1
|
Goldberg GW, Kogenaru M, Keegan S, Haase MAB, Kagermazova L, Arias MA, Onyebeke K, Adams S, Beyer DK, Fenyö D, Noyes MB, Boeke JD. Engineered transcription-associated Cas9 targeting in eukaryotic cells. Nat Commun 2024; 15:10287. [PMID: 39604381 PMCID: PMC11603292 DOI: 10.1038/s41467-024-54629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled in eukaryotic yeast or human cells when suboptimal PAM interactions limit basal activity and when one or more nascent RNA substrates are still tethered to the actively transcribed target DNA in cis. Using yeast, we further show that this phenomenon can be applied for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes co-transcriptional RNA binding as a cis-acting mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Gregory W Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Mauricio A Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Kenenna Onyebeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Samantha Adams
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Daniel K Beyer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Marcus B Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
2
|
Carrocci TJ, Neugebauer KM. Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing. Mol Cell 2024; 84:3656-3666. [PMID: 39366353 PMCID: PMC11463726 DOI: 10.1016/j.molcel.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Proper gene expression requires the collaborative effort of multiple macromolecular machines to produce functional messenger RNA. As RNA polymerase II (RNA Pol II) transcribes DNA, the nascent pre-messenger RNA is heavily modified by other complexes such as 5' capping enzymes, the spliceosome, the cleavage, and polyadenylation machinery as well as RNA-modifying/editing enzymes. Recent evidence has demonstrated that pre-mRNA splicing and 3' end cleavage can occur on similar timescales as transcription and significantly cross-regulate. In this review, we discuss recent advances in co-transcriptional processing and how it contributes to gene regulation. We highlight how emerging areas-including coordinated splicing events, physical interactions between the RNA synthesis and modifying machinery, rapid and delayed splicing, and nuclear organization-impact mRNA isoforms. Coordination among RNA-processing choices yields radically different mRNA and protein products, foreshadowing the likely regulatory importance of co-transcriptional RNA folding and co-transcriptional modifications that have yet to be characterized in detail.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Goldberg GW, Kogenaru M, Keegan S, Haase MAB, Kagermazova L, Arias MA, Onyebeke K, Adams S, Beyer DK, Fenyö D, Noyes MB, Boeke JD. Engineered transcription-associated Cas9 targeting in eukaryotic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558319. [PMID: 37781609 PMCID: PMC10541143 DOI: 10.1101/2023.09.18.558319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled in eukaryotic yeast or human cells when suboptimal PAM interactions limit basal activity and when one or more nascent RNA substrates are still tethered to the actively transcribed target DNA in cis. Using yeast, we further show that this phenomenon can be applied for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes co-transcriptional RNA binding as a cis-acting mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Gregory W. Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Max A. B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Mauricio A. Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Kenenna Onyebeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Samantha Adams
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Daniel K. Beyer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Marcus B. Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn NY 11201
| |
Collapse
|
4
|
Boddu PC, Gupta AK, Roy R, De La Peña Avalos B, Olazabal-Herrero A, Neuenkirchen N, Zimmer JT, Chandhok NS, King D, Nannya Y, Ogawa S, Lin H, Simon MD, Dray E, Kupfer GM, Verma A, Neugebauer KM, Pillai MM. Transcription elongation defects link oncogenic SF3B1 mutations to targetable alterations in chromatin landscape. Mol Cell 2024; 84:1475-1495.e18. [PMID: 38521065 PMCID: PMC11061666 DOI: 10.1016/j.molcel.2024.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.
Collapse
Affiliation(s)
- Prajwal C Boddu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Abhishek K Gupta
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Rahul Roy
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Bárbara De La Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center (UTHSC) at San Antonio, San Antonio, TX, USA
| | - Anne Olazabal-Herrero
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Joshua T Zimmer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Namrata S Chandhok
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Darren King
- Section of Hematology and Medical Oncology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI, USA
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Haifan Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center (UTHSC) at San Antonio, San Antonio, TX, USA
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amit Verma
- Division of Hemato-Oncology, Department of Medicine and Department of Developmental and Molecular Biology, Albert Einstein-Montefiore Cancer Center, New York, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University, New Haven, CT, USA
| | - Manoj M Pillai
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Shenasa H, Bentley DL. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet 2023; 39:672-685. [PMID: 37236814 PMCID: PMC10524715 DOI: 10.1016/j.tig.2023.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.
Collapse
Affiliation(s)
- Hossein Shenasa
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Stepien A, Dolata J, Gulanicz T, Bielewicz D, Bajczyk M, Smolinski DJ, Szweykowska-Kulinska Z, Jarmolowski A. Chromatin-associated microprocessor assembly is regulated by the U1 snRNP auxiliary protein PRP40. THE PLANT CELL 2022; 34:4920-4935. [PMID: 36087009 PMCID: PMC9709975 DOI: 10.1093/plcell/koac278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/05/2022] [Indexed: 06/01/2023]
Abstract
In plants, microRNA (miRNA) biogenesis involves cotranscriptional processing of RNA polymerase II (RNAPII)-generated primary transcripts by a multi-protein complex termed the microprocessor. Here, we report that Arabidopsis (Arabidopsis thaliana) PRE-MRNA PROCESSING PROTEIN 40 (PRP40), the U1 snRNP auxiliary protein, positively regulates the recruitment of SERRATE, a core component of the plant microprocessor, to miRNA genes. The association of DICER-LIKE1 (DCL1), the microprocessor endoribonuclease, with chromatin was altered in prp40ab mutant plants. Impaired cotranscriptional microprocessor assembly was accompanied by RNAPII accumulation at miRNA genes and retention of miRNA precursors at their transcription sites in the prp40ab mutant plants. We show that cotranscriptional microprocessor assembly, regulated by AtPRP40, positively affects RNAPII transcription of miRNA genes and is important to reach the correct levels of produced miRNAs.
Collapse
Affiliation(s)
| | | | | | | | - Mateusz Bajczyk
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Dariusz J Smolinski
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun 87-100, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun 87-100, Poland
| | | | | |
Collapse
|
7
|
Hansen SR, White DS, Scalf M, Corrêa IR, Smith LM, Hoskins AA. Multi-step recognition of potential 5' splice sites by the Saccharomyces cerevisiae U1 snRNP. eLife 2022; 11:70534. [PMID: 35959885 PMCID: PMC9436412 DOI: 10.7554/elife.70534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, splice sites define the introns of pre-mRNAs and must be recognized and excised with nucleotide precision by the spliceosome to make the correct mRNA product. In one of the earliest steps of spliceosome assembly, the U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5' splice site (5' SS) through a combination of base pairing, protein-RNA contacts, and interactions with other splicing factors. Previous studies investigating the mechanisms of 5' SS recognition have largely been done in vivo or in cellular extracts where the U1/5' SS interaction is difficult to deconvolute from the effects of trans-acting factors or RNA structure. In this work we used colocalization single-molecule spectroscopy (CoSMoS) to elucidate the pathway of 5' SS selection by purified yeast U1 snRNP. We determined that U1 reversibly selects 5' SS in a sequence-dependent, two-step mechanism. A kinetic selection scheme enforces pairing at particular positions rather than overall duplex stability to achieve long-lived U1 binding. Our results provide a kinetic basis for how U1 may rapidly surveil nascent transcripts for 5' SS and preferentially accumulate at these sequences rather than on close cognates.
Collapse
Affiliation(s)
- Sarah R Hansen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - David S White
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | | | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
8
|
Maudlin IE, Beggs JD. Conditional depletion of transcriptional kinases Ctk1 and Bur1 and effects on co-transcriptional spliceosome assembly and pre-mRNA splicing. RNA Biol 2021; 18:782-793. [PMID: 34705599 PMCID: PMC8782173 DOI: 10.1080/15476286.2021.1991673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
From yeast to humans, pre-mRNA splicing occurs mainly co-transcriptionally, with splicing and transcription functionally coupled such that they influence one another. The recruitment model of co-transcriptional splicing proposes that core members of the transcription elongation machinery have the potential to influence co-transcriptional spliceosome assembly and pre-mRNA splicing. Here, we tested whether the transcription elongation kinases Bur1 and Ctk1 affect co-transcriptional spliceosome assembly and pre-mRNA splicing in the budding yeast Saccharomyces cerevisiae. In S. cerevisiae, Ctk1 is the major kinase that phosphorylates serine 2 of the carboxy-terminal domain of the largest subunit of RNA polymerase II, whilst Bur1 augments the kinase activity of Ctk1 and is the major kinase for elongation factor Spt5. We used the auxin-inducible degron system to conditionally deplete Bur1 and Ctk1 kinases, and investigated the effects on co-transcriptional spliceosome assembly and pre-mRNA splicing. Depletion of Ctk1 effectively reduced phosphorylation of serine 2 of the carboxy-terminal domain but did not impact co-transcriptional spliceosome assembly or pre-mRNA splicing. In striking contrast, depletion of Bur1 did not reduce phosphorylation of serine 2 of the carboxy-terminal domain, but reduced Spt5 phosphorylation and enhanced co-transcriptional spliceosome assembly and pre-mRNA splicing, suggesting a role for this kinase in modulating co-transcriptional splicing.
Collapse
Affiliation(s)
- Isabella E. Maudlin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jean D. Beggs
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Dwyer K, Agarwal N, Pile L, Ansari A. Gene Architecture Facilitates Intron-Mediated Enhancement of Transcription. Front Mol Biosci 2021; 8:669004. [PMID: 33968994 PMCID: PMC8097089 DOI: 10.3389/fmolb.2021.669004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
Introns impact several vital aspects of eukaryotic organisms like proteomic plasticity, genomic stability, stress response and gene expression. A role for introns in the regulation of gene expression at the level of transcription has been known for more than thirty years. The molecular basis underlying the phenomenon, however, is still not entirely clear. An important clue came from studies performed in budding yeast that indicate that the presence of an intron within a gene results in formation of a multi-looped gene architecture. When looping is defective, these interactions are abolished, and there is no enhancement of transcription despite normal splicing. In this review, we highlight several potential mechanisms through which looping interactions may enhance transcription. The promoter-5′ splice site interaction can facilitate initiation of transcription, the terminator-3′ splice site interaction can enable efficient termination of transcription, while the promoter-terminator interaction can enhance promoter directionality and expedite reinitiation of transcription. Like yeast, mammalian genes also exhibit an intragenic interaction of the promoter with the gene body, especially exons. Such promoter-exon interactions may be responsible for splicing-dependent transcriptional regulation. Thus, the splicing-facilitated changes in gene architecture may play a critical role in regulation of transcription in yeast as well as in higher eukaryotes.
Collapse
Affiliation(s)
- Katherine Dwyer
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Neha Agarwal
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Lori Pile
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
10
|
Caizzi L, Monteiro-Martins S, Schwalb B, Lysakovskaia K, Schmitzova J, Sawicka A, Chen Y, Lidschreiber M, Cramer P. Efficient RNA polymerase II pause release requires U2 snRNP function. Mol Cell 2021; 81:1920-1934.e9. [PMID: 33689748 DOI: 10.1016/j.molcel.2021.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/07/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
Transcription by RNA polymerase II (Pol II) is coupled to pre-mRNA splicing, but the underlying mechanisms remain poorly understood. Co-transcriptional splicing requires assembly of a functional spliceosome on nascent pre-mRNA, but whether and how this influences Pol II transcription remains unclear. Here we show that inhibition of pre-mRNA branch site recognition by the spliceosome component U2 snRNP leads to a widespread and strong decrease in new RNA synthesis from human genes. Multiomics analysis reveals that inhibition of U2 snRNP function increases the duration of Pol II pausing in the promoter-proximal region, impairs recruitment of the pause release factor P-TEFb, and reduces Pol II elongation velocity at the beginning of genes. Our results indicate that efficient release of paused Pol II into active transcription elongation requires the formation of functional spliceosomes and that eukaryotic mRNA biogenesis relies on positive feedback from the splicing machinery to the transcription machinery.
Collapse
Affiliation(s)
- Livia Caizzi
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sara Monteiro-Martins
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kseniia Lysakovskaia
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jana Schmitzova
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Anna Sawicka
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ying Chen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
11
|
Zhang S, Aibara S, Vos SM, Agafonov DE, Lührmann R, Cramer P. Structure of a transcribing RNA polymerase II–U1 snRNP complex. Science 2021; 371:305-309. [DOI: 10.1126/science.abf1870] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Suyang Zhang
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Shintaro Aibara
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Seychelle M. Vos
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dmitry E. Agafonov
- Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
12
|
Alpert T, Straube K, Carrillo Oesterreich F, Herzel L, Neugebauer KM. Widespread Transcriptional Readthrough Caused by Nab2 Depletion Leads to Chimeric Transcripts with Retained Introns. Cell Rep 2020; 33:108324. [PMID: 33113357 DOI: 10.1016/j.celrep.2020.108324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 01/26/2023] Open
Abstract
Nascent RNA sequencing has revealed that pre-mRNA splicing can occur shortly after introns emerge from RNA polymerase II (RNA Pol II). Differences in co-transcriptional splicing profiles suggest regulation by cis- and/or trans-acting factors. Here, we use single-molecule intron tracking (SMIT) to identify a cohort of regulators by machine learning in budding yeast. Of these, Nab2 displays reduced co-transcriptional splicing when depleted. Unexpectedly, these splicing defects are attributable to aberrant "intrusive" transcriptional readthrough from upstream genes, as revealed by long-read sequencing. Transcripts that originate from the intron-containing gene's own transcription start site (TSS) are efficiently spliced, indicating no direct role of Nab2 in splicing per se. This work highlights the coupling between transcription, splicing, and 3' end formation in the context of gene organization along chromosomes. We conclude that Nab2 is required for proper 3' end processing, which ensures gene-specific control of co-transcriptional RNA processing.
Collapse
Affiliation(s)
- Tara Alpert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Korinna Straube
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Tellier M, Maudlin I, Murphy S. Transcription and splicing: A two-way street. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1593. [PMID: 32128990 DOI: 10.1002/wrna.1593] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/18/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
RNA synthesis by RNA polymerase II and RNA processing are closely coupled during the transcription cycle of protein-coding genes. This coupling affords opportunities for quality control and regulation of gene expression and the effects can go in both directions. For example, polymerase speed can affect splice site selection and splicing can increase transcription and affect the chromatin landscape. Here we review the many ways that transcription and splicing influence one another, including how splicing "talks back" to transcription. We will also place the connections between transcription and splicing in the context of other RNA processing events that define the exons that will make up the final mRNA. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Isabella Maudlin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Leung CS, Douglass SM, Morselli M, Obusan MB, Pavlyukov MS, Pellegrini M, Johnson TL. H3K36 Methylation and the Chromodomain Protein Eaf3 Are Required for Proper Cotranscriptional Spliceosome Assembly. Cell Rep 2020; 27:3760-3769.e4. [PMID: 31242410 PMCID: PMC6904931 DOI: 10.1016/j.celrep.2019.05.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
In the eukaryotic cell, spliceosomes assemble onto pre-mRNA cotranscriptionally. Spliceosome assembly takes place in the context of the chromatin environment, suggesting that the state of the chromatin may affect splicing. The molecular details and mechanisms through which chromatin affects splicing, however, are still unclear. Here, we show a role for the histone methyltransferase Set2 and its histone modification, H3K36 methylation, in pre-mRNA splicing through high-throughput sequencing. Moreover, the effect of H3K36 methylation on pre-mRNA splicing is mediated through the chromodomain protein Eaf3. We find that Eaf3 is recruited to intron-containing genes and that Eaf3 interacts with the splicing factor Prp45. Eaf3 acts with Prp45 and Prp19 after formation of the precatalytic B complex around the time of splicing activation, thus revealing the step in splicing that is regulated by H3K36 methylation. These studies support a model whereby H3K36 facilitates recruitment of an "adapter protein" to support efficient, constitutive splicing.
Collapse
Affiliation(s)
- Calvin S Leung
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen M Douglass
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew B Obusan
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russian Federation
| | - Matteo Pellegrini
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tracy L Johnson
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Niu Q, Wang W, Wei Z, Byeon B, Das AB, Chen BS, Wu WH. Role of the ATP-dependent chromatin remodeling enzyme Fun30/Smarcad1 in the regulation of mRNA splicing. Biochem Biophys Res Commun 2020; 526:453-458. [PMID: 32234239 DOI: 10.1016/j.bbrc.2020.02.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
The yeast ATP-dependent chromatin remodeling enzyme Fun30 has been shown to regulate heterochromatin silencing, DNA repair, transcription, and chromatin organization. Although chromatin structure has been proposed to influence splice site recognition and regulation, whether ATP-dependent chromatin remodeling enzyme plays a role in regulating splicing is not known. In this study, we find that pre-mRNA splicing efficiency is impaired and the recruitment of spliceosome is compromised in Fun30-depleted cells. In addition, Fun30 is enriched in the gene body of individual intron-containing genes. Moreover, we show that pre-mRNA splicing efficiency is dependent on the chromatin remodeling activity of Fun30. The function of Fun30 in splicing is further supported by the observation that, Smarcad1, the mammalian homolog of Fun30, regulates alternative splicing. Taken together, these results provide evidence for a novel role of Fun30 in regulating splicing.
Collapse
Affiliation(s)
- Qiankun Niu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Wei Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Zhe Wei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Boseon Byeon
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Asim Bikas Das
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Bo-Shiun Chen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan ROC
| | - Wei-Hua Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
16
|
Botto AEC, Muñoz JC, Giono LE, Nieto-Moreno N, Cuenca C, Kornblihtt AR, Muñoz MJ. Reciprocal regulation between alternative splicing and the DNA damage response. Genet Mol Biol 2020; 43:e20190111. [PMID: 32236390 PMCID: PMC7197977 DOI: 10.1590/1678-4685-gmb-2019-0111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Splicing, the process that catalyzes intron removal and flanking exon ligation, can occur in different ways (alternative splicing) in immature RNAs transcribed from a single gene. In order to adapt to a particular context, cells modulate not only the quantity but also the quality (alternative isoforms) of their transcriptome. Since 95% of the human coding genome is subjected to alternative splicing regulation, it is expected that many cellular pathways are modulated by alternative splicing, as is the case for the DNA damage response. Moreover, recent evidence demonstrates that upon a genotoxic insult, classical DNA damage response kinases such as ATM, ATR and DNA-PK orchestrate the gene expression response therefore modulating alternative splicing which, in a reciprocal way, shapes the response to a damaging agent.
Collapse
Affiliation(s)
- Adrian E Cambindo Botto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Juan C Muñoz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Luciana E Giono
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Nicolás Nieto-Moreno
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Carmen Cuenca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Manuel J Muñoz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina.,Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| |
Collapse
|
17
|
Wu F, Deng L, Zhai Q, Zhao J, Chen Q, Li C. Mediator Subunit MED25 Couples Alternative Splicing of JAZ Genes with Fine-Tuning of Jasmonate Signaling. THE PLANT CELL 2020; 32:429-448. [PMID: 31852773 PMCID: PMC7008490 DOI: 10.1105/tpc.19.00583] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 05/19/2023]
Abstract
JASMONATE ZIM-DOMAIN (JAZ) transcriptional repressors are key regulators of jasmonate (JA) signaling in plants. At the resting stage, the C-terminal Jas motifs of JAZ proteins bind the transcription factor MYC2 to repress JA signaling. Upon hormone elicitation, the Jas motif binds the hormone receptor CORONATINE INSENSITIVE1, which mediates proteasomal degradation of JAZs and thereby allowing the Mediator subunit MED25 to activate MYC2. Subsequently, plants desensitize JA signaling by feedback generation of dominant JAZ splice variants that repress MYC2. Here we report the mechanistic function of Arabidopsis (Arabidopsis thaliana) MED25 in regulating the alternative splicing of JAZ genes through recruiting the splicing factors PRE-mRNA-PROCESSING PROTEIN 39a (PRP39a) and PRP40a. We demonstrate that JA-induced generation of JAZ splice variants depends on MED25 and that MED25 recruits PRP39a and PRP40a to promote the full splicing of JAZ genes. Therefore, MED25 forms a module with PRP39a and PRP40a to prevent excessive desensitization of JA signaling mediated by JAZ splice variants.
Collapse
Affiliation(s)
- Fangming Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhai Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Shandong Province, Tai'an 271018, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Shandong Province, Tai'an 271018, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Mendoza-Ochoa GI, Barrass JD, Maudlin IE, Beggs JD. Blocking late stages of splicing quickly limits pre-spliceosome assembly in vivo. RNA Biol 2019; 16:1775-1784. [PMID: 31671032 PMCID: PMC6844569 DOI: 10.1080/15476286.2019.1657788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pre-messenger RNA splicing involves multi-step assembly of the large spliceosome complexes that catalyse the two consecutive trans-esterification reactions, resulting in intron removal. There is evidence that proof-reading mechanisms monitor the fidelity of this complex process. Transcripts that fail these fidelity tests are thought to be directed to degradation pathways, permitting the splicing factors to be recycled. While studying the roles of splicing factors in vivo, in budding yeast, we performed targeted depletion of individual proteins, and analysed the effect on co-transcriptional spliceosome assembly and splicing efficiency. Unexpectedly, depleting factors such as Prp16 or Prp22, that are known to function at the second catalytic step or later in the splicing pathway, resulted in a defect in the first step of splicing, and accumulation of arrested spliceosomes. Through a kinetic analysis of newly synthesized RNA, we observed that a second step splicing defect (the primary defect) was rapidly followed by the first step of splicing defect. Our results show that knocking down a splicing factor can quickly lead to a recycling defect with splicing factors sequestered in stalled complexes, thereby limiting new rounds of splicing. We demonstrate that this ‘feed-back’ effect can be minimized by depleting the target protein more gradually or only partially, allowing a better separation between primary and secondary effects. Our findings indicate that splicing surveillance mechanisms may not always cope with spliceosome assembly defects, and suggest that work involving knock-down of splicing factors or components of other large complexes should be carefully monitored to avoid potentially misleading conclusions.
Collapse
Affiliation(s)
- Gonzalo I Mendoza-Ochoa
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J David Barrass
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Isabella E Maudlin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jean D Beggs
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Maudlin IE, Beggs JD. Spt5 modulates cotranscriptional spliceosome assembly in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2019; 25:1298-1310. [PMID: 31289129 PMCID: PMC6800482 DOI: 10.1261/rna.070425.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
There is increasing evidence from yeast to humans that pre-mRNA splicing occurs mainly cotranscriptionally, such that splicing and transcription are functionally coupled. Currently, there is little insight into the contribution of the core transcription elongation machinery to cotranscriptional spliceosome assembly and pre-mRNA splicing. Spt5 is a member of the core transcription elongation machinery and an essential protein, whose absence in budding yeast causes defects in pre-mRNA splicing. To determine how Spt5 affects pre-mRNA splicing, we used the auxin-inducible degron system to conditionally deplete Spt5 in Saccharomyces cerevisiae and assayed effects on cotranscriptional spliceosome assembly and splicing. We show that Spt5 is needed for efficient splicing and for the accumulation of U5 snRNPs at intron-containing genes, and therefore for stable cotranscriptional assembly of spliceosomes. The defect in cotranscriptional spliceosome assembly can explain the relatively mild splicing defect as being a consequence of the failure of cotranscriptional splicing. Coimmunoprecipitation of Spt5 with core spliceosomal proteins and all spliceosomal snRNAs suggests a model whereby Spt5 promotes cotranscriptional pre-mRNA splicing by stabilizing the association of U5 snRNP with spliceosome complexes as they assemble on the nascent transcript. If this phenomenon is conserved in higher eukaryotes, it has the potential to be important for cotranscriptional regulation of alternative splicing.
Collapse
Affiliation(s)
- Isabella E Maudlin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Jean D Beggs
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
20
|
Neugebauer KM. Nascent RNA and the Coordination of Splicing with Transcription. Cold Spring Harb Perspect Biol 2019; 11:11/8/a032227. [PMID: 31371351 DOI: 10.1101/cshperspect.a032227] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
At each active protein-encoding gene, nascent RNA is tethered to the DNA axis by elongating RNA polymerase II (Pol II) and is continuously altered by splicing and other processing events during its synthesis. This review discusses the development of three major methods that enable us to track the conversion of precursor messenger RNA (pre-mRNA) to messenger RNA (mRNA) products in vivo: live-cell imaging, metabolic labeling of RNA, and RNA-seq of purified nascent RNA. These approaches are complementary, addressing distinct issues of transcription rates and intron lifetimes alongside spatial information regarding the gene position of Pol II at which spliceosomes act. The findings will be placed in the context of active transcription units, each of which-because of the presence of nascent RNA, Pol II, and features of the chromatin environment-will recruit a potentially gene-specific constellation of RNA binding proteins and processing machineries.
Collapse
Affiliation(s)
- Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
21
|
Shenasa H, Hertel KJ. Combinatorial regulation of alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194392. [PMID: 31276857 DOI: 10.1016/j.bbagrm.2019.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022]
Abstract
The generation of protein coding mRNAs from pre-mRNA is a fundamental biological process that is required for gene expression. Alternative pre-mRNA splicing is responsible for much of the transcriptomic and proteomic diversity observed in higher order eukaryotes. Aberrations that disrupt regular alternative splicing patterns are known to cause human diseases, including various cancers. Alternative splicing is a combinatorial process, meaning many factors affect which two splice sites are ligated together. The features that dictate exon inclusion are comprised of splice site strength, intron-exon architecture, RNA secondary structure, splicing regulatory elements, promoter use and transcription speed by RNA polymerase and the presence of post-transcriptional nucleotide modifications. A comprehensive view of all of the factors that influence alternative splicing decisions is necessary to predict splicing outcomes and to understand the molecular basis of disease. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Hossein Shenasa
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, United States of America
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
22
|
Crane MM, Sands B, Battaglia C, Johnson B, Yun S, Kaeberlein M, Brent R, Mendenhall A. In vivo measurements reveal a single 5'-intron is sufficient to increase protein expression level in Caenorhabditis elegans. Sci Rep 2019; 9:9192. [PMID: 31235724 PMCID: PMC6591249 DOI: 10.1038/s41598-019-45517-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/06/2019] [Indexed: 11/29/2022] Open
Abstract
Introns can increase gene expression levels using a variety of mechanisms collectively referred to as Intron Mediated Enhancement (IME). IME has been measured in cell culture and plant models by quantifying expression of intronless and intron-bearing reporter genes in vitro. We developed hardware and software to implement microfluidic chip-based gene expression quantification in vivo. We altered position, number and sequence of introns in reporter genes controlled by the hsp-90 promoter. Consistent with plant and mammalian studies, we determined a single, natural or synthetic, 5'-intron is sufficient for the full IME effect conferred by three synthetic introns, while a 3'-intron is not. We found coding sequence can affect IME; the same three synthetic introns that increase mcherry protein concentration by approximately 50%, increase mEGFP by 80%. We determined IME effect size is not greatly affected by the stronger vit-2 promoter. Our microfluidic imaging approach should facilitate screens for factors affecting IME and other intron-dependent processes.
Collapse
Affiliation(s)
- Matthew M Crane
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Bryan Sands
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Christian Battaglia
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Brock Johnson
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Soo Yun
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Matt Kaeberlein
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Roger Brent
- Fred Hutchinson Cancer Research Center, Division of Basic Science, Seattle, WA, USA
| | - Alex Mendenhall
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA.
| |
Collapse
|
23
|
Carrocci TJ, Neugebauer KM. Pre-mRNA Splicing in the Nuclear Landscape. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 84:11-20. [PMID: 32493763 PMCID: PMC7384967 DOI: 10.1101/sqb.2019.84.040402] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Eukaryotic gene expression requires the cumulative activity of multiple molecular machines to synthesize and process newly transcribed pre-messenger RNA. Introns, the noncoding regions in pre-mRNA, must be removed by the spliceosome, which assembles on the pre-mRNA as it is transcribed by RNA polymerase II (Pol II). The assembly and activity of the spliceosome can be modulated by features including the speed of transcription elongation, chromatin, post-translational modifications of Pol II and histone tails, and other RNA processing events like 5'-end capping. Here, we review recent work that has revealed cooperation and coordination among co-transcriptional processing events and speculate on new avenues of research. We anticipate new mechanistic insights capable of unraveling the relative contribution of coupled processing to gene expression.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
24
|
Adivarahan S, Zenklusen D. Lessons from (pre-)mRNA Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:247-284. [DOI: 10.1007/978-3-030-31434-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
ChIP and ChIP-Related Techniques: Expanding the Fields of Application and Improving ChIP Performance. Methods Mol Biol 2018; 1689:1-7. [PMID: 29027160 DOI: 10.1007/978-1-4939-7380-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-DNA interactions in vivo can be detected and quantified by chromatin immunoprecipitation (ChIP). ChIP has been instrumental for the advancement of epigenetics and has set the groundwork for the development of a number of ChIP-related techniques that have provided valuable information about the organization and function of genomes. Here, we provide an introduction to ChIP and discuss the applications of ChIP in different research areas. We also review some of the strategies that have been devised to improve ChIP performance.
Collapse
|
26
|
Hálová M, Gahura O, Převorovský M, Cit Z, Novotný M, Valentová A, Abrhámová K, Půta F, Folk P. Nineteen complex-related factor Prp45 is required for the early stages of cotranscriptional spliceosome assembly. RNA (NEW YORK, N.Y.) 2017; 23:1512-1524. [PMID: 28701519 PMCID: PMC5602110 DOI: 10.1261/rna.061986.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/21/2017] [Indexed: 05/22/2023]
Abstract
Splicing in S. cerevisiae has been shown to proceed cotranscriptionally, but the nature of the coupling remains a subject of debate. Here, we examine the effect of nineteen complex-related splicing factor Prp45 (a homolog of SNW1/SKIP) on cotranscriptional splicing. RNA-sequencing and RT-qPCR showed elevated pre-mRNA levels but only limited reduction of spliced mRNAs in cells expressing C-terminally truncated Prp45, Prp45(1-169). Assays with a series of reporters containing the AMA1 intron with regulatable splicing confirmed decreased splicing efficiency and showed the leakage of unspliced RNAs in prp45(1-169) cells. We also measured pre-mRNA accumulation of the meiotic MER2 gene, which depends on the expression of Mer1 factor for splicing. prp45(1-169) cells accumulated approximately threefold higher levels of MER2 pre-mRNA than WT cells only when splicing was induced. To monitor cotranscriptional splicing, we determined the presence of early spliceosome assembly factors and snRNP complexes along the ECM33 and ACT1 genes. We found that prp45(1-169) hampered the cotranscriptional recruitment of U2 and, to a larger extent, U5 and NTC, while the U1 profile was unaffected. The recruitment of Prp45(1-169) was impaired similarly to U5 snRNP and NTC. Our results imply that Prp45 is required for timely formation of complex A, prior to stable physical association of U5/NTC with the emerging pre-mRNA substrate. We suggest that Prp45 facilitates conformational rearrangements and/or contacts that couple U1 snRNP-recognition to downstream assembly events.
Collapse
Affiliation(s)
- Martina Hálová
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Ondřej Gahura
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zdeněk Cit
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Anna Valentová
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
27
|
Neves LT, Douglass S, Spreafico R, Venkataramanan S, Kress TL, Johnson TL. The histone variant H2A.Z promotes efficient cotranscriptional splicing in S. cerevisiae. Genes Dev 2017; 31:702-717. [PMID: 28446598 PMCID: PMC5411710 DOI: 10.1101/gad.295188.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
Abstract
In eukaryotes, a dynamic ribonucleic protein machine known as the spliceosome catalyzes the removal of introns from premessenger RNA (pre-mRNA). Recent studies show the processes of RNA synthesis and RNA processing to be spatio-temporally coordinated, indicating that RNA splicing takes place in the context of chromatin. H2A.Z is a highly conserved histone variant of the canonical histone H2A. In Saccharomyces cerevisiae, H2A.Z is deposited into chromatin by the SWR-C complex, is found near the 5' ends of protein-coding genes, and has been implicated in transcription regulation. Here we show that splicing of intron-containing genes in cells lacking H2A.Z is impaired, particularly under suboptimal splicing conditions. Cells lacking H2A.Z are especially dependent on a functional U2 snRNP (small nuclear RNA [snRNA] plus associated proteins), as H2A.Z shows extensive genetic interactions with U2 snRNP-associated proteins, and RNA sequencing (RNA-seq) reveals that introns with nonconsensus branch points are particularly sensitive to H2A.Z loss. Consistently, H2A.Z promotes efficient spliceosomal rearrangements involving the U2 snRNP, as H2A.Z loss results in persistent U2 snRNP association and decreased recruitment of downstream snRNPs to nascent RNA. H2A.Z impairs transcription elongation, suggesting that spliceosome rearrangements are tied to H2A.Z's role in elongation. Depletion of disassembly factor Prp43 suppresses H2A.Z-mediated splice defects, indicating that, in the absence of H2A.Z, stalled spliceosomes are disassembled, and unspliced RNAs are released. Together, these data demonstrate that H2A.Z is required for efficient pre-mRNA splicing and indicate a role for H2A.Z in coordinating the kinetics of transcription elongation and splicing.
Collapse
Affiliation(s)
- Lauren T Neves
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095 USA.,Graduate Program in Molecular Biology Interdepartmental Program, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Stephen Douglass
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095 USA
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Srivats Venkataramanan
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095 USA
| | - Tracy L Kress
- Department of Biology, The College of New Jersey, Ewing, New Jersey 08628, USA
| | - Tracy L Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095 USA.,Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
28
|
Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat Rev Mol Cell Biol 2017; 18:637-650. [PMID: 28792005 DOI: 10.1038/nrm.2017.63] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several macromolecular machines collaborate to produce eukaryotic messenger RNA. RNA polymerase II (Pol II) translocates along genes that are up to millions of base pairs in length and generates a flexible RNA copy of the DNA template. This nascent RNA harbours introns that are removed by the spliceosome, which is a megadalton ribonucleoprotein complex that positions the distant ends of the intron into its catalytic centre. Emerging evidence that the catalytic spliceosome is physically close to Pol II in vivo implies that transcription and splicing occur on similar timescales and that the transcription and splicing machineries may be spatially constrained. In this Review, we discuss aspects of spliceosome assembly, transcription elongation and other co-transcriptional events that allow the temporal coordination of co-transcriptional splicing.
Collapse
Affiliation(s)
- Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Diana S M Ottoz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Tara Alpert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
29
|
Muddukrishna B, Jackson CA, Yu MC. Protein arginine methylation of Npl3 promotes splicing of the SUS1 intron harboring non-consensus 5' splice site and branch site. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:730-739. [PMID: 28392442 DOI: 10.1016/j.bbagrm.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 11/18/2022]
Abstract
Protein arginine methylation occurs on spliceosomal components and spliceosome-associated proteins, but how this modification contributes to their function in pre-mRNA splicing remains sparse. Here we provide evidence that protein arginine methylation of the yeast SR-/hnRNP-like protein Npl3 plays a role in facilitating efficient splicing of the SUS1 intron that harbors a non-consensus 5' splice site and branch site. In yeast cells lacking the major protein arginine methyltransferase HMT1, we observed a change in the co-transcriptional recruitment of the U1 snRNP subunit Snp1 and Npl3 to pre-mRNAs harboring both consensus (ECM33 and ASC1) and non-consensus (SUS1) 5' splice site and branch site. Using an Npl3 mutant that phenocopies wild-type Npl3 when expressed in Δhmt1 cells, we showed that the arginine methylation of Npl3 is responsible for this. Examination of pre-mRNA splicing efficiency in these mutants reveals the requirement of Npl3 methylation for the efficient splicing of SUS1 intron 1, but not of ECM33 or ASC1. Changing the 5' splice site and branch site in SUS1 intron 1 to the consensus form restored splicing efficiency in an Hmt1-independent manner. Results from biochemical studies show that methylation of Npl3 promotes its optimal association with the U1 snRNP through its association with the U1 snRNP subunit Mud1. Based on these data, we propose a model in which Hmt1, via arginine methylation of Npl3, facilitates U1 snRNP engagement with the pre-mRNA to promote usage of non-consensus splice sites by the splicing machinery.
Collapse
Affiliation(s)
- Bhavana Muddukrishna
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Christopher A Jackson
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Michael C Yu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
30
|
Alpert T, Herzel L, Neugebauer KM. Perfect timing: splicing and transcription rates in living cells. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27873472 DOI: 10.1002/wrna.1401] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022]
Abstract
An important step toward understanding gene regulation is the elucidation of the time necessary for the completion of individual steps. Measurement of reaction rates can reveal potential nodes for regulation. For example, measurements of in vivo transcription elongation rates reveal regulation by DNA sequence, gene architecture, and chromatin. Pre-mRNA splicing is regulated by transcription elongation rates and vice versa, yet the rates of RNA processing reactions remain largely elusive. Since the 1980s, numerous model systems and approaches have been used to determine the precise timing of splicing in vivo. Because splicing can be co-transcriptional, the position of Pol II when splicing is detected has been used as a proxy for time by some investigators. In addition to these 'distance-based' measurements, 'time-based' measurements have been possible through live cell imaging, metabolic labeling of RNA, and gene induction. Yet splicing rates can be convolved by the time it takes for transcription, spliceosome assembly and spliceosome disassembly. The variety of assays and systems used has, perhaps not surprisingly, led to reports of widely differing splicing rates in vivo. Recently, single molecule RNA-seq has indicated that splicing occurs more quickly than previously deduced. Here we comprehensively review these findings and discuss evidence that splicing and transcription rates are closely coordinated, facilitating the efficiency of gene expression. On the other hand, introduction of splicing delays through as yet unknown mechanisms provide opportunity for regulation. More work is needed to understand how cells optimize the rates of gene expression for a range of biological conditions. WIREs RNA 2017, 8:e1401. doi: 10.1002/wrna.1401 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Tara Alpert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
31
|
Harlen KM, Trotta KL, Smith EE, Mosaheb MM, Fuchs SM, Churchman LS. Comprehensive RNA Polymerase II Interactomes Reveal Distinct and Varied Roles for Each Phospho-CTD Residue. Cell Rep 2016; 15:2147-2158. [PMID: 27239037 DOI: 10.1016/j.celrep.2016.05.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/22/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
Abstract
Transcription controls splicing and other gene regulatory processes, yet mechanisms remain obscure due to our fragmented knowledge of the molecular connections between the dynamically phosphorylated RNA polymerase II (Pol II) C-terminal domain (CTD) and regulatory factors. By systematically isolating phosphorylation states of the CTD heptapeptide repeat (Y1S2P3T4S5P6S7), we identify hundreds of protein factors that are differentially enriched, revealing unappreciated connections between the Pol II CTD and co-transcriptional processes. These data uncover a role for threonine-4 in 3' end processing through control of the transition between cleavage and termination. Furthermore, serine-5 phosphorylation seeds spliceosomal assembly immediately downstream of 3' splice sites through a direct interaction with spliceosomal subcomplex U1. Strikingly, threonine-4 phosphorylation also impacts splicing by serving as a mark of co-transcriptional spliceosome release and ensuring efficient post-transcriptional splicing genome-wide. Thus, comprehensive Pol II interactomes identify the complex and functional connections between transcription machinery and other gene regulatory complexes.
Collapse
Affiliation(s)
- Kevin M Harlen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kristine L Trotta
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Erin E Smith
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Stephen M Fuchs
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
32
|
Agarwal N, Ansari A. Enhancement of Transcription by a Splicing-Competent Intron Is Dependent on Promoter Directionality. PLoS Genet 2016; 12:e1006047. [PMID: 27152651 PMCID: PMC4859611 DOI: 10.1371/journal.pgen.1006047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/20/2016] [Indexed: 11/23/2022] Open
Abstract
Enhancement of transcription by a splicing-competent intron is an evolutionarily conserved feature among eukaryotes. The molecular mechanism underlying the phenomenon, however, is not entirely clear. Here we show that the intron is an important regulator of promoter directionality. Employing strand-specific transcription run-on (TRO) analysis, we show that the transcription of mRNA is favored over the upstream anti-sense transcripts (uaRNA) initiating from the promoter in the presence of an intron. Mutation of either the 5′ or 3′ splice site resulted in the reversal of promoter directionality, thereby suggesting that it is not merely the 5′ splice site but the entire splicing-competent intron that regulates transcription directionality. ChIP analysis revealed the recruitment of termination factors near the promoter region in the presence of an intron. Removal of intron or the mutation of splice sites adversely affected the promoter localization of termination factors. We have earlier demonstrated that the intron-mediated enhancement of transcription is dependent on gene looping. Here we show that gene looping is crucial for the recruitment of termination factors in the promoter-proximal region of an intron-containing gene. In a looping-defective mutant, despite normal splicing, the promoter occupancy of factors required for poly(A)-dependent termination of transcription was compromised. This was accompanied by a concomitant loss of transcription directionality. On the basis of these results, we propose that the intron-dependent gene looping places the terminator-bound factors in the vicinity of the promoter region for termination of the promoter-initiated upstream antisense transcription, thereby conferring promoter directionality. Eukaryotic genes differ from their prokaryotic counterparts in having intervening non-coding sequences called introns. The precise biological role of introns in eukaryotic systems remains unclear even more than forty years after their initial discovery. One function of intron that has been remarkably conserved during evolution is their ability to enhance the transcription of genes that harbor them. How does the intron regulate transcription, however, is not known. Here we show that the intron enhances gene expression by affecting direction of the promoter-initiated transcription. In the presence of an intron, polymerase tends to transcribe the downstream coding region producing mRNA, while in the absence of a splicing-competent intron polymerase starts transcribing promoter upstream region producing upstream antisense RNA (uaRNA). Intron-mediated promoter directionality was dependent on gene looping, which is the interaction off the promoter and terminator region of a gene in a transcription-dependent manner. We show that the intron-dependent gene looping facilitates the recruitment of termination factors in the promoter-proximal region. The recruited termination factors stop uaRNA synthesis thereby conferring directionality to the promoter-bound polymerase.
Collapse
Affiliation(s)
- Neha Agarwal
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Athar Ansari
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
33
|
Splicing-Mediated Autoregulation Modulates Rpl22p Expression in Saccharomyces cerevisiae. PLoS Genet 2016; 12:e1005999. [PMID: 27097027 PMCID: PMC4838235 DOI: 10.1371/journal.pgen.1005999] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/30/2016] [Indexed: 01/07/2023] Open
Abstract
In Saccharomyces cerevisiae, splicing is critical for expression of ribosomal protein genes (RPGs), which are among the most highly expressed genes and are tightly regulated according to growth and environmental conditions. However, knowledge of the precise mechanisms by which RPG pre-mRNA splicing is regulated on a gene-by-gene basis is lacking. Here we show that Rpl22p has an extraribosomal role in the inhibition of splicing of the RPL22B pre-mRNA transcript. A stem loop secondary structure within the intron is necessary for pre-mRNA binding by Rpl22p in vivo and splicing inhibition in vivo and in vitro and can rescue splicing inhibition in vitro when added in trans to splicing reactions. Splicing inhibition by Rpl22p may be partly attributed to the reduction of co-transcriptional U1 snRNP recruitment to the pre-mRNA at the RPL22B locus. We further demonstrate that the inhibition of RPL22B pre-mRNA splicing contributes to the down-regulation of mature transcript during specific stress conditions, and provide evidence hinting at a regulatory role for this mechanism in conditions of suppressed ribosome biogenesis. These results demonstrate an autoregulatory mechanism that fine-tunes the expression of the Rpl22 protein and by extension Rpl22p paralog composition according to the cellular demands for ribosome biogenesis. Ribosomes are responsible for protein production in all living cells, serving as the grounds for the translation of genetic information from RNA to protein. Given the vital role of the ribosome in protein assembly, ribosome components are highly expressed and are subject to tight regulation. Some ribosomal proteins are also known to engage in extra-ribosomal activities. In our study, we demonstrate that the ribosomal protein Rpl22p is able to regulate its own expression by inhibiting the processing of its own RNA transcript, leading to degradation of the RNA. We also show that this self-imposed regulation plays a role in limiting RPL22 transcript levels in specific stress conditions. We suggest that this mechanism may impact the composition of ribosomes by influencing the availability of the Rpl22p paralogs.
Collapse
|
34
|
Sorenson MR, Jha DK, Ucles SA, Flood DM, Strahl BD, Stevens SW, Kress TL. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae. RNA Biol 2016; 13:412-26. [PMID: 26821844 DOI: 10.1080/15476286.2016.1144009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Co-transcriptional splicing takes place in the context of a highly dynamic chromatin architecture, yet the role of chromatin restructuring in coordinating transcription with RNA splicing has not been fully resolved. To further define the contribution of histone modifications to pre-mRNA splicing in Saccharomyces cerevisiae, we probed a library of histone point mutants using a reporter to monitor pre-mRNA splicing. We found that mutation of H3 lysine 36 (H3K36) - a residue methylated by Set2 during transcription elongation - exhibited phenotypes similar to those of pre-mRNA splicing mutants. We identified genetic interactions between genes encoding RNA splicing factors and genes encoding the H3K36 methyltransferase Set2 and the demethylase Jhd1 as well as point mutations of H3K36 that block methylation. Consistent with the genetic interactions, deletion of SET2, mutations modifying the catalytic activity of Set2 or H3K36 point mutations significantly altered expression of our reporter and reduced splicing of endogenous introns. These effects were dependent on the association of Set2 with RNA polymerase II and H3K36 dimethylation. Additionally, we found that deletion of SET2 reduces the association of the U2 and U5 snRNPs with chromatin. Thus, our study provides the first evidence that H3K36 methylation plays a role in co-transcriptional RNA splicing in yeast.
Collapse
Affiliation(s)
- Matthew R Sorenson
- a Graduate Program in Microbiology, The University of Texas at Austin , Austin , Texas , USA
| | - Deepak K Jha
- b Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Stefanie A Ucles
- c Department of Biology , The College of New Jersey , Ewing , NJ , USA
| | - Danielle M Flood
- c Department of Biology , The College of New Jersey , Ewing , NJ , USA
| | - Brian D Strahl
- b Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA.,d Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Scott W Stevens
- e Department of Molecular Biosciences , University of Texas at Austin , Austin , Texas , USA.,f Institute for Cellular and Molecular Biology, University of Texas at Austin , Austin , Texas , USA
| | - Tracy L Kress
- c Department of Biology , The College of New Jersey , Ewing , NJ , USA
| |
Collapse
|
35
|
Abstract
Splicing is a predominantly co-transcriptional process that has been shown to be tightly coupled to transcription. Chromatin structure is a key factor that mediates this functional coupling. In light of recent evidence that shows the importance of higher order chromatin organization in the coordination and regulation of gene expression, we discuss here the possible roles of long-range chromatin organization in splicing and alternative splicing regulation.
Collapse
Affiliation(s)
- Luciana I Gómez Acuña
- a Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires, Argentina
| | | |
Collapse
|
36
|
Chromatin, DNA structure and alternative splicing. FEBS Lett 2015; 589:3370-8. [PMID: 26296319 DOI: 10.1016/j.febslet.2015.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023]
Abstract
Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing.
Collapse
|
37
|
Kinz-Thompson CD, Gonzalez RL. smFRET studies of the 'encounter' complexes and subsequent intermediate states that regulate the selectivity of ligand binding. FEBS Lett 2014; 588:3526-38. [PMID: 25066296 PMCID: PMC4779314 DOI: 10.1016/j.febslet.2014.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
Abstract
The selectivity with which a biomolecule can bind its cognate ligand when confronted by the vast array of structurally similar, competing ligands that are present in the cell underlies the fidelity of some of the most fundamental processes in biology. Because they collectively comprise one of only a few methods that can sensitively detect the 'encounter' complexes and subsequent intermediate states that regulate the selectivity of ligand binding, single-molecule fluorescence, and particularly single-molecule fluorescence resonance energy transfer (smFRET), approaches have revolutionized studies of ligand-binding reactions. Here, we describe a widely used smFRET strategy that enables investigations of a large variety of ligand-binding reactions, and discuss two such reactions, aminoacyl-tRNA selection during translation elongation and splice site selection during spliceosome assembly, that highlight both the successes and challenges of smFRET studies of ligand-binding reactions. We conclude by reviewing a number of emerging experimental and computational approaches that are expanding the capabilities of smFRET approaches for studies of ligand-binding reactions and that promise to reveal the mechanisms that control the selectivity of ligand binding with unprecedented resolution.
Collapse
Affiliation(s)
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
38
|
Moehle EA, Braberg H, Krogan NJ, Guthrie C. Adventures in time and space: splicing efficiency and RNA polymerase II elongation rate. RNA Biol 2014; 11:313-9. [PMID: 24717535 PMCID: PMC4075515 DOI: 10.4161/rna.28646] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Control of pre-mRNA splicing is a critical part of the eukaryotic gene expression process. Extensive evidence indicates that transcription and splicing are spatiotemporally coordinated and that most splicing events occur co-transcriptionally. A kinetic coupling model has been proposed in metazoans to describe how changing RNA Polymerase II (RNAPII) elongation rate can impact which alternative splice sites are used. In Saccharomyces cerevisiae, in which most spliced genes have only a single intron and splice sites adhere to a strong consensus sequence, we recently observed that splicing efficiency was sensitive to mutations in RNAPII that increase or decrease its elongation rate. Our data revealed that RNAPII speed and splicing efficiency are generally anti-correlated: at many genes, increased elongation rate caused decreased splicing efficiency, while decreased elongation rate increased splicing efficiency. An improved splicing phenotype was also observed upon deletion of SUB1, a condition in which elongation rate is slowed. We discuss these data in the context of a growing field and expand the kinetic coupling model to apply to both alternative splicing and splicing efficiency.
Collapse
Affiliation(s)
- Erica A Moehle
- Department of Biochemistry and Biophysics; University of California; San Francisco, CA USA
| | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology; University of California; San Francisco, CA USA; California Institute for Quantitative Biosciences; QB3; San Francisco, CA USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology; University of California; San Francisco, CA USA; California Institute for Quantitative Biosciences; QB3; San Francisco, CA USA; J. David Gladstone Institutes; San Francisco, CA USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics; University of California; San Francisco, CA USA
| |
Collapse
|
39
|
Hérissant L, Moehle EA, Bertaccini D, Van Dorsselaer A, Schaeffer-Reiss C, Guthrie C, Dargemont C. H2B ubiquitylation modulates spliceosome assembly and function in budding yeast. Biol Cell 2014; 106:126-38. [PMID: 24476359 DOI: 10.1111/boc.201400003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Commitment to splicing occurs co-transcriptionally, but a major unanswered question is the extent to which various modifications of chromatin, the template for transcription in vivo, contribute to the regulation of splicing. RESULTS Here, we perform genome-wide analyses showing that inhibition of specific marks - H2B ubiquitylation, H3K4 methylation and H3K36 methylation - perturbs splicing in budding yeast, with each modification exerting gene-specific effects. Furthermore, semi-quantitative mass spectrometry on purified nuclear mRNPs and chromatin immunoprecipitation analysis on intron-containing genes indicated that H2B ubiquitylation, but not Set1-, Set2- or Dot1-dependent H3 methylation, stimulates recruitment of the early splicing factors, namely U1 and U2 snRNPs, onto nascent RNAs. CONCLUSIONS These results suggest that histone modifications impact splicing of distinct subsets of genes using distinct pathways.
Collapse
Affiliation(s)
- Lucas Hérissant
- Pathologie Cellulaire, University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, Hôpital Saint Louis, Paris, Cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The discovery that many intron-containing genes can be cotranscriptionally spliced has led to an increased understanding of how splicing and transcription are intricately intertwined. Cotranscriptional splicing has been demonstrated in a number of different organisms and has been shown to play roles in coordinating both constitutive and alternative splicing. The nature of cotranscriptional splicing suggests that changes in transcription can dramatically affect splicing, and new evidence suggests that splicing can, in turn, influence transcription. In this chapter, we discuss the mechanisms and consequences of cotranscriptional splicing and introduce some of the tools used to measure this process.
Collapse
Affiliation(s)
- Evan C Merkhofer
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
41
|
Price AM, Görnemann J, Guthrie C, Brow DA. An unanticipated early function of DEAD-box ATPase Prp28 during commitment to splicing is modulated by U5 snRNP protein Prp8. RNA (NEW YORK, N.Y.) 2014; 20:46-60. [PMID: 24231520 PMCID: PMC3866644 DOI: 10.1261/rna.041970.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The stepwise assembly of the highly dynamic spliceosome is guided by RNA-dependent ATPases of the DEAD-box family, whose regulation is poorly understood. In the canonical assembly model, the U4/U6.U5 triple snRNP binds only after joining of the U1 and, subsequently, U2 snRNPs to the intron-containing pre-mRNA. Catalytic activation requires the exchange of U6 for U1 snRNA at the 5' splice site, which is promoted by the DEAD-box protein Prp28. Because Prp8, an integral U5 snRNP protein, is thought to be a central regulator of DEAD-box proteins, we conducted a targeted search in Prp8 for cold-insensitive suppressors of a cold-sensitive Prp28 mutant, prp28-1. We identified a cluster of suppressor mutations in an N-terminal bromodomain-like sequence of Prp8. To identify the precise defect in prp28-1 strains that is suppressed by the Prp8 alleles, we analyzed spliceosome assembly in vivo and in vitro. Surprisingly, in the prp28-1 strain, we observed a block not only to spliceosome activation but also to one of the earliest steps of assembly, formation of the ATP-independent commitment complex 2 (CC2). The Prp8 suppressor partially corrected both the early assembly and later activation defects of prp28-1, supporting a role for this U5 snRNP protein in both the ATP-independent and ATP-dependent functions of Prp28. We conclude that the U5 snRNP has a role in the earliest events of assembly, prior to its stable incorporation into the spliceosome.
Collapse
Affiliation(s)
- Argenta M. Price
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
| | - Janina Görnemann
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
- Corresponding authorsE-mail E-mail
| | - David A. Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
42
|
Zaghlool A, Ameur A, Cavelier L, Feuk L. Splicing in the human brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:95-125. [PMID: 25172473 DOI: 10.1016/b978-0-12-801105-8.00005-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has become increasingly clear over the past decade that RNA has important functions in human cells beyond its role as an intermediate translator of DNA to protein. It is now known that RNA plays highly specific roles in pathways involved in regulatory, structural, and catalytic functions. The complexity of RNA production and regulation has become evident with the advent of high-throughput methods to study the transcriptome. Deep sequencing has revealed an enormous diversity of RNA types and transcript isoforms in human cells. The transcriptome of the human brain is particularly interesting as it contains more expressed genes than other tissues and also displays an extreme diversity of transcript isoforms, indicating that highly complex regulatory pathways are present in the brain. Several of these regulatory proteins are now identified, including RNA-binding proteins that are neuron specific. RNA-binding proteins also play important roles in regulating the splicing process and the temporal and spatial isoform production. While significant progress has been made in understanding the human transcriptome, many questions still remain regarding the basic mechanisms of splicing and subcellular localization of RNA. A long-standing question is to what extent the splicing of pre-mRNA is cotranscriptional and posttranscriptional, respectively. Recent data, including studies of the human brain, indicate that splicing is primarily cotranscriptional in human cells. This chapter describes the current understanding of splicing and splicing regulation in the human brain and discusses the recent global sequence-based analyses of transcription and splicing.
Collapse
Affiliation(s)
- Ammar Zaghlool
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Uppsala University Hospital, Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
43
|
Volanakis A, Passoni M, Hector RD, Shah S, Kilchert C, Granneman S, Vasiljeva L. Spliceosome-mediated decay (SMD) regulates expression of nonintronic genes in budding yeast. Genes Dev 2013; 27:2025-38. [PMID: 24065768 PMCID: PMC3792478 DOI: 10.1101/gad.221960.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We uncovered a novel role for the spliceosome in regulating mRNA expression levels that involves splicing coupled to RNA decay, which we refer to as spliceosome-mediated decay (SMD). Our transcriptome-wide studies identified numerous transcripts that are not known to have introns but are spliced by the spliceosome at canonical splice sites in Saccharomyces cerevisiae. Products of SMD are primarily degraded by the nuclear RNA surveillance machinery. We demonstrate that SMD can significantly down-regulate mRNA levels; splicing at canonical splice sites in the bromodomain factor 2 (BDF2) transcript reduced transcript levels roughly threefold by generating unstable products that are rapidly degraded by the nuclear surveillance machinery. Regulation of BDF2 mRNA levels by SMD requires Bdf1, a functionally redundant Bdf2 paralog that plays a role in recruiting the spliceosome to the BDF2 mRNA. Interestingly, mutating BDF2 5' splice site and branch point consensus sequences partially suppresses the bdf1Δ temperature-sensitive phenotype, suggesting that maintaining proper levels of Bdf2 via SMD is biologically important. We propose that the spliceosome can also repress protein-coding gene expression by promoting nuclear turnover of spliced RNA products and provide an insight for coordinated regulation of Bdf1 and Bdf2 levels in the cell.
Collapse
Affiliation(s)
- Adam Volanakis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
Kong KYE, Tang HMV, Pan K, Huang Z, Lee THJ, Hinnebusch AG, Jin DY, Wong CM. Cotranscriptional recruitment of yeast TRAMP complex to intronic sequences promotes optimal pre-mRNA splicing. Nucleic Acids Res 2013; 42:643-60. [PMID: 24097436 PMCID: PMC3874199 DOI: 10.1093/nar/gkt888] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most unwanted RNA transcripts in the nucleus of eukaryotic cells, such as splicing-defective pre-mRNAs and spliced-out introns, are rapidly degraded by the nuclear exosome. In budding yeast, a number of these unwanted RNA transcripts, including spliced-out introns, are first recognized by the nuclear exosome cofactor Trf4/5p-Air1/2p-Mtr4p polyadenylation (TRAMP) complex before subsequent nuclear-exosome-mediated degradation. However, it remains unclear when spliced-out introns are recognized by TRAMP, and whether TRAMP may have any potential roles in pre-mRNA splicing. Here, we demonstrated that TRAMP is cotranscriptionally recruited to nascent RNA transcripts, with particular enrichment at intronic sequences. Deletion of TRAMP components led to further accumulation of unspliced pre-mRNAs even in a yeast strain defective in nuclear exosome activity, suggesting a novel stimulatory role of TRAMP in splicing. We also uncovered new genetic and physical interactions between TRAMP and several splicing factors, and further showed that TRAMP is required for optimal recruitment of the splicing factor Msl5p. Our study provided the first evidence that TRAMP facilitates pre-mRNA splicing, and we interpreted this as a fail-safe mechanism to ensure the cotranscriptional recruitment of TRAMP before or during splicing to prepare for the subsequent targeting of spliced-out introns to rapid degradation by the nuclear exosome.
Collapse
Affiliation(s)
- Ka-Yiu Edwin Kong
- Department of Biochemistry, Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong and Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 2013; 14:153-65. [PMID: 23385723 DOI: 10.1038/nrm3525] [Citation(s) in RCA: 605] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alternative splicing was discovered simultaneously with splicing over three decades ago. Since then, an enormous body of evidence has demonstrated the prevalence of alternative splicing in multicellular eukaryotes, its key roles in determining tissue- and species-specific differentiation patterns, the multiple post- and co-transcriptional regulatory mechanisms that control it, and its causal role in hereditary disease and cancer. The emerging evidence places alternative splicing in a central position in the flow of eukaryotic genetic information, between transcription and translation, in that it can respond not only to various signalling pathways that target the splicing machinery but also to transcription factors and chromatin structure.
Collapse
Affiliation(s)
- Alberto R Kornblihtt
- Departamento de Fisiología, Biología Molecular y Celular e Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
46
|
Schor IE, Gómez Acuña LI, Kornblihtt AR. Coupling between transcription and alternative splicing. Cancer Treat Res 2013; 158:1-24. [PMID: 24222352 DOI: 10.1007/978-3-642-31659-3_1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The scenario of alternative splicing regulation is far more complex than the classical picture of a pre-mRNA being processed post-transcriptionally in more than one way. Introns are efficiently removed while transcripts are still being synthesized, supporting the idea of a co-transcriptional regulation of alternative splicing. Evidence of a functional coupling between splicing and transcription has recently emerged as it was observed that properties of one process may affect the outcome of the other. Co-transcriptionality is thought to improve splicing efficiency and kinetics by directing the nascent pre-mRNA into proper spliceosome assembly and favoring splicing factor recruitment. Two models have been proposed to explain the coupling of transcription and alternative splicing: in the recruitment model, promoters and pol II status affect the recruitment to the transcribing gene of splicing factors or bifunctional factors acting on both transcription and splicing; in the kinetic model, differences in the elongation rate of pol II would determine the timing in which splicing sites are presented, and thus the outcome of alternative splicing decisions. In the later model, chromatin structure has emerged as a key regulator. Although definitive evidence for transcriptionally coupled alternative splicing alterations in tumor development or cancer pathogenesis is still missing, many alternative splicing events altered in cancer might be subject to transcription-splicing coupling regulation.
Collapse
Affiliation(s)
- Ignacio E Schor
- Laboratorio de Fisiologia y Biologia Molecular, Departmento de Fisiologia, Biologia Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, PAB. II, 20 Piso, Buenos Aires, 1428, Argentina
| | | | | |
Collapse
|
47
|
Abstract
In eukaryotic cells, introns are spliced from pre-mRNAs by the spliceosome. Both the composition and the structure of the spliceosome are highly dynamic, and eight DExD/H RNA helicases play essential roles in controlling conformational rearrangements. There is evidence that the various helicases are functionally and physically connected with each other and with many other factors in the spliceosome. Understanding the dynamics of those interactions is essential to comprehend the mechanism and regulation of normal as well as of pathological splicing. This review focuses on recent advances in the characterization of the splicing helicases and their interactions, and highlights the deep integration of splicing helicases in global mRNP biogenesis pathways.
Collapse
Affiliation(s)
- Olivier Cordin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
48
|
Gómez Acuña LI, Fiszbein A, Alló M, Schor IE, Kornblihtt AR. Connections between chromatin signatures and splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:77-91. [PMID: 23074139 DOI: 10.1002/wrna.1142] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Splicing and alternative splicing are involved in the expression of most human genes, playing key roles in differentiation, cell cycle progression, and development. Misregulation of splicing is frequently associated to disease, which imposes a better understanding of the mechanisms underlying splicing regulation. Accumulated evidence suggests that multiple trans-acting factors and cis-regulatory elements act together to determine tissue-specific splicing patterns. Besides, as splicing is often cotranscriptional, a complex picture emerges in which splicing regulation not only depends on the balance of splicing factor binding to their pre-mRNA target sites but also on transcription-associated features such as protein recruitment to the transcribing machinery and elongation kinetics. Adding more complexity to the splicing regulation network, recent evidence shows that chromatin structure is another layer of regulation that may act through various mechanisms. These span from regulation of RNA polymerase II elongation, which ultimately determines splicing decisions, to splicing factor recruitment by specific histone marks. Chromatin may not only be involved in alternative splicing regulation but in constitutive exon recognition as well. Moreover, splicing was found to be necessary for the proper 'writing' of particular chromatin signatures, giving further mechanistic support to functional interconnections between splicing, transcription and chromatin structure. These links between chromatin configuration and splicing raise the intriguing possibility of the existence of a memory for splicing patterns to be inherited through epigenetic modifications.
Collapse
Affiliation(s)
- Luciana I Gómez Acuña
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
49
|
Montes M, Becerra S, Sánchez-Álvarez M, Suñé C. Functional coupling of transcription and splicing. Gene 2012; 501:104-17. [DOI: 10.1016/j.gene.2012.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/13/2023]
|
50
|
Hnilicová J, Staněk D. Where splicing joins chromatin. Nucleus 2012; 2:182-8. [PMID: 21818411 DOI: 10.4161/nucl.2.3.15876] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022] Open
Abstract
There are numerous data suggesting that two key steps in gene expression-transcription and splicing influence each other closely. For a long time it was known that chromatin modifications regulate transcription, but only recently it was shown that chromatin and histone modifications play a significant role in pre-mRNA splicing. Here we summarize interactions between splicing machinery and chromatin and discuss their potential functional significance. We focus mainly on histone acetylation and methylation and potential mechanisms of their role in splicing. It seems that whereas histone acetylation acts mainly by alterating the transcription rate, histone methylation can also influence splicing directly by recruiting various splicing components.
Collapse
Affiliation(s)
- Jarmila Hnilicová
- Department of RNA Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
| | | |
Collapse
|