1
|
Koit S, Tamberg N, Reinapae A, Peil L, Kristjuhan A, Ilves I. A conserved phosphorylation mechanism for regulating the interaction between the CMG replicative helicase and its forked DNA substrate. J Biol Chem 2025; 301:108408. [PMID: 40090586 PMCID: PMC12018195 DOI: 10.1016/j.jbc.2025.108408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025] Open
Abstract
The CMG helicase is a crucial enzyme complex that plays a vital role in the replication of genomic DNA in eukaryotes. Besides unwinding the DNA template and coordinating the replisome's structure, it is also a key target for signaling pathways that regulate the replication process. We show that a specific serine/threonine residue in the MCM3 subunit of CMG, which has been previously linked to phosphorylation-dependent control mechanisms of genomic DNA replication in human cells, is a conserved phosphorylation site for Chk1 and potentially other protein kinases. This suggests a conserved regulatory mechanism associated with it in metazoans and several other eukaryotes, including budding yeast. Our in vitro analysis links this mechanism directly to the modulation of the CMG helicase activity by impacting its interactions with the forked DNA substrate. Further supporting its conserved role in regulation, we found that phosphomimetic substitution with aspartic acid and alanine knockout of this conserved residue lead to opposite phenotypic defects in the growth of budding yeast cells. These findings outline a candidate conserved phosphorylation pathway for regulating genomic DNA replication in eukaryotes, which adjusts the interactions between the replicative helicase complex and its DNA substrate according to the specific needs of various physiological conditions.
Collapse
Affiliation(s)
- Sandra Koit
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Nele Tamberg
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Allan Reinapae
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Lauri Peil
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Arnold Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Ivar Ilves
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Maclay T, Whalen J, Johnson M, Freudenreich CH. The DNA Replication Checkpoint Targets the Kinetochore for Relocation of Collapsed Forks to the Nuclear Periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599319. [PMID: 38948692 PMCID: PMC11212917 DOI: 10.1101/2024.06.17.599319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Hairpin forming expanded CAG/CTG repeats pose significant challenges to DNA replication which can lead to replication fork collapse. Long CAG/CTG repeat tracts relocate to the nuclear pore complex to maintain their integrity. Forks impeded by DNA structures are known to activate the DNA damage checkpoint, thus we asked whether checkpoint proteins play a role in relocation of collapsed forks to the nuclear periphery in S. cerevisiae . We show that relocation of a (CAG/CTG) 130 tract is dependent on activation of the Mrc1/Rad53 replication checkpoint. Further, checkpoint-mediated phosphorylation of the kinetochore protein Cep3 is required for relocation, implicating detachment of the centromere from the spindle pole body. Activation of this pathway leads to DNA damage-induced microtubule recruitment to the repeat. These data suggest a role for the DNA replication checkpoint in facilitating movement of collapsed replication forks to the nuclear periphery by centromere release and microtubule-directed motion. Highlights The DNA replication checkpoint initiates relocation of a structure-forming CAG repeat tract to the nuclear pore complex (NPC)The importance of Mrc1 (hClaspin) implicates fork uncoupling as the initial checkpoint signalPhosphorylation of the Cep3 kinetochore protein by Dun1 kinase allows for centromere release, which is critical for collapsed fork repositioningDamage-inducible nuclear microtubules (DIMs) colocalize with the repeat locus and are required for relocation to the NPCEstablishes a new role for the DNA replication and DNA damage checkpoint response to trigger repositioning of collapsed forks within the nucleus.
Collapse
|
3
|
Yam CQX, Lim HH, Surana U. DNA damage checkpoint execution and the rules of its disengagement. Front Cell Dev Biol 2022; 10:1020643. [PMID: 36274841 PMCID: PMC9582513 DOI: 10.3389/fcell.2022.1020643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chromosomes are susceptible to damage during their duplication and segregation or when exposed to genotoxic stresses. Left uncorrected, these lesions can result in genomic instability, leading to cells' diminished fitness, unbridled proliferation or death. To prevent such fates, checkpoint controls transiently halt cell cycle progression to allow time for the implementation of corrective measures. Prominent among these is the DNA damage checkpoint which operates at G2/M transition to ensure that cells with damaged chromosomes do not enter the mitotic phase. The execution and maintenance of cell cycle arrest are essential aspects of G2/M checkpoint and have been studied in detail. Equally critical is cells' ability to switch-off the checkpoint controls after a successful completion of corrective actions and to recommence cell cycle progression. Interestingly, when corrective measures fail, cells can mount an unusual cellular response, termed adaptation, where they escape checkpoint arrest and resume cell cycle progression with damaged chromosomes at the cost of genome instability or even death. Here, we discuss the DNA damage checkpoint, the mitotic networks it inhibits to prevent segregation of damaged chromosomes and the strategies cells employ to quench the checkpoint controls to override the G2/M arrest.
Collapse
Affiliation(s)
| | - Hong Hwa Lim
- A*STAR Singapore Immunology Network, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Kar FM, Vogel C, Hochwagen A. Meiotic DNA breaks activate a streamlined phospho-signaling response that largely avoids protein-level changes. Life Sci Alliance 2022; 5:e202201454. [PMID: 36271494 PMCID: PMC9438802 DOI: 10.26508/lsa.202201454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Meiotic cells introduce a numerous programmed DNA breaks into their genome to stimulate meiotic recombination and ensure controlled chromosome inheritance and fertility. A checkpoint network involving key kinases and phosphatases coordinates the repair of these DNA breaks, but the precise phosphorylation targets remain poorly understood. It is also unknown whether meiotic DNA breaks change gene expression akin to the canonical DNA-damage response. To address these questions, we analyzed the meiotic DNA break response in Saccharomyces cerevisiae using multiple systems-level approaches. We identified 332 DNA break-dependent phosphorylation sites, vastly expanding the number of known events during meiotic prophase. Less than half of these events occurred in recognition motifs for the known meiotic checkpoint kinases Mec1 (ATR), Tel1 (ATM), and Mek1 (CHK2), suggesting that additional kinases contribute to the meiotic DNA-break response. We detected a clear transcriptional program but detected only very few changes in protein levels. We attribute this dichotomy to a decrease in transcript levels after meiotic entry that dampens the effects of break-induced transcription sufficiently to cause only minimal changes in the meiotic proteome.
Collapse
Affiliation(s)
- Funda M Kar
- Department of Biology, New York University, New York City, NY, USA
| | - Christine Vogel
- Department of Biology, New York University, New York City, NY, USA
| | | |
Collapse
|
5
|
Alabdullah AK, Borrill P, Martin AC, Ramirez-Gonzalez RH, Hassani-Pak K, Uauy C, Shaw P, Moore G. A Co-Expression Network in Hexaploid Wheat Reveals Mostly Balanced Expression and Lack of Significant Gene Loss of Homeologous Meiotic Genes Upon Polyploidization. FRONTIERS IN PLANT SCIENCE 2019; 10:1325. [PMID: 31681395 PMCID: PMC6813927 DOI: 10.3389/fpls.2019.01325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 05/05/2023]
Abstract
Polyploidization has played an important role in plant evolution. However, upon polyploidization, the process of meiosis must adapt to ensure the proper segregation of increased numbers of chromosomes to produce balanced gametes. It has been suggested that meiotic gene (MG) duplicates return to a single copy following whole genome duplication to stabilize the polyploid genome. Therefore, upon the polyploidization of wheat, a hexaploid species with three related (homeologous) genomes, the stabilization process may have involved rapid changes in content and expression of MGs on homeologous chromosomes (homeologs). To examine this hypothesis, sets of candidate MGs were identified in wheat using co-expression network analysis and orthology informed approaches. In total, 130 RNA-Seq samples from a range of tissues including wheat meiotic anthers were used to define co-expressed modules of genes. Three modules were significantly correlated with meiotic tissue samples but not with other tissue types. These modules were enriched for GO terms related to cell cycle, DNA replication, and chromatin modification and contained orthologs of known MGs. Overall, 74.4% of genes within these meiosis-related modules had three homeologous copies which was similar to other tissue-related modules. Amongst wheat MGs identified by orthology, rather than co-expression, the majority (93.7%) were either retained in hexaploid wheat at the same number of copies (78.4%) or increased in copy number (15.3%) compared to ancestral wheat species. Furthermore, genes within meiosis-related modules showed more balanced expression levels between homeologs than genes in non-meiosis-related modules. Taken together, our results do not support extensive gene loss nor changes in homeolog expression of MGs upon wheat polyploidization. The construction of the MG co-expression network allowed identification of hub genes and provided key targets for future studies.
Collapse
Affiliation(s)
| | - Philippa Borrill
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Keywan Hassani-Pak
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter Shaw
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
6
|
Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 2019; 38:e101801. [PMID: 31393028 PMCID: PMC6745504 DOI: 10.15252/embj.2019101801] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Diego Dibitetto
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
7
|
Li X, Jin X, Sharma S, Liu X, Zhang J, Niu Y, Li J, Li Z, Zhang J, Cao Q, Hou W, Du LL, Liu B, Lou H. Mck1 defines a key S-phase checkpoint effector in response to various degrees of replication threats. PLoS Genet 2019; 15:e1008136. [PMID: 31381575 PMCID: PMC6695201 DOI: 10.1371/journal.pgen.1008136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/15/2019] [Accepted: 07/19/2019] [Indexed: 01/23/2023] Open
Abstract
The S-phase checkpoint plays an essential role in regulation of the ribonucleotide reductase (RNR) activity to maintain the dNTP pools. How eukaryotic cells respond appropriately to different levels of replication threats remains elusive. Here, we have identified that a conserved GSK-3 kinase Mck1 cooperates with Dun1 in regulating this process. Deleting MCK1 sensitizes dun1Δ to hydroxyurea (HU) reminiscent of mec1Δ or rad53Δ. While Mck1 is downstream of Rad53, it does not participate in the post-translational regulation of RNR as Dun1 does. Mck1 phosphorylates and releases the Crt1 repressor from the promoters of DNA damage-inducible genes as RNR2-4 and HUG1. Hug1, an Rnr2 inhibitor normally silenced, is induced as a counterweight to excessive RNR. When cells suffer a more severe threat, Mck1 inhibits HUG1 transcription. Consistently, only a combined deletion of HUG1 and CRT1, confers a dramatic boost of dNTP levels and the survival of mck1Δdun1Δ or mec1Δ cells assaulted by a lethal dose of HU. These findings reveal the division-of-labor between Mck1 and Dun1 at the S-phase checkpoint pathway to fine-tune dNTP homeostasis.
Collapse
Affiliation(s)
- Xiaoli Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Gothenburg, Sweden
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Xiaojing Liu
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jiaxin Zhang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yanling Niu
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jiani Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Zhen Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jingjing Zhang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Wenya Hou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Gothenburg, Sweden
- * E-mail: (BL); (HL)
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
- * E-mail: (BL); (HL)
| |
Collapse
|
8
|
Bu P, Nagar S, Bhagwat M, Kaur P, Shah A, Zeng J, Vancurova I, Vancura A. DNA damage response activates respiration and thereby enlarges dNTP pools to promote cell survival in budding yeast. J Biol Chem 2019; 294:9771-9786. [PMID: 31073026 DOI: 10.1074/jbc.ra118.007266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) is an evolutionarily conserved process essential for cell survival. Previously, we found that decreased histone expression induces mitochondrial respiration, raising the question whether the DDR also stimulates respiration. Here, using oxygen consumption and ATP assays, RT-qPCR and ChIP-qPCR methods, and dNTP analyses, we show that DDR activation in the budding yeast Saccharomyces cerevisiae, either by genetic manipulation or by growth in the presence of genotoxic chemicals, induces respiration. We observed that this induction is conferred by reduced transcription of histone genes and globally decreased DNA nucleosome occupancy. This globally altered chromatin structure increased the expression of genes encoding enzymes of tricarboxylic acid cycle, electron transport chain, oxidative phosphorylation, elevated oxygen consumption, and ATP synthesis. The elevated ATP levels resulting from DDR-stimulated respiration drove enlargement of dNTP pools; cells with a defect in respiration failed to increase dNTP synthesis and exhibited reduced fitness in the presence of DNA damage. Together, our results reveal an unexpected connection between respiration and the DDR and indicate that the benefit of increased dNTP synthesis in the face of DNA damage outweighs possible cellular damage due to increased oxygen metabolism.
Collapse
Affiliation(s)
- Pengli Bu
- From the Departments of Biological Sciences and
| | | | | | | | - Ankita Shah
- Pharmaceutical Sciences, St. John's University, Queens, New York 11439
| | - Joey Zeng
- From the Departments of Biological Sciences and
| | | | | |
Collapse
|
9
|
Rad9a is involved in chromatin decondensation and post-zygotic embryo development in mice. Cell Death Differ 2018; 26:969-980. [PMID: 30154445 DOI: 10.1038/s41418-018-0181-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/01/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Zygotic chromatin undergoes extensive reprogramming immediately after fertilization. It is generally accepted that maternal factors control this process. However, little is known about the underlying mechanisms. Here we report that maternal RAD9A, a key protein in DNA damage response pathway, is involved in post-zygotic embryo development, via a mouse model with conditional depletion of Rad9a alleles in oocytes of primordial follicles. Post-zygotic losses originate from delayed zygotic chromatin decondensation after depletion of maternal RAD9A. Pronucleus formation and DNA replication of most mutant zygotes are therefore deferred, which subsequently trigger the G2/M checkpoint and arrest development of most mutant zygotes. Delayed zygotic chromatin decondensation could also lead to increased reabsorption of post-implantation mutant embryos. In addition, our data indicate that delayed zygotic chromatin decondensation may be attributed to deferred epigenetic modification of histone in paternal chromatin after fertilization, as fertilization and resumption of secondary meiosis in mutant oocytes were both normal. More interestingly, most mutant oocytes could not support development beyond one-cell stage after parthenogenetic activation. Therefore, RAD9A may also play an important role in maternal chromatin reprogramming. In summary, our data reveal an important role of RAD9A in zygotic chromatin reprogramming and female fertility.
Collapse
|
10
|
Almawi AW, Matthews LA, Guarné A. FHA domains: Phosphopeptide binding and beyond. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 127:105-110. [DOI: 10.1016/j.pbiomolbio.2016.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/06/2016] [Indexed: 01/18/2023]
|
11
|
Ferrari E, Bruhn C, Peretti M, Cassani C, Carotenuto WV, Elgendy M, Shubassi G, Lucca C, Bermejo R, Varasi M, Minucci S, Longhese MP, Foiani M. PP2A Controls Genome Integrity by Integrating Nutrient-Sensing and Metabolic Pathways with the DNA Damage Response. Mol Cell 2017. [PMID: 28648781 PMCID: PMC5526790 DOI: 10.1016/j.molcel.2017.05.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mec1ATR mediates the DNA damage response (DDR), integrating chromosomal signals and mechanical stimuli. We show that the PP2A phosphatases, ceramide-activated enzymes, couple cell metabolism with the DDR. Using genomic screens, metabolic analysis, and genetic and pharmacological studies, we found that PP2A attenuates the DDR and that three metabolic circuits influence the DDR by modulating PP2A activity. Irc21, a putative cytochrome b5 reductase that promotes the condensation reaction generating dihydroceramides (DHCs), and Ppm1, a PP2A methyltransferase, counteract the DDR by activating PP2A; conversely, the nutrient-sensing TORC1-Tap42 axis sustains DDR activation by inhibiting PP2A. Loss-of-function mutations in IRC21, PPM1, and PP2A and hyperactive tap42 alleles rescue mec1 mutants. Ceramides synergize with rapamycin, a TORC1 inhibitor, in counteracting the DDR. Hence, PP2A integrates nutrient-sensing and metabolic pathways to attenuate the Mec1ATR response. Our observations imply that metabolic changes affect genome integrity and may help with exploiting therapeutic options and repositioning known drugs.
Collapse
Affiliation(s)
- Elisa Ferrari
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Christopher Bruhn
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Marta Peretti
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Corinne Cassani
- Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | | | - Mohamed Elgendy
- Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milan, Italy
| | - Ghadeer Shubassi
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Chiara Lucca
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| | - Mario Varasi
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Saverio Minucci
- Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
12
|
Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans. Biochem J 2017; 474:1293-1306. [DOI: 10.1042/bcj20160889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 12/23/2022]
Abstract
Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus Candida albicans. The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphorylation. Previous studies have suggested that the phosphatase Pph3 dephosphorylates Rad53. Here, we used mass spectrometry and mutagenesis to identify Pph3 dephosphorylation sites on Rad53 in C. albicans. We found that serine residues 351, 461 and 477, which were dephosphorylated in wild-type cells during the recovery from DNA damage caused by methyl methanesulfonate (MMS), remained phosphorylated in pph3Δ/Δ cells. Phosphomimetic mutation of the three residues (rad53-3D) impaired Rad53 dephosphorylation, exit from cell cycle arrest, dephosphorylation of two Rad53 effectors Dun1 and Dbf4, and the filament-to-yeast growth transition during the recovery from MMS-induced DNA damage. The phenotypes observed in the rad53-3D mutant also occurred in the pph3Δ/Δ mutant. Together, our findings reveal a molecular mechanism by which Pph3 controls DNA damage response in C. albicans.
Collapse
|
13
|
Quantitative Analysis of Yeast Checkpoint Protein Kinase Activity by Combined Mass Spectrometry Enzyme Assays. Methods Enzymol 2017. [PMID: 28137560 DOI: 10.1016/bs.mie.2016.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Virtually all eukaryotic cell functions and signaling pathways are regulated by protein phosphorylation. The Rad53 kinase plays crucial roles in the DNA damage response in Saccharomyces cerevisiae and is widely used as a surrogate marker for DNA damage checkpoint activation by diverse genotoxic agents. Most currently available assays for Rad53 activation are based on either electrophoretic mobility shifts or semiquantitative in situ autophosphorylation activity on protein blots. Here, we describe direct quantitative measures to assess Rad53 activity using immunoprecipitation kinase assays and quantitative mass spectrometric analysis of Rad53 activation loop autophosphorylation states. Both assays employ a highly specific Rad53 antibody, and thus enable the analysis of the untagged endogenous protein under physiological conditions. The principles of these assays are readily transferable to other protein kinases for which immunoprecipitation-grade antibodies are available, and thus potentially applicable to a wide range of eukaryotic signaling pathways beyond yeast.
Collapse
|
14
|
Sanvisens N, Romero AM, Zhang C, Wu X, An X, Huang M, Puig S. Yeast Dun1 Kinase Regulates Ribonucleotide Reductase Small Subunit Localization in Response to Iron Deficiency. J Biol Chem 2016; 291:9807-17. [PMID: 26970775 DOI: 10.1074/jbc.m116.720862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 12/25/2022] Open
Abstract
Ribonucleotide reductase (RNR) is an essential iron-dependent enzyme that catalyzes deoxyribonucleotide synthesis in eukaryotes. Living organisms have developed multiple strategies to tightly modulate RNR function to avoid inadequate or unbalanced deoxyribonucleotide pools that cause DNA damage and genome instability. Yeast cells activate RNR in response to genotoxic stress and iron deficiency by facilitating redistribution of its small heterodimeric subunit Rnr2-Rnr4 from the nucleus to the cytoplasm, where it forms an active holoenzyme with large Rnr1 subunit. Dif1 protein inhibits RNR by promoting nuclear import of Rnr2-Rnr4. Upon DNA damage, Dif1 phosphorylation by the Dun1 checkpoint kinase and its subsequent degradation enhances RNR function. In this report, we demonstrate that Dun1 kinase triggers Rnr2-Rnr4 redistribution to the cytoplasm in response to iron deficiency. We show that Rnr2-Rnr4 relocalization by low iron requires Dun1 kinase activity and phosphorylation site Thr-380 in the Dun1 activation loop, but not the Dun1 forkhead-associated domain. By using different Dif1 mutant proteins, we uncover that Dun1 phosphorylates Dif1 Ser-104 and Thr-105 residues upon iron scarcity. We observe that the Dif1 phosphorylation pattern differs depending on the stimuli, which suggests different Dun1 activating pathways. Importantly, the Dif1-S104A/T105A mutant exhibits defects in nucleus-to-cytoplasm redistribution of Rnr2-Rnr4 by iron limitation. Taken together, these results reveal that, in response to iron starvation, Dun1 kinase phosphorylates Dif1 to stimulate Rnr2-Rnr4 relocalization to the cytoplasm and promote RNR function.
Collapse
Affiliation(s)
- Nerea Sanvisens
- From the Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia 46980, Spain and
| | - Antonia M Romero
- From the Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia 46980, Spain and
| | - Caiguo Zhang
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Xiaorong Wu
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Xiuxiang An
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Mingxia Huang
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Sergi Puig
- From the Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia 46980, Spain and
| |
Collapse
|
15
|
Panigrahi SK, Hopkins KM, Lieberman HB. Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair. Nucleic Acids Res 2015; 43:4531-46. [PMID: 25873625 PMCID: PMC4482081 DOI: 10.1093/nar/gkv327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/31/2015] [Indexed: 11/21/2022] Open
Abstract
RAD9 participates in DNA damage-induced cell cycle checkpoints and DNA repair. As a member of the RAD9-HUS1-RAD1 (9-1-1) complex, it can sense DNA damage and recruit ATR to damage sites. RAD9 binding can enhance activities of members of different DNA repair pathways, including NEIL1 DNA glycosylase, which initiates base excision repair (BER) by removing damaged DNA bases. Moreover, RAD9 can act independently of 9-1-1 as a gene-specific transcription factor. Herein, we show that mouse Rad9−/− relative to Rad9+/+ embryonic stem (ES) cells have reduced levels of Neil1 protein. Also, human prostate cancer cells, DU145 and PC-3, knocked down for RAD9 demonstrate reduced NEIL1 abundance relative to controls. We found that Rad9 is required for Neil1 protein stability in mouse ES cells, whereas it regulates NEIL1 transcription in the human cells. RAD9 depletion enhances sensitivity to UV, gamma rays and menadione, but ectopic expression of RAD9 or NEIL1 restores resistance. Glycosylase/apurinic lyase activity was reduced in Rad9−/− mouse ES and RAD9 knocked-down human prostate cancer whole cell extracts, relative to controls. Neil1 or Rad9 addition restored this incision activity. Thus, we demonstrate that RAD9 regulates BER by controlling NEIL1 protein levels, albeit by different mechanisms in human prostate cancer versus mouse ES cells.
Collapse
Affiliation(s)
- Sunil K Panigrahi
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Kevin M Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Howard B Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
16
|
Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity. Proc Natl Acad Sci U S A 2015; 112:E2467-76. [PMID: 25827231 DOI: 10.1073/pnas.1422934112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Defects in DNA polymerases δ (Polδ) and ε (Polε) cause hereditary colorectal cancer and have been implicated in the etiology of some sporadic colorectal and endometrial tumors. We previously reported that the yeast pol3-R696W allele mimicking a human cancer-associated variant, POLD1-R689W, causes a catastrophic increase in spontaneous mutagenesis. Here, we describe the mechanism of this extraordinary mutator effect. We found that the mutation rate increased synergistically when the R696W mutation was combined with defects in Polδ proofreading or mismatch repair, indicating that pathways correcting DNA replication errors are not compromised in pol3-R696W mutants. DNA synthesis by purified Polδ-R696W was error-prone, but not to the extent that could account for the unprecedented mutator phenotype of pol3-R696W strains. In a search for cellular factors that augment the mutagenic potential of Polδ-R696W, we discovered that pol3-R696W causes S-phase checkpoint-dependent elevation of dNTP pools. Abrogating this elevation by strategic mutations in dNTP metabolism genes eliminated the mutator effect of pol3-R696W, whereas restoration of high intracellular dNTP levels restored the mutator phenotype. Further, the use of dNTP concentrations present in pol3-R696W cells for in vitro DNA synthesis greatly decreased the fidelity of Polδ-R696W and produced a mutation spectrum strikingly similar to the spectrum observed in vivo. The results support a model in which (i) faulty synthesis by Polδ-R696W leads to a checkpoint-dependent increase in dNTP levels and (ii) this increase mediates the hypermutator effect of Polδ-R696W by facilitating the extension of mismatched primer termini it creates and by promoting further errors that continue to fuel the mutagenic pathway.
Collapse
|
17
|
Liang J, Suhandynata RT, Zhou H. Phosphorylation of Sae2 Mediates Forkhead-associated (FHA) Domain-specific Interaction and Regulates Its DNA Repair Function. J Biol Chem 2015; 290:10751-63. [PMID: 25762720 DOI: 10.1074/jbc.m114.625293] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Indexed: 12/16/2022] Open
Abstract
Saccharomyces cerevisiae Sae2 and its ortholog CtIP in higher eukaryotes have a conserved role in the initial processing of DNA lesions and influencing their subsequent repair pathways. Sae2 is phosphorylated by the ATR/ATM family kinases Mec1 and Tel1 in response to DNA damage. Among the Mec1/Tel1 consensus phosphorylation sites of Sae2, we found that mutations of Thr-90 and Thr-279 of Sae2 into alanine caused a persistent Rad53 activation in response to a transient DNA damage, similar to the loss of Sae2. To gain insight into the function of this phosphorylation of Sae2, we performed a quantitative proteomics analysis to identify its associated proteins. We found that phosphorylation of Thr-90 of Sae2 mediates its interaction with Rad53, Dun1, Xrs2, Dma1, and Dma2, whereas Rad53 and Dun1 additionally interact with phosphorylated Thr-279 of Sae2. Mutations of the ligand-binding residues of Forkhead-associated (FHA) domains of Rad53, Dun1, Xrs2, Dma1, and Dma2 abolished their interactions with Sae2, revealing the involvement of FHA-specific interactions. Mutations of Thr-90 and Thr-279 of Sae2 caused a synergistic defect when combined with sgs1Δ and exo1Δ and elevated gross chromosomal rearrangements. Likewise, mutations of RAD53 and DUN1 caused a synthetic growth defect with sgs1Δ and elevated gross chromosomal rearrangements. These findings suggest that threonine-specific phosphorylation of Sae2 by Mec1 and Tel1 contributes to DNA repair and genome maintenance via its interactions with Rad53 and Dun1.
Collapse
Affiliation(s)
- Jason Liang
- From the Ludwig Institute for Cancer Research, Department of Chemistry and Biochemistry
| | | | - Huilin Zhou
- From the Ludwig Institute for Cancer Research, Department of Chemistry and Biochemistry, Department of Cellular and Molecular Medicine, and Moores Cancer Center, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
18
|
Abstract
Cell-cycle checkpoints are generally global in nature: one unattached kinetochore prevents the segregation of all chromosomes; stalled replication forks inhibit late origin firing throughout the genome. A potential exception to this rule is the regulation of replication fork progression by the S-phase DNA damage checkpoint. In this case, it is possible that the checkpoint is global, and it slows all replication forks in the genome. However, it is also possible that the checkpoint acts locally at sites of DNA damage, and only slows those forks that encounter DNA damage. Whether the checkpoint regulates forks globally or locally has important mechanistic implications for how replication forks deal with damaged DNA during S-phase.
Collapse
|
19
|
Yeast Dun1 kinase regulates ribonucleotide reductase inhibitor Sml1 in response to iron deficiency. Mol Cell Biol 2014; 34:3259-71. [PMID: 24958100 DOI: 10.1128/mcb.00472-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox-active cofactor in many biological processes, including DNA replication and repair. Eukaryotic ribonucleotide reductases (RNRs) are Fe-dependent enzymes that catalyze deoxyribonucleoside diphosphate (dNDP) synthesis. We show here that the levels of the Sml1 protein, a yeast RNR large-subunit inhibitor, specifically decrease in response to both nutritional and genetic Fe deficiencies in a Dun1-dependent but Mec1/Rad53- and Aft1-independent manner. The decline of Sml1 protein levels upon Fe starvation depends on Dun1 forkhead-associated and kinase domains, the 26S proteasome, and the vacuolar proteolytic pathway. Depletion of core components of the mitochondrial iron-sulfur cluster assembly leads to a Dun1-dependent diminution of Sml1 protein levels. The physiological relevance of Sml1 downregulation by Dun1 under low-Fe conditions is highlighted by the synthetic growth defect observed between dun1Δ and fet3Δ fet4Δ mutants, which is rescued by SML1 deletion. Consistent with an increase in RNR function, Rnr1 protein levels are upregulated upon Fe deficiency. Finally, dun1Δ mutants display defects in deoxyribonucleoside triphosphate (dNTP) biosynthesis under low-Fe conditions. Taken together, these results reveal that the Dun1 checkpoint kinase promotes RNR function in response to Fe starvation by stimulating Sml1 protein degradation.
Collapse
|
20
|
Blaikley EJ, Tinline-Purvis H, Kasparek TR, Marguerat S, Sarkar S, Hulme L, Hussey S, Wee BY, Deegan RS, Walker CA, Pai CC, Bähler J, Nakagawa T, Humphrey TC. The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast. Nucleic Acids Res 2014; 42:5644-56. [PMID: 24623809 PMCID: PMC4027169 DOI: 10.1093/nar/gku190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3ATR, Rad26ATRIP, Crb253BP1 or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability.
Collapse
Affiliation(s)
- Elizabeth J Blaikley
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Helen Tinline-Purvis
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Torben R Kasparek
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Samuel Marguerat
- Department of Genetics, Evolution and Environment, and UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Sovan Sarkar
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Lydia Hulme
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Sharon Hussey
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Boon-Yu Wee
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Rachel S Deegan
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Carol A Walker
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Chen-Chun Pai
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, and UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Timothy C Humphrey
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| |
Collapse
|
21
|
Jaehnig EJ, Kuo D, Hombauer H, Ideker TG, Kolodner RD. Checkpoint kinases regulate a global network of transcription factors in response to DNA damage. Cell Rep 2013; 4:174-88. [PMID: 23810556 DOI: 10.1016/j.celrep.2013.05.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 04/04/2013] [Accepted: 05/24/2013] [Indexed: 01/01/2023] Open
Abstract
DNA damage activates checkpoint kinases that induce several downstream events, including widespread changes in transcription. However, the specific connections between the checkpoint kinases and downstream transcription factors (TFs) are not well understood. Here, we integrate kinase mutant expression profiles, transcriptional regulatory interactions, and phosphoproteomics to map kinases and downstream TFs to transcriptional regulatory networks. Specifically, we investigate the role of the Saccharomyces cerevisiae checkpoint kinases (Mec1, Tel1, Chk1, Rad53, and Dun1) in the transcriptional response to DNA damage caused by methyl methanesulfonate. The result is a global kinase-TF regulatory network in which Mec1 and Tel1 signal through Rad53 to synergistically regulate the expression of more than 600 genes. This network involves at least nine TFs, many of which have Rad53-dependent phosphorylation sites, as regulators of checkpoint-kinase-dependent genes. We also identify a major DNA damage-induced transcriptional network that regulates stress response genes independently of the checkpoint kinases.
Collapse
Affiliation(s)
- Eric J Jaehnig
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
22
|
Molecular basis of the essential s phase function of the rad53 checkpoint kinase. Mol Cell Biol 2013; 33:3202-13. [PMID: 23754745 DOI: 10.1128/mcb.00474-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The essential yeast kinases Mec1 and Rad53, or human ATR and Chk1, are crucial for checkpoint responses to exogenous genotoxic agents, but why they are also required for DNA replication in unperturbed cells remains poorly understood. Here we report that even in the absence of DNA-damaging agents, the rad53-4AQ mutant, lacking the N-terminal Mec1 phosphorylation site cluster, is synthetic lethal with a deletion of the RAD9 DNA damage checkpoint adaptor. This phenotype is caused by an inability of rad53-4AQ to activate the downstream kinase Dun1, which then leads to reduced basal deoxynucleoside triphosphate (dNTP) levels, spontaneous replication fork stalling, and constitutive activation of and dependence on S phase DNA damage checkpoints. Surprisingly, the kinase-deficient rad53-K227A mutant does not share these phenotypes but is rendered inviable by additional phosphosite mutations that prevent its binding to Dun1. The results demonstrate that ultralow Rad53 catalytic activity is sufficient for normal replication of undamaged chromosomes as long as it is targeted toward activation of the effector kinase Dun1. Our findings indicate that the essential S phase function of Rad53 is comprised by the combination of its role in regulating basal dNTP levels and its compensatory kinase function if dNTP levels are perturbed.
Collapse
|
23
|
Jossen R, Bermejo R. The DNA damage checkpoint response to replication stress: A Game of Forks. Front Genet 2013; 4:26. [PMID: 23493417 PMCID: PMC3595514 DOI: 10.3389/fgene.2013.00026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/18/2013] [Indexed: 12/23/2022] Open
Abstract
Conditions challenging replication fork progression, collectively referred to as replication stress, represent a major source of genomic instability and are associated to cancer onset. The replication checkpoint, a specialized branch of the DNA damage checkpoint, monitors fork problems, and triggers a cellular response aimed at preserving genome integrity. Here, we review the mechanisms by which the replication checkpoint monitors and responds to replication stress, focusing on the checkpoint-mediated pathways contributing to protect replication fork integrity. We discuss how cells achieve checkpoint signaling inactivation once replication stress is overcome and how a failure to timely revert checkpoint-mediated changes in cellular physiology might impact on replication dynamics and genome integrity. We also highlight the checkpoint function as an anti-cancer barrier preventing cells malignant transformation following oncogene-induced replication stress.
Collapse
Affiliation(s)
- Rachel Jossen
- Instituto de Biología Funcional y Genómica, CSIC/USAL Salamanca, Spain
| | | |
Collapse
|
24
|
Preserving Yeast Genetic Heritage through DNA Damage Checkpoint Regulation and Telomere Maintenance. Biomolecules 2012; 2:505-23. [PMID: 24970147 PMCID: PMC4030855 DOI: 10.3390/biom2040505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/10/2012] [Accepted: 10/22/2012] [Indexed: 01/07/2023] Open
Abstract
In order to preserve genome integrity, extrinsic or intrinsic DNA damages must be repaired before they accumulate in cells and trigger other mutations and genome rearrangements. Eukaryotic cells are able to respond to different genotoxic stresses as well as to single DNA double strand breaks (DSBs), suggesting highly sensitive and robust mechanisms to detect lesions that trigger a signal transduction cascade which, in turn, controls the DNA damage response (DDR). Furthermore, cells must be able to distinguish natural chromosomal ends from DNA DSBs in order to prevent inappropriate checkpoint activation, DDR and chromosomal rearrangements. Since the original discovery of RAD9, the first DNA damage checkpoint gene identified in Saccharomyces cerevisiae, many genes that have a role in this pathway have been identified, including MRC1, MEC3, RAD24, RAD53, DUN1, MEC1 and TEL1. Extensive studies have established most of the genetic basis of the DNA damage checkpoint and uncovered its different functions in cell cycle regulation, DNA replication and repair, and telomere maintenance. However, major questions concerning the regulation and functions of the DNA damage checkpoint remain to be answered. First, how is the checkpoint activity coupled to DNA replication and repair? Second, how do cells distinguish natural chromosome ends from deleterious DNA DSBs? In this review we will examine primarily studies performed using Saccharomyces cerevisiae as a model system.
Collapse
|
25
|
Chuang CN, Cheng YH, Wang TF. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res 2012; 40:11416-27. [PMID: 23047948 PMCID: PMC3526284 DOI: 10.1093/nar/gks920] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Red1, Hop1 and Mek1 are three yeast meiosis-specific chromosomal proteins that uphold the interhomolog (IH) bias of meiotic recombination. Mek1 is also an effector protein kinase in a checkpoint that responds to aberrant DNA and/or axis structure. The activation of Mek1 requires Red1-dependent Hop1-Thr(T)318 phosphorylation, which is mediated by Mec1 and Tel1, the yeast homologs of the mammalian DNA damage sensor kinases ATR and ATM. As the ectopic expression of Mek1-glutathione S-transferase (GST) was shown to promote IH recombination in the absence of Mec1/Tel1-dependent checkpoint function, it was proposed that Mek1 might play dual roles during meiosis by directly phosphorylating targets that are involved in the recombination checkpoint. Here, we report that Mek1 has a positive feedback activity in the stabilization of Mec1/Tel1-mediated Hop1-T318 phosphorylation against the dephosphorylation mediated by protein phosphatase 4. Our results also reveal that GST-Mek1 or Mek1-GST further increases Hop1-T318 phosphorylation. This positive feedback function of Mek1 is independent of Mek1’s kinase activity, but dependent on Mek1’s forkhead-associated (FHA) domain and its arginine 51 residue. Arginine 51 directly mediates the interaction of Mek1-FHA and phosphorylated Hop1-T318. We suggest that the Hop1–Mek1 interaction is similar to the Rad53-Dun1 signaling pathway, which is mediated through the interaction of phosphorylated Rad53 and Dun1-FHA.
Collapse
Affiliation(s)
- Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | |
Collapse
|
26
|
Functional analysis with a barcoder yeast gene overexpression system. G3-GENES GENOMES GENETICS 2012; 2:1279-89. [PMID: 23050238 PMCID: PMC3464120 DOI: 10.1534/g3.112.003400] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/22/2012] [Indexed: 01/26/2023]
Abstract
Systematic analysis of gene overexpression phenotypes provides an insight into gene function, enzyme targets, and biological pathways. Here, we describe a novel functional genomics platform that enables a highly parallel and systematic assessment of overexpression phenotypes in pooled cultures. First, we constructed a genome-level collection of ~5100 yeast barcoder strains, each of which carries a unique barcode, enabling pooled fitness assays with a barcode microarray or sequencing readout. Second, we constructed a yeast open reading frame (ORF) galactose-induced overexpression array by generating a genome-wide set of yeast transformants, each of which carries an individual plasmid-born and sequence-verified ORF derived from the Saccharomyces cerevisiae full-length EXpression-ready (FLEX) collection. We combined these collections genetically using synthetic genetic array methodology, generating ~5100 strains, each of which is barcoded and overexpresses a specific ORF, a set we termed “barFLEX.” Additional synthetic genetic array allows the barFLEX collection to be moved into different genetic backgrounds. As a proof-of-principle, we describe the properties of the barFLEX overexpression collection and its application in synthetic dosage lethality studies under different environmental conditions.
Collapse
|
27
|
Sanvisens N, Bañó MC, Huang M, Puig S. Regulation of ribonucleotide reductase in response to iron deficiency. Mol Cell 2012; 44:759-69. [PMID: 22152479 DOI: 10.1016/j.molcel.2011.09.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/09/2011] [Accepted: 09/10/2011] [Indexed: 11/17/2022]
Abstract
Ribonucleotide reductase (RNR) is an essential enzyme required for DNA synthesis and repair. Although iron is necessary for class Ia RNR activity, little is known about the mechanisms that control RNR in response to iron deficiency. In this work, we demonstrate that yeast cells control RNR function during iron deficiency by redistributing the Rnr2-Rnr4 small subunit from the nucleus to the cytoplasm. Our data support a Mec1/Rad53-independent mechanism in which the iron-regulated Cth1/Cth2 mRNA-binding proteins specifically interact with the WTM1 mRNA in response to iron scarcity and promote its degradation. The resulting decrease in the nuclear-anchoring Wtm1 protein levels leads to the redistribution of the Rnr2-Rnr4 heterodimer to the cytoplasm, where it assembles as an active RNR complex and increases deoxyribonucleoside triphosphate levels. When iron is scarce, yeast selectively optimizes RNR function at the expense of other non-essential iron-dependent processes that are repressed, to allow DNA synthesis and repair.
Collapse
Affiliation(s)
- Nerea Sanvisens
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Burjassot, Valencia 46100, Spain
| | | | | | | |
Collapse
|
28
|
Grandin N, Bailly A, Charbonneau M. Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion. Biol Cell 2012; 97:799-814. [PMID: 15760303 DOI: 10.1042/bc20040526] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION In budding yeast, the loss of either telomere sequences (in telomerase-negative cells) or telomere capping (in mutants of two telomere end-protection proteins, Cdc13 and Yku) lead, by distinct pathways, to telomeric senescence. After DNA damage, activation of Rad53, which together with Chk1 represents a protein kinase central to all checkpoint pathways, normally requires Rad9, a checkpoint adaptor. RESULTS We report that in telomerase-negative (tlc1Delta) cells, activation of Rad53, although diminished, could still take place in the absence of Rad9. In contrast, Rad9 was essential for Rad53 activation in cells that entered senescence in the presence of functional telomerase, namely in senescent cells bearing mutations in telomere end-protection proteins (cdc13-1 yku70Delta). In telomerase-negative cells deleted for RAD9, Mrc1, another checkpoint adaptor previously implicated in the DNA replication checkpoint, mediated Rad53 activation. Rad9 and Rad53, as well as other DNA damage checkpoint proteins (Mec1, Mec3, Chk1 and Dun1), were required for complete DNA-damage-induced cell-cycle arrest after loss of telomerase function. However, unexpectedly, given the formation of an active Rad53-Mrc1 complex in tlc1Delta rad9Delta cells, Mrc1 did not mediate the cell-cycle arrest elicited by telomerase loss. Finally, we report that Rad9, Mrc1, Dun1 and Chk1 are activated by phosphorylation after telomerase inactivation. CONCLUSIONS These results indicate that loss of telomere capping and loss of telomere sequences, both of which provoke telomeric senescence, are perceived as two distinct types of damages. In contrast with the Rad53-Rad9-mediated cell-cycle arrest that functions in a similar way in both types of telomeric senescence, activation of Rad53-Mrc1 might represent a specific response to telomerase inactivation and/or telomere shortening, the functional significance of which has yet to be uncovered.
Collapse
Affiliation(s)
- Nathalie Grandin
- IFR128 BioSciences Gerland, UMR CNRS no. 5161, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | | | | |
Collapse
|
29
|
Holzen TM, Sclafani R. Genetic interaction of RAD53 protein kinase with histones is important for DNA replication. Cell Cycle 2010; 9:4735-47. [PMID: 21099362 DOI: 10.4161/cc.9.23.14091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Studies in budding yeast suggest the protein kinase Rad53 plays novel roles in controlling initiation of DNA replication and in maintaining cellular histone levels, and these roles are independent of Rad53-mediated regulation of the checkpoint and of nucleotide levels. In order to elucidate the role of Rad53 in replication initiation, we isolated a novel allele of RAD53, rad53-rep, that separates the checkpoint function of RAD53 from the DNA replication function. rad53-rep mutants display a chromosome loss phenotype that is suppressed by increased origin dosage, providing further evidence that Rad53 plays a role in the initiation of DNA replication. Deletion of the major histone H3-H4 pair suppresses rad53-rep-cdc7-1 synthetic lethality, suggesting Rad53's functions in degradation of excess cellular histone and in replication initiation are related. Rad53-rep is active as a protein kinase yet fails to interact with origins of replication and like the rad53D mutant, the rad53-rep mutant accumulates excess soluble histones, and it is sensitive to histone dosage. In contrast, a checkpoint defective allele of RAD53 with mutations in both FHA domains, binds origins, and growth of a rad53-FHA mutant is unaffected by histone dosage. Based on these observations, we hypothesize that the origin binding and the histone degradation activities of Rad53 are central to its function in DNA replication and are independent of its checkpoint functions. We propose a model in which Rad53 acts as a "nucleosome buffer," interacting with origins of replication to prevent the binding of excess histones to origin DNA and to maintain proper chromatin configuration.
Collapse
Affiliation(s)
- Teresa M Holzen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
30
|
Chen SH, Albuquerque CP, Liang J, Suhandynata RT, Zhou H. A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 2010; 285:12803-12. [PMID: 20190278 DOI: 10.1074/jbc.m110.106989] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA damage checkpoint, consisting of an evolutionarily conserved protein kinase cascade, controls the DNA damage response in eukaryotes. Knowledge of the in vivo substrates of the checkpoint kinases is essential toward understanding their functions. Here we used quantitative mass spectrometry to identify 53 new and 34 previously known targets of Mec1/Tel1, Rad53, and Dun1 in Saccharomyces cerevisiae. Analysis of replication protein A (RPA)-associated proteins reveals extensive physical interactions between RPA-associated proteins and Mec1/Tel1-specific substrates. Among them, multiple subunits of the chromatin remodeling complexes including ISW1, ISW2, INO80, SWR1, RSC, and SWI/SNF are identified and they undergo DNA damage-induced phosphorylation by Mec1 and Tel1. Taken together, this study greatly expands the existing knowledge of the targets of DNA damage checkpoint kinases and provides insights into the role of RPA-associated chromatins in mediating Mec1 and Tel1 substrate phosphorylation in vivo.
Collapse
Affiliation(s)
- Sheng-hong Chen
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093-0653, USA
| | | | | | | | | |
Collapse
|
31
|
Janke R, Herzberg K, Rolfsmeier M, Mar J, Bashkirov VI, Haghnazari E, Cantin G, Yates JR, Heyer WD. A truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae. Nucleic Acids Res 2010; 38:2302-13. [PMID: 20061370 PMCID: PMC2853130 DOI: 10.1093/nar/gkp1222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo, activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR activation. Here, we identify serine 378 of the Rad55 recombination protein as a direct target site of Mec1. Rad55-S378 phosphorylation leads to an electrophoretic mobility shift of the protein and acts as a sentinel for Mec1 activation in vivo. A single double-stranded break (DSB) in G1-arrested cells causes phosphorylation of Rad55-S378, indicating activation of Mec1 kinase. However, Rad53 kinase is not detectably activated under these conditions. This response required Mec1-Ddc2 and loading of the 9-1-1 clamp by Rad24-RFC, but not Rad9 or Mrc1. In addition to Rad55–S378, two additional direct Mec1 kinase targets are phosphorylated, the middle subunit of the ssDNA-binding protein RPA, RPA2 and histone H2A (H2AX). These data suggest the existence of a truncated signaling pathway in response to a single DSB in G1-arrested cells that activates Mec1 without eliciting a full DDR involving the entire signaling pathway including the effector kinases.
Collapse
Affiliation(s)
- Ryan Janke
- Department of Microbiology, University of California, Davis, CA 95616-8665, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Putnam CD, Jaehnig EJ, Kolodner RD. Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 2009; 8:974-82. [PMID: 19477695 DOI: 10.1016/j.dnarep.2009.04.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The DNA damage and replication checkpoints are believed to primarily slow the progression of the cell cycle to allow DNA repair to occur. Here we summarize known aspects of the Saccharomyces cerevisiae checkpoints including how these responses are integrated into downstream effects on the cell cycle, chromatin, DNA repair, and cytoplasmic targets. Analysis of the transcriptional response demonstrates that it is far more complex and less relevant to the repair of DNA damage than the bacterial SOS response. We also address more speculative questions regarding potential roles of the checkpoint during the normal S-phase and how current evidence hints at a checkpoint activation mechanism mediated by positive feedback that amplifies initial damage signals above a minimum threshold.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, Department of Medicine and Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669, United States.
| | | | | |
Collapse
|
33
|
Koltovaya NA. Activation of repair and checkpoints by double-strand DNA breaks: Activational cascade of protein phosphorylation. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Mahajan A, Yuan C, Lee H, Chen ESW, Wu PY, Tsai MD. Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 2008; 1:re12. [PMID: 19109241 DOI: 10.1126/scisignal.151re12] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The forkhead-associated (FHA) domain is the only known phosphoprotein-binding domain that specifically recognizes phosphothreonine (pThr) residues, distinguishing them from phosphoserine (pSer) residues. In contrast to its very strict specificity toward pThr, the FHA domain recognizes very diverse patterns in the residues surrounding the pThr residue. For example, the FHA domain of Ki67, a protein associated with cellular proliferation, binds to an extended target surface involving residues remote from the pThr, whereas the FHA domain of Dun1, a DNA damage-response kinase, specifically recognizes a doubly phosphorylated Thr-Gln (TQ) cluster by virtue of its possessing two pThr-binding sites. The FHA domain exists in various proteins with diverse functions and is particularly prevalent among proteins involved in the DNA damage response. Despite a very short history, a number of unique structural and functional properties of the FHA domain have been uncovered. This review highlights the diversity of biological functions of the FHA domain-containing proteins and the structural bases for the novel binding specificities and multiple binding modes of FHA domains.
Collapse
Affiliation(s)
- Anjali Mahajan
- Biophysics Program, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
35
|
Genetic analysis of CHK1 and CHK2 homologues revealed a unique cross talk between ATM and ATR pathways in Neurospora crassa. DNA Repair (Amst) 2008; 7:1951-61. [PMID: 18790091 DOI: 10.1016/j.dnarep.2008.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 08/06/2008] [Accepted: 08/13/2008] [Indexed: 01/12/2023]
Abstract
DNA damage checkpoint is an important mechanism for organisms to maintain genome integrity. In Neurospora crassa, mus-9 and mus-21 are homologues of ATR and ATM, respectively, which are pivotal factors of DNA damage checkpoint in mammals. A N. crassa clock gene prd-4 has been identified as a CHK2 homologue, but its role in DNA damage response had not been elucidated. In this study, we identified another CHK2 homologue and one CHK1 homologue from the N. crassa genome database. As disruption of these genes affected mutagen tolerance, we named them mus-59 and mus-58, respectively. The mus-58 mutant was sensitive to hydroxyurea (HU), but the mus-59 and prd-4 mutants showed the same HU sensitivity as that of the wild-type strain. This indicates the possibility that MUS-58 is involved in replication checkpoint and stabilization of stalled forks like mammalian CHK1. Phosphorylation of MUS-58 and MUS-59 was observed in the wild-type strain in response to mutagen treatments. Genetic relationships between those three genes and mus-9 or mus-21 indicated that the mus-9 mutation was epistatic to mus-58, and mus-21 was epistatic to prd-4. These relationships correspond to two signal pathways, ATR-CHK1 and ATM-CHK2 that have been established in mammalian cells. However, both the mus-9 mus-59 and mus-21 mus-58 double mutants showed an intermediate level between the two parental strains for CPT sensitivity. Furthermore, these double mutants showed severe growth defects. Our findings suggest that the DNA damage checkpoint of N. crassa is controlled by unique mechanisms.
Collapse
|
36
|
Saccharomyces cerevisiae ATM orthologue suppresses break-induced chromosome translocations. Nature 2008; 454:543-6. [PMID: 18650924 DOI: 10.1038/nature07054] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 04/30/2008] [Indexed: 01/03/2023]
Abstract
Chromosome translocations are frequently associated with many types of blood-related cancers and childhood sarcomas. Detection of chromosome translocations assists in diagnosis, treatment and prognosis of these diseases; however, despite their importance to such diseases, the molecular mechanisms leading to chromosome translocations are not well understood. The available evidence indicates a role for non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs) in their origin. Here we develop a yeast-based system that induces a reciprocal chromosome translocation by formation and ligation of breaks on two different chromosomes. We show that interchromosomal end joining is efficiently suppressed by the Tel1- and Mre11-Rad50-Xrs2-dependent pathway; this is distinct from the role of Tel1 in telomeric integrity and from Mec1- and Tel1-dependent checkpoint controls. Suppression of DSB-induced chromosome translocations depends on the kinase activity of Tel1 and Dun1, and the damage-induced phosphorylation of Sae2 and histone H2AX proteins. Tel1- and Sae2-dependent tethering and promotion of 5' to 3' degradation of broken chromosome ends discourage error-prone NHEJ and interchromosomal NHEJ, preserving chromosome integrity on DNA damage. Our results indicate that, like human ATM, Tel1 serves as a key regulator for chromosome integrity in the pathway that reduces the risk for DSB-induced chromosome translocations, and are probably pertinent to the oncogenic chromosome translocations in ATM-deficient cells.
Collapse
|
37
|
Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade. Mol Cell 2008; 30:767-78. [PMID: 18570878 DOI: 10.1016/j.molcel.2008.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/21/2008] [Accepted: 05/13/2008] [Indexed: 01/22/2023]
Abstract
Forkhead-associated (FHA) domains recognize phosphothreonines, and SQ/TQ cluster domains (SCDs) contain concentrated phosphorylation sites for ATM/ATR-like DNA-damage-response kinases. The Rad53-SCD1 has dual functions in regulating the activation of the Rad53-Dun1 checkpoint kinase cascade but with unknown molecular mechanisms. Here we present structural, biochemical, and genetic evidence that Dun1-FHA possesses an unprecedented diphosphothreonine-binding specificity. The Dun1-FHA has >100-fold increased affinity for diphosphorylated relative to monophosphorylated Rad53-SCD1 due to the presence of two separate phosphothreonine-binding pockets. In vivo, any single threonine of Rad53-SCD1 is sufficient for Rad53 activation and RAD53-dependent survival of DNA damage, but two adjacent phosphothreonines in the Rad53-SCD1 and two phosphothreonine-binding sites in the Dun1-FHA are necessary for Dun1 activation and DUN1-dependent transcriptional responses to DNA damage. The results uncover a phospho-counting mechanism that regulates the specificity of SCD, and provide mechanistic insight into a role of multisite phosphorylation in DNA-damage signaling.
Collapse
|
38
|
Ehmsen KT, Heyer WD. Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res 2008; 36:2182-95. [PMID: 18281703 PMCID: PMC2367710 DOI: 10.1093/nar/gkm1152] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/07/2007] [Accepted: 12/12/2007] [Indexed: 11/29/2022] Open
Abstract
The DNA structure-selective endonuclease Mus81-Mms4/Eme1 is a context-specific recombination factor that supports DNA replication, but is not essential for DSB repair in Saccharomyces cerevisiae. We overexpressed Mus81-Mms4 in S. cerevisiae, purified the heterodimer to apparent homogeneity, and performed a classical enzymological characterization. Kinetic analysis (k(cat), K(M)) demonstrated that Mus81-Mms4 is catalytically active and identified three substrate classes in vitro. Class I substrates reflect low K(M) (3-7 nM) and high k(cat) ( approximately 1 min(-1)) and include the nicked Holliday junction, 3'-flapped and replication fork-like structures. Class II substrates share low K(M) (1-6 nM) but low k(cat) (< or =0.3 min(-1)) relative to Class I substrates and include the D-loop and partial Holliday junction. The splayed Y junction defines a class III substrate having high K(M) ( approximately 30 nM) and low k(cat) (0.26 min(-1)). Holliday junctions assembled from oligonucleotides with or without a branch migratable core were negligibly cut in vitro. We found that Mus81 and Mms4 are phosphorylated constitutively and in the presence of the genotoxin MMS. The endogenous complex purified in either modification state is negligibly active on Holliday junctions. Hence, Holliday junction incision activity in vitro cannot be attributed to the Mus81-Mms4 heterodimer in isolation.
Collapse
Affiliation(s)
- Kirk Tevebaugh Ehmsen
- Section of Microbiology and Section of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology and Section of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616-8665, USA
| |
Collapse
|
39
|
Tam ATY, Pike BL, Heierhorst J. Location-specific functions of the two forkhead-associated domains in Rad53 checkpoint kinase signaling. Biochemistry 2008; 47:3912-6. [PMID: 18302321 DOI: 10.1021/bi800027t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Signaling proteins often contain multiple modular protein-protein interaction domains of the same type. The Saccharomyces cerevisiae checkpoint kinase Rad53 contains two phosphothreonine-binding forkhead-associated (FHA) domains. To investigate if the precise position of these domains relative to each other is important, we created three rad53 alleles in which FHA1 and FHA2 domains were individually or simultaneously transposed to the opposite location. All three mutants were approximately 100-fold hypersensitive to DNA lesions whose survival requires intact Rad53 FHA domain functions, but they were not hypersensitive to DNA damage that is addressed in an FHA domain-independent manner. FHA domain-transposed Rad53 could still be recruited for activation by upstream kinases but then failed to autophosphorylate and activate FHA domain-dependent downstream functions. The results indicate that precise FHA domain positions are important for their roles in Rad53, possibly via regulation of the topology of oligomeric Rad53 signaling complexes.
Collapse
Affiliation(s)
- Angela T Y Tam
- St. Vincent's Institute of Medical Research and Department of Medicine SVH, The University of Melbourne, 9 Princes Street, Fitzroy, VIC 3065, Australia
| | | | | |
Collapse
|
40
|
Ogi H, Wang CZ, Nakai W, Kawasaki Y, Masumoto H. The role of the Saccharomyces cerevisiae Cdc7-Dbf4 complex in the replication checkpoint. Gene 2008; 414:32-40. [PMID: 18372119 DOI: 10.1016/j.gene.2008.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 02/03/2008] [Accepted: 02/11/2008] [Indexed: 01/23/2023]
Abstract
The Cdc7-Dbf4 complex is a conserved serine/threonine protein kinase essential for the initiation of eukaryotic DNA replication. Although an mcm5-bob1 mutation bypasses lethality conferred by mutations in CDC7 or DBF4, the Deltacdc7 mcm5-bob1 mutant is sensitive to hydroxyurea (HU), which induces replication stress. To elucidate the reasons for HU sensitivity conferred by deletion of CDC7, we examined the role of Cdc7-Dbf4 in the replication checkpoint. We found that in Cdc7-Dbf4-deficient cells exposed to replication stress, Rad53 remains in a hypophosphorylated form, anaphase spindle is elongated, and checkpoint-specific transcription is not induced. The hypophosphorylated Rad53 exhibits a low autophosphorylation activity, and recombinant Cdc7-Dbf4 phosphorylates Rad53 in vitro. These results suggest that Cdc7-Dbf4 is required for full activation of Rad53 in response to replication stress.
Collapse
Affiliation(s)
- Hiroo Ogi
- Laboratories for Biomolecular Networks, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | |
Collapse
|
41
|
Smolka MB, Albuquerque CP, Chen SH, Zhou H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci U S A 2007; 104:10364-9. [PMID: 17563356 PMCID: PMC1965519 DOI: 10.1073/pnas.0701622104] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding the role of DNA damage checkpoint kinases in the cellular response to genotoxic stress requires the knowledge of their substrates. Here, we report the use of quantitative phosphoproteomics to identify in vivo kinase substrates of the yeast DNA damage checkpoint kinases Mec1, Tel1, and Rad53 (orthologs of human ATR, ATM, and CHK2, respectively). By analyzing 2,689 phosphorylation sites in wild-type and various kinase-null cells, 62 phosphorylation sites from 55 proteins were found to be controlled by the DNA damage checkpoint. Examination of the dependency of each phosphorylation on Mec1 and Tel1 or Rad53, combined with sequence and biochemical analysis, revealed that many of the identified targets are likely direct substrates of these kinases. In addition to several known targets, 50 previously undescribed targets of the DNA damage checkpoint were identified, suggesting that a wide range of cellular processes is likely regulated by Mec1, Tel1, and Rad53.
Collapse
Affiliation(s)
- Marcus B. Smolka
- *Ludwig Institute for Cancer Research, La Jolla, CA 92093-0653; and
| | - Claudio P. Albuquerque
- *Ludwig Institute for Cancer Research, La Jolla, CA 92093-0653; and
- Departments of Chemistry and Biochemistry and
| | - Sheng-hong Chen
- *Ludwig Institute for Cancer Research, La Jolla, CA 92093-0653; and
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0653
| | - Huilin Zhou
- *Ludwig Institute for Cancer Research, La Jolla, CA 92093-0653; and
- Cellular and Molecular Medicine and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
O'Neill BM, Szyjka SJ, Lis ET, Bailey AO, Yates JR, Aparicio OM, Romesberg FE. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage. Proc Natl Acad Sci U S A 2007; 104:9290-5. [PMID: 17517611 PMCID: PMC1890487 DOI: 10.1073/pnas.0703252104] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of the checkpoint kinase Rad53 is a critical response to DNA damage that results in stabilization of stalled replication forks, inhibition of late-origin initiation, up-regulation of dNTP levels, and delayed entry to mitosis. Activation of Rad53 is well understood and involves phosphorylation by the protein kinases Mec1 and Tel1 as well as in trans autophosphorylation by Rad53 itself. However, deactivation of Rad53, which must occur to allow the cell to recover from checkpoint arrest, is not well understood. Here, we present genetic and biochemical evidence that the type 2A-like protein phosphatase Pph3 forms a complex with Psy2 (Pph3-Psy2) that binds and dephosphorylates activated Rad53 during treatment with, and recovery from, methylmethane sulfonate-mediated DNA damage. In the absence of Pph3-Psy2, Rad53 dephosphorylation and the resumption of DNA synthesis are delayed during recovery from DNA damage. This delay in DNA synthesis reflects a failure to restart stalled replication forks, whereas, remarkably, genome replication is eventually completed by initiating late origins of replication despite the presence of hyperphosphorylated Rad53. These findings suggest that Rad53 regulates replication fork restart and initiation of late firing origins independently and that regulation of these processes is mediated by specific Rad53 phosphatases.
Collapse
Affiliation(s)
| | - Shawn J. Szyjka
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | | | - Aaron O. Bailey
- Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - John R. Yates
- Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - Oscar M. Aparicio
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Floyd E. Romesberg
- Departments of Chemistry and
- To whom correspondence should be addressed at:
Department of Chemistry, The Scripps Research Institute, CB262R, 10550 North Torrey Pines Road, La Jolla, CA 92037. E-mail:
| |
Collapse
|
43
|
Liang F, Wang Y. DNA damage checkpoints inhibit mitotic exit by two different mechanisms. Mol Cell Biol 2007; 27:5067-78. [PMID: 17485442 PMCID: PMC1951953 DOI: 10.1128/mcb.00095-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin-dependent kinase (CDK) governs cell cycle progression, and its kinase activity fluctuates during the cell cycle. Mitotic exit pathways are responsible for the inactivation of CDK after chromosome segregation by promoting the release of a nucleolus-sequestered phosphatase, Cdc14, which antagonizes CDK. In the budding yeast Saccharomyces cerevisiae, mitotic exit is controlled by the FEAR (for "Cdc-fourteen early anaphase release") and mitotic exit network (MEN) pathways. In response to DNA damage, two branches of the DNA damage checkpoint, Chk1 and Rad53, are activated in budding yeast to prevent anaphase entry and mitotic exit, allowing cells more time to repair damaged DNA. Here we present evidence indicating that yeast cells negatively regulate mitotic exit through two distinct pathways in response to DNA damage. Rad53 prevents mitotic exit by inhibiting the MEN pathway, whereas the Chk1 pathway prevents FEAR pathway-dependent Cdc14 release in the presence of DNA damage. In contrast to previous data, the Rad53 pathway negatively regulates MEN independently of Cdc5, a Polo-like kinase essential for mitotic exit. Instead, a defective Rad53 pathway alleviates the inhibition of MEN by Bfa1.
Collapse
Affiliation(s)
- Fengshan Liang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | | |
Collapse
|
44
|
Woolstencroft RN, Beilharz TH, Cook MA, Preiss T, Durocher D, Tyers M. Ccr4 contributes to tolerance of replication stress through control of CRT1 mRNA poly(A) tail length. J Cell Sci 2007; 119:5178-92. [PMID: 17158920 DOI: 10.1242/jcs.03221] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, DNA replication stress activates the replication checkpoint, which slows S-phase progression, stabilizes slowed or stalled replication forks, and relieves inhibition of the ribonucleotide reductase (RNR) complex. To identify novel genes that promote cellular viability after replication stress, the S. cerevisiae non-essential haploid gene deletion set (4812 strains) was screened for sensitivity to the RNR inhibitor hydroxyurea (HU). Strains bearing deletions in either CCR4 or CAF1/POP2, which encode components of the cytoplasmic mRNA deadenylase complex, were particularly sensitive to HU. We found that Ccr4 cooperated with the Dun1 branch of the replication checkpoint, such that ccr4Delta dun1Delta strains exhibited irreversible hypersensitivity to HU and persistent activation of Rad53. Moreover, because ccr4Delta and chk1Delta exhibited epistasis in several genetic contexts, we infer that Ccr4 and Chk1 act in the same pathway to overcome replication stress. A counterscreen for suppressors of ccr4Delta HU sensitivity uncovered mutations in CRT1, which encodes the transcriptional repressor of the DNA-damage-induced gene regulon. Whereas Dun1 is known to inhibit Crt1 repressor activity, we found that Ccr4 regulates CRT1 mRNA poly(A) tail length and may subtly influence Crt1 protein abundance. Simultaneous overexpression of RNR2, RNR3 and RNR4 partially rescued the HU hypersensitivity of a ccr4Delta dun1Delta strain, consistent with the notion that the RNR genes are key targets of Crt1. These results implicate the coordinated regulation of Crt1 via Ccr4 and Dun1 as a crucial nodal point in the response to DNA replication stress.
Collapse
|
45
|
Abstract
In response to even a single chromosomal double-strand DNA break, cells enact the DNA damage checkpoint. This checkpoint triggers cell cycle arrest, providing time for the cell to repair damaged chromosomes before entering mitosis. This mechanism helps prevent the segregation of damaged or mutated chromosomes and thus promotes genomic stability. Recent work has elucidated the molecular mechanisms underlying several critical steps in checkpoint activation, notably the recruitment of the upstream checkpoint kinases of the ATM and ATR families to different damaged DNA structures and the molecular events through which these kinases activate their effectors. Chromatin modification has emerged as one important component of checkpoint activation and maintenance. Following DNA repair, the checkpoint pathway is inactivated in a process termed recovery. A related but genetically distinct process, adaptation, controls cell cycle re-entry in the face of unrepairable damage.
Collapse
Affiliation(s)
- Jacob C Harrison
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02445, USA.
| | | |
Collapse
|
46
|
Rubenstein EM, Schmidt MC. Mechanisms regulating the protein kinases of Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:571-83. [PMID: 17337635 PMCID: PMC1865659 DOI: 10.1128/ec.00026-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Eric M Rubenstein
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, W1247 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
47
|
Usui T, Petrini JHJ. The Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 directly influence the DNA damage-dependent functions of Rad53. Proc Natl Acad Sci U S A 2007; 104:2797-802. [PMID: 17299042 PMCID: PMC1797148 DOI: 10.1073/pnas.0611259104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we mutated autophosphorylation sites in Rad53 based on their conservation with previously identified autophosphorylation sites in the mammalian Rad53 ortholog, Chk2. As with wild-type Rad53, the autophosphorylation mutant, rad53-TA, undergoes Mec1/Tel1-dependent interactions with Rad9 and Dun1 in response to genotoxic stress. Whereas rad53-TA in vitro kinase activity is severely impaired, the rad53-TA strains are not completely deficient for cell-cycle checkpoint functions, indicating that the mutant kinase retains a basal level of function. We describe a genetic interaction among Rad53, Dun1, and the 14-3-3 proteins Bmh1 and Bmh2 and present evidence that 14-3-3 proteins directly facilitate Rad53 function in vivo. The data presented account for the previously observed checkpoint defects associated with 14-3-3 mutants in Saccharomyces pombe and Saccharomyces cerevisiae. The 14-3-3 functional interaction appears to modulate Rad53 activity, reminiscent of 14-3-3's effect on human Raf1 kinase and distinct from the indirect mode of regulation by 14-3-3 observed for Chk1 or Cdc25.
Collapse
Affiliation(s)
- Takehiko Usui
- *Laboratory of Chromosome Biology, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021; and
| | - John H. J. Petrini
- *Laboratory of Chromosome Biology, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021; and
- Weill Medical College, Cornell University Graduate School of Medical Sciences, 445 East 69th Street, New York, NY 10021
- To whom correspondence should be addressed at:
Laboratory of Chromosome Biology, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, RRL 901C, New York, NY 10021. E-mail:
| |
Collapse
|
48
|
Smolka MB, Chen SH, Maddox PS, Enserink JM, Albuquerque CP, Wei XX, Desai A, Kolodner RD, Zhou H. An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth. ACTA ACUST UNITED AC 2006; 175:743-53. [PMID: 17130285 PMCID: PMC2064674 DOI: 10.1083/jcb.200605081] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The DNA damage checkpoint kinase Rad53 is important for the survival of budding yeast under genotoxic stresses. We performed a biochemical screen to identify proteins with specific affinity for the two Forkhead associated (FHA) domains of Rad53. The N-terminal FHA1 domain was found to coordinate a complex protein interaction network, which includes nuclear proteins involved in DNA damage checkpoints and transcriptional regulation. Unexpectedly, cytosolic proteins involved in cytokinesis, including septins, were also found as FHA1 binding proteins. Consistent with this interaction, a Rad53 mutant defective in its nuclear localization was found to localize to the bud neck. Abnormal morphology was observed in cells overexpressing the FHA1 domain and in rad53Δ cells under DNA replication stress. Further, septin Shs1 appears to have an important role in the response to DNA replication stress. Collectively, the results suggest a novel function of Rad53 in the regulation of polarized cell growth in response to DNA replication stress.
Collapse
Affiliation(s)
- Marcus B Smolka
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen SH, Smolka MB, Zhou H. Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiae. J Biol Chem 2006; 282:986-95. [PMID: 17114794 PMCID: PMC2811688 DOI: 10.1074/jbc.m609322200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Despite extensive studies, the molecular mechanism of DNA damage checkpoint activation remains incompletely understood. To better dissect this mechanism, we developed an activity-based assay for Dun1, a downstream DNA damage check-point kinase in yeast, using its physiological substrate Sml1. Using this assay, we confirmed the genetic basis of Dun1 activation. Rad53 was found to be directly responsible for Dun1 activation. We reconstituted the activation of Dun1 by Rad53 and found that phosphorylation of Thr-380 in the activation loop of Dun1 by Rad53 is responsible for Dun1 activation. Interestingly, phosphorylation of the evolutionarily conserved Thr-354 in the activation loop of Rad53 is also important for the regulation of Rad53 activity. Thus, this conserved mode of activation loop phosphorylation appears to be a general mechanism for the activation of Chk2 family kinases.
Collapse
Affiliation(s)
- Sheng-hong Chen
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0653
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California 92093-0653
| | - Marcus B. Smolka
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California 92093-0653
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California 92093-0653
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093-0653
- To whom correspondence should be addressed: Ludwig Institute for Cancer Research, University of California San Diego, 9500 Gilman Dr., CMM-East, Rm. 3050, La Jolla, CA 92093-0653. Tel.: 858-552-4920 (ext. 7808); Fax: 858-534-7750;
| |
Collapse
|
50
|
Herzberg K, Bashkirov VI, Rolfsmeier M, Haghnazari E, McDonald WH, Anderson S, Bashkirova EV, Yates JR, Heyer WD. Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks. Mol Cell Biol 2006; 26:8396-409. [PMID: 16966380 PMCID: PMC1636779 DOI: 10.1128/mcb.01317-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA damage checkpoints coordinate the cellular response to genotoxic stress and arrest the cell cycle in response to DNA damage and replication fork stalling. Homologous recombination is a ubiquitous pathway for the repair of DNA double-stranded breaks and other checkpoint-inducing lesions. Moreover, homologous recombination is involved in postreplicative tolerance of DNA damage and the recovery of DNA replication after replication fork stalling. Here, we show that the phosphorylation on serines 2, 8, and 14 (S2,8,14) of the Rad55 protein is specifically required for survival as well as for normal growth under genome-wide genotoxic stress. Rad55 is a Rad51 paralog in Saccharomyces cerevisiae and functions in the assembly of the Rad51 filament, a central intermediate in recombinational DNA repair. Phosphorylation-defective rad55-S2,8,14A mutants display a very slow traversal of S phase under DNA-damaging conditions, which is likely due to the slower recovery of stalled replication forks or the slower repair of replication-associated DNA damage. These results suggest that Rad55-S2,8,14 phosphorylation activates recombinational repair, allowing for faster recovery after genotoxic stress.
Collapse
Affiliation(s)
- Kristina Herzberg
- Section of Microbiology, University of California, Davis, Davis, CA 95616-8665, USA
| | | | | | | | | | | | | | | | | |
Collapse
|