting the ACC and ethylene pathways. Most importantly, an OsSPMS1 knockout mutant showed an increase in grain yield per plant in a high-yield variety, Suken118, suggesting that OsSPMS1 is an important target for yield enhancement in rice.
Collapse
Affiliation(s)
- Yajun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Jun Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Miao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Jie Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Shujun Wu
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Houwen Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Huan Cui
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Shuangyue Shi
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Mingyue Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Abstract
Polyamines are organic polycations that bind to a variety of cellular molecules, including nucleic acids. Within cells, polyamines contribute to both the efficiency and fidelity of protein synthesis. In addition to directly acting on the translation apparatus to stimulate protein synthesis, the polyamine spermidine serves as a precursor for the essential post-translational modification of the eukaryotic translation factor 5A (eIF5A), which is required for synthesis of proteins containing problematic amino acid sequence motifs, including polyproline tracts, and for termination of translation. The impact of polyamines on translation is highlighted by autoregulation of the translation of mRNAs encoding key metabolic and regulatory proteins in the polyamine biosynthesis pathway, including S-adenosylmethionine decarboxylase (AdoMetDC), antizyme (OAZ), and antizyme inhibitor 1 (AZIN1). Here, we highlight the roles of polyamines in general translation and also in the translational regulation of polyamine biosynthesis.
Collapse
Affiliation(s)
- Thomas E Dever
- From the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Ivaylo P Ivanov
- From the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
4
|
Abstract
Polyamines are primordial polycations found in most cells and perform different functions in different organisms. Although polyamines are mainly known for their essential roles in cell growth and proliferation, their functions range from a critical role in cellular translation in eukaryotes and archaea, to bacterial biofilm formation and specialized roles in natural product biosynthesis. At first glance, the diversity of polyamine structures in different organisms appears chaotic; however, biosynthetic flexibility and evolutionary and ecological processes largely explain this heterogeneity. In this review, I discuss the biosynthetic, evolutionary, and physiological processes that constrain or expand polyamine structural and functional diversity.
Collapse
Affiliation(s)
- Anthony J Michael
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
5
|
Zhang Y, Sachs MS. Control of mRNA Stability in Fungi by NMD, EJC and CBC Factors Through 3'UTR Introns. Genetics 2015; 200:1133-48. [PMID: 26048019 PMCID: PMC4574236 DOI: 10.1534/genetics.115.176743] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 02/01/2023] Open
Abstract
In higher eukaryotes the accelerated degradation of mRNAs harboring premature termination codons is controlled by nonsense-mediated mRNA decay (NMD), exon junction complex (EJC), and nuclear cap-binding complex (CBC) factors, but the mechanistic basis for this quality-control system and the specific roles of the individual factors remain unclear. Using Neurospora crassa as a model system, we analyzed the mechanisms by which NMD is induced by spliced 3'-UTR introns or upstream open reading frames and observed that the former requires NMD, EJC, and CBC factors whereas the latter requires only the NMD factors. The transcripts for EJC components eIF4A3 and Y14, and translation termination factor eRF1, contain spliced 3'-UTR introns and each was stabilized in NMD, EJC, and CBC mutants. Reporter mRNAs containing spliced 3'-UTR introns, but not matched intronless controls, were stabilized in these mutants and were enriched in mRNPs immunopurified from wild-type cells with antibody directed against human Y14, demonstrating a direct role for spliced 3'-UTR introns in triggering EJC-mediated NMD. These results demonstrate conclusively that NMD, EJC, and CBC factors have essential roles in controlling mRNA stability and that, based on differential requirements for these factors, there are branched mechanisms for NMD. They demonstrate for the first time autoregulatory control of expression at the level of mRNA stability through the EJC/CBC branch of NMD for EJC core components, eIF4A3 and Y14, and for eRF1, which recognizes termination codons. Finally, these results show that EJC-mediated NMD occurs in fungi and thus is an evolutionarily conserved quality-control mechanism.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| |
Collapse
|
6
|
Valdés-Santiago L, Ruiz-Herrera J. Stress and polyamine metabolism in fungi. Front Chem 2014; 1:42. [PMID: 24790970 PMCID: PMC3982577 DOI: 10.3389/fchem.2013.00042] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022] Open
Abstract
Fungi, as well as the rest of living organisms must deal with environmental challenges such as stressful stimuli. Fungi are excellent models to study the general mechanisms of the response to stress, because of their simple, but conserved, signal-transduction and metabolic pathways that are often equivalent to those present in other eukaryotic systems. A factor that has been demonstrated to be involved in these responses is polyamine metabolism, essentially of the three most common polyamines: putrescine, spermidine and spermine. The gathered evidences on this subject suggest that polyamines are able to control cellular signal transduction, as well as to modulate protein-protein interactions. In the present review, we will address the recent advances on the study of fungal metabolism of polyamines, ranging from mutant characterization to potential mechanism of action during different kinds of stress in selected fungal models.
Collapse
Affiliation(s)
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, México
| |
Collapse
|
7
|
Deeb F, van der Weele CM, Wolniak SM. Spermidine is a morphogenetic determinant for cell fate specification in the male gametophyte of the water fern Marsilea vestita. THE PLANT CELL 2010; 22:3678-91. [PMID: 21097708 PMCID: PMC3015118 DOI: 10.1105/tpc.109.073254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 10/04/2010] [Accepted: 11/04/2010] [Indexed: 05/22/2023]
Abstract
Here, we show that the polyamine spermidine plays a key role as a morphogenetic determinant during spermatid development in the water fern Marsilea vestita. Spermidine levels rise first in sterile jacket cells and then increase dramatically in spermatogenous cells as the spermatids mature. RNA interference and drug treatments were employed to deplete spermidine in the gametophyte at different stages of gametogenesis. Development in spermidine-depleted gametophytes was arrested before the completion of the last round of cell divisions. In spermidine-depleted spermatogenous cells, chromatin failed to condense properly, basal body positioning was altered, and the microtubule ribbon was in disarray. When cyclohexylamine, a spermidine synthase (SPDS) inhibitor, was added at the start of spermatid differentiation, the spermatid nuclei remained round, centrin failed to localize into basal bodies, thus blocking basal body formation, and the microtubule ribbon was completely abolished. In untreated gametophytes, spermidine made in the jacket cells moves into the spermatids, where it is involved in the unmasking of stored SPDS mRNAs, leading to substantial spermidine synthesis in the spermatids. We found that treating spores directly with spermidine or other polyamines was sufficient to unmask a variety of stored mRNAs in gametophytes and arrest development. Differences in patterns of transcript distribution after these treatments suggest that specific transcripts reside in different locations in the dry spore; these differences may be linked to the timing of unmasking and translation for that mRNA during development.
Collapse
|
8
|
Ivanov IP, Atkins JF, Michael AJ. A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation. Nucleic Acids Res 2009; 38:353-9. [PMID: 19920120 PMCID: PMC2811004 DOI: 10.1093/nar/gkp1037] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In many eukaryotic mRNAs one or more short 'upstream' open reading frames, uORFs, precede the initiator of the main coding sequence. Upstream ORFs are functionally diverse as illustrated by their variety of features in polyamine pathway biosynthetic mRNAs. Their propensity to act as sensors for regulatory circuits and to amplify the signals likely explains their occurrence in most polyamine pathway mRNAs. The uORF-mediated polyamine responsive autoregulatory circuits found in polyamine pathway mRNAs exemplify the translationally regulated dynamic interface between components of the proteome and metabolism.
Collapse
Affiliation(s)
- Ivaylo P Ivanov
- BioSciences Institute, University College Cork, Cork, Ireland and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | | | | |
Collapse
|
9
|
Hood HM, Neafsey DE, Galagan J, Sachs MS. Evolutionary roles of upstream open reading frames in mediating gene regulation in fungi. Annu Rev Microbiol 2009; 63:385-409. [PMID: 19514854 DOI: 10.1146/annurev.micro.62.081307.162835] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Upstream open reading frames (uORFs) are frequently present in the 5'-leader regions of fungal mRNAs. They can affect translation by controlling the ability of ribosomes that scan from the mRNA 5' end to reach the downstream genic reading frame. The translation of uORFs can also affect mRNA stability. For several genes, including Saccharomyces cerevisiae GCN4, S. cerevisiae CPA1, and Neurospora crassa arg-2, regulation by uORFs controls expression in response to specific physiological signals. The roles of many uORFs that are identified by genome-level approaches, as have been initiated for Saccharomyces, Aspergillus, and Cryptococcus species, remain to be determined. Some uORFs may have regulatory roles, while others may exist to insulate the genic reading frame from the negative impacts of upstream translation start sites in the mRNA 5' leader.
Collapse
Affiliation(s)
- Heather M Hood
- Department of Science and Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
10
|
Jiménez-Bremont JF, Ruiz-Herrera J. Analysis of the transcriptional regulation of YlODC gene from the dimorphic fungus Yarrowia lipolytica. Microbiol Res 2009; 163:717-23. [PMID: 18595680 DOI: 10.1016/j.micres.2008.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/19/2008] [Indexed: 11/17/2022]
Abstract
Polyamines are small polycations essential for cell growth. Ornithine decarboxylase (ODC), the first enzyme of the polyamine synthesis pathway, is one of the most regulated enzymes of eukaryotes. In the present report, the transcriptional regulation of the gene encoding ODC from the dimorphic fungus Yarrowia lipolytica (YlODC) was analyzed. To this end we made a transcriptional fusion of its promoter with the ORF of the beta-glucuronidase gene from Escherichia coli, and analyzed the effect of polyamines and the dimorphic transition on the rate of transcription. The results obtained show that there exists a weak but reproducible transcriptional regulation of YlODC under the analyzed conditions. Our data suggest that gene transcription is down-regulated by putrescine, and stimulated by spermidine. It is suggested that the simultaneous operation of transcriptional and post-translational regulatory mechanisms endows the cell with a more efficient mechanism to control the physiological processes that depend on polyamines.
Collapse
Affiliation(s)
- Juan Francisco Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, Apartado Postal 3-74 Tangamanga, 78210 San Luis Potosí, Slp., México.
| | | |
Collapse
|
11
|
uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs. Proc Natl Acad Sci U S A 2008; 105:10079-84. [PMID: 18626014 DOI: 10.1073/pnas.0801590105] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In a minority of eukaryotic mRNAs, a small functional upstream ORF (uORF), often performing a regulatory role, precedes the translation start site for the main product(s). Here, conserved uORFs in numerous ornithine decarboxylase homologs are identified from yeast to mammals. Most have noncanonical evolutionarily conserved start codons, the main one being AUU, which has not been known as an initiator for eukaryotic chromosomal genes. The AUG-less uORF present in mouse antizyme inhibitor, one of the ornithine decarboxylase homologs in mammals, mediates polyamine-induced repression of the downstream main ORF. This repression is part of an autoregulatory circuit, and one of its sensors is the AUU codon, which suggests that translation initiation codon identity is likely used for regulation in eukaryotes.
Collapse
|
12
|
Polyamine metabolism during sclerotial development of Sclerotinia sclerotiorum. ACTA ACUST UNITED AC 2008; 112:414-22. [DOI: 10.1016/j.mycres.2007.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 09/12/2007] [Accepted: 10/31/2007] [Indexed: 11/21/2022]
|
13
|
Voigt J, Fausel M, Bohley P, Adam KH, Marquardt O. Structure and expression of the ornithine decarboxylase gene of Chlamydomonas reinhardtii. Microbiol Res 2005; 159:403-17. [PMID: 15646386 DOI: 10.1016/j.micres.2004.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A cDNA was cloned encoding ornithine decarboxylase (ODC) of the unicellular green alga Chlamydomonas reinhardtii. The polypeptide consists of 396 amino acid residues with 35-37% sequence identity to other eukaryotic ODCs. As indicated by the phylogenetic tree calculated by neighbour joining analysis, the Chlamydomonas ODC has the same evolutionary distances to the ODCs of higher plants and mammalians. The Chlamydomonas ODC gene contains three introns of 222, 133, and 129bp, respectively. As revealed by Northern-blot analyses, expression of the Chlamydomonas ODC gene is neither altered throughout the vegetative cell cycle nor modulated by exogenous polyamines.
Collapse
Affiliation(s)
- Jürgen Voigt
- Physiologisch-chemisches Institut der Eberhard-Karls-Universität, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
14
|
Theiss C, Bohley P, Bisswanger H, Voigt J. Uptake of polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effect on ornithine decarboxylase activity. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:3-14. [PMID: 15002659 DOI: 10.1078/0176-1617-00987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Uptake of exogenous polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effects on polyamine metabolism were investigated. Our data show that, in contrast to mammalian cells, Chlamydomonas reinhardtii does not contain short-living, high-affinity polyamine transporters whose cellular level is dependent on the polyamine concentration. However, exogenous polyamines affect polyamine metabolism in Chlamydomonas cells. Exogenous putrescine caused a slow increase of both putrescine and spermidine and, vice versa, exogenous spermidine also led to an increase of the intracellular levels of both spermidine and putrescine. No intracellular spermine was detected under any conditions. Exogenous spermine was taken up by the cells and caused a decrease in their putrescine and spermidine levels. As in other organisms, exogenous polyamines led to a decrease in the activity of ornithine decarboxylase, a key enzyme of polyamine synthesis. In contrast to mammalian cells, this polyamine-induced decrease in ornithine decarboxylase activity is not mediated by a polyamine-dependent degradation or inactivation, but exclusively due to a decreased synthesis of ornithine decarboxylase. Translation of ornithine decarboxylase mRNA, but not overall protein biosynthesis is slowed by increased polyamine levels.
Collapse
Affiliation(s)
- Christine Theiss
- Physiologisch-Chemisches Institut der Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
15
|
Hascilowicz T, Murai N, Matsufuji S, Murakami Y. Regulation of ornithine decarboxylase by antizymes and antizyme inhibitor in zebrafish (Danio rerio). BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1578:21-8. [PMID: 12393184 DOI: 10.1016/s0167-4781(02)00476-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mammalian polyamine synthesis is regulated by a unique feedback mechanism. When cellular polyamine levels increase, antizyme, an ornithine decarboxylase (ODC) inhibitory protein, is induced by polyamine-dependent translational frameshifting. Antizyme not only inhibits ODC, a key enzyme in polyamine synthesis, it also targets the enzyme degradation by the 26S proteasome. Furthermore, it suppresses cellular uptake of polyamines. Previously, we isolated two zebrafish antizymes with different expressions and activities. This suggested that a common feedback mechanism of polyamine metabolism might operate in mammals and zebrafish (Danio rerio). In the present study, cDNAs of zebrafish ODC and antizyme inhibitor, another regulatory protein that inhibits antizyme action, were cloned. The presence of ODC and antizyme inhibitor mRNAs was confirmed by Northern blotting in embryos and adult fish, as well as in a zebrafish-derived cell line (BRF41). The activity of the ODC cDNA expression product was inhibited by short and long zebrafish antizymes, and recombinant zebrafish antizyme inhibitor reversed this inhibition. In the BRF41 cells, the ODC half-life was considerably longer than that of mammalian ODC but shorter than that of Schizosaccharomyces pombe. Spermidine elicited a rapid decay of ODC activity and ODC protein in a protein synthesis-dependent manner.
Collapse
Affiliation(s)
- Tomasz Hascilowicz
- Department of Biochemistry II, Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- D D Perkins
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| | | |
Collapse
|