1
|
Gilmore TD, Gélinas C. Methods for assessing the in vitro transforming activity of NF-κB transcription factor c-Rel and related proteins. Methods Mol Biol 2015; 1280:427-46. [PMID: 25736765 DOI: 10.1007/978-1-4939-2422-6_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among NF-κB transcription factors, c-Rel and c-Rel-derived proteins, including v-Rel, are the only ones that have shown consistent and frank transforming activity in cell culture. In particular, viral, chicken, mouse, and human Rel proteins can rapidly transform primary chicken spleen and bone marrow cells. Overexpression of a human Rel protein missing a C-terminal transactivation domain can also enhance the transformed state of the human B-lymphoma cell line BJAB. As described in this chapter, these in vitro assays can be used to quantitatively assess the transforming activity of Rel proteins.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA,
| | | |
Collapse
|
2
|
Neo WH, Lim JF, Grumont R, Gerondakis S, Su IH. c-Rel regulates Ezh2 expression in activated lymphocytes and malignant lymphoid cells. J Biol Chem 2014; 289:31693-31707. [PMID: 25266721 DOI: 10.1074/jbc.m114.574517] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The polycomb group protein Ezh2 is a histone methyltransferase that modifies chromatin structure to alter gene expression during embryonic development, lymphocyte activation, and tumorigenesis. The mechanism by which Ezh2 expression is regulated is not well defined. In the current study, we report that c-Rel is a critical activator of Ezh2 transcription in lymphoid cells. In activated primary murine B and T cells, plus human leukemia and multiple myeloma cell lines, recruitment of c-Rel to the first intron of the Ezh2 locus promoted Ezh2 mRNA expression. This up-regulation was abolished in activated c-Rel-deficient lymphocytes and by c-Rel knockdown in Jurkat T cells. Treatment of malignant cells with the c-Rel inhibitor pentoxifylline not only reduced c-Rel nuclear translocation and Ezh2 expression, but also enhanced their sensitivity to the Ezh2-specific drug, GSK126 through increased growth inhibition and cell death. In summary, our demonstration that c-Rel regulates Ezh2 expression in lymphocytes and malignant lymphoid cells reveals a novel transcriptional network in transformed lymphoid cells expressing high levels of Ezh2 that provides a molecular justification for combinatorial drug therapy.
Collapse
Affiliation(s)
- Wen Hao Neo
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Republic of Singapore and
| | - Jun Feng Lim
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Republic of Singapore and
| | - Raelene Grumont
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Steve Gerondakis
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - I-Hsin Su
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Republic of Singapore and.
| |
Collapse
|
3
|
Chen LW, Chen PH, Chang WJ, Wang JS, Karin M, Hsu CM. IκB-kinase/nuclear factor-κB signaling prevents thermal injury–induced gut damage by inhibiting c-Jun NH2-terminal kinase activation*. Crit Care Med 2007; 35:1332-40. [PMID: 17414734 DOI: 10.1097/01.ccm.0000261891.30360.f0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The molecular mechanism of major burn-induced gut damage is not clear. This study is to determine whether IkappaB-kinase (IKK)/nuclear factor-kappaB signaling in intestinal mucosa maintains gut function through the regulation of the c-Jun NH2-terminal kinase (JNK) and p38 phosphorylation. DESIGN Prospective, experimental study. SETTING Research laboratory at a university hospital. SUBJECTS Thermal injury models in mice. INTERVENTIONS Conditional intestinal epithelial cell IKKbeta knockout (Vil-Cre/Ikkbeta(F/Delta) mice and control (Ikkbeta(F/Delta) mice were subjected to 30% total body surface area third-degree burn. JNK inhibitor (SP600125) or p38 inhibitor (SB203580) was given to mice immediately after burn injury. MEASUREMENTS AND MAIN RESULTS Thermal injury induced a significant increase of intestinal permeability, nuclear factor-kappaB DNA-binding activity, phosphorylated JNK, phosphorylated p38, and caspase 3 expression of intestinal mucosa in Vil-Cre/Ikkbeta(F/Delta) mice compared with those of Ikkbeta(F/Delta) mice. BCL-xL and cellular FLICE inhibitory protein, but not GADD45beta (growth arrest and DNA damage-inducing protein beta), cellular inhibitor of apoptosis 1, Bfl-1, or TRAIL, messenger RNA expression was significantly decreased in Vil-Cre/Ikkbeta(F/Delta) mice compared with that of Ikkbeta(F/Delta) mice. SP600125 decreased intestinal permeability and increased phosphorylated p38 and tumor necrosis factor receptor-associated factor 2 expression of intestinal mucosa in Vil-Cre/Ikkbeta(F/Delta) mice. SB203580 treatment enhanced thermal injury-induced gut damage in Vil-Cre/Ikkbeta(F/Delta) mice. CONCLUSIONS Thermal injury induces nuclear factor-kappaB activation of intestinal mucosa and IKK protects intestinal mucosa from thermal injury-induced gut damage. IKK blocks caspase 3 expression by up-regulating BCL-xL and cellular FLICE inhibitory protein expression. IKK inhibits JNK and p38 but not p44/42 phosphorylation of intestinal mucosa. JNK inhibition increases p38 and tumor necrosis factor receptor-associated factor 2 expression and decreases thermal injury-induced gut damage. Taken together with the enhanced thermal injury-induced gut damage by p38 inhibition, we conclude that IKK maintains gut function by inhibiting JNK phosphorylation, which suppresses p38 phosphorylation and induces gut damage.
Collapse
Affiliation(s)
- Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, National Yang-Ming Medical University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
The transcription factor nuclear factor-kappa B (NF-kappaB) is a crucial regulator of many physiological and patho-physiological processes, including control of the adaptive and innate immune responses, inflammation, proliferation, tumorigenesis, and apoptosis. Thus, the tight regulation of NF-kappaB activity within a cell is extremely important. The central mechanism of NF-kappaB regulation is the signal-induced proteolytic degradation of a family of cytoplasmic inhibitors of NF-kappaB, the IkappaBs. However, with the discovery of an IkappaB-independent noncanonical or "alternative" pathway of NF-kappaB activation, the importance of other regulatory mechanisms responsible for the fine-tuning of NF-kappaB became clear. Post-translational modification, especially phosphorylation, of the Rel proteins, of which dimeric NF-kappaB is composed, are such alternative regulatory mechanisms. The best analyzed example is RelA phosphorylation, which takes place at specific amino acids resulting in distinct functional changes of this gene regulatory protein. The interaction of NF-kappaB with other proteins such as glucocorticoid receptors is very important for the regulation of NF-kappaB activity. Recently, exciting new concepts of IkappaB-independent NF-kappaB control like dimer exchange and nucleolar sequestration of RelA have been described, indicating that many aspects of NF-kappaB control are waiting to be discovered.
Collapse
Affiliation(s)
- Manfred Neumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University, Medical Faculty, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | |
Collapse
|
5
|
Fan Y, Gélinas C. An optimal range of transcription potency is necessary for efficient cell transformation by c-Rel to ensure optimal nuclear localization and gene-specific activation. Oncogene 2006; 26:4038-43. [PMID: 17173064 DOI: 10.1038/sj.onc.1210164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
c-Rel is overexpressed in several B-cell lymphomas and c-rel gene overexpression can transform primary chicken lymphoid cells and induce tumors in animals. Although c-Rel is generally a stronger transcriptional activator than its viral derivative v-Rel, its oncogenic activity is significantly weaker. Among the mutations acquired during c-Rel's evolution into v-Rel are deletion of c-Rel's transactivation domain 2 (cTAD2) and mutations in cTAD1. Given the critical role of the Rel TADs in cell transformation, we investigated how mutations in c-Rel's cTAD1 and cTAD2 contribute to its oncogenicity and that of v-Rel. Mutations in cTAD2 noticeably increased c-Rel's transforming activity by promoting its nuclear localization and gene-specific transactivation, despite an overall decrease in kappaB site-dependent transactivation potency. Conversely, substitution of vTAD by cTAD1 increased v-Rel's transactivation and transforming efficiencies, whereas its substitution by the stronger cTAD2 compromised activation of mip-1beta but not irf-4 and was detrimental to cell transformation. These results suggest that the Rel TADs differentially contribute to gene-specific activation and that an optimal range of transcription potency is necessary for efficient transformation. These findings may have important implications for understanding how Rel TAD mutations can lead to a more oncogenic phenotype.
Collapse
Affiliation(s)
- Y Fan
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5638, USA
| | | |
Collapse
|
6
|
Yue W, Shackelford J, Pagano JS. cdc2/cyclin B1-dependent phosphorylation of EBNA2 at Ser243 regulates its function in mitosis. J Virol 2006; 80:2045-50. [PMID: 16439560 PMCID: PMC1367142 DOI: 10.1128/jvi.80.4.2045-2050.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) transactivates EBV genes in latently infected B cells. We have shown that mitotic hyperphosphorylation of EBNA2 suppresses its ability to transactivate the latent membrane protein 1 (LMP1) promoter. In this follow-up study, we identify EBNA2 Ser243 as a phosphorylation site for mitotic cdc2/cyclin B1 kinase. Mutation at Ser243, which mimics constitutive phosphorylation of the protein, decreases endogenous levels of both LMP1 and EBNA2. Moreover, mutation at Ser243 reduces the ability of EBNA2 to transactivate Cp, the promoter for all six EBV EBNA genes. Our data implicate EBNA2 Ser243 as a cdc2/cyclin B1 site of phosphorylation important for EBNA2's cotranscriptional function in mitosis.
Collapse
Affiliation(s)
- Wei Yue
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|
7
|
Starczynowski DT, Reynolds JG, Gilmore TD. Mutations of tumor necrosis factor α-responsive serine residues within the C-terminal transactivation domain of human transcription factor REL enhance its in vitro transforming ability. Oncogene 2005; 24:7355-68. [PMID: 16027730 DOI: 10.1038/sj.onc.1208902] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human c-rel gene (REL), encoding an NF-kappaB transcription factor, is amplified or mutated in several human B-cell lymphomas and can transform chicken lymphoid cells in vitro. We have previously shown that certain deletions of C-terminal transactivation sequences enhance REL's transforming ability in chicken spleen cells. In this report, we have analysed the effect of single amino-acid changes at select serine residues in the C-terminal transactivation domain on REL's transforming ability. Mutation of either of two TNFalpha-inducible serine residues (Ser460 and Ser471) to nonphosphorylatable residues (alanine, asparagine, phenylalanine) made REL more efficient at transforming chicken spleen cells in vitro. In contrast, mutation of Ser471 to a phosphorylation mimetic aspartate residue impaired REL's transforming ability, even though it increased REL's inherent transactivation ability as a GAL4-fusion protein. Alanine mutations of several other serine residues within the transactivation domain did not substantially affect REL's transforming ability. Transactivation by GAL4-REL fusion proteins containing either transformation enhancing or nonenhancing mutations at serine residues was generally similar to wild-type GAL4-REL. However, more transforming mutants with mutations at either Ser460 or Ser471 differed from wild-type REL in their ability to transactivate certain kappaB-site reporter genes. In particular, the SOD2 promoter, encoding manganese superoxide dismutase, was activated less strongly by the more transforming REL mutant REL-S471N in transient assays, but REL-S471N-transformed chicken spleen cells had increased levels of MnSOD protein as compared to wild-type REL-transformed cells. Taken together, our results show that mutations of certain serine residues can enhance REL's transforming ability in vitro and suggest that these mutations increase REL-mediated transformation by altering REL's ability to modulate the expression of select target genes. Furthermore, phosphorylation of Ser471 may be involved in REL-mediated modulation of transformation-specific target gene expression. Lastly, these results suggest that similar mutations in the REL transactivation domain contribute to the development of certain human B-cell lymphomas.
Collapse
|
8
|
Yue W, Gershburg E, Pagano JS. Hyperphosphorylation of EBNA2 by Epstein-Barr virus protein kinase suppresses transactivation of the LMP1 promoter. J Virol 2005; 79:5880-5. [PMID: 15827205 PMCID: PMC1082719 DOI: 10.1128/jvi.79.9.5880-5885.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) BGLF4 gene encodes a serine/threonine protein kinase (PK) that is expressed in the cytolytic cycle. EBV nuclear antigen 2 (EBNA2) is a key latency gene essential for immortalization of B lymphocytes and transactivation of viral and cellular promoters. Here we report that EBV PK phosphorylates EBNA2 at Ser-243 and that these two proteins physically associate. PK suppresses EBNA2's ability to transactivate the LMP1 promoter, and Ser-243 of EBNA2 is involved in this suppression. Moreover, EBNA2 is hyperphosphorylated during EBV reactivation in latently infected B cells, which is associated with decreased LMP1 protein levels. This is the first report about the effect of EBV PK on the function of one of its target proteins and regulation of EBNA2 phosphorylation during the EBV lytic cycle.
Collapse
Affiliation(s)
- Wei Yue
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Campus Box 7295, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
9
|
Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 2005; 30:43-52. [PMID: 15653325 DOI: 10.1016/j.tibs.2004.11.009] [Citation(s) in RCA: 1201] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a transcription factor that has crucial roles in inflammation, immunity, cell proliferation and apoptosis. Activation of NF-kappaB mainly occurs via IkappaB kinase (IKK)-mediated phosphorylation of inhibitory molecules, including IkappaBalpha. Optimal induction of NF-kappaB target genes also requires phosphorylation of NF-kappaB proteins, such as p65, within their transactivation domain by a variety of kinases in response to distinct stimuli. Whether, and how, phosphorylation modulates the function of other NF-kappaB and IkappaB proteins, such as B-cell lymphoma 3, remains unclear. The identification and characterization of all the kinases known to phosphorylate NF-kappaB and IkappaB proteins are described here. Because deregulation of NF-kappaB and IkappaB phosphorylations is a hallmark of chronic inflammatory diseases and cancer, newly designed drugs targeting these constitutively activated signalling pathways represent promising therapeutic tools.
Collapse
Affiliation(s)
- Patrick Viatour
- Laboratory of Medical Chemistry and Human Genetics, CHU, Sart-Tilman, Center for Biomedical Integrated Genoproteomics, University of Liege, Belgium
| | | | | | | |
Collapse
|
10
|
Mannick EE, Bonomolo JC, Horswell R, Lentz JJ, Serrano MS, Zapata-Velandia A, Gastanaduy M, Himel JL, Rose SL, Udall JN, Hornick CA, Liu Z. Gene expression in mononuclear cells from patients with inflammatory bowel disease. Clin Immunol 2004; 112:247-57. [PMID: 15308118 DOI: 10.1016/j.clim.2004.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 03/17/2004] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Discovery of Nod2 as the inflammatory bowel disease 1 (IBD1) susceptibility gene has brought to light the significance of mononuclear cells in inflammatory bowel disease pathogenesis. The purpose of this study was to examine changes in gene expression in peripheral blood mononuclear cells in patients with untreated Crohn's disease (CD) and ulcerative colitis (UC) as compared to patients with other inflammatory gastrointestinal disorders and to healthy controls. METHODS We used a 2400 gene cDNA glass slide array (MICROMAX) to examine gene expression in peripheral blood mononuclear cells from seven patients with Crohn's disease, five patients with ulcerative colitis, 10 patients with other inflammatory gastrointestinal disorders, and 22 age- and sex-matched controls. Results. Novel categories of genes differentially expressed in Crohn's disease and ulcerative colitis patients included genes regulating hematopoietic cell differentiation and leukemogenesis, lipid raft-associated signaling, the actin cytoskeleton, and vesicular trafficking. CONCLUSIONS Altered gene expression in mononuclear cells may contribute to inflammatory bowel disease pathogenesis.
Collapse
|
11
|
Yu SH, Chiang WC, Shih HM, Wu KJ. Stimulation of c-Rel transcriptional activity by PKA catalytic subunit beta. J Mol Med (Berl) 2004; 82:621-8. [PMID: 15197457 DOI: 10.1007/s00109-004-0559-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 05/03/2004] [Indexed: 10/26/2022]
Abstract
Nuclear factor kappaB (NF-kappaB) is a eukaryotic transcription factor which responds to different extracellular signals. It is involved in immune response, inflammation, and cell proliferation. Increased expression of c-Rel (or its viral homolog v-Rel), one component of the NF-kappaB factors, induces tumorigenesis in different systems. The activity of NF-kappaB can be regulated by protein kinase A (PKA) in a cAMP-independent manner. Our previous results showed that c-MYC induces the activity of PKA by inducing the transcription of the gene encoding the PKA catalytic subunit beta (PKA-Cbeta). Constitutive expression of PKA-Cbeta in Rat1a cells induces their transformation. Here we show that CREB is unlikely to be a phosphorylation target of PKA-Cbeta as characterized by different cell lines. Electrophoretic mobility shift assays showed that c-Rel is present as a significant component of the NF-kappaB factors in c-MYC overexpressing status. The transcriptional activity of c-Rel was significantly stimulated by PKA-Cbeta. Coactivators p300/CBP are at least partially responsible for the enhanced activation mediated by c-Rel and PKA-Cbeta. Interaction between c-Rel and PKA-Cbeta was demonstrated using coimmunoprecipitation assays. Immunoprecipitation-in vitro phosphorylation assays showed the direct phosphorylation of c-Rel by PKA-Cbeta. These results indicate that c-Rel is a reasonable phosphorylation target of PKA-Cbeta, and that the transcriptional activity of c-Rel is stimulated by PKA-Cbeta possibly through the interaction with p300/CBP.
Collapse
Affiliation(s)
- Shih-Hung Yu
- Institute of Biochemistry, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
12
|
Gilmore TD, Kalaitzidis D, Liang MC, Starczynowski DT. The c-Rel transcription factor and B-cell proliferation: a deal with the devil. Oncogene 2004; 23:2275-86. [PMID: 14755244 DOI: 10.1038/sj.onc.1207410] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of the Rel/NF-kappaB signal transduction pathway has been associated with a variety of animal and human malignancies. However, among the Rel/NF-kappaB family members, only c-Rel has been consistently shown to be able to malignantly transform cells in culture. In addition, c-rel has been activated by a retroviral promoter insertion in an avian B-cell lymphoma, and amplifications of REL (human c-rel) are frequently seen in Hodgkin's lymphomas and diffuse large B-cell lymphomas, and in some follicular and mediastinal B-cell lymphomas. Phenotypic analysis of c-rel knockout mice demonstrates that c-Rel has a normal role in B-cell proliferation and survival; moreover, c-Rel nuclear activity is required for B-cell development. Few mammalian model systems are available to study the role of c-Rel in oncogenesis, and it is still not clear what features of c-Rel endow it with its unique oncogenic activity among the Rel/NF-kappaB family. In any event, REL may provide an appropriate therapeutic target for certain human lymphoid cell malignancies.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
13
|
Egan LJ, Eckmann L, Greten FR, Chae S, Li ZW, Myhre GM, Robine S, Karin M, Kagnoff MF. IkappaB-kinasebeta-dependent NF-kappaB activation provides radioprotection to the intestinal epithelium. Proc Natl Acad Sci U S A 2004; 101:2452-7. [PMID: 14983030 PMCID: PMC356971 DOI: 10.1073/pnas.0306734101] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute injury to the intestinal mucosa is a major dose-limiting complication of abdominal radiation therapy. We studied the role of the transcription factor NF-kappaB in protection against radiation-induced apoptosis in the intestinal epithelium in vivo. We use mice in which NF-kappaB signaling through IkappaB-kinase (IKK)-beta is selectively ablated in intestinal epithelial cells to show that failure to activate epithelial cell NF-kappaB in vivo results in a significant increase in radiation-induced epithelial cell apoptosis. Furthermore, bacterial lipopolysaccharide, which is normally a radioprotective agent, is radiosensitizing in IKKbeta-deficient intestinal epithelial cells. Increased apoptosis in IKKbeta-deficient intestinal epithelial cells was accompanied by increased expression and activation of the tumor suppressor p53 and decreased expression of antiapoptotic Bcl-2 family proteins. These results demonstrate the physiological importance of the NF-kappaB system in protection against radiation-induced death in the intestinal epithelium in vivo and identify IKKbeta as a key molecular target for radioprotection in the intestine. Selective preactivation of NF-kappaB through IKKbeta in intestinal epithelial cells could provide a therapeutic modality that allows higher doses of radiation to be tolerated during cancer radiotherapy.
Collapse
Affiliation(s)
- Laurence J Egan
- Laboratory of Mucosal Immunology, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Phelps CB, Ghosh G. Discreet mutations from c-Rel to v-Rel alter kappaB DNA recognition, IkappaBalpha binding, and dimerization: implications for v-Rel oncogenicity. Oncogene 2004; 23:1229-38. [PMID: 14961076 DOI: 10.1038/sj.onc.1207242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The avian Rev-T retrovirus encodes the oncoprotein v-Rel, a member of the Rel/nuclear factor (NF)-kappaB transcription factor family. The aggressive oncogenic potential of v-Rel has arisen from multiple mutations within the coding sequence of the avian cellular protein c-Rel. In this study, using quantitative biochemical experiments, we have tested the role of a limited set of alterations between v-Rel and c-Rel located within the Rel homology region (RHR) of the family that might confer functional differences. Our results show that only a set of six mutations within the RHR of v-Rel are responsible for its ability to bind to a broad spectrum of kappaB-DNA that are normally regulated by distinct NF-kappaB dimers. We also observe that both v-Rel homodimer and p50/v-Rel heterodimer bind IkappaBalpha weakly compared to other cellular Rel/NF-kappaB dimers with transcription activation potential. We suggest that the ability of v-Rel homodimer to deregulate subunit-specific gene expression and its ability to evade IkappaB inhibition are crucial to its strong oncogenic potential.
Collapse
Affiliation(s)
- Christopher B Phelps
- Department of Chemistry and Biochemistry, University of California, San Deigo, USA
| | | |
Collapse
|
15
|
Kucharczak J, Simmons MJ, Fan Y, Gélinas C. To be, or not to be: NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 2004; 22:8961-82. [PMID: 14663476 DOI: 10.1038/sj.onc.1207230] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During their lifetime, cells encounter many life or death situations that challenge their very own existence. Their survival depends on the interplay within a complex yet precisely orchestrated network of proteins. The Rel/NF-kappaB signaling pathway and the transcription factors that it activates have emerged as critical regulators of the apoptotic response. These proteins are best known for the key roles that they play in normal immune and inflammatory responses, but they are also implicated in the control of cell proliferation, differentiation, apoptosis and oncogenesis. In recent years, there has been remarkable progress in understanding the pathways that activate the Rel/NF-kappaB factors and their role in the cell's decision to either fight or surrender to apoptotic challenge. Whereas NF-kappaB is most commonly involved in suppressing apoptosis by transactivating the expression of antiapoptotic genes, it can promote programmed cell death in response to certain death-inducing signals and in certain cell types. This review surveys our current understanding of the role of NF-kappaB in the apoptotic response and focuses on many developments since this topic was last reviewed in Oncogene 4 years ago. These recent findings shed new light on the activity of NF-kappaB as a critical regulator of apoptosis in the immune, hepatic, epidermal and nervous systems, on the mechanisms through which it operates and on its role in tissue development, homoeostasis and cancer.
Collapse
Affiliation(s)
- Jérôme Kucharczak
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
16
|
Fan Y, Rayet B, Gélinas C. Divergent C-terminal transactivation domains of Rel/NF-κB proteins are critical determinants of their oncogenic potential in lymphocytes. Oncogene 2003; 23:1030-42. [PMID: 14647412 DOI: 10.1038/sj.onc.1207221] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
rel/nf-kappaB genes are amplified, overexpressed, or constitutively activated in many human hematopoietic tumors; however, the molecular mechanisms by which they contribute to tumorigenesis remain to be determined. Here, we explored the oncogenic potential of cellular Rel/NF-kappaB proteins in vitro and in vivo. We show that overexpression of wild-type mouse and human c-rel genes suffices to malignantly transform primary spleen cells in stringent soft agar assays and produce fatal tumors in vivo. In contrast relA and a constitutively active form of IKKbeta did not. Importantly, a hybrid RelA protein with its C-terminal transactivation domain substituted by that of v-Rel was potently oncogenic in vitro and in vivo. The transactivation domain of v-Rel selectively conferred an oncogenic phenotype upon the Rel homology domain (RHD) of RelA, but not to the more divergent RHDs of p50/NF-kappaB1, p52/NF-kappaB2, or RelB. Collectively, our results highlight important differences in the intrinsic oncogenic activity of mammalian c-Rel and RelA proteins, and indicate that critical determinants of their differential oncogenicity reside in their divergent transactivation domains. These findings provide experimental evidence for a role of mammalian Rel/NF-kappaB factors in leukemia/lymphomagenesis in an in vivo animal model, and are consistent with the implication of c-rel in many human lymphomas.
Collapse
Affiliation(s)
- Yongjun Fan
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854-5638, USA
| | | | | |
Collapse
|
17
|
Cheng S, Hsia CY, Leone G, Liou HC. Cyclin E and Bcl-xL cooperatively induce cell cycle progression in c-Rel−/− B cells. Oncogene 2003; 22:8472-86. [PMID: 14627988 DOI: 10.1038/sj.onc.1206917] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aberrant overexpression of the c-rel protooncogene is associated with lymphoid malignancy, while c-rel deletion produces severe lymphoproliferative defects and immunodeficiency. To investigate the mechanism of c-rel-induced proliferation and cell cycle progression in B lymphocytes, we have compared signaling events elicited through the BCR in c-rel-/- and wild-type B cells. BCR stimulation of c-rel-/- B cells fails to induce proper cyclin expression, resulting in G1 phase arrest, but it is unclear whether these defects are in fact secondary events of decreased B-cell survival, since c-rel deletion also affects the expression of antiapoptotic genes such as bcl-xL. Here, we use the bcl-xL transgene to correct the viability of c-rel-deficient B cells, and show that the inhibition of apoptosis does not necessarily confer hyperproliferation of B cells activated through the BCR. c-rel-/- B cells still fail to enter the S phase despite improved survival by bcl-xL overexpression, suggesting that c-Rel-associated cell cycle progression is dependent on more than just enhanced cell viability. Overexpression of cyclin E protein, however, can cooperate with Bcl-xL to restore cell cycle progression to c-rel-/- B cells via induction of the cyclin-CDK/Rb-E2F pathway. Furthermore, we show that c-Rel can directly regulate transcription of the e2f3a promoter/enhancer, which is then likely to lead to transcriptional activation of the cyclin E promoter by E2F3a. Hence, these studies provide clear evidence that control of lymphocyte proliferation via c-Rel is linked to a cyclin-dependent process, and suggest that c-Rel not only activates antiapoptotic signaling but also the induction of cell cycle progression.
Collapse
Affiliation(s)
- Shuhua Cheng
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
18
|
Turco MC, Romano MF, Petrella A, Bisogni R, Tassone P, Venuta S. NF-κB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 2003; 18:11-7. [PMID: 14574329 DOI: 10.1038/sj.leu.2403171] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The activity of NF-kappaB/Rel transcription factors can downmodulate apoptosis in normal and neoplastic cells of the hematologic and other compartments, contributing in maintaining neoplastic clone survival and impairing response to therapy. Alterations in nfkappab or ikappaB genes are documented in some hematologic neoplasias, while in others dysfunction in NF-kappaB/Rel-activating signaling pathways can be recognized. The prosurvival properties of NF-kappaB/Rel appear to rely on the induced expression of molecules (caspase inhibitors, Bcl2 protein family members, etc.), which interfere with the apoptosis pathway. Constitutive NF-kappaB/Rel activity in some hematologic malignancies could be advantageous for neoplastic clone expansion by counteracting stress stimuli (consumption of growth factors and metabolites) and immune system-triggered apoptosis; it is furthermore likely to play a central role in determining resistance to therapy. Based on this evidence, NF-kappaB/Rel-blocking approaches have been introduced in antineoplastic strategies. The identification of NF-kappaB/Rel target genes relevant for survival in specific neoplasias is required in order to address tailored therapies and avoid possible detrimental effects due to widespread NF-kappaB/Rel inhibition. Moreover, comparative analyses of normal hematopoietic progenitors and neoplastic cell sensitivities to inhibitors of NF-kappaB/Rel and their target genes will allow to evaluate the impact of these tools on normal bone marrow.
Collapse
Affiliation(s)
- M C Turco
- Department of Experimental Medicine, University of Catanzaro, Italy.
| | | | | | | | | | | |
Collapse
|