1
|
He Z, Song C, Li S, Dong C, Liao W, Xiong Y, Yang S, Liu Y. Development and Application of the CRISPR-dcas13d-eIF4G Translational Regulatory System to Inhibit Ferroptosis in Calcium Oxalate Crystal-Induced Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309234. [PMID: 38380498 PMCID: PMC11077677 DOI: 10.1002/advs.202309234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Indexed: 02/22/2024]
Abstract
The CRISPR-Cas system, initially for DNA-level gene editing and transcription regulation, has expanded to RNA targeting with the Cas13d family, notably the RfxCas13d. This advancement allows for mRNA targeting with high specificity, particularly after catalytic inactivation, broadening the exploration of translation regulation. This study introduces a CRISPR-dCas13d-eIF4G fusion module, combining dCas13d with the eIF4G translation regulatory element, enhancing target mRNA translation levels. This module, using specially designed sgRNAs, selectively boosts protein translation in targeted tissue cells without altering transcription, leading to notable protein expression upregulation. This system is applied to a kidney stone disease model, focusing on ferroptosis-linked GPX4 gene regulation. By targeting GPX4 with sgRNAs, its protein expression is upregulated in human renal cells and mouse kidney tissue, countering ferroptosis and resisting calcium oxalate-induced cell damage, hence mitigating stone formation. This study evidences the CRISPR-dCas13d-eIF4G system's efficacy in eukaryotic cells, presenting a novel protein translation research approach and potential kidney stone disease treatment advancements.
Collapse
Affiliation(s)
- Ziqi He
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei Province430060P. R. China
- Shenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityHealth Science CenterShenzhen UniversityShenzhenGuangdong Province518035P. R. China
| | - Chao Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei Province430060P. R. China
| | - Sheng Li
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanHubei Province430071P. R. China
- Department of Biological RepositoriesTumor Precision Diagnosis and Treatment Technology and Translational MedicineHubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhan430071P. R. China
| | - Caitao Dong
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei Province430060P. R. China
| | - Wenbiao Liao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei Province430060P. R. China
| | - Yunhe Xiong
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei Province430060P. R. China
| | - Sixing Yang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei Province430060P. R. China
| | - Yuchen Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei Province430060P. R. China
- Shenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityHealth Science CenterShenzhen UniversityShenzhenGuangdong Province518035P. R. China
| |
Collapse
|
2
|
Dobrikov MI, Dobrikova EY, Nardone-White DT, McKay ZP, Brown MC, Gromeier M. Early enterovirus translation deficits extend viral RNA replication and elicit sustained MDA5-directed innate signaling. mBio 2023; 14:e0191523. [PMID: 37962360 PMCID: PMC10746184 DOI: 10.1128/mbio.01915-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Multiple pattern recognition receptors sense vRNAs and initiate downstream innate signaling: endosomal Toll-like receptors (TLRs) 3, 7, and 8 and cytoplasmic RIG-I-like receptors (RLRs) RIG-I, and MDA5. They engage distinct signaling scaffolds: mitochondrial antiviral signaling protein (RLR), MyD88, and TLR-adaptor interacting with SLC15A4 on the lysosome (TLR7 and TLR8) and toll/IL-1R domain-containing adaptor inducing IFN (TLR3). By virtue of their unusual vRNA structure and direct host cell entry path, the innate response to EVs uniquely is orchestrated by MDA5. We reported that PVSRIPO's profound attenuation and loss of cytopathogenicity triggers MDA5-directed polar TBK1-IRF3 signaling that generates priming of polyfunctional antitumor CD8+ T-cell responses and durable antitumor surveillance in vivo. Here we unraveled EV-host relations that control suppression of host type-I IFN responses and show that PVSRIPO's deficient immediate host eIF4G cleavage generates unopposed MDA5-directed downstream signaling cascades resulting in sustained type-I IFN release.
Collapse
Affiliation(s)
- Mikhail I. Dobrikov
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Elena Y. Dobrikova
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Dasean T. Nardone-White
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical School, Durham, North Carolina, USA
| | - Zachary P. McKay
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Michael C. Brown
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
3
|
Abstract
The stage at which ribosomes are recruited to messenger RNAs (mRNAs) is an elaborate and highly regulated phase of protein synthesis. Upon completion of this step, a ribosome is positioned at an appropriate initiation codon and primed to synthesize the encoded polypeptide product. In most circumstances, this step commits the ribosome to translate the mRNA. We summarize the knowledge regarding the initiation factors implicated in this activity as well as review different mechanisms by which this process is conducted.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada; , .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada.,Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada; , .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
4
|
Sha Y, Liu W, Huang X, Li Y, Ji Z, Mei L, Lin S, Kong S, Lu J, Kong L, Zhu X, Lu Z, Ding L. EIF4G1 is a novel candidate gene associated with severe asthenozoospermia. Mol Genet Genomic Med 2019; 7:e807. [PMID: 31268247 PMCID: PMC6687618 DOI: 10.1002/mgg3.807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Asthenozoospermia (AZS), also known as asthenospermia, is characterized by reduced motility of ejaculated spermatozoa and is detected in more than 40% of infertile patients. Because the proportion of progressive spermatozoa in severe AZS is <1%, severe AZS is an urgent challenge in reproductive medicine. Several genes have been reported to be relevant to severe asthenospermia. However, these gene mutations are found only in sporadic cases and can explain only a small fraction of severe AZS, so additional genetic pathogenies need to be explored. METHODS AND RESULTS By screening the variant genes in a patient with severe AZS using whole exome sequencing, we identified biallelic mutations c.2521C>T: p.(Pro841Ser) (NC_000003.11: g.184043412C>T) in exon13 and c.2957C>G: p.(Ala986Gly) (NC_000003.11: g.184045117C>G) in exon17 in the eukaryotic translation initiation factor 4 gamma 1 gene (EIF4G1, RefSeq: NM_004953.4, OMIM: 600495) of the patient. Both of the mutation sites are rare and potentially deleterious. Transmission electron microscopy analysis showed a disrupted axonemal structure with mitochondrial sheath defects. The EIF4G1 protein level was extremely low, and the mitochondrial marker cytochrome c oxidase subunit 4I1 (COXIV, OMIM: 123864) and mitochondrially encoded ATP synthase 6 (ATP6, OMIM: 516060) protein levels were also decreased in the patient's spermatozoa as revealed by WB and IF analysis. This infertility associated with this condition was overcome by intracytoplasmic sperm injections, as his wife became pregnant successfully. CONCLUSION Our experimental findings indicate that the EIF4G1 gene is a novel candidate gene that may be relevant to severe AZS.
Collapse
Affiliation(s)
- Yanwei Sha
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Wensheng Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Xianjing Huang
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Yang Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Zhiyong Ji
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Libin Mei
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Shaobin Lin
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China
| | - Lingyuan Kong
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Xingshen Zhu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China
| | - Lu Ding
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Andreev DE, Dmitriev SE, Loughran G, Terenin IM, Baranov PV, Shatsky IN. Translation control of mRNAs encoding mammalian translation initiation factors. Gene 2018; 651:174-182. [PMID: 29414693 DOI: 10.1016/j.gene.2018.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/25/2018] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
Abstract
Eukaryotic cells evolved highly complex and accurate protein synthesis machinery that is finely tuned by various signaling pathways. Dysregulation of translation is a hallmark of many diseases, including cancer, and thus pharmacological approaches to modulate translation become very promising. While there has been much progress in our understanding of mammalian mRNA-specific translation control, surprisingly, relatively little is known about whether and how the protein components of the translation machinery shape translation of their own mRNAs. Here we analyze mammalian mRNAs encoding components of the translation initiation machinery for potential regulatory features such as 5'TOP motifs, TISU motifs, poor start codon nucleotide context and upstream open reading frames.
Collapse
Affiliation(s)
- Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
6
|
Das S, Das B. eIF4G—an integrator of mRNA metabolism? FEMS Yeast Res 2016; 16:fow087. [DOI: 10.1093/femsyr/fow087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 11/14/2022] Open
|
7
|
Korneeva NL, Song A, Gram H, Edens MA, Rhoads RE. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin. J Biol Chem 2015; 291:3455-67. [PMID: 26668315 DOI: 10.1074/jbc.m115.694190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 12/22/2022] Open
Abstract
The MAPK-interacting kinases 1 and 2 (MNK1 and MNK2) are activated by extracellular signal-regulated kinases 1 and 2 (ERK1/2) or p38 in response to cellular stress and extracellular stimuli that include growth factors, cytokines, and hormones. Modulation of MNK activity affects translation of mRNAs involved in the cell cycle, cancer progression, and cell survival. However, the mechanism by which MNK selectively affects translation of these mRNAs is not understood. MNK binds eukaryotic translation initiation factor 4G (eIF4G) and phosphorylates the cap-binding protein eIF4E. Using a cell-free translation system from rabbit reticulocytes programmed with mRNAs containing different 5'-ends, we show that an MNK inhibitor, CGP57380, affects translation of only those mRNAs that contain both a cap and a hairpin in the 5'-UTR. Similarly, a C-terminal fragment of human eIF4G-1, eIF4G(1357-1600), which prevents binding of MNK to intact eIF4G, reduces eIF4E phosphorylation and inhibits translation of only capped and hairpin-containing mRNAs. Analysis of proteins bound to m(7)GTP-Sepharose reveals that both CGP and eIF4G(1357-1600) decrease binding of eIF4E to eIF4G. These data suggest that MNK stimulates translation only of mRNAs containing both a cap and 5'-terminal RNA duplex via eIF4E phosphorylation, thereby enhancing the coupled cap-binding and RNA-unwinding activities of eIF4F.
Collapse
Affiliation(s)
- Nadejda L Korneeva
- From the Departments of Emergency Medicine and Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, and
| | - Anren Song
- Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, and
| | - Hermann Gram
- the Novartis Institute for Biomedical Research, Forum 1, CH-4002 Basel, Switzerland
| | | | - Robert E Rhoads
- Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, and
| |
Collapse
|
8
|
Abstract
ATP-binding cassette 50 (ABC50; also known as ABCF1) binds to eukaryotic initiation factor 2 (eIF2) and is required for efficient translation initiation. An essential step of this process is accurate recognition and selection of the initiation codon. It is widely accepted that the presence and movement of eIF1, eIF1A and eIF5 are key factors in modulating the stringency of start-site selection, which normally requires an AUG codon in an appropriate sequence context. In the present study, we show that expression of ABC50 mutants, which cannot hydrolyse ATP, decreases general translation and relaxes the discrimination against the use of non-AUG codons at translation start sites. These mutants do not appear to alter the association of key initiation factors to 40S subunits. The stringency of start-site selection can be restored through overexpression of eIF1, consistent with the role of that factor in enhancing stringency. The present study indicates that interfering with the function of ABC50 influences the accuracy of initiation codon selection.
Collapse
|
9
|
Coldwell MJ, Cowan JL, Vlasak M, Mead A, Willett M, Perry LS, Morley SJ. Phosphorylation of eIF4GII and 4E-BP1 in response to nocodazole treatment: a reappraisal of translation initiation during mitosis. Cell Cycle 2013; 12:3615-28. [PMID: 24091728 DOI: 10.4161/cc.26588] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Translation mechanisms at different stages of the cell cycle have been studied for many years, resulting in the dogma that translation rates are slowed during mitosis, with cap-independent translation mechanisms favored to give expression of key regulatory proteins. However, such cell culture studies involve synchronization using harsh methods, which may in themselves stress cells and affect protein synthesis rates. One such commonly used chemical is the microtubule de-polymerization agent, nocodazole, which arrests cells in mitosis and has been used to demonstrate that translation rates are strongly reduced (down to 30% of that of asynchronous cells). Using synchronized HeLa cells released from a double thymidine block (G 1/S boundary) or the Cdk1 inhibitor, RO3306 (G 2/M boundary), we have systematically re-addressed this dogma. Using FACS analysis and pulse labeling of proteins with labeled methionine, we now show that translation rates do not slow as cells enter mitosis. This study is complemented by studies employing confocal microscopy, which show enrichment of translation initiation factors at the microtubule organizing centers, mitotic spindle, and midbody structure during the final steps of cytokinesis, suggesting that translation is maintained during mitosis. Furthermore, we show that inhibition of translation in response to extended times of exposure to nocodazole reflects increased eIF2α phosphorylation, disaggregation of polysomes, and hyperphosphorylation of selected initiation factors, including novel Cdk1-dependent N-terminal phosphorylation of eIF4GII. Our work suggests that effects on translation in nocodazole-arrested cells might be related to those of the treatment used to synchronize cells rather than cell cycle status.
Collapse
Affiliation(s)
- Mark J Coldwell
- Centre for Biological Sciences; University of Southampton; Southampton, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Yuan L, Song Z, Xu H, Gu S, Zhu A, Gong L, Zhao Y, Deng H. EIF4G1 Ala502Val and Arg1205His variants in Chinese patients with Parkinson disease. Neurosci Lett 2013; 543:69-71. [DOI: 10.1016/j.neulet.2013.02.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/18/2013] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
|
11
|
Multiple isoforms of the translation initiation factor eIF4GII are generated via use of alternative promoters, splice sites and a non-canonical initiation codon. Biochem J 2012; 448:1-11. [DOI: 10.1042/bj20111765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During the initiation stage of eukaryotic mRNA translation, the eIF4G (eukaryotic initiation factor 4G) proteins act as an aggregation point for recruiting the small ribosomal subunit to an mRNA. We previously used RNAi (RNA interference) to reduce expression of endogenous eIF4GI proteins, resulting in reduced protein synthesis rates and alterations in the morphology of cells. Expression of EIF4G1 cDNAs, encoding different isoforms (f–a) which arise through selection of alternative initiation codons, rescued translation to different extents. Furthermore, overexpression of the eIF4GII paralogue in the eIF4GI-knockdown background was unable to restore translation to the same extent as eIF4GIf/e isoforms, suggesting that translation events governed by this protein are different. In the present study we show that multiple isoforms of eIF4GII exist in mammalian cells, arising from multiple promoters and alternative splicing events, and have identified a non-canonical CUG initiation codon which extends the eIF4GII N-terminus. We further show that the rescue of translation in eIF4GI/eIF4GII double-knockdown cells by our novel isoforms of eIF4GII is as robust as that observed with either eIF4GIf or eIF4GIe, and more than that observed with the original eIF4GII. As the novel eIF4GII sequence diverges from eIF4GI, these data suggest that the eIF4GII N-terminus plays an alternative role in initiation factor assembly.
Collapse
|
12
|
Chiluiza D, Bargo S, Callahan R, Rhoads RE. Expression of truncated eukaryotic initiation factor 3e (eIF3e) resulting from integration of mouse mammary tumor virus (MMTV) causes a shift from cap-dependent to cap-independent translation. J Biol Chem 2011; 286:31288-96. [PMID: 21737453 DOI: 10.1074/jbc.m111.267294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Integration of mouse mammary tumor virus (MMTV) at the common integration site Int6 occurs in the gene encoding eIF3e, the p48 subunit of translation initiation factor eIF3. Integration is at any of several introns of the Eif3e gene and causes the expression of truncated Eif3e mRNAs. Ectopic expression of the truncated eIF3e protein resulting from integration at intron 5 (3e5) induces malignant transformation, but by an unknown mechanism. Because eIF3e makes up at least part of the binding site for eIF4G, we examined the effects of 3e5 expression on protein synthesis. We developed an NIH3T3 cell line that contains a single copy of the 3e5 sequence at a predetermined genomic site. Co-immunoprecipitation indicated diminished binding of eIF3 to eIF4G, signifying a reduction in recruitment of the mRNA-unwinding machinery to the 43 S preinitiation complex. Cell growth and overall protein synthesis were decreased. Translation driven by the eIF4G-independent hepatitis C virus internal ribosome entry sequence (HCV IRES) in a bicistronic mRNA was increased relative to cap-dependent translation. Endogenous mRNAs encoding XIAP, c-Myc, CYR61, and Pim-1, which are translated in a cap-independent manner, were shifted to heavier polysomes whereas mRNAs encoding GAPDH, actin, L32, and L34, which are translated in a cap-dependent manner, were shifted to lighter polysomes. We propose that expression of 3e5 diminishes eIF4G interaction with eIF3 and causes abnormal gene expression at the translational level. The correlation between up-regulation of cap-independent translation and MMTV-induced tumorigenesis contrasts with the well established model for malignant transformation involving up-regulation of highly cap-dependent translation.
Collapse
Affiliation(s)
- David Chiluiza
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71106, USA
| | | | | | | |
Collapse
|
13
|
Phosphorylation of eukaryotic translation initiation factor 4G1 (eIF4G1) by protein kinase C{alpha} regulates eIF4G1 binding to Mnk1. Mol Cell Biol 2011; 31:2947-59. [PMID: 21576361 DOI: 10.1128/mcb.05589-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Signal transduction through mitogen-activated protein kinases (MAPKs) is implicated in growth and proliferation control through translation regulation and involves posttranslational modification of translation initiation factors. For example, convergent MAPK signals to Mnk1 lead to phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), which has been linked to malignant transformation. However, understanding the compound effects of mitogenic signaling on the translation apparatus and on protein synthesis control remains elusive. This is particularly true for the central scaffold of the translation initiation apparatus and ribosome adaptor eIF4G. To unravel the effects of signal transduction to eIF4G on translation, we used specific activation of protein kinase C (PKC)-Ras-Erk signaling with phorbol esters. Phospho-proteomic and mutational analyses revealed that eIF4G1 is a substrate for PKCα at Ser1186. We show that PKCα activation elicits a cascade of orchestrated phosphorylation events that may modulate eIF4G1 structure and control interaction with the eIF4E kinase, Mnk1.
Collapse
|
14
|
The multifaceted poliovirus 2A protease: regulation of gene expression by picornavirus proteases. J Biomed Biotechnol 2011; 2011:369648. [PMID: 21541224 PMCID: PMC3085340 DOI: 10.1155/2011/369648] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 02/17/2011] [Indexed: 11/17/2022] Open
Abstract
After entry into animal cells, most viruses hijack essential components involved in gene expression. This is the case of poliovirus, which abrogates cellular translation soon after virus internalization. Abrogation is achieved by cleavage of both eIF4GI and eIF4GII by the viral protease 2A. Apart from the interference of poliovirus with cellular protein synthesis, other gene expression steps such as RNA and protein trafficking between nucleus and cytoplasm are also altered. Poliovirus 2Apro is capable of hydrolyzing components of the nuclear pore, thus preventing an efficient antiviral response by the host cell. Here, we compare in detail poliovirus 2Apro with other viral proteins (from picornaviruses and unrelated families) as regard to their activity on key host factors that control gene expression. It is possible that future analyses to determine the cellular proteins targeted by 2Apro will uncover other cellular functions ablated by poliovirus infection. Further understanding of the cellular proteins hydrolyzed by 2Apro will add further insight into the molecular mechanism by which poliovirus and other viruses interact with the host cell.
Collapse
|
15
|
Hoeffer CA, Cowansage KK, Arnold EC, Banko JL, Moerke NJ, Rodriguez R, Schmidt EK, Klosi E, Chorev M, Lloyd RE, Pierre P, Wagner G, LeDoux JE, Klann E. Inhibition of the interactions between eukaryotic initiation factors 4E and 4G impairs long-term associative memory consolidation but not reconsolidation. Proc Natl Acad Sci U S A 2011; 108:3383-8. [PMID: 21289279 PMCID: PMC3044415 DOI: 10.1073/pnas.1013063108] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Considerable evidence indicates that the general blockade of protein synthesis prevents both the initial consolidation and the postretrieval reconsolidation of long-term memories. These findings come largely from studies of drugs that block ribosomal function, so as to globally interfere with both cap-dependent and -independent forms of translation. Here we show that intra-amygdala microinfusions of 4EGI-1, a small molecule inhibitor of cap-dependent translation that selectively disrupts the interaction between eukaryotic initiation factors (eIF) 4E and 4G, attenuates fear memory consolidation but not reconsolidation. Using a combination of behavioral and biochemical techniques, we provide both in vitro and in vivo evidence that the eIF4E-eIF4G complex is more stringently required for plasticity induced by initial learning than for that triggered by reactivation of an existing memory.
Collapse
Affiliation(s)
- Charles A. Hoeffer
- Center for Neural Science, New York University, New York, NY 10003
- Smilow Neuroscience Program, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016
| | | | - Elizabeth C. Arnold
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, CT 06340
| | - Jessica L. Banko
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612
| | | | - Ricard Rodriguez
- Department of Biological Chemistry and Molecular Pharmacology, and
| | - Enrico K. Schmidt
- Centre d'Immunologie de Marseille-Luminy, Unité Mixte de Recherche 6102 Centre National de la Recherche Scientifique, Université de la Méditerranée, Case 906, 13288 Marseille, France; and
| | - Edvin Klosi
- Laboratory for Translational Research, Harvard Medical School, Boston, MA 02115
| | - Michael Chorev
- Laboratory for Translational Research, Harvard Medical School, Boston, MA 02115
| | - Richard E. Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy, Unité Mixte de Recherche 6102 Centre National de la Recherche Scientifique, Université de la Méditerranée, Case 906, 13288 Marseille, France; and
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, and
| | - Joseph E. LeDoux
- Center for Neural Science, New York University, New York, NY 10003
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003
| |
Collapse
|
16
|
Lellis AD, Allen ML, Aertker AW, Tran JK, Hillis DM, Harbin CR, Caldwell C, Gallie DR, Browning KS. Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability. PLANT MOLECULAR BIOLOGY 2010; 74:249-63. [PMID: 20694742 PMCID: PMC2938417 DOI: 10.1007/s11103-010-9670-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 07/24/2010] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana knockout lines for the plant-specific eukaryotic translation initiation factors eIFiso4G1 (i4g1) and eIFiso4G2 (i4g2) genes have been obtained. To address the potential for functional redundancy of these genes, homozygous double mutant lines were generated by crossing individual knockout lines. Both single and double mutant plants were analyzed for changes in gross morphology, development, and responses to selected environmental stressors. Single gene knockouts appear to have minimal effect on morphology, germination rate, growth rate, flowering time, or fertility. However, double mutant i4g1/i4g2 knockout plants show reduced germination rates, slow growth rates, moderate chlorosis, impaired fertility and reduced long term seed viability. Double mutant plants also exhibit altered responses to dehydration, salinity, and heat stress. The i4g2 and i4g1/i4g2 double mutant has reduced amounts of chlorophyll a and b suggesting a role in the expression of chloroplast proteins. General protein synthesis did not appear to be affected as the levels of gross protein expression did not appear to change in the mutants. The lack of a phenotype for either of the single mutants suggests there is considerable functional overlap. However, the strong phenotypes observed for the double mutant indicates that the individual gene products may have specialized roles in the expression of proteins involved in plant growth and development.
Collapse
Affiliation(s)
- Andrew D. Lellis
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1096 USA
| | - M. Leah Allen
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1096 USA
| | - Alice W. Aertker
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1096 USA
| | - Jonathan K. Tran
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1096 USA
| | - David M. Hillis
- Section of Integrative Biology, University of Texas, Austin, TX 78712-1096 USA
| | - Courtney R. Harbin
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1096 USA
| | - Christian Caldwell
- Department of Biochemistry, University of California, Riverside, CA 92521-0129 USA
| | - Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129 USA
| | - Karen S. Browning
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1096 USA
| |
Collapse
|
17
|
Van Der Kelen K, Beyaert R, Inzé D, De Veylder L. Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol 2009; 44:143-68. [PMID: 19604130 DOI: 10.1080/10409230902882090] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Translational control mechanisms are, besides transcriptional control and mRNA stability, the most determining for final protein levels. A large number of accessory factors that assist the ribosome during initiation, elongation, and termination of translation are required for protein synthesis. Cap-dependent translational control occurs mainly during the initiation step, involving eukaryotic initiation factors (eIFs) and accessory proteins. Initiation is affected by various stimuli that influence the phosphorylation status of both eIF4E and eIF2 and through binding of 4E-binding proteins to eIF4E, which finally inhibits cap- dependent translation. Under conditions where cap-dependent translation is hampered, translation of transcripts containing an internal ribosome entry site can still be supported in a cap-independent manner. An interesting example of translational control is the switch between cap-independent and cap-dependent translation during the eukaryotic cell cycle. At the G1-to-S transition, translation occurs predominantly in a cap-dependent manner, while during the G2-to-M transition, cap-dependent translation is inhibited and transcripts are predominantly translated through a cap-independent mechanism.
Collapse
|
18
|
Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Mol Cell Biol 2008; 29:1661-9. [PMID: 19114555 DOI: 10.1128/mcb.01187-08] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic mRNAs possess a 5'-terminal cap structure (cap), m(7)GpppN, which facilitates ribosome binding. The cap is bound by eukaryotic translation initiation factor 4F (eIF4F), which is composed of eIF4E, eIF4G, and eIF4A. eIF4E is the cap-binding subunit, eIF4A is an RNA helicase, and eIF4G is a scaffolding protein that bridges between the mRNA and ribosome. eIF4G contains an RNA-binding domain, which was suggested to stimulate eIF4E interaction with the cap in mammals. In Saccharomyces cerevisiae, however, such an effect was not observed. Here, we used recombinant proteins to reconstitute the cap binding of the mammalian eIF4E-eIF4GI complex to investigate the importance of the RNA-binding region of eIF4GI for cap interaction with eIF4E. We demonstrate that chemical cross-linking of eIF4E to the cap structure is dramatically enhanced by eIF4GI fragments possessing RNA-binding activity. Furthermore, the fusion of RNA recognition motif 1 (RRM1) of the La autoantigen to the N terminus of eIF4GI confers enhanced association between the cap structure and eIF4E. These results demonstrate that eIF4GI serves to anchor eIF4E to the mRNA and enhance its interaction with the cap structure.
Collapse
|
19
|
Martineau Y, Derry MC, Wang X, Yanagiya A, Berlanga JJ, Shyu AB, Imataka H, Gehring K, Sonenberg N. Poly(A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation. Mol Cell Biol 2008; 28:6658-67. [PMID: 18725400 PMCID: PMC2573229 DOI: 10.1128/mcb.00738-08] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/18/2008] [Accepted: 08/13/2008] [Indexed: 01/02/2023] Open
Abstract
Poly(A)-binding protein (PABP) stimulates translation initiation by binding simultaneously to the mRNA poly(A) tail and eukaryotic translation initiation factor 4G (eIF4G). PABP activity is regulated by PABP-interacting (Paip) proteins. Paip1 binds PABP and stimulates translation by an unknown mechanism. Here, we describe the interaction between Paip1 and eIF3, which is direct, RNA independent, and mediated via the eIF3g (p44) subunit. Stimulation of translation by Paip1 in vivo was decreased upon deletion of the N-terminal sequence containing the eIF3-binding domain and upon silencing of PABP or several eIF3 subunits. We also show the formation of ternary complexes composed of Paip1-PABP-eIF4G and Paip1-eIF3-eIF4G. Taken together, these data demonstrate that the eIF3-Paip1 interaction promotes translation. We propose that eIF3-Paip1 stabilizes the interaction between PABP and eIF4G, which brings about the circularization of the mRNA.
Collapse
Affiliation(s)
- Yvan Martineau
- Department of Biochemistry, McGill University, Montreal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kaiser C, Dobrikova EY, Bradrick SS, Shveygert M, Herbert JT, Gromeier M. Activation of cap-independent translation by variant eukaryotic initiation factor 4G in vivo. RNA (NEW YORK, N.Y.) 2008; 14:2170-82. [PMID: 18755839 PMCID: PMC2553731 DOI: 10.1261/rna.1171808] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Protein synthesis is tightly controlled by assembly of an intricate ribonucleoprotein complex at the m(7)GTP-cap on eukaryotic mRNAs. Ensuing linear scanning of the 5' untranslated region (UTR) is believed to transfer the preinitiation complex to the initiation codon. Eukaryotic mRNAs are characterized by significant 5' UTR heterogeneity, raising the possibility of differential control of translation initiation rate at individual mRNAs. Curiously, many mRNAs with unconventional, highly structured 5' UTRs encode proteins with central biological roles in growth control, metabolism, or stress response. The 5' UTRs of such mRNAs may influence protein synthesis rate in multiple ways, but most significantly they have been implicated in mediating alternative means of translation initiation. Cap-independent initiation bypasses strict control over the formation of initiation intermediates at the m(7)GTP cap. However, the molecular mechanisms that favor alternative means of ribosome recruitment are not understood. Here we provide evidence that eukaryotic initiation factor (eIF) 4G controls cap-independent translation initiation at the c-myc and vascular endothelial growth factor (VEGF) 5' UTRs in vivo. Cap-independent translation was investigated in tetracycline-inducible cell lines expressing either full-length eIF4G or a C-terminal fragment (Ct) lacking interaction with eIF4E and poly(A) binding protein. Expression of Ct, but not intact eIF4G, potently stimulated cap-independent initiation at the c-myc/VEGF 5' UTRs. In vitro RNA-binding assays suggest that stimulation of cap-independent translation initiation by Ct is due to direct association with the c-myc/VEGF 5' UTR, enabling 43S preinitiation complex recruitment. Our work demonstrates that variant translation initiation factors enable unconventional translation initiation at mRNA subsets with distinct structural features.
Collapse
Affiliation(s)
- Constanze Kaiser
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ramírez-Valle F, Braunstein S, Zavadil J, Formenti SC, Schneider RJ. eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy. ACTA ACUST UNITED AC 2008; 181:293-307. [PMID: 18426977 PMCID: PMC2315676 DOI: 10.1083/jcb.200710215] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translation initiation factors have complex functions in cells that are not yet understood. We show that depletion of initiation factor eIF4GI only modestly reduces overall protein synthesis in cells, but phenocopies nutrient starvation or inhibition of protein kinase mTOR, a key nutrient sensor. eIF4GI depletion impairs cell proliferation, bioenergetics, and mitochondrial activity, thereby promoting autophagy. Translation of mRNAs involved in cell growth, proliferation, and bioenergetics were selectively inhibited by reduction of eIF4GI, as was the mRNA encoding Skp2 that inhibits p27, whereas catabolic pathway factors were increased. Depletion or overexpression of other eIF4G family members did not recapitulate these results. The majority of mRNAs that were translationally impaired with eIF4GI depletion were excluded from polyribosomes due to the presence of multiple upstream open reading frames and low mRNA abundance. These results suggest that the high levels of eIF4GI observed in many breast cancers might act to specifically increase proliferation, prevent autophagy, and release tumor cells from control by nutrient sensing.
Collapse
|
22
|
Santa-Catalina MO, Garcia-Marin LJ, Bragado MJ. Lovastatin effect in rat neuroblasts of the CNS: inhibition of cap-dependent translation. J Neurochem 2008; 106:1078-91. [PMID: 18466319 DOI: 10.1111/j.1471-4159.2008.05458.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mevalonate biosynthesis pathway is important in cell growth and survival and its blockade by 3-hydroxy-3-methylglutaryl CoA reductase inhibitors, statins, arrest brain neuroblasts growth and induce apoptosis. Translation is among the main biochemical mechanisms that controls gene expression and therefore cell growth or apoptosis. In the CNS, translation regulates synaptic plasticity. Thus, our aim was to investigate the effect of lovastatin in protein translation in rat neuroblasts of the CNS and the biochemical pathways involved. Lovastatin treatment in rat brain neuroblasts causes a significant time- and concentration-inhibition of protein synthesis, which is partially mediated by phosphatydilinositol 3-kinase/mammalian target of rapamycin (mTOR) pathway inhibition. Lovastatin treatment decreases the phosphorylation state of mTOR substrates, p70S6K and eukaryotic translation initiation factor (eIF) 4E-binding protein 1 and simultaneously increases eIF4E-binding protein 1 in a time-dependent manner. Concomitantly, lovastatin causes a decrease in eIF4G cellular amount, which is partially mediated by caspase(s) activity excluding caspase 3. These biochemical pathways affected by lovastatin might explain the protein translation inhibition observed in neuroblasts. Cycloheximide treatment, which blocked protein synthesis, does not induce neuroblasts apoptosis. Therefore, we suggest that lovastatin-induced protein synthesis inhibition might not contribute to the concomitant neuroblasts apoptosis previously observed.
Collapse
Affiliation(s)
- Marta Olivera Santa-Catalina
- Research group of Intracellular Signalling and Technology of Reproduction, Department of Biochemistry, Molecular Biology and Genetics, Cáceres, Spain
| | | | | |
Collapse
|
23
|
Poliovirus 2A(Pro) increases viral mRNA and polysome stability coordinately in time with cleavage of eIF4G. J Virol 2008; 82:5847-59. [PMID: 18400852 DOI: 10.1128/jvi.01514-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poliovirus (PV) 2A protease (2A(Pro)) cleaves eukaryotic initiation factors 4GI and 4GII (eIF4GI and eIF4GII) within virus-infected cells, effectively halting cap-dependent mRNA translation. PV mRNA, which does not possess a 5' cap, is translated via cap-independent mechanisms within viral protease-modified messenger ribonucleoprotein (mRNP) complexes. In this study, we determined that 2A(Pro) activity was required for viral polysome formation and stability. 2A(Pro) cleaved eIF4GI and eIF4GII as PV polysomes assembled. A 2A(Cys109Ser) (2A(Pro) with a Cys109Ser mutation) protease active site mutation that prevented cleavage of eIF4G coordinately inhibited the de novo formation of viral polysomes, the stability of viral polysomes, and the stability of PV mRNA within polysomes. 2A(Cys109Ser)-associated defects in PV mRNA and polysome stability correlated with defects in PV mRNA translation. 3C(Pro) activity was not required for viral polysome formation or stability. 2A(Pro)-mediated cleavage of eIF4G along with poly(rC) binding protein binding to the 5' terminus of uncapped PV mRNA appear to be concerted mechanisms that allow PV mRNA to form mRNP complexes that evade cellular mRNA degradation machinery.
Collapse
|
24
|
Mueller M, Martens L, Apweiler R. Annotating the human proteome: Beyond establishing a parts list. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:175-91. [PMID: 17223395 DOI: 10.1016/j.bbapap.2006.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 11/16/2006] [Accepted: 11/21/2006] [Indexed: 12/31/2022]
Abstract
The completion of the human genome has shifted the attention from deciphering the sequence to the identification and characterisation of the functional components, including genes. Improved gene prediction algorithms, together with the existing transcript and protein information, have enabled the identification of most exons in a genome. Availability of the 'parts list' has fostered the development of experimental approaches to systematically interrogate gene function on the genome, transcriptome and proteome level. Studying gene function at the protein level is vital to the understanding of how cells perform their functions as variations in protein isoforms and protein quantity which may underlie a change in phenotype can often not be deduced from sequence or transcript level genomics experiments alone. Recent advancements in proteomics have afforded technologies capable of measuring protein expression, post-translational modifications of these proteins, their subcellular localisation and assembly into complexes and pathways. Although an enormous amount of data already exists on the function of many human proteins, much of it is scattered over multiple resources. Public domain databases are therefore required to manage and collate this information and present it to the user community in both a human and machine readable manner. Of special importance here is the integration of heterogeneous data to facilitate the creation of resources that go beyond a mere parts list.
Collapse
Affiliation(s)
- Michael Mueller
- EMBL Outstation, The European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | | | | |
Collapse
|
25
|
Oulhen N, Salaün P, Cosson B, Cormier P, Morales J. After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E. J Cell Sci 2007; 120:425-34. [PMID: 17213333 DOI: 10.1242/jcs.03339] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Release of eukaryotic initiation factor 4E (eIF4E) from its translational repressor eIF4E-binding protein (4E-BP) is a crucial event for the first mitotic division following fertilization of sea urchin eggs. Finding partners of eIF4E following fertilization is crucial to understand how eIF4E functions during this physiological process. The isolation and characterization of cDNA encoding Sphaerechinus granularis eIF4G (SgIF4G) are reported. mRNA of SgIF4G is present as a single 8.5-kb transcript in unfertilized eggs, suggesting that only one ortholog exists in echinoderms. The longest open reading frame predicts a sequence of 5235 nucleotides encoding a deduced polypeptide of 1745 amino acids with a predicted molecular mass of 192 kDa. Among highly conserved domains, SgIF4G protein possesses motifs that correspond to the poly(A) binding protein and eIF4E protein-binding sites. A specific polyclonal antibody was produced and used to characterize the SgIF4G protein in unfertilized and fertilized eggs by SDS-PAGE and western blotting. Multiple differentially migrating bands representing isoforms of sea urchin eIF4G are present in unfertilized eggs. Fertilization triggers modifications of the SgIF4G isoforms and rapid formation of the SgIF4G-eIF4E complex. Whereas rapamycin inhibits the formation of the SgIF4G-eIF4E complex, modification of these SgIF4G isoforms occurs independently from the rapamycin-sensitive pathway. Microinjection of a peptide corresponding to the eIF4E-binding site derived from the sequence of SgIF4G into unfertilized eggs affects the first mitotic division of sea urchin embryos. Association of SgIF4G with eIF4E is a crucial event for the onset of the first mitotic division following fertilization, suggesting that cap-dependent translation is highly regulated during this process. This hypothesis is strengthened by the evidence that microinjection of the cap analog m(7)GDP into unfertilized eggs inhibits the first mitotic division.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Université Pierre et Marie Curie-Paris6, UMR 7150, Equipe Cycle Cellulaire et Développement and CNRS, UMR 7150, Station Biologique de Roscoff, 29682 Roscoff CEDEX, France
| | | | | | | | | |
Collapse
|
26
|
Hinton TM, Coldwell MJ, Carpenter GA, Morley SJ, Pain VM. Functional analysis of individual binding activities of the scaffold protein eIF4G. J Biol Chem 2006; 282:1695-708. [PMID: 17130132 DOI: 10.1074/jbc.m602780200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor (eIF) 4G is an integral member of the translation initiation machinery. The molecule serves as a scaffold for several other initiation factors, including eIF4E, eIF4AI, the eIF3 complex, and poly(A)-binding protein (PABP). Previous work indicates that complexes between these proteins exhibit enhanced mRNA cap-binding and RNA helicase activities relative to the respective individual proteins, eIF4E and eIF4A. The eIF4G-PABP interaction has been implicated in enhancing the formation of 48 S and 80 S initiation complexes and ribosome recycling through mRNA circularization. The eIF3-eIF4GI interaction is believed to forge the link between the 40 S subunit and the mRNA. Here we have investigated the behavior in vitro and in intact cells of eIF4GIf molecules lacking either the PABP-binding site, the eIF3-binding site, the middle domain eIF4A-binding site, or the C-terminal segment that includes the second eIF4A-binding site. Although in some cases the mutant forms were recruited more slowly, all of these eIF4G variants could form complexes with eIF4E, enter 48 S complexes and polysomes in vivo and in vitro, and partially rescue translation in cells targeted with eIF4GI short interfering RNA. In the reticulocyte lysate, eIF4G unable to interact directly with PABP showed little impairment in its ability to support translation, whereas loss of either of the eIF4A-binding sites or the eIF3-binding site resulted in a marked decrease in activity. We conclude that there is considerable redundancy in the mechanisms forming initiation complexes in mammalian cells, such that many individual interactions have regulatory rather than essential roles.
Collapse
Affiliation(s)
- Tracey M Hinton
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Miyakawa S, Oguro A, Ohtsu T, Imataka H, Sonenberg N, Nakamura Y. RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes. RNA (NEW YORK, N.Y.) 2006; 12:1825-34. [PMID: 16940549 PMCID: PMC1581983 DOI: 10.1261/rna.2169406] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Eukaryotic translation initiation factor 4G (eIF4G) plays a crucial multimodulatory role in mRNA translation and decay by interacting with other translation factors and mRNA-associated proteins. In this study, we isolated eight different RNA aptamers with high affinity to mammalian eIF4G by in vitro RNA selection amplification. Of these, three aptamers (apt3, apt4, and apt5) inhibited the cap-dependent translation of two independent mRNAs in a rabbit reticulocyte lysate system. The cap-independent translation directed by an HCV internal ribosome entry site was not affected. Addition of exogenous eIF4G reversed the aptamer-mediated inhibition of translation. Even though apt3 and apt4 were selected independently, they differ only by two nucleotides. The use of truncated eIF4G variants in binding experiments indicated that apt4 (and probably apt3) bind to both the middle and C-terminal domains of eIF4G, while apt5 binds only to the middle domain of eIF4G. Corresponding to the difference in the binding sites in eIF4G, apt4, but not apt5, hindered eIF4G from binding to eIF4A and eIF3, in a purified protein solution system as well as in a crude lysate system. Therefore, the inhibition of translation by apt4 (and apt3) is due to the inhibition of formation of initiation factor complexes involving eIF4A and eIF3. On the other hand, apt5 had a much weaker affinity to eIF4G than apt4, but inhibited translation much more efficiently by an unknown mechanism. The five additional aptamers have sequences and predicted secondary structures that are largely different from each other and from apt3 through apt5. Therefore, we speculate that these seven sets of aptamers may bind to different regions in eIF4G in different fashions.
Collapse
Affiliation(s)
- Shin Miyakawa
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Coldwell MJ, Morley SJ. Specific isoforms of translation initiation factor 4GI show differences in translational activity. Mol Cell Biol 2006; 26:8448-60. [PMID: 16982693 PMCID: PMC1636793 DOI: 10.1128/mcb.01248-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The eukaryotic initiation factor (eIF) 4GI gene locus (eIF4GI) contains three identified promoters, generating alternately spliced mRNAs, yielding a total of five eIF4GI protein isoforms. Although eIF4GI plays a critical role in mRNA recruitment to the ribosomes, little is known about the functions of the different isoforms, their partner binding capacities, or the role of the homolog, eIF4GII, in translation initiation. To directly address this, we have used short interfering RNAs (siRNAs) expressed from DNA vectors to silence the expression of eIF4GI in HeLa cells. Here we show that reduced levels of specific mRNA and eIF4GI isoforms in HeLa cells promoted aberrant morphology and a partial inhibition of translation. The latter reflected dephosphorylation of 4E-BP1 and decreased eIF4F complex levels, with no change in eIF2alpha phosphorylation. Expression of siRNA-resistant Myc-tagged eIF4GI isoforms has allowed us to show that the different isoforms exhibit significant differences in their ability to restore translation rates. Here we quantify the efficiency of eIF4GI promoter usage in mammalian cells and demonstrate that even though the longest isoform of eIF4GI (eIF4GIf) was relatively poorly expressed when reintroduced, it was more efficient at promoting the translation of cellular mRNAs than the more highly expressed shorter isoforms used in previous functional studies.
Collapse
Affiliation(s)
- Mark J Coldwell
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | |
Collapse
|
29
|
Lee SH, McCormick F. p97/DAP5 is a ribosome-associated factor that facilitates protein synthesis and cell proliferation by modulating the synthesis of cell cycle proteins. EMBO J 2006; 25:4008-19. [PMID: 16932749 PMCID: PMC1560370 DOI: 10.1038/sj.emboj.7601268] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 07/12/2006] [Indexed: 11/09/2022] Open
Abstract
p97 (also referred to as DAP5, NAT1 or eIF4G2) has been proposed to act as a repressor of protein synthesis. However, we found that p97 is abundantly expressed in proliferating cells and p97 is recruited to ribosomes following growth factor stimulation. We also report that p97 binds eIF2beta through its C-terminal domain and localizes to ribosome through its N-terminal MIF4G domain. When overexpressed, p97 increases reporter luciferase activity. In contrast, overexpression of the C-terminal two-thirds of eukaryotic initiation factor 4GI (eIF4GI), a region that shares significant homology with p97, or the N-terminal MIF4G domain of p97 markedly inhibits reporter activity, the rate of global translation and cell proliferation. Conversely, downregulation of p97 levels by RNA interference also decreases the rate of global translation and inhibits cell proliferation. This coincides with an increase in p27/Kip1 protein levels and a marked decrease in CDK2 kinase activity. Taken together, our results demonstrate that p97 is functionally different from the closely related C-terminal two-thirds of eIF4GI and it can positively promote protein synthesis and cell proliferation.
Collapse
Affiliation(s)
- Sang Hyun Lee
- Cancer Research Institute and Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Frank McCormick
- Cancer Research Institute and Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Cancer Research Institute and Comprehensive Cancer Center, University of California, 2340 Sutter St N315, San Francisco, CA 94115, USA. Tel.: +1 415 502 1707; Fax: +1 415 502 1712; E-mail:
| |
Collapse
|
30
|
Koh DCY, Wang X, Wong SM, Liu DX. Translation initiation at an upstream CUG codon regulates the expression of Hibiscus chlorotic ringspot virus coat protein. Virus Res 2006; 122:35-44. [PMID: 16854489 DOI: 10.1016/j.virusres.2006.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/07/2006] [Accepted: 06/08/2006] [Indexed: 12/26/2022]
Abstract
Viruses depend heavily on host cells for replication and exploit the host translation machinery for its gene expression using various unorthodox translation mechanisms. According to the conventional scanning model, only the 5'-proximal gene in the viral RNA is accessible to the ribosomes whereas other genes are silent. In this study, we use a model plant RNA virus, Hibiscus chlorotic ringspot virus (HCRSV), to investigate various translation mechanisms involved in regulation of the expression of internal genes. The 3'-end 1.2kb region of HCRSV genomic and subgenomic RNAs were shown to encode four polypeptides of 38, 27, 25 and 22.5kDa. Mutagenesis studies revealed that a CUG codon ((2570)CUG) is the initiation codon for p27, the longest of the three co-C-terminal products (p27, p25 and p22.5), and translation of p25 and p22.5 was initiated at (2603)AUG and (2666)AUG, respectively. Translation initiation of the p27 expression at the (2570)CUG codon regulates the expression of p38, the viral coat protein through a leaky scanning mechanism and mutational analysis of an upstream open reading frame (ORF) demonstrated that initiation of the p27 expression at this CUG codon (instead of an AUG) may play a role in maintaining the ratio of p27 and p38. In addition, a previously identified internal ribosome entry site was shown to control the expression of p27 and p38 in the subgenomic RNA 2.
Collapse
Affiliation(s)
- Dora Chin-Yen Koh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
31
|
Karim MM, Svitkin YV, Kahvejian A, De Crescenzo G, Costa-Mattioli M, Sonenberg N. A mechanism of translational repression by competition of Paip2 with eIF4G for poly(A) binding protein (PABP) binding. Proc Natl Acad Sci U S A 2006; 103:9494-9. [PMID: 16772376 PMCID: PMC1480435 DOI: 10.1073/pnas.0603701103] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic mRNA 3' poly(A) tail and the 5' cap cooperate to synergistically enhance translation. This interaction is mediated by the cap-binding protein eIF4E, the poly(A) binding protein (PABP), and eIF4G, a scaffolding protein that bridges between eIF4E and PABP to bring about the circularization of the mRNA. The translational repressor, Paip2 (PABP-interacting protein 2), inhibits translation by promoting the dissociation of PABP from poly(A). Here we report on the existence of an alternative mechanism by which Paip2 inhibits translation by competing with eIF4G for binding to PABP. We demonstrate that Paip2 can abrogate the translational activity of PABP, which is tethered to the 3' end of the mRNA. Thus, Paip2 can inhibit translation by a previously unrecognized mechanism, which is independent of its ability to disrupt PABP-poly(A) interaction.
Collapse
Affiliation(s)
- Muhammad M. Karim
- *Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC, Canada H3G 1Y6; and
| | - Yuri V. Svitkin
- *Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC, Canada H3G 1Y6; and
| | - Avak Kahvejian
- *Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC, Canada H3G 1Y6; and
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Bio-P2 Unit, École Polytechnique de Montréal, Montreal, QC, Canada H3T 1J4
| | - Mauro Costa-Mattioli
- *Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC, Canada H3G 1Y6; and
| | - Nahum Sonenberg
- *Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC, Canada H3G 1Y6; and
- To whom correspondence should be addressed at:
Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, Canada H3G 1Y6. E-mail:
| |
Collapse
|
32
|
LeFebvre AK, Korneeva NL, Trutschl M, Cvek U, Duzan RD, Bradley CA, Hershey JWB, Rhoads RE. Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. J Biol Chem 2006; 281:22917-32. [PMID: 16766523 PMCID: PMC1880881 DOI: 10.1074/jbc.m605418200] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
eIF3 in mammals is the largest translation initiation factor ( approximately 800 kDa) and is composed of 13 nonidentical subunits designated eIF3a-m. The role of mammalian eIF3 in assembly of the 48 S complex occurs through high affinity binding to eIF4G. Interactions of eIF4G with eIF4E, eIF4A, eIF3, poly(A)-binding protein, and Mnk1/2 have been mapped to discrete domains on eIF4G, and conversely, the eIF4G-binding sites on all but one of these ligands have been determined. The only eIF4G ligand for which this has not been determined is eIF3. In this study, we have sought to identify the mammalian eIF3 subunit(s) that directly interact(s) with eIF4G. Established procedures for detecting protein-protein interactions gave ambiguous results. However, binding of partially proteolyzed HeLa eIF3 to the eIF3-binding domain of human eIF4G-1, followed by high throughput analysis of mass spectrometric data with a novel peptide matching algorithm, identified a single subunit, eIF3e (p48/Int-6). In addition, recombinant FLAG-eIF3e specifically competed with HeLa eIF3 for binding to eIF4G in vitro. Adding FLAG-eIF3e to a cell-free translation system (i) inhibited protein synthesis, (ii) caused a shift of mRNA from heavy to light polysomes, (iii) inhibited cap-dependent translation more severely than translation dependent on the HCV or CSFV internal ribosome entry sites, which do not require eIF4G, and (iv) caused a dramatic loss of eIF4G and eIF2alpha from complexes sedimenting at approximately 40 S. These data suggest a specific, direct, and functional interaction of eIF3e with eIF4G during the process of cap-dependent translation initiation, although they do not rule out participation of other eIF3 subunits.
Collapse
Affiliation(s)
- Aaron K. LeFebvre
- Department of Biochemistry and Molecular Biology and Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Nadejda L. Korneeva
- Department of Biochemistry and Molecular Biology and Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Marjan Trutschl
- Department of Computer Science, Louisiana State University, Shreveport, Louisiana 71115
| | - Urska Cvek
- Department of Computer Science, Louisiana State University, Shreveport, Louisiana 71115
| | - Roy D. Duzan
- Research Core Facility, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Christopher A. Bradley
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616
| | - John W. B. Hershey
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616
| | - Robert E. Rhoads
- Department of Biochemistry and Molecular Biology and Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Hwy., Shreveport, LA 71130-3932. Tel.: 318-675-5161; Fax: 318-675-5180; E-mail:
| |
Collapse
|
33
|
Bert AG, Grépin R, Vadas MA, Goodall GJ. Assessing IRES activity in the HIF-1alpha and other cellular 5' UTRs. RNA (NEW YORK, N.Y.) 2006; 12:1074-83. [PMID: 16601206 PMCID: PMC1464860 DOI: 10.1261/rna.2320506] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Dicistronic reporter plasmids, such as the dual luciferase-containing pR-F plasmid, have been widely used to assay cellular and viral 5' untranslated regions (UTRs) for IRES activity. We found that the pR-F dicistronic reporter containing the 5' UTRs from HIF-1alpha, VEGF, c-myc, XIAP, VEGFR-1, or Egr-1 UTRs all produce the downstream luciferase predominantly as a result of cryptic promoter activity that is activated by the SV40 enhancer elements in the plasmid. RNA transfection experiments using dicistronic or uncapped RNAs, which avoid the complication of cryptic promoter activity, indicate that the HIF-1alpha, VEGF, c-myc, and XIAP UTRs do have some IRES activity, although the activity was much less than that of the viral EMCV IRES. The translation of transfected monocistronic RNAs containing these cellular UTRs was greatly enhanced by the presence of a 5' cap, raising questions as to the strength or mechanism of IRES-mediated translation in these assays.
Collapse
Affiliation(s)
- Andrew G Bert
- Division of Human Immunology, Hanson Institute, Institute of Medical and Veterinary Science (IMVS), Adelaide, SA, Australia
| | | | | | | |
Collapse
|
34
|
Lu JY, Bergman N, Sadri N, Schneider RJ. Assembly of AUF1 with eIF4G-poly(A) binding protein complex suggests a translation function in AU-rich mRNA decay. RNA (NEW YORK, N.Y.) 2006; 12:883-93. [PMID: 16556936 PMCID: PMC1440908 DOI: 10.1261/rna.2308106] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An AU-rich element (ARE) located in the 3'-untranslated region of many short-lived mRNAs functions as an instability determinant for these transcripts. AUF1/hnRNP D, an ARE-binding protein family consisting of four isoforms, promotes rapid decay of ARE-mRNAs. The mechanism by which AUF1 promotes rapid decay of ARE-mRNA is unclear. AUF1 has been shown to form an RNase-resistant complex in cells with the cap-initiation complex and heat shock proteins Hsp70 and Hsc70, as well as other unidentified factors. To understand the function of the AUF1 complex, we have biochemically investigated the association of AUF1 with the components of the translation initiation complex. We used purified recombinant proteins and a synthetic ARE RNA oligonucleotide to determine the hierarchy of protein interactions in vitro and the effect of AUF1 binding to the ARE on the formation of protein complexes. We demonstrate that all four AUF1 protein isoforms bind directly and strongly to initiation factor eIF4G at a C-terminal site regardless of AUF1 interaction with the ARE. AUF1 is shown to directly interact with poly(A) binding protein (PABP), both independently of eIF4G and in a complex with eIF4G. AUF1-PABP interaction is opposed by AUF1 binding to the ARE or Hsp70 heat shock protein. In vivo, AUF1 interaction with PABP does not alter PABP stability. Based on these and other data, we propose a model for the molecular interactions of AUF1 that involves translation-dependent displacement of AUF1-PABP complexes from ARE-mRNAs with possible unmasking of the poly(A) tail.
Collapse
Affiliation(s)
- Jin-Yu Lu
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
35
|
Hernández G, Vazquez-Pianzola P. Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech Dev 2006; 122:865-76. [PMID: 15922571 DOI: 10.1016/j.mod.2005.04.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 04/06/2005] [Accepted: 04/07/2005] [Indexed: 02/04/2023]
Abstract
Protein synthesis in eukaryotic cells is fundamental for gene expression. This process involves the binding of an mRNA molecule to the small ribosomal subunit in a group of reactions catalyzed by eukaryotic translation initiation factors (eIF) eIF4. To date, the role of each of the four eIF4, i.e. eIF4E, eIF4G, eIF4A and eIF4B, is well established. However, with the advent of genome-wide sequencing projects of various organisms, families of genes for each translation initiation factor have been identified. Intriguingly, recent studies have now established that certain eIF4 proteins can promote or inhibit translation of specific mRNAs, and also that some of them are active in processes other than translation. In addition, there is evidence of tissue- and developmental-stage-specific expression for some of these proteins. These new findings point to an additional level of complexity in the translation initiation process. In this review, we analyze the latest advances concerning the functionality of members of the eIF4 families in eukaryotic organisms and discuss the implications of this in the context of our current understanding of regulation of the translation initiation process.
Collapse
Affiliation(s)
- Greco Hernández
- Max-Planck-Institut für Biophysikalische Chemie, Abt. Molekulare Biologie, Am Fassberg 11, 37077 Göttingen, Germany.
| | | |
Collapse
|
36
|
Dobrikova EY, Grisham RN, Kaiser C, Lin J, Gromeier M. Competitive translation efficiency at the picornavirus type 1 internal ribosome entry site facilitated by viral cis and trans factors. J Virol 2006; 80:3310-21. [PMID: 16537598 PMCID: PMC1440366 DOI: 10.1128/jvi.80.7.3310-3321.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteroviruses (EVs) overcome their host cells by usurping the translation machinery to benefit viral gene expression. This is accomplished through alternative translation initiation in a cap-independent manner at the viral internal ribosomal entry site (IRES). We have investigated the role of cis- and trans-acting viral factors in EV IRES translation in living cells. We observed that considerable portions of the viral genome, including the 5'-proximal open reading frame and the 3' untranslated region, contribute to stimulation of IRES-mediated translation. With the IRES in proper context, translation via internal initiation in uninfected cells is as efficient as at capped messages with short, unstructured 5' untranslated regions. IRES function is enhanced in cells infected with the EV coxsackievirus B3, but the related poliovirus has no significant stimulatory activity. This differential is due to the inherent properties of their 2A protease and is not coupled to 2A-mediated proteolytic degradation of the eukaryotic initiation factor 4G. Our results suggest that the efficiency of alternative translation initiation at EV IRESs depends on a properly configured template rather than on targeted alterations of the host cell translation machinery.
Collapse
Affiliation(s)
- Elena Y Dobrikova
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
37
|
Baxter NJ, Roetzer A, Liebig HD, Sedelnikova SE, Hounslow AM, Skern T, Waltho JP. Structure and dynamics of coxsackievirus B4 2A proteinase, an enyzme involved in the etiology of heart disease. J Virol 2006; 80:1451-62. [PMID: 16415022 PMCID: PMC1346940 DOI: 10.1128/jvi.80.3.1451-1462.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 11/15/2005] [Indexed: 11/20/2022] Open
Abstract
The 2A proteinases (2A(pro)) from the picornavirus family are multifunctional cysteine proteinases that perform essential roles during viral replication, involving viral polyprotein self-processing and shutting down host cell protein synthesis through cleavage of the eukaryotic initiation factor 4G (eIF4G) proteins. Coxsackievirus B4 (CVB4) 2A(pro) also cleaves heart muscle dystrophin, leading to cytoskeletal dysfunction and the symptoms of human acquired dilated cardiomyopathy. We have determined the solution structure of CVB4 2A(pro) (extending in an N-terminal direction to include the C-terminal eight residues of CVB4 VP1, which completes the VP1-2A(pro) substrate region). In terms of overall fold, it is similar to the crystal structure of the mature human rhinovirus serotype 2 (HRV2) 2A(pro), but the relatively low level (40%) of sequence identity leads to a substantially different surface. We show that differences in the cI-to-eI2 loop between HRV2 and CVB4 2A(pro) translate to differences in the mechanism of eIF4GI recognition. Additionally, the nuclear magnetic resonance relaxation properties of CVB4 2A(pro), particularly of residues G1 to S7, F64 to S67, and P107 to G111, reveal that the substrate region is exchanging in and out of a conformation in which it occupies the active site with association and dissociation rates in the range of 100 to 1,000 s(-1). This exchange influences the conformation of the active site and points to a mechanism for how self-processing can occur efficiently while product inhibition is avoided.
Collapse
Affiliation(s)
- Nicola J Baxter
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Connolly EP, Thuillier V, Rouy D, Bouétard G, Schneider RJ. Inhibition of Cap-initiation complexes linked to a novel mechanism of eIF4G depletion in acute myocardial ischemia. Cell Death Differ 2006; 13:1586-94. [PMID: 16439989 DOI: 10.1038/sj.cdd.4401854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Translational control in the rat heart was characterized during acute myocardial ischemia introduced by left coronary artery ligature. Within 10 min of ischemia, eukaryotic (eIF)4E binds to its negative regulator, eIF4E-binding protein-1 (4E-BP1), but the levels of 4E-BP1 are insufficient to disrupt cap-dependent mRNA initiation complexes. However, by 1 h of ischemia, the abundance of the cap-initiation complex protein eIF4G is reduced by relocalization into TIAR protein complexes, triggering 4E-BP1 sequestration of eIF4E and disruption of cap-dependent mRNA initiation complexes. As the heart begins to fail at 6 h, proteolysis of eIF4G is observed, resulting in its depletion and accompanied by limited destruction of 4E-BP1 and eIF4E. eIF4G proteolysis and modest loss of 4E-BP1 are associated with caspase-3 activation and induction of cardiomyocyte apoptotic and necrotic death. Acute heart ischemia therefore downregulates cap-dependent translation through eIF4E sequestration triggered by eIF4G depletion.
Collapse
Affiliation(s)
- E P Connolly
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
39
|
Mohr I. To replicate or not to replicate: achieving selective oncolytic virus replication in cancer cells through translational control. Oncogene 2005; 24:7697-709. [PMID: 16299530 DOI: 10.1038/sj.onc.1209053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To ensure that their mRNAs are translated and that the viral proteins necessary for assembling the next generation of infectious progeny are produced, viruses must effectively seize control of the translational machinery within their host cells. In many cases, the ability to productively engage host translational components can determine if a given cell type can support viral replication, illustrating the critical importance of this task in the viral life cycle. Failure to interface properly with the host translational apparatus can compromise the productive growth cycle, resulting in an abortive infection and radically restricting viral replication. Not only have viruses become facile at commandeering this machinery, they are also particularly adept at manipulating cellular translation control pathways for their own ends. In this review, the mechanisms by which numerous viruses manipulate host translational control circuits are discussed. Furthermore, particular attention is devoted to understanding how interfering with the ability of a virus to properly regulate translation in its host can be exploited to generate oncolytic strains that selectively replicate in cancer cells.
Collapse
Affiliation(s)
- Ian Mohr
- Department of Microbiology, New York University School of Medicine, NY 10016, USA.
| |
Collapse
|
40
|
Mohr I. Phosphorylation and dephosphorylation events that regulate viral mRNA translation. Virus Res 2005; 119:89-99. [PMID: 16305812 DOI: 10.1016/j.virusres.2005.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 08/30/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
As they are completely dependent upon the protein synthesis machinery resident in the cells of their host to translate their mRNAs, it is imperative that viruses are able to effectively manipulate the elaborate cellular regulatory network that controls translation. Indeed, this exquisite dependence on host functions has made viral models attractive systems to explore translational regulatory mechanisms operative in eukaryotic cells. Central among these are an intricate array of phosphorylation and dephosphorylation events that have far reaching consequences on the activity of cellular translation factors. Not only do these modulate the activity of a given factor, but they can also determine if the translation of host proteins persists in infected cells, the efficiency with which viral mRNAs are translated and the outcome of a systemic host anti-viral response. In this review, we discuss how various viruses manipulate the phosphorylation state of key cellular translation factors, illustrating the critical nature these interactions play in virus replication, pathogenesis and innate host defense.
Collapse
Affiliation(s)
- Ian Mohr
- Department of Microbiology, MSB 214, NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
41
|
Abstract
Most RNA viruses have evolved strategies to regulate cellular translation in order to promote preferential expression of the viral genome. Positive strand RNA viruses express large portions, or all of their proteome via translation of large polyproteins that are processed by embedded viral proteinases or host proteinases. Several of these viral proteinases are known to interact with host proteins, particularly with the host translation machinery, and thus, encompass the dual functions of processing of viral polyproteins and exerting translation control. Picornaviruses are perhaps the best characterized in regards to interaction of their proteinases with the host translation machinery and will be emphasized here. However, new findings have shown that similar paradigms exist in other viral systems which will be discussed.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Morley SJ, Coldwell MJ, Clemens MJ. Initiation factor modifications in the preapoptotic phase. Cell Death Differ 2005; 12:571-84. [PMID: 15900314 DOI: 10.1038/sj.cdd.4401591] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent studies have identified several mechanistic links between the regulation of translation and the process of apoptosis. Rates of protein synthesis are controlled by a wide range of agents that induce cell death, and in many instances, the changes that occur to the translational machinery precede overt apoptosis and loss of cell viability. The two principal ways in which factors required for translational activity are modified prior to and during apoptosis involve (i) changes in protein phosphorylation and (ii) specific proteolytic cleavages. In this review, we summarise the principal targets for such regulation, with particular emphasis on polypeptide chain initiation factors eIF2 and eIF4G and the eIF4E-binding proteins. We indicate how the functions of these factors and of other proteins with which they interact may be altered as a result of activation of apoptosis and we discuss the potential significance of such changes for translational control and cell growth regulation.
Collapse
Affiliation(s)
- S J Morley
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | | | |
Collapse
|
43
|
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361:13-37. [PMID: 16213112 DOI: 10.1016/j.gene.2005.06.037] [Citation(s) in RCA: 555] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly. Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5' end of the mRNA; and (iv) secondary structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism also explains how small open reading frames near the 5' end of the mRNA can down-regulate translation. This constraint is sometimes abrogated by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of translation that have found their way into textbooks are pointed out and corrected.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
44
|
Kaushik N, Fear D, Richards SCM, McDermott CR, Nuwaysir EF, Kellam P, Harrison TJ, Wilkinson RJ, Tyrrell DAJ, Holgate ST, Kerr JR. Gene expression in peripheral blood mononuclear cells from patients with chronic fatigue syndrome. J Clin Pathol 2005; 58:826-32. [PMID: 16049284 PMCID: PMC1770875 DOI: 10.1136/jcp.2005.025718] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Chronic fatigue syndrome (CFS) is a multisystem disease, the pathogenesis of which remains undetermined. AIMS To test the hypothesis that there are reproducible abnormalities of gene expression in patients with CFS compared with normal healthy persons. METHODS To gain further insight into the pathogenesis of this disease, gene expression was analysed in peripheral blood mononuclear cells from 25 patients with CFS diagnosed according to the Centers for Disease Control criteria and 25 normal blood donors matched for age, sex, and geographical location, using a single colour microarray representing 9522 human genes. After normalisation, average difference values for each gene were compared between test and control groups using a cutoff fold difference of expression > or = 1.5 and a p value of 0.001. Genes showing differential expression were further analysed using Taqman real time polymerase chain reaction (PCR) in fresh samples. RESULTS Analysis of microarray data revealed differential expression of 35 genes. Real time PCR confirmed differential expression in the same direction as array results for 16 of these genes, 15 of which were upregulated (ABCD4, PRKCL1, MRPL23, CD2BP2, GSN, NTE, POLR2G, PEX16, EIF2B4, EIF4G1, ANAPC11, PDCD2, KHSRP, BRMS1, and GABARAPL1) and one of which was downregulated (IL-10RA). This profile suggests T cell activation and perturbation of neuronal and mitochondrial function. Upregulation of neuropathy target esterase and eukaryotic translation initiation factor 4G1 may suggest links with organophosphate exposure and virus infection, respectively. CONCLUSION These results suggest that patients with CFS have reproducible alterations in gene regulation.
Collapse
Affiliation(s)
- N Kaushik
- Department of Paediatric Infectious Diseases, St Marys Campus, Imperial College, Norfolk Place, London W2 1PG, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Komar AA, Hatzoglou M. Internal Ribosome Entry Sites in Cellular mRNAs: Mystery of Their Existence. J Biol Chem 2005; 280:23425-8. [PMID: 15749702 DOI: 10.1074/jbc.r400041200] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although studies on viral gene expression were essential for the discovery of internal ribosome entry sites (IRESs), it is becoming increasingly clear that IRES activities are present in a significant number of cellular mRNAs. Remarkably, many of these IRES elements initiate translation of mRNAs encoding proteins that protect cells from stress (when the translation of the vast majority of cellular mRNAs is significantly impaired). The purpose of this review is to summarize the progress on the discovery and function of cellular IRESs. Recent findings on the structures of these IRESs and specifically regulation of their activity during nutritional stress, differentiation, and mitosis will be discussed.
Collapse
Affiliation(s)
- Anton A Komar
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
46
|
Foeger N, Kuehnel E, Cencic R, Skern T. The binding of foot-and-mouth disease virus leader proteinase to eIF4GI involves conserved ionic interactions. FEBS J 2005; 272:2602-11. [PMID: 15885108 DOI: 10.1111/j.1742-4658.2005.04689.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The leader proteinase (L(pro)) of foot-and-mouth disease virus (FMDV) initially cleaves itself from the polyprotein. Subsequently, L(pro) cleaves the host proteins eukaryotic initiation factor (eIF) 4GI and 4GII. This prevents protein synthesis from capped cellular mRNAs; the viral RNA is still translated, initiating from an internal ribosome entry site. L(pro) cleaves eIF4GI between residues G674 and R675. We showed previously, however, that L(pro) binds to residues 640-669 of eIF4GI. Binding was substantially improved when the eIF4GI fragment contained the eIF4E binding site and eIF4E was present in the binding assay. L(pro) interacts with eIF4GI via residue C133 and residues 183-195 of the C-terminal extension. This binding domain lies about 25 A from the active site. Here, we examined the binding of L(pro) to eIF4GI fragments generated by in vitro translation to narrow the binding site down to residues 645-657 of human eIF4GI. Comparison of these amino acids with those in human eIF4GII as well as with sequences of eIF4GI from other organisms allowed us to identify two conserved basic residues (K646 and R650). Mutation of these residues was severely detrimental to L(pro) binding. Similarly, comparison of the sequence between residues 183 and 195 of L(pro) with those of other FMDV serotypes and equine rhinitis A virus showed that acidic residues D184 and E186 were highly conserved. Substitution of these residues in L(pro) significantly reduced eIF4GI binding and cleavage without affecting self-processing. Thus, FMDV L(pro) has evolved a domain that specifically recognizes a host cell protein.
Collapse
Affiliation(s)
- Nicole Foeger
- Max F. Perutz Laboratories, University Department at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, Austria
| | | | | | | |
Collapse
|
47
|
Byrd MP, Zamora M, Lloyd RE. Translation of eukaryotic translation initiation factor 4GI (eIF4GI) proceeds from multiple mRNAs containing a novel cap-dependent internal ribosome entry site (IRES) that is active during poliovirus infection. J Biol Chem 2005; 280:18610-22. [PMID: 15755734 DOI: 10.1074/jbc.m414014200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation initiation factor 4GI (eIF4GI) is an essential scaffolding protein required to recruit the 43 S complex to the 5'-end of mRNA during translation initiation. We have previously demonstrated that eIF4GI protein expression is translationally regulated. This regulation is mediated by cis-acting RNA elements, including an upstream open reading frame and an IRES that directs synthesis of five eIF4GI protein isoforms via alternative AUG initiation codon selection. Here, we further characterize eIF4GI IRES function and show that eIF4GI is expressed from several distinct mRNAs that vary via alternate promoter use and alternate splicing. Several mRNA variants contain the IRES element. We found that IRES activity mapped to multiple regions within the eIF4GI RNA sequence, but not within the 5'-UTR per se. However, the 5'-UTR enhanced IRES activity in vivo and played a role in initiation codon selection. The eIF4GI IRES was active when transfected into cells in an RNA form, and thus, does not require nuclear processing events for its function. However, IRES activity was found to be dependent upon the presence, in cis, of a 5' m7guanosine-cap. Despite this requirement, the eIF4GI IRES was activated by 2A protease cleavage of eIF4GI, in vitro, and retained the ability to promote translation during poliovirus-mediated inhibition of cap-dependent translation. These data indicate that intact eIF4GI protein is not required for the de novo synthesis of eIF4GI, suggesting its expression can continue under stress or infection conditions where eIF4GI is cleaved.
Collapse
Affiliation(s)
- Marshall P Byrd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
48
|
Kim WJ, Back SH, Kim V, Ryu I, Jang SK. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol Cell Biol 2005; 25:2450-62. [PMID: 15743837 PMCID: PMC1061607 DOI: 10.1128/mcb.25.6.2450-2462.2005] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 09/14/2004] [Accepted: 11/24/2004] [Indexed: 11/20/2022] Open
Abstract
The cellular stress response (SR) is a phylogenetically conserved protection mechanism that involves inhibition of protein synthesis through recruitment of translation factors such as eIF4G into insoluble stress granules (SGs) and blockade of proinflammatory responses by interruption of the signaling pathway from tumor necrosis factor alpha (TNF-alpha) to nuclear factor-kappaB (NF-kappaB) activation. However, the link between these two physiological phenomena has not been clearly elucidated. Here we report that eIF4GI, which is a scaffold protein interacting with many translation factors, interacts with TRAF2, a signaling molecule that plays a key role in activation of NF-kappaB through TNF-alpha. These two proteins colocalize in SGs during cellular exposure to stress conditions. Moreover, TRAF2 is absent from TNFR1 complexes under stress conditions even after TNF-alpha treatment. This suggests that stressed cells lower their biological activities by sequestration of translation factors and TRAF2 into SGs through a protein-protein interaction.
Collapse
Affiliation(s)
- Woo Jae Kim
- National Research Laboratory, Postech Biotech Center, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyoja-Dong San 31, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | |
Collapse
|
49
|
Kahvejian A, Svitkin YV, Sukarieh R, M'Boutchou MN, Sonenberg N. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 2005; 19:104-13. [PMID: 15630022 PMCID: PMC540229 DOI: 10.1101/gad.1262905] [Citation(s) in RCA: 381] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5'-end of the mRNA to promote the recruitment of the ribosome. Although the 3' poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (approximately 65% vs. approximately 35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5'-end of mRNA.
Collapse
Affiliation(s)
- Avak Kahvejian
- Department of Biochemistry, McGill Cancer Center, McGill University, Montreal, Quebec, H3G 1Y6,Canada
| | | | | | | | | |
Collapse
|
50
|
Clemens MJ. Translational control in virus-infected cells: models for cellular stress responses. Semin Cell Dev Biol 2004; 16:13-20. [PMID: 15659335 DOI: 10.1016/j.semcdb.2004.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protein synthesis is regulated at the translational level by a variety of mechanisms in virus-infected cells. Viruses often induce the shut-off of host translation in order to favour the expression of their own genetic information, but cells possess a number of strategies for counteracting such effects of infection. Important regulatory mechanisms include the phosphorylation of the alpha subunit of polypeptide chain initiation factor eIF2, RNA degradation mediated by the 2'5'-oligoadenylate/RNase L system, control of availability of the cap-binding protein eIF4E by its interaction with the 4E-binding proteins and specific proteolytic cleavage of several key initiation factors. Most of these mechanisms are also utilised in uninfected cells in response to a variety of physiological stresses and during the early stages of apoptosis. Thus, mechanisms of translational control during virus infection can provide models for the cellular stress responses observed in a wide range of other circumstances.
Collapse
Affiliation(s)
- Michael J Clemens
- Translational Control Group, Biochemistry and Immunology, Department of Basic Medical Sciences, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|