1
|
TFIID dependency of steady-state mRNA transcription altered epigenetically by simultaneous functional loss of Taf1 and Spt3 is Hsp104-dependent. PLoS One 2023; 18:e0281233. [PMID: 36757926 PMCID: PMC9910645 DOI: 10.1371/journal.pone.0281233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
In Saccharomyces cerevisiae, class II gene promoters have been divided into two subclasses, TFIID- and SAGA-dominated promoters or TFIID-dependent and coactivator-redundant promoters, depending on the experimental methods used to measure mRNA levels. A prior study demonstrated that Spt3, a TBP-delivering subunit of SAGA, functionally regulates the PGK1 promoter via two mechanisms: by stimulating TATA box-dependent transcriptional activity and conferring Taf1/TFIID independence. However, only the former could be restored by plasmid-borne SPT3. In the present study, we sought to determine why ectopically expressed SPT3 is unable to restore Taf1/TFIID independence to the PGK1 promoter, identifying that this function was dependent on the construction protocol for the SPT3 taf1 strain. Specifically, simultaneous functional loss of Spt3 and Taf1 during strain construction was a prerequisite to render the PGK1 promoter Taf1/TFIID-dependent in this strain. Intriguingly, genetic approaches revealed that an as-yet unidentified trans-acting factor reprogrammed the transcriptional mode of the PGK1 promoter from the Taf1/TFIID-independent state to the Taf1/TFIID-dependent state. This factor was generated in the haploid SPT3 taf1 strain in an Hsp104-dependent manner and inherited meiotically in a non-Mendelian fashion. Furthermore, RNA-seq analyses demonstrated that this factor likely affects the transcription mode of not only the PGK1 promoter, but also of many other class II gene promoters. Collectively, these findings suggest that a prion or biomolecular condensate is generated in a Hsp104-dependent manner upon simultaneous functional loss of TFIID and SAGA, and could alter the roles of these transcription complexes on a wide variety of class II gene promoters without altering their primary sequences. Therefore, these findings could provide the first evidence that TFIID dependence of class II gene transcription can be altered epigenetically, at least in Saccharomyces cerevisiae.
Collapse
|
2
|
Zhao H, Chen J, Liu J, Han B. Transcriptome analysis reveals the oxidative stress response in Saccharomyces cerevisiae. RSC Adv 2015. [DOI: 10.1039/c4ra14600j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A global regulatory network involving the response to the oxidation stress inSaccharomyces cerevisiaewas revealed in this study.
Collapse
Affiliation(s)
- Hongwei Zhao
- Beijing Laboratory for Food Quality and Safety
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Jingjing Liu
- Beijing Laboratory for Food Quality and Safety
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Beizhong Han
- Beijing Laboratory for Food Quality and Safety
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| |
Collapse
|
3
|
Abstract
Transcription factor IID (TFIID) plays a central role in regulating the expression of most eukaryotic genes. Of the 14 TBP-associated factor (TAF) subunits that compose TFIID, TAF1 is one of the largest and most functionally diverse. Yeast TAF1 can be divided into four regions including a putative histone acetyltransferase domain and TBP, TAF, and promoter binding domains. Establishing the importance of each region in gene expression through deletion analysis has been hampered by the cellular requirement of TAF1 for viability. To circumvent this limitation we introduced galactose-inducible deletion derivatives of previously defined functional regions of TAF1 into a temperature-sensitive taf1ts2 yeast strain. After galactose induction of the TAF1 mutants and temperature-induced elimination of the resident Taf1ts2 protein, we examined the properties and phenotypes of the mutants, including their impact on genome-wide transcription. Virtually all TAF1-dependent genes, which comprise approximately 90% of the yeast genome, displayed a strong dependence upon all regions of TAF1 that were tested. This finding might reflect the need for each region of TAF1 to stabilize TAF1 against degradation or may indicate that all TAF1-dependent genes require the many activities of TAF1. Paradoxically, deletion of the region of TAF1 that is important for promoter binding interfered with the expression of many genes that are normally TFIID-independent/SAGA (Spt-Ada-Gcn5-acetyltransferase)-dominated, suggesting that this region normally prevents TAF1 (TFIID) from interfering with the expression of SAGA-regulated genes.
Collapse
Affiliation(s)
- Jordan D Irvin
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
4
|
Frontini M, Soutoglou E, Argentini M, Bole-Feysot C, Jost B, Scheer E, Tora L. TAF9b (formerly TAF9L) is a bona fide TAF that has unique and overlapping roles with TAF9. Mol Cell Biol 2005; 25:4638-49. [PMID: 15899866 PMCID: PMC1140618 DOI: 10.1128/mcb.25.11.4638-4649.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TFIID plays a key role in transcription initiation of RNA polymerase II preinitiation complex assembly. TFIID is comprised of the TATA box binding protein (TBP) and 14 TBP-associated factors (TAFs). A second set of transcriptional regulatory multiprotein complexes containing TAFs has been described (called SAGA, TFTC, STAGA, and PCAF/GCN5). Using matrix-assisted laser desorption ionization mass spectrometry, we identified a novel TFTC subunit, human TAF9Like, encoded by a TAF9 paralogue gene. We show that TAF9Like is a subunit of TFIID, and thus, it will be called TAF9b. TFIID and TFTC complexes in which both TAF9 and TAF9b are present exist. In vitro and in vivo experiments indicate that the interactions between TAF9b and TAF6 or TAF9 and TAF6 histone fold pairs are similar. We observed a differential induction of TAF9 and TAF9b during apoptosis that, together with their different ability to stabilize p53, points to distinct requirements for the two proteins in gene regulation. Small interfering RNA (siRNA) knockdown of TAF9 and TAF9b revealed that both genes are essential for cell viability. Gene expression analysis of cells treated with either TAF9 or TAF9b siRNAs indicates that the two proteins regulate different sets of genes with only a small overlap. Taken together, these data demonstrate that TAF9 and TAF9b share some of their functions, but more importantly, they have distinct roles in the transcriptional regulatory process.
Collapse
Affiliation(s)
- Mattia Frontini
- Department of Transcription, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Soutoglou E, Demény MA, Scheer E, Fienga G, Sassone-Corsi P, Tora L. The nuclear import of TAF10 is regulated by one of its three histone fold domain-containing interaction partners. Mol Cell Biol 2005; 25:4092-104. [PMID: 15870280 PMCID: PMC1087738 DOI: 10.1128/mcb.25.10.4092-4104.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TFIID, comprising the TATA box binding protein (TBP) and 13 TBP-associated factors (TAFs), plays a role in nucleation in the assembly of the RNA polymerase II preinitiation complexes on protein-encoding genes. TAFs are shared among other transcription regulatory complexes (e.g., SAGA, TBP-free TAF-containing complex [TFTC], STAGA, and PCAF/GCN5). Human TAF10, a subunit of both TFIID and TFTC, has three histone fold-containing interaction partners: TAF3, TAF8, and SPT7Like (SPT7L). In human cells, exogenously expressed TAF10 remains rather cytoplasmic and leptomycin B does not affect this localization. By using fluorescent fusion proteins, we show that TAF10 does not have an intrinsic nuclear localization signal (NLS) and needs one of its three interaction partners to be transported into the nucleus. When the NLS sequences of either TAF8 or SPT7L are mutated, TAF10 remains cytoplasmic, but a heterologous NLS can drive TAF10 into the nucleus. Experiments using fluorescence recovery after photobleaching show that TAF10 does not associate with any cytoplasmic partner but that once transported into the nucleus it binds to nuclear structures. TAF10 binding to importin beta in vitro is dependent on the coexpression of either TAF8 or TAF3, but not SPT7L. The cytoplasmic-nuclear transport of TAF10 is naturally observed during the differentiation of adult male germ cells. Thus, here we describe a novel role of the three mammalian interacting partners in the nuclear localization of TAF10, and our data suggest that a complex network of regulated cytoplasmic associations may exist among these factors and that this network is important for the composition of different TFIID and TFTC-type complexes in the nucleus.
Collapse
Affiliation(s)
- Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, Department of Transcriptional and Post-Transcriptional Control of Gene Regulation, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
6
|
Roosen J, Engelen K, Marchal K, Mathys J, Griffioen G, Cameroni E, Thevelein JM, De Virgilio C, De Moor B, Winderickx J. PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 2004; 55:862-80. [PMID: 15661010 DOI: 10.1111/j.1365-2958.2004.04429.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the yeast Saccharomyces cerevisiae, PKA and Sch9 exert similar physiological roles in response to nutrient availability. However, their functional redundancy complicates to distinguish properly the target genes for both kinases. In this article, we analysed different phenotypic read-outs. The data unequivocally showed that both kinases act through separate signalling cascades. In addition, genome-wide expression analysis under conditions and with strains in which either PKA and/or Sch9 signalling was specifically affected, demonstrated that both kinases synergistically or oppositely regulate given gene targets. Unlike PKA, which negatively regulates stress-responsive element (STRE)- and post-diauxic shift (PDS)-driven gene expression, Sch9 appears to exert additional positive control on the Rim15-effector Gis1 to regulate PDS-driven gene expression. The data presented are consistent with a cyclic AMP (cAMP)-gating phenomenon recognized in higher eukaryotes consisting of a main gatekeeper, the protein kinase PKA, switching on or off the activities and signals transmitted through primary pathways such as, in case of yeast, the Sch9-controlled signalling route. This mechanism allows fine-tuning various nutritional responses in yeast cells, allowing them to adapt metabolism and growth appropriately.
Collapse
Affiliation(s)
- Johnny Roosen
- Functional Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg, B-3001 Leuven-Heverlee, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lago C, Clerici E, Mizzi L, Colombo L, Kater MM. TBP-associated factors in Arabidopsis. Gene 2004; 342:231-41. [PMID: 15527982 DOI: 10.1016/j.gene.2004.08.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 07/08/2004] [Accepted: 08/19/2004] [Indexed: 11/19/2022]
Abstract
Initiation of transcription mediated by RNA polymerase II requires a number of transcription factors among which TFIID is the major core promoter recognition factor. TFIID is composed of highly conserved factors which include the TATA-binding protein (TBP) and about 14 TBP-associated factors (TAFs). Since TAFs play important roles in transcription they have been extensively studied in organisms like yeast, Drosophila and human. Surprisingly, TAFs have been poorly characterized in plants. With the completion of the Arabidopsis genome sequence, it is possible to search for TAFs, since many of them have conserved amino acid sequences. Mining the genome of Arabidopsis for TAFs resulted in the identification of 18 putative Arabidopsis TAFs (AtTAFs). We have analyzed their protein structure and their genomic localisation. Expression profiling by RT-PCR showed that these TAFs are expressed in all parts of the plant which is in agreement with their general role in transcription. These analyses in combination with their evolutionary conservation with TAFs of other organisms are discussed.
Collapse
Affiliation(s)
- Clara Lago
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli studi di Milano, via Celoria 26, 20133, Milan, Italy
| | | | | | | | | |
Collapse
|
8
|
Pereira LA, Klejman MP, Timmers HTM. Roles for BTAF1 and Mot1p in dynamics of TATA-binding protein and regulation of RNA polymerase II transcription. Gene 2003; 315:1-13. [PMID: 14557059 DOI: 10.1016/s0378-1119(03)00714-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Regulation of RNA polymerase II (pol II) transcription is a highly dynamic process requiring the coordinated interaction of an array of regulatory proteins. Central to this process is the TATA-binding protein (TBP), the key component of the multiprotein complex TFIID. Interaction of TBP with core promoters nucleates the assembly of the preinitiation complex and subsequent recruitment of pol II. Despite recent advances in our understanding of the dynamic nature of the pol II transcription apparatus, the dynamics of TBP function on pol II promoters has remained largely unexplored. Human BTAF1 (TAF(II)170/TAF-172) and its yeast ortholog, Mot1p, are evolutionarily conserved members of the SNF2-like family of ATPase proteins. Genetic identification of Mot1p as a repressor of pol II transcription was supported by findings that Mot1p and BTAF1 could dissociate TBP from TATA DNA complexes using the energy of ATP hydrolysis. Recent data have revealed new aspects of BTAF1 and Mot1p as positive regulators of TBP function in the pol II system and have described new observations relating to their molecular mechanism of action. We review these data in the context of previous findings with particular attention paid to how human BTAF1 and Mot1p may dynamically regulate TBP function on pol II promoters in cells.
Collapse
Affiliation(s)
- Lloyd A Pereira
- Laboratory for Physiological Chemistry, Division of Biomedical Genetics, UMC-U, Universiteitsweg 100, 3584 Utrecht CG, The Netherlands
| | | | | |
Collapse
|
9
|
Mohan WS, Scheer E, Wendling O, Metzger D, Tora L. TAF10 (TAF(II)30) is necessary for TFIID stability and early embryogenesis in mice. Mol Cell Biol 2003; 23:4307-18. [PMID: 12773572 PMCID: PMC156135 DOI: 10.1128/mcb.23.12.4307-4318.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TAF10 (formerly TAF(II)30), is a component of TFIID and the TATA box-binding protein (TBP)-free TAF-containing complexes (TFTC/PCAF/STAGA). To investigate the physiological function of TAF10, we disrupted its gene in mice by using a Cre recombinase/LoxP strategy. Interestingly, no TAF10(-/-) animals were born from intercrosses of TAF10(+/-) mice, indicating that TAF10 is required for embryogenesis. TAF10(-/-) embryos developed to the blastocyst stage, implanted, but died shortly after ca. 5.5 days postcoitus. Surprisingly, trophoblast cells from TAF10(-/-) blastocysts were viable, whereas inner cell mass cells failed to survive, highlighting that TAF10 is not generally required for transcription in all cells. TAF10-deficient cells express normal levels of TBP and TAFs other than TAF10 but contain only partially formed TFIID, are endocycle arrested, and have undetectable levels of transcription. Thus, our results demonstrate that TAF10 is required for TFIID stability, cell cycle progression, and transcription in the early mouse embryo.
Collapse
Affiliation(s)
- William S Mohan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | |
Collapse
|
10
|
Kobayashi A, Miyake T, Kawaichi M, Kokubo T. Mutations in the histone fold domain of the TAF12 gene show synthetic lethality with the TAF1 gene lacking the TAF N-terminal domain (TAND) by different mechanisms from those in the SPT15 gene encoding the TATA box-binding protein (TBP). Nucleic Acids Res 2003; 31:1261-74. [PMID: 12582246 PMCID: PMC150217 DOI: 10.1093/nar/gkg180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The general transcription factor TFIID, composed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), is important for both basal and regulated transcription by RNA polymerase II. Although it is well known that the TAF N-terminal domain (TAND) at the amino-terminus of the TAF1 protein binds to TBP and thereby inhibits TBP function in vitro, the physiological role of this domain remains obscure. In our previous study, we screened for mutations that cause lethality when co-expressed with the TAF1 gene lacking TAND (taf1-DeltaTAND) and identified two DeltaTAND synthetic lethal (nsl) mutations as those in the SPT15 gene encoding TBP. In this study we isolated another nsl mutation in the same screen and identified it to be a mutation in the histone fold domain (HFD) of the TAF12 gene. Several other HFD mutations of this gene also exhibit nsl phenotypes, and all of them are more or less impaired in transcriptional activation in vivo. Interestingly, a set of genes affected in the taf1-DeltaTAND mutant is similarly affected in the taf12 HFD mutants but not in the nsl mutants of TBP. Therefore, we discovered that the nsl mutations of these two genes cause lethality in the taf1-DeltaTAND mutant by different mechanisms.
Collapse
Affiliation(s)
- Akiko Kobayashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
11
|
Thuault S, Gangloff YG, Kirchner J, Sanders S, Werten S, Romier C, Weil PA, Davidson I. Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain. J Biol Chem 2002; 277:45510-7. [PMID: 12237303 DOI: 10.1074/jbc.m206556200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Yeast TFIID comprises the TATA binding protein and 14 TBP-associated factors (TAF(II)s), nine of which contain histone-fold domains (HFDs). The C-terminal region of the TFIID-specific yTAF4 (yTAF(II)48) containing the HFD shares strong sequence similarity with Drosophila (d)TAF4 (dTAF(II)110) and human TAF4 (hTAF(II)135). A structure/function analysis of yTAF4 demonstrates that the HFD, a short conserved C-terminal domain (CCTD), and the region separating them are all required for yTAF4 function. Temperature-sensitive mutations in the yTAF4 HFD alpha2 helix or the CCTD can be suppressed upon overexpression of yTAF12 (yTAF(II)68). Moreover, coexpression in Escherichia coli indicates direct yTAF4-yTAF12 heterodimerization optimally requires both the yTAF4 HFD and CCTD. The x-ray crystal structure of the orthologous hTAF4-hTAF12 histone-like heterodimer indicates that the alpha3 region within the predicted TAF4 HFD is unstructured and does not correspond to the bona fide alpha3 helix. Our functional and biochemical analysis of yTAF4, rather provides strong evidence that the HFD alpha3 helix of the TAF4 family lies within the CCTD. These results reveal an unexpected and novel HFD organization in which the alpha3 helix is separated from the alpha2 helix by an extended loop containing a conserved functional domain.
Collapse
Affiliation(s)
- Sylvie Thuault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Boîte Postale 163 67404 Illkirch Cédex, Communauté Urbaine de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sanders SL, Garbett KA, Weil PA. Molecular characterization of Saccharomyces cerevisiae TFIID. Mol Cell Biol 2002; 22:6000-13. [PMID: 12138208 PMCID: PMC133964 DOI: 10.1128/mcb.22.16.6000-6013.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Revised: 02/27/2002] [Accepted: 05/21/2002] [Indexed: 11/20/2022] Open
Abstract
We previously defined Saccharomyces cerevisiae TFIID as a 15-subunit complex comprised of the TATA binding protein (TBP) and 14 distinct TBP-associated factors (TAFs). In this report we give a detailed biochemical characterization of this general transcription factor. We have shown that yeast TFIID efficiently mediates both basal and activator-dependent transcription in vitro and displays TATA box binding activity that is functionally distinct from that of TBP. Analyses of the stoichiometry of TFIID subunits indicated that several TAFs are present at more than 1 copy per TFIID complex. This conclusion was further supported by coimmunoprecipitation experiments with a systematic family of (pseudo)diploid yeast strains that expressed epitope-tagged and untagged alleles of the genes encoding TFIID subunits. Based on these data, we calculated a native molecular mass for monomeric TFIID. Purified TFIID behaved in a fashion consistent with this calculated molecular mass in both gel filtration and rate-zonal sedimentation experiments. Quite surprisingly, although the TAF subunits of TFIID cofractionated as a single complex, TBP did not comigrate with the TAFs during either gel filtration chromatography or rate-zonal sedimentation, suggesting that TBP has the ability to dynamically associate with the TFIID TAFs. The results of direct biochemical exchange experiments confirmed this hypothesis. Together, our results represent a concise molecular characterization of the general transcription factor TFIID from S. cerevisiae.
Collapse
Affiliation(s)
- Steven L Sanders
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | |
Collapse
|
13
|
Sanders SL, Jennings J, Canutescu A, Link AJ, Weil PA. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 2002; 22:4723-38. [PMID: 12052880 PMCID: PMC133885 DOI: 10.1128/mcb.22.13.4723-4738.2002] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2002] [Revised: 02/13/2002] [Accepted: 03/27/2002] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIID is a multisubunit complex of TATA-binding protein (TBP) and 14 distinct TBP-associated factors (TAFs). Although TFIID constituents are required for transcription initiation of most mRNA encoding genes, the mechanism of TFIID action remains unclear. To gain insight into TFIID function, we sought to generate a proteomic catalogue of proteins specifically interacting with TFIID subunits. Toward this end, TFIID was systematically immunopurified by using polyclonal antibodies directed against each subunit, and the constellation of TBP- and TAF-associated proteins was directly identified by coupled multidimensional liquid chromatography and tandem mass spectrometry. A number of novel protein-protein associations were observed, and several were characterized in detail. These interactions include association between TBP and the RSC chromatin remodeling complex, the TAF17p-dependent association of the Swi6p transactivator protein with TFIID, and the identification of three novel subunits of the SAGA acetyltransferase complex, including a putative ubiquitin-specific protease component. Our results provide important new insights into the mechanisms of mRNA gene transcription and demonstrate the feasibility of constructing a complete proteomic interaction map of the eukaryotic transcription apparatus.
Collapse
Affiliation(s)
- Steven L Sanders
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
14
|
Kirschner DB, vom Baur E, Thibault C, Sanders SL, Gangloff YG, Davidson I, Weil PA, Tora L. Distinct mutations in yeast TAF(II)25 differentially affect the composition of TFIID and SAGA complexes as well as global gene expression patterns. Mol Cell Biol 2002; 22:3178-93. [PMID: 11940675 PMCID: PMC133751 DOI: 10.1128/mcb.22.9.3178-3193.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RNA polymerase II transcription factor TFIID, composed of the TATA-binding protein (TBP) and TBP-associated factors (TAF(II)s), nucleates preinitiation complex formation at protein-coding gene promoters. SAGA, a second TAF(II)-containing multiprotein complex, is involved in transcription regulation in Saccharomyces cerevisiae. One of the essential protein components common to SAGA and TFIID is yTAF(II)25. We define a minimal evolutionarily conserved 91-amino-acid region of TAF(II)25 containing a histone fold domain that is necessary and sufficient for growth in vivo. Different temperature-sensitive mutations of yTAF(II)25 or chimeras with the human homologue TAF(II)30 arrested cell growth at either the G(1) or G(2)/M cell cycle phase and displayed distinct phenotypic changes and gene expression patterns. Immunoprecipitation studies revealed that TAF(II)25 mutation-dependent gene expression and phenotypic changes correlated at least partially with the integrity of SAGA and TFIID. Genome-wide expression analysis revealed that the five TAF(II)25 temperature-sensitive mutant alleles individually affect the expression of between 18 and 33% of genes, whereas taken together they affect 64% of all class II genes. Thus, different yTAF(II)25 mutations induce distinct phenotypes and affect the regulation of different subsets of genes, demonstrating that no individual TAF(II) mutant allele reflects the full range of its normal functions.
Collapse
Affiliation(s)
- Doris B Kirschner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Current awareness on yeast. Yeast 2002; 19:185-92. [PMID: 11788972 DOI: 10.1002/yea.820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|