1
|
Chatterjee D, Zhang Z, Lin PY, Wang PH, Sidhu GK, Yennawar NH, Hsieh JWA, Chen PY, Song R, Meyers BC, Chopra S. Maize unstable factor for orange1 encodes a nuclear protein that affects redox accumulation during kernel development. THE PLANT CELL 2024; 37:koae301. [PMID: 39589935 DOI: 10.1093/plcell/koae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The basal endosperm transfer layer (BETL) of the maize (Zea mays L.) kernel is composed of transfer cells for nutrient transport to nourish the developing kernel. To understand the spatiotemporal processes required for BETL development, we characterized 2 unstable factor for orange1 (Zmufo1) mutant alleles. The BETL defects in these mutants were associated with high levels of reactive oxygen species, oxidative DNA damage, and cell death. Interestingly, antioxidant supplementation in in vitro cultured kernels alleviated the cellular defects in mutants. Transcriptome analysis of the loss-of-function Zmufo1 allele showed differential expression of tricarboxylic acid cycle, redox homeostasis, and BETL-related genes. The basal endosperms of the mutant alleles had high levels of acetyl-CoA and elevated histone acetyltransferase activity. The BETL cell nuclei showed reduced electron-dense regions, indicating sparse heterochromatin distribution in the mutants compared with wild-type. Zmufo1 overexpression further reduced histone methylation marks in the enhancer and gene body regions of the pericarp color1 (Zmp1) reporter gene. Zmufo1 encodes an intrinsically disordered nuclear protein with very low sequence similarity to known proteins. Yeast two-hybrid and luciferase complementation assays established that ZmUFO1 interacts with proteins that play a role in chromatin remodeling, nuclear transport, and transcriptional regulation. This study establishes the critical function of Zmufo1 during basal endosperm development in maize kernels.
Collapse
Affiliation(s)
- Debamalya Chatterjee
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ziru Zhang
- National Center for Maize Improvement, China Agricultural University, Beijing 100083, China
| | - Pei-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Po-Hao Wang
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gurpreet K Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H Yennawar
- X-Ray Crystallography Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jo-Wei Allison Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Rentao Song
- National Center for Maize Improvement, China Agricultural University, Beijing 100083, China
| | - Blake C Meyers
- The Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65201, USA
| | - Surinder Chopra
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Zhu GQ, Wang Y, Wang B, Liu WR, Dong SS, Chen EB, Cai JL, Wan JL, Du JX, Song LN, Chen SP, Yu L, Zhou ZJ, Wang Z, Zhou J, Shi YH, Fan J, Dai Z. Targeting HNRNPM Inhibits Cancer Stemness and Enhances Antitumor Immunity in Wnt-activated Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2022; 13:1413-1447. [PMID: 35158098 PMCID: PMC8938476 DOI: 10.1016/j.jcmgh.2022.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Cancer stemness and immune evasion are closely associated and play critical roles in tumor development and resistance to immunotherapy. However, little is known about the underlying molecular mechanisms that coordinate this association. METHODS The expressions of heterogeneous nuclear ribonucleoprotein M (HNRNPM) in 240 hepatocellular carcinoma (HCC) samples, public databases, and liver development databases were analyzed. Chromatin immunoprecipitation assays were performed to explore the associations between stem-cell transcription factors and HNRNPM. HNRNPM-regulated alternative splicing (AS) and its binding motif were identified by RNA-seq and RIP-seq. HNRNPM-specific antisense oligonucleotides were developed to explore potential therapeutic targets in HCC. CD8+ T cells that were co-cultured with tumor cells were sorted by flow cytometry assays. RESULTS We identified an elevated oncofetal splicing factor in HCC, HNRNPM, that unifies and regulates the positive association between cancer stemness and immune evasion. HNRNPM knockdown abolished HCC tumorigenesis and diminished cancer stem cell properties in vitro and in vivo. Mechanistically, HNRNPM regulated the AS of MBD2 by binding its flanking introns, whose isoforms played opposing roles. Although MBD2a and MBD2c competitively bound to CpG islands in the FZD3 promoter, MBD2a preferentially increased FZD3 expression and then activated the WNT/β-catenin pathway. Interestingly, FZD3 and β-catenin further provided additional regulation by targeting OCT4 and SOX2. We found that HNRNPM inhibition significantly promoted CD8+ T cell activation and that HNRNPM- antisense oligonucleotides effectively inhibited WNT/β-catenin to enhance anti-programmed cell death protein-1 immunotherapy by promoting CD8+ T cell infiltration. CONCLUSIONS HNRNPM has a tumor-intrinsic function in generating an immunosuppressive HCC environment through an AS-dependent mechanism and demonstrates proof of the concept of targeting HNRNPM in tailoring HCC immunotherapeutic approaches.
Collapse
Affiliation(s)
- Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yi Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Shuang-Shuang Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Er-Bao Chen
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jia-Liang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jing-Lei Wan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Na Song
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Shi-Ping Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Lei Yu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zheng-Jun Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zheng Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Sharifi Tabar M, Giardina C, Feng Y, Francis H, Moghaddas Sani H, Low JKK, Mackay JP, Bailey CG, Rasko JEJ. Unique protein interaction networks define the chromatin remodelling module of the NuRD complex. FEBS J 2021; 289:199-214. [PMID: 34231305 PMCID: PMC9545347 DOI: 10.1111/febs.16112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 01/13/2023]
Abstract
The combination of four proteins and their paralogues including MBD2/3, GATAD2A/B, CDK2AP1 and CHD3/4/5, which we refer to as the MGCC module, form the chromatin remodelling module of the nucleosome remodelling and deacetylase (NuRD) complex. To date, mechanisms by which the MGCC module acquires paralogue-specific function and specificity have not been addressed. Understanding the protein-protein interaction (PPI) network of the MGCC subunits is essential for defining underlying mechanisms of gene regulation. Therefore, using pulldown followed by mass spectrometry analysis (PD-MS), we report a proteome-wide interaction network of the MGCC module in a paralogue-specific manner. Our data also demonstrate that the disordered C-terminal region of CHD3/4/5 is a gateway to incorporate remodelling activity into both ChAHP (CHD4, ADNP, HP1γ) and NuRD complexes in a mutually exclusive manner. We define a short aggregation-prone region (APR) within the C-terminal segment of GATAD2B that is essential for the interaction of CHD4 and CDK2AP1 with the NuRD complex. Finally, we also report an association of CDK2AP1 with the nuclear receptor co-repressor (NCOR) complex. Overall, this study provides insight into the possible mechanisms through which the MGCC module can achieve specificity and diverse biological functions.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, NSW, Australia
| | - Caroline Giardina
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Yue Feng
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Habib Francis
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | | | - Jason K K Low
- School of Life & Environmental Sciences, The University of Sydney, NSW, Australia
| | - Joel P Mackay
- School of Life & Environmental Sciences, The University of Sydney, NSW, Australia
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
4
|
Liu Z, Sun L, Cai Y, Shen S, Zhang T, Wang N, Wu G, Ma W, Li ST, Suo C, Hao Y, Jia WD, Semenza GL, Gao P, Zhang H. Hypoxia-Induced Suppression of Alternative Splicing of MBD2 Promotes Breast Cancer Metastasis via Activation of FZD1. Cancer Res 2021; 81:1265-1278. [PMID: 33402389 DOI: 10.1158/0008-5472.can-20-2876] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/19/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Metastasis is responsible for the majority of breast cancer-related deaths, however, the mechanisms underlying metastasis in this disease remain largely elusive. Here we report that under hypoxic conditions, alternative splicing of MBD2 is suppressed, favoring the production of MBD2a, which facilitates breast cancer metastasis. Specifically, MBD2a promoted, whereas its lesser known short form MBD2c suppressed metastasis. Activation of HIF1 under hypoxia facilitated MBD2a production via repression of SRSF2-mediated alternative splicing. As a result, elevated MBD2a outcompeted MBD2c for binding to promoter CpG islands to activate expression of FZD1, thereby promoting epithelial-to-mesenchymal transition and metastasis. Strikingly, clinical data reveal significantly correlated expression of MBD2a and MBD2c with the invasiveness of malignancy, indicating opposing roles for MBD2 splicing variants in regulating human breast cancer metastasis. Collectively, our findings establish a novel link between MBD2 switching and tumor metastasis and provide a promising therapeutic strategy and predictive biomarkers for hypoxia-driven breast cancer metastasis. SIGNIFICANCE: This study defines the opposing roles and clinical relevance of MBD2a and MBD2c, two MBD2 alternative splicing products, in hypoxia-driven breast cancer metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/5/1265/F1.large.jpg.
Collapse
Affiliation(s)
- Zhaoji Liu
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Linchong Sun
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Laboratory of Cancer and Stem Cell Metabolism, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Yongping Cai
- Department of Pathology, School of Medicine, Anhui Medical University, Hefei, China
| | - Shengqi Shen
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Tong Zhang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Nana Wang
- Department of Pathology, School of Medicine, Anhui Medical University, Hefei, China
| | - Gongwei Wu
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Wenhao Ma
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Shi-Ting Li
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Caixia Suo
- Laboratory of Cancer and Stem Cell Metabolism, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Yijie Hao
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Wei-Dong Jia
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Gregg L Semenza
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Ping Gao
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.
- Laboratory of Cancer and Stem Cell Metabolism, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Huafeng Zhang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Gong W, Ni M, Chen Z, Zheng Z. Expression and clinical significance of methyl-CpG binding domain protein 2 in high-grade serous ovarian cancer. Oncol Lett 2020; 20:2749-2756. [PMID: 32782591 PMCID: PMC7400232 DOI: 10.3892/ol.2020.11836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Platinum resistance is an important cause of clinical recurrence and mortality of patients with high-grade serous ovarian cancer (HGSOC). Methyl-CpG binding domain protein 2 (MBD2) serves an important role in tumor progression; however, its role in HGSOC remains unclear. The aim of the present study was to investigate the expression of MBD2 in HGSOC and its role in drug resistance and prognosis of HGSOC. MBD2 expression was analyzed by immunohistochemical staining and western blotting. The associations between MBD2 expression and clinical pathological features, platinum resistance and patient prognosis were analyzed using a χ2 test, Kaplan-Meier analysis and Cox regression analysis. Positive MBD2 expression was detected in 73 (63.5%) of the HGSOC tissue samples, whereas it was undetectable in all 16 normal tissue samples (100%) analyzed, indicating a significantly higher expression level in tumor tissues compared with normal tissues (P<0.001). Additionally, MBD2 expression was significantly higher in platinum-resistant cases compared with that in platinum-sensitive cases (P<0.05). In addition, high expression of MBD2 was negatively associated with relapse-free survival (P<0.05). In conclusion, MBD2 was demonstrated to be a potential drug target and a biomarker for poor prognosis in HGSOC.
Collapse
Affiliation(s)
- Wangang Gong
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China.,Zhejiang Cancer Research Institute, Cancer Hospital of The University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China.,Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Maowei Ni
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China.,Zhejiang Cancer Research Institute, Cancer Hospital of The University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China.,Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Zhongbo Chen
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China.,Zhejiang Cancer Research Institute, Cancer Hospital of The University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China.,Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Zhiguo Zheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China.,Zhejiang Cancer Research Institute, Cancer Hospital of The University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China.,Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
6
|
Pei YF, Xu XN, Wang ZF, Wang FW, Wu WD, Geng JF, Liu XQ. Methyl-CpG Binding Domain Protein 2 Inhibits the Malignant Characteristic of Lung Adenocarcinoma through the Epigenetic Modulation of 10 to 11 Translocation 1 and miR-200s. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1065-1076. [PMID: 30735628 DOI: 10.1016/j.ajpath.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
It has been reported that disorders of epigenetic modulation play a critical role in carcinogenesis. Methyl-CpG binding domain protein 2 (MBD2) is known to act as an epigenetic modulator in various types of tumors; however, the role of MBD2 in lung adenocarcinoma (LUAD) remains unclear. Herein, we demonstrated the down-regulation of MBD2 in LUAD compared with adjacent nontumor tissues. The down-regulation of MBD2 in LUAD was correlated with metastasis and poor survival. In addition, MBD2 inhibited tumor metastasis by maintaining the expression of the miR-200s, which suppressed the invasive properties of tumors. Also, MBD2 positively correlated with 5-hydroxymethylcytosine content in the promoter of miR-200s. The conventional view is that MBD2 acts as a transcriptional suppressor. However, the data revealed that MBD2 may act as a transcriptional activator by recruiting 10 to 11 translocation 1 (TET1) and forming a chromatin-remodeling complex. The MBD2-TET1 complex locates to the TET1 promoter and removes the methyl residues in this region, thereby activating TET1 transcription. TET1 also acted as a tumor suppressor in LUAD. Taken together, the data demonstrate the correlation between MBD2, miR-200s, and TET1, and tumor suppressive effect of MBD2 through up-regulation of TET1 and the miR-200s.
Collapse
Affiliation(s)
- Yao-Fei Pei
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xiang-Nan Xu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zhi-Fei Wang
- Department of Hepatopancreatobiliary Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, People's Republic of China; Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Fu-Wei Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, People's Republic of China; Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Wei-Ding Wu
- Department of Hepatopancreatobiliary Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, People's Republic of China; Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jun-Feng Geng
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Xi-Qiang Liu
- Department of Hepatopancreatobiliary Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, People's Republic of China; Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, People's Republic of China.
| |
Collapse
|
7
|
Barnes NE, Mendoza KM, Strasburg GM, Velleman SG, Reed KM. Thermal challenge alters the transcriptional profile of the breast muscle in turkey poults. Poult Sci 2019; 98:74-91. [PMID: 30239949 DOI: 10.3382/ps/pey401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022] Open
Abstract
Extremes in temperature represent environmental stressors that impact the well-being and economic value of poultry. As homeotherms, young poultry with immature thermoregulatory systems are especially susceptible to thermal extremes. Genetic variation and differences in gene expression resulting from selection for production traits, likely contribute to thermal stress response. This study was designed to investigate in vivo transcriptional changes in the breast muscle of young turkey poults from an unselected randombred line and one selected for 16 wk body weight under hot and cold thermal challenge. Newly hatched turkey poults were brooded for 3 d at one of 3 temperatures: control (35°C), cold (31°C), or hot (39°C). Samples of the pectoralis major were harvested and subjected to deep RNA sequencing. Significant differential gene expression was observed in both growth-selected and randombred birds at both temperature extremes when compared to control-brooded poults. Growth-selected birds responded to thermal stress through changes in genes predicted to have downstream transcriptional effects and that would result in reduced muscle growth. Slower growing randombred birds responded to thermal stress through modulation of lipid-related genes, suggesting reduction in lipid storage, transport, and synthesis, consistent with changes in energy metabolism required to maintain body temperature.
Collapse
Affiliation(s)
- Natalie E Barnes
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Kristelle M Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
8
|
Fujita H, Aratani S, Yagishita N, Nishioka K, Nakajima T. Identification of the inhibitory activity of walnut extract on the E3 ligase Syvn1. Mol Med Rep 2018; 18:5701-5708. [PMID: 30365055 DOI: 10.3892/mmr.2018.9576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/13/2018] [Indexed: 11/06/2022] Open
Abstract
Synoviolin (Syvn1), an E3 ubiquitin ligase in endoplasmic reticulum‑associated protein degradation, is involved in rheumatoid arthritis, fibrosis, liver cirrhosis and obesity. We previously demonstrated that Syvn1 negatively regulates the function of peroxisome proliferator‑activated receptor gamma coactivator‑1β (PGC‑1β). In addition, treatment with a Syvn1 inhibitor suppressed weight gain in a mouse model of obesity by activating PGC‑1β via Syvn1 inhibition. It has been suggested that the Syvn1 inhibitors may have therapeutic benefits in obese patients. The present study tested the inhibitory activity of walnut extract, a natural product, on Syvn1 activity. Walnut extract inhibited the effect of Syvn1 on the cell proliferation of rheumatoid synovial cells and repressed the interaction between PGC‑1β and Syvn1 in an in vitro binding assay. Polyubiquitination of PGC‑1β by Syvn1 was suppressed by walnut extract in a concentration‑dependent manner, but walnut extract did not have an inhibitory effect on the autoubiquitination of Syvn1. Treatment with walnut extract in mouse embryonic fibroblasts increased the number of mitochondria, suggesting that exposure to the extract recovered PGC‑1β function. These results demonstrated that constituents of walnut extract may serve as lead compounds in drug development efforts aiming to produce drugs to treat patients with obesity and obesity‑associated metabolic diseases.
Collapse
Affiliation(s)
- Hidetoshi Fujita
- Institute of Medical Science, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Satoko Aratani
- Institute of Medical Science, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Naoko Yagishita
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216‑8511, Japan
| | - Kusuki Nishioka
- Institute of Medical Science, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Toshihiro Nakajima
- Institute of Medical Science, Tokyo Medical University, Tokyo 160‑8402, Japan
| |
Collapse
|
9
|
Ishida Y, Fujita H, Aratani S, Chijiiwa M, Taniguchi N, Yokota M, Ogihara Y, Uoshima N, Nagashima F, Uchino H, Nakajima T. The NRF2‑PGC‑1β pathway activates kynurenine aminotransferase 4 via attenuation of an E3 ubiquitin ligase, synoviolin, in a cecal ligation/perforation‑induced septic mouse model. Mol Med Rep 2018; 18:2467-2475. [PMID: 29916549 DOI: 10.3892/mmr.2018.9175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 03/15/2018] [Indexed: 11/06/2022] Open
Abstract
Sepsis‑associated encephalopathy (SAE) is a systemic inflammatory response syndrome of which the precise associated mechanisms remain unclear. Synoviolin (Syvn1) is an E3 ubiquitin ligase involved in conditions associated with chronic inflammation, including rheumatoid arthritis, obesity, fibrosis and liver cirrhosis. However, the role of Syvn1 in acute inflammation is not clear. The aim of the present study was to investigate the role of Syvn1 in a septic mouse model induced by cecal ligation/perforation (CLP). Metabolome analysis revealed that kynurenine (KYN), a key factor for the development of neuroinflammation, was increased in CLP‑induced septic mice. Notably, KYN was not detected in CLP‑induced septic Syvn1‑deficient mice. KYN is converted to kynurenic acid (KYNA) by kynurenine aminotransferases (KATs), which has a neuroprotective effect. The expression of KAT4 was significantly increased in Syvn1‑deficient mice compared to that in wild‑type mice. Promoter analysis demonstrated that Syvn1 knockdown induced the KAT4 promoter activity, as assessed by luciferase reporter activity, whereas Syvn1 overexpression repressed this activity in a dose‑dependent manner. Furthermore, the KAT4 promoter was significantly activated by the transcriptional factors, NF‑E2‑related factor 2 and peroxisome proliferator‑activated receptor coactivator 1β, which are targets of Syvn1‑induced degradation. In conclusion, the results of the current study demonstrates that the repression of Syvn1 expression induces the conversion of neurotoxic KYN to neuroprotective KYNA in a CLP‑induced mouse model of sepsis, and that Syvn1 is a potential novel target for the treatment of SAE.
Collapse
Affiliation(s)
- Yusuke Ishida
- Department of Anesthesiology, Tokyo Medical University Hospital, Tokyo 160‑0023, Japan
| | - Hidetoshi Fujita
- Institute of Medical Science, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Satoko Aratani
- Institute of Medical Science, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Miyuki Chijiiwa
- Department of Anesthesiology, Tokyo Medical University Hospital, Tokyo 160‑0023, Japan
| | - Noboru Taniguchi
- Department of Medicine of Sensory and Motor Organs, Division of Orthopedic Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889‑1692, Japan
| | - Maho Yokota
- Institute of Medical Science, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Yukihiko Ogihara
- Department of Anesthesiology, Tokyo Medical University Hospital, Tokyo 160‑0023, Japan
| | - Naomi Uoshima
- Department of Anesthesiology, Tokyo Medical University Hospital, Tokyo 160‑0023, Japan
| | - Fumiaki Nagashima
- Department of Anesthesiology, Tokyo Medical University Hospital, Tokyo 160‑0023, Japan
| | - Hiroyuki Uchino
- Department of Anesthesiology, Tokyo Medical University Hospital, Tokyo 160‑0023, Japan
| | - Toshihiro Nakajima
- Institute of Medical Science, Tokyo Medical University, Tokyo 160‑8402, Japan
| |
Collapse
|
10
|
Lee T, Pelletier J. The biology of DHX9 and its potential as a therapeutic target. Oncotarget 2018; 7:42716-42739. [PMID: 27034008 PMCID: PMC5173168 DOI: 10.18632/oncotarget.8446] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
DHX9 is member of the DExD/H-box family of helicases with a “DEIH” sequence at its eponymous DExH-box motif. Initially purified from human and bovine cells and identified as a homologue of the Drosophila Maleless (MLE) protein, it is an NTP-dependent helicase consisting of a conserved helicase core domain, two double-stranded RNA-binding domains at the N-terminus, and a nuclear transport domain and a single-stranded DNA-binding RGG-box at the C-terminus. With an ability to unwind DNA and RNA duplexes, as well as more complex nucleic acid structures, DHX9 appears to play a central role in many cellular processes. Its functions include regulation of DNA replication, transcription, translation, microRNA biogenesis, RNA processing and transport, and maintenance of genomic stability. Because of its central role in gene regulation and RNA metabolism, there are growing implications for DHX9 in human diseases and their treatment. This review will provide an overview of the structure, biochemistry, and biology of DHX9, its role in cancer and other human diseases, and the possibility of targeting DHX9 in chemotherapy.
Collapse
Affiliation(s)
- Teresa Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Gigek CO, Chen ES, Smith MAC. Methyl-CpG-Binding Protein (MBD) Family: Epigenomic Read-Outs Functions and Roles in Tumorigenesis and Psychiatric Diseases. J Cell Biochem 2016. [PMID: 26205787 DOI: 10.1002/jcb.25281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is the study of the heritable changes on gene expression that are responsible for the regulation of development and that have an impact on several diseases. However, it is of equal importance to understand how epigenetic machinery works. DNA methylation is the most studied epigenetic mark and is generally associated with the regulation of gene expression through the repression of promoter activity and by affecting genome stability. Therefore, the ability of the cell to interpret correct methylation marks and/or the correct interpretation of methylation plays a role in many diseases. The major family of proteins that bind methylated DNA is the methyl-CpG binding domain proteins, or the MBDs. Here, we discuss the structure that makes these proteins a family, the main functions and interactions of all protein family members and their role in human disease such as psychiatric disorders and cancer.
Collapse
Affiliation(s)
- Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha, 1, ° andar, CEP 04023-900, São Paulo, SP, Brazil.,Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo (UNIFESP), R. Napoleão de Barros, 715, 2º andar, CEP:04024-002, São Paulo, Brazil
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha, 1, ° andar, CEP 04023-900, São Paulo, SP, Brazil
| | - Marilia Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha, 1, ° andar, CEP 04023-900, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Wood KH, Zhou Z. Emerging Molecular and Biological Functions of MBD2, a Reader of DNA Methylation. Front Genet 2016; 7:93. [PMID: 27303433 PMCID: PMC4880565 DOI: 10.3389/fgene.2016.00093] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/10/2016] [Indexed: 01/25/2023] Open
Abstract
DNA methylation is an epigenetic mark that is essential for many biological processes and is linked to diseases such as cancer. Methylation is usually associated with transcriptional silencing, but new research has challenged this model. Both transcriptional activation and repression have recently been found to be associated with DNA methylation in a context-specific manner. How DNA methylation patterns are interpreted into different functional output remains poorly understood. One mechanism involves the protein ‘readers’ of methylation, which includes the methyl-CpG binding domain (MBD) family of proteins. This review examines the molecular and biological functions of MBD2, which binds to CpG methylation and is an integral part of the nucleosome remodeling and histone deacetylation (NuRD) complex. MBD2 has been linked to immune system function and tumorigenesis, yet little is known about its functions in vivo. Recent studies have found the MBD2 protein is ubiquitously expressed, with relatively high levels in the lung, liver, and colon. Mbd2 null mice surprisingly show relatively mild phenotypes compared to mice with loss of function of other MBD proteins. This evidence has previously been interpreted as functional redundancy between the MBD proteins. Here, we examine and contextualize research that suggests MBD2 has unique properties and functions among the MBD proteins. These functions translate to recently described roles in the development and differentiation of multiple cell lineages, including pluripotent stem cells and various cell types of the immune system, as well as in tumorigenesis. We also consider possible models for the dynamic interactions between MBD2 and NuRD in different tissues in vivo. The functions of MBD2 may have direct therapeutic implications for several areas of human disease, including autoimmune conditions and cancer, in addition to providing insights into the actions of NuRD and chromatin regulation.
Collapse
Affiliation(s)
- Kathleen H Wood
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Zhaolan Zhou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
13
|
Fujita H, Aratani S, Fujii R, Yamano Y, Yagishita N, Araya N, Izumi T, Azakami K, Hasegawa D, Nishioka K, Nakajima T. Mitochondrial ubiquitin ligase activator of NF-κB regulates NF-κB signaling in cells subjected to ER stress. Int J Mol Med 2016; 37:1611-8. [PMID: 27082251 DOI: 10.3892/ijmm.2016.2566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/06/2016] [Indexed: 11/05/2022] Open
Abstract
The nuclear factor-κB (NF-κB) transcription factor family members control various biological processes, such as apoptosis and proliferation. The endoplasmic reticulum (ER) has emerged as a major site of cellular homeostasis regulation. The accumulation of misfolded protein in the ER causes stress and ER stress-induced NF-κB activation to protect cells from apoptosis. In this study, we found a putative ER stress-response element (ERSE) on the promoter of mitochondrial ubiquitin ligase activator of NF-κB (MULAN), and that MULAN expression was upregulated by ER stress. MULAN specifically activated NF-κB dependent gene expression in an E3 ligase activity-dependent manner. The ectopic expression of MULAN induced the nuclear translocation of endogenous p65 and the degradation of IκB. Binding assay revealed that MULAN was associated with transforming growth factor β-activated kinase (TAK1). The knockdown of MULAN using siRNA inhibited the activation of NF-κB in the cells subjected to ER stress. The findings of our study indicate that MULAN is an E3 ligase that regulates NF-κB activation to protect cells from ER stress-induced apoptosis.
Collapse
Affiliation(s)
- Hidetoshi Fujita
- Institute of Medical Science, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Satoko Aratani
- Institute of Medical Science, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Ryouji Fujii
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216‑8511, Japan
| | - Yoshihisa Yamano
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216‑8511, Japan
| | - Naoko Yagishita
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216‑8511, Japan
| | - Natsumi Araya
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216‑8511, Japan
| | - Toshihiko Izumi
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216‑8511, Japan
| | - Kazuko Azakami
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216‑8511, Japan
| | - Daisuke Hasegawa
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216‑8511, Japan
| | - Kusuki Nishioka
- Institute of Medical Science, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Toshihiro Nakajima
- Institute of Medical Science, Tokyo Medical University, Tokyo 160‑8402, Japan
| |
Collapse
|
14
|
Sun Y, Yang Y, Shen H, Huang M, Wang Z, Liu Y, Zhang H, Tang TS, Guo C. iTRAQ-based chromatin proteomic screen reveals CHD4-dependent recruitment of MBD2 to sites of DNA damage. Biochem Biophys Res Commun 2016; 471:142-8. [DOI: 10.1016/j.bbrc.2016.01.162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 11/29/2022]
|
15
|
Du Q, Luu PL, Stirzaker C, Clark SJ. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 2015; 7:1051-73. [DOI: 10.2217/epi.15.39] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How DNA methylation is interpreted and influences genome regulation remains largely unknown. Proteins of the methyl-CpG-binding domain (MBD) family are primary candidates for the readout of DNA methylation as they recruit chromatin remodelers, histone deacetylases and methylases to methylated DNA associated with gene repression. MBD protein binding requires both functional MBD domains and methyl-CpGs; however, some MBD proteins also bind unmethylated DNA and active regulatory regions via alternative regulatory domains or interaction with the nucleosome remodeling deacetylase (NuRD/Mi-2) complex members. Mutations within MBD domains occur in many diseases, including neurological disorders and cancers, leading to loss of MBD binding specificity to methylated sites and gene deregulation. Here, we summarize the current state of knowledge about MBD proteins and their role as readers of the epigenome.
Collapse
Affiliation(s)
- Qian Du
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Phuc-Loi Luu
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent's Clinical School, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent's Clinical School, University of NSW, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
16
|
Weaver ICG, Hellstrom IC, Brown SE, Andrews SD, Dymov S, Diorio J, Zhang TY, Szyf M, Meaney MJ. The methylated-DNA binding protein MBD2 enhances NGFI-A (egr-1)-mediated transcriptional activation of the glucocorticoid receptor. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0513. [PMID: 25135974 DOI: 10.1098/rstb.2013.0513] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Variations in maternal care in the rat influence the epigenetic state and transcriptional activity of glucocorticoid receptor (GR) gene in the hippocampus. The mechanisms underlying this maternal effect remained to be defined, including the nature of the relevant maternally regulated intracellular signalling pathways. We show here that increased maternal licking/grooming (LG), which stably enhances hippocampal GR expression, paradoxically increases hippocampal expression of the methyl-CpG binding domain protein-2 (MBD2) and MBD2 binding to the exon 17 GR promoter. Knockdown experiments of MBD2 in hippocampal primary cell culture show that MBD2 is required for activation of exon 17 GR promoter. Ectopic co-expression of nerve growth factor-inducible protein A (NGFI-A) with MBD2 in HEK 293 cells with site-directed mutagenesis of the NGFI-A response element within the methylated exon 17 GR promoter supports the hypothesis that MBD2 collaborates with NGFI-A in binding and activation of this promoter. These data suggest a possible mechanism linking signalling pathways, which are activated by behavioural stimuli and activation of target genes.
Collapse
Affiliation(s)
- Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia, Canada B3H 0A8
| | - Ian C Hellstrom
- Lumder Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec, Canada H4H 1R3 Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4
| | - Shelley E Brown
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Oslar Promenade, Montréal, Québec, Canada H3G 1Y6
| | - Stephen D Andrews
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Oslar Promenade, Montréal, Québec, Canada H3G 1Y6
| | - Sergiy Dymov
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Oslar Promenade, Montréal, Québec, Canada H3G 1Y6
| | - Josie Diorio
- Lumder Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec, Canada H4H 1R3 Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4
| | - Tie-Yuan Zhang
- Lumder Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec, Canada H4H 1R3 Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4
| | - Moshe Szyf
- Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4 Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Oslar Promenade, Montréal, Québec, Canada H3G 1Y6
| | - Michael J Meaney
- Lumder Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec, Canada H4H 1R3 Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4
| |
Collapse
|
17
|
Fujita H, Yagishita N, Aratani S, Saito-Fujita T, Morota S, Yamano Y, Hansson MJ, Inazu M, Kokuba H, Sudo K, Sato E, Kawahara KI, Nakajima F, Hasegawa D, Higuchi I, Sato T, Araya N, Usui C, Nishioka K, Nakatani Y, Maruyama I, Usui M, Hara N, Uchino H, Elmer E, Nishioka K, Nakajima T. The E3 ligase synoviolin controls body weight and mitochondrial biogenesis through negative regulation of PGC-1β. EMBO J 2015; 34:1042-55. [PMID: 25698262 DOI: 10.15252/embj.201489897] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/19/2015] [Indexed: 12/26/2022] Open
Abstract
Obesity is a major global public health problem, and understanding its pathogenesis is critical for identifying a cure. In this study, a gene knockout strategy was used in post-neonatal mice to delete synoviolin (Syvn)1/Hrd1/Der3, an ER-resident E3 ubiquitin ligase with known roles in homeostasis maintenance. Syvn1 deficiency resulted in weight loss and lower accumulation of white adipose tissue in otherwise wild-type animals as well as in genetically obese (ob/ob and db/db) and adipose tissue-specific knockout mice as compared to control animals. SYVN1 interacted with and ubiquitinated the thermogenic coactivator peroxisome proliferator-activated receptor coactivator (PGC)-1β, and Syvn1 mutants showed upregulation of PGC-1β target genes and increase in mitochondrion number, respiration, and basal energy expenditure in adipose tissue relative to control animals. Moreover, the selective SYVN1 inhibitor LS-102 abolished the negative regulation of PGC-1β by SYVN1 and prevented weight gain in mice. Thus, SYVN1 is a novel post-translational regulator of PGC-1β and a potential therapeutic target in obesity treatment.
Collapse
Affiliation(s)
- Hidetoshi Fujita
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan Department of Future Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Naoko Yagishita
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Satoko Aratani
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan Department of Future Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tomoko Saito-Fujita
- Department of Obstetrics and Gynecology University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Saori Morota
- Department of Anesthesiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yoshihisa Yamano
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Magnus J Hansson
- Mitochondrial Pathophysiology Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Masato Inazu
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hiroko Kokuba
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Eiichi Sato
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan Medical Research Center, Tokyo Medical University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Ko-Ichi Kawahara
- Department of Biomedical Engineering, Osaka Institute of Technology, Asahi-ku, 11Neurology and Geriatrics, Japan
| | - Fukami Nakajima
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Hasegawa
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Itsuro Higuchi
- Neurology and Geriatrics, Faculty of Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Tomoo Sato
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Natsumi Araya
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Chie Usui
- Department of Psychiatry, Juntendo University Nerima Hospital, Nerima-ku, Tokyo, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yu Nakatani
- Department of Future Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Ikuro Maruyama
- Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Masahiko Usui
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Naomi Hara
- Department of Anesthesiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Uchino
- Department of Anesthesiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Eskil Elmer
- Mitochondrial Pathophysiology Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kusuki Nishioka
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Toshihiro Nakajima
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan Department of Future Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan Medical Research Center, Tokyo Medical University Hospital, Shinjuku-ku, Tokyo, Japan Department of Biomedical Engineering, Osaka Institute of Technology, Asahi-ku, 11Neurology and Geriatrics, Japan integrated Gene Editing Section (iGES), Tokyo Medical University Hospital, Shinjuku-ku, Tokyo, Japan Bayside Misato Medical Center, Niida, Kōchi, Japan
| |
Collapse
|
18
|
Liu XY, Tang SH, Wu SL, Luo YH, Cao MR, Zhou HK, Jiang XW, Shu JC, Bie CQ, Huang SM, Zheng ZH, Gao F. Epigenetic modulation of insulin-like growth factor-II overexpression by hepatitis B virus X protein in hepatocellular carcinoma. Am J Cancer Res 2015; 5:956-978. [PMID: 26045980 PMCID: PMC4449429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023] Open
Abstract
Hepatitis B virus X protein (HBx) is involved in the pathogenesis of hepatocellular carcinoma (HCC). Overexpression of the transcripts from the P3 and P4 promoters of the insulin-like growth factor-II (IGF-II) gene is observed in HCC. The present study investigated the involvement of HBx in IGF-II overexpression and its epigenetic regulation. Firstly, the effects of HBx on P3 and P4 mRNA expression, the methylation status of the P3 and P4 promoters, and MBD2 expression were analyzed in human HCC cells and HCC samples. Next, interaction between HBx and MBD2 or CBP/p300 was assessed by co-immunoprecipitation, and HBx-mediated binding of MBD2 and CBP/p300 to the P3 and P4 promoters and the acetylation of the corresponding histones H3 and H4 were evaluated by quantitative chromatin immunoprecipitation. Finally, using siRNA knockdown, we investigated the roles of MBD2 and CBP/p300 in IGF-II overexpression and its epigenetic regulation. Our results showed that HBx promotes IGF-II expression via inducing the hypomethylation of the P3 and P4 promoters, and that HBx increases MBD2 expression, directly interacts with MBD2 and CBP/p300, and elevates their recruitment to the hypomethylated P3 and P4 promoters with increased acetylation levels of the corresponding histones H3 and H4. Further results showed that endogenous MBD2 and CBP/p300 are necessary for HBx-induced IGF-II overexpression and that CBP/p300 presence and CBP/p300-mediated acetylation of histones H3 and H4 are partially required for MBD2 binding and its demethylase activity. These data suggest that HBx induces MBD2-HBx-CBP/p300 complex formation via interaction with MBD2 and CBP/p300, which contributes to the hypomethylation and transcriptional activation of the IGF-II-P3 and P4 promoters and that CBP/p300-mediated acetylation of histones H3 and H4 may be a rate-limiting step for the hypomethylation and activation of these two promoters. This study provides an alternative mechanism for understanding the pathogenesis of HBx-mediated HCC.
Collapse
Affiliation(s)
- Xu You Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan UniversityGuangzhou, 510632, China
| | - Shao Hui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan UniversityGuangzhou, 510632, China
| | - Sheng Lan Wu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan UniversityGuangzhou, 510632, China
| | - Yu Hong Luo
- Department of General Surgery, The First Affiliated Hospital, Jinan UniversityGuangzhou, 510632, China
| | - Ming Rong Cao
- Department of General Surgery, The First Affiliated Hospital, Jinan UniversityGuangzhou, 510632, China
| | - Hong Ke Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Jinan UniversityGuangzhou, 510632, China
| | - Xiang Wu Jiang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan UniversityGuangzhou, 510632, China
| | - Jian Chang Shu
- Department of Gastroenterology, Guangzhou Red Cross Hospital Affiliated to Medical College of Jinan UniversityGuangzhou, 510220, China
| | - Cai Qun Bie
- Department of Gastroenterology, The Affiliated Shenzhen Shajing Hospital, Guangzhou Medical UniversityShenzhen, 518104, China
| | - Si Min Huang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan UniversityGuangzhou, 510632, China
| | - Zhan Hong Zheng
- Department of Gastroenterology, The First Affiliated Hospital, Jinan UniversityGuangzhou, 510632, China
| | - Fei Gao
- Department of Gastroenterology, The First Affiliated Hospital, Jinan UniversityGuangzhou, 510632, China
| |
Collapse
|
19
|
Schwarzenbach H, Eichelser C, Steinbach B, Tadewaldt J, Pantel K, Lobanenkov V, Loukinov D. Differential regulation of MAGE-A1 promoter activity by BORIS and Sp1, both interacting with the TATA binding protein. BMC Cancer 2014; 14:796. [PMID: 25363021 PMCID: PMC4230356 DOI: 10.1186/1471-2407-14-796] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/23/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND As cancer-testis MAGE-A antigens are targets for tumor immunotherapy, it is important to study the regulation of their expression in cancers. This regulation appears to be rather complex and at the moment controversial. Although it is generally accepted that MAGE-A expression is controlled by epigenetics, the exact mechanisms of that control remain poorly understood. METHODS We analyzed the interplay of another cancer-testis gene, BORIS, and the transcription factors Ets-1 and Sp1 in the regulation of MAGE-A1 gene expression performing luciferase assays, quantitative real-time PCR, sodium bisulfite sequencing, chromatin immunoprecipitation assays and pull down experiments. RESULTS We detected that ectopically expressed BORIS could activate and demethylate both endogenous and methylated reporter MAGE-A1 promoter in MCF-7 and micrometastatic BCM1 cancer cell lines. Overexpression of Ets-1 could not further upregulate the promoter activity mediated by BORIS. Surprisingly, in co-transfection experiments we observed that Sp1 partly repressed the BORIS-mediated stimulation, while addition of Ets-1 expression plasmid abrogated the Sp1 mediated repression of MAGE-A1 promoter. Both BORIS and Sp1 interacted with the TATA binding protein (hTBP) suggesting the possibility of a competitive mechanism of action between BORIS and Sp1. CONCLUSIONS Our findings show that BORIS and Sp1 have opposite effects on the regulation of MAGE-A1 gene expression. This differential regulation may be explained by direct protein-protein interaction of both factors or by interaction of MAGE-A1 promoter with BORIS alternatively spliced isoforms with different sequence specificity. We also show here that ectopic expression of BORIS can activate transcription from its own locus, inducing all its splice variants.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Chu Y, Wang Y, Zhang G, Chen H, Dowdy SC, Xiong Y, Liu F, Zhang R, Li J, Jiang SW. Chromatin composition alterations and the critical role of MeCP2 for epigenetic silencing of progesterone receptor-B gene in endometrial cancers. Cell Mol Life Sci 2014; 71:3393-408. [PMID: 24531693 PMCID: PMC11113436 DOI: 10.1007/s00018-014-1580-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To understand the epigenetic mechanism underlying the PR-B gene silencing in endometrial cancer (EC) cells, we compared the chromatin composition between transcriptionally active and silenced PR-B genes in EC cell lines and cancer tissues. METHODS Chromatin Immunoprecipitation (ChIP) assay was performed to measure MBD occupancy and histone acetylation/methylation in transcriptionally active and silenced PR-B genes. PR-B-positive/-negative, as well as epigenetic inhibitor-treated/-untreated EC cells were used as study models. Real-time polymerase chain reaction (PCR) and Western blot analysis were applied to measure the mRNA and protein levels of PR-B, MBD, and histones. RESULTS A close association among PR-B methylation, MBD binding and PR-B gene silencing was observed. Treatment with epigenetic inhibitors led to dynamic changes in the PR-B chromatin composition and gene expression. Increased H3/H4 acetylation and H3-K4 methylation, and decreased H3-K9 methylation were found to be associated with re-activation of silenced PR-B genes. MeCP2 knockdown resulted in a decreased MeCP2 binding to PR-B genes and an increased PR-B expression. ChIP analysis of MeCP2 binding to PR-B genes in the PR-B-positive/-negative EC samples confirmed the significant role of MeCP2 in PR-B silencing. CONCLUSION PR-B gene expression is regulated by a concerted action of epigenetic factors including DNA methylation, MBD binding, and histone modifications. MeCP2 occupancy of PR-B genes plays a critical role in PR-B gene silencing. These findings enriched our knowledge of the epigenetic regulation of PR-B expression in EC, and suggested that the epigenetic re-activation of PR-B could be explored as a potential strategy to sensitize the PR-B-negative endometrial cancers to progestational therapy.
Collapse
Affiliation(s)
- Yongli Chu
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000 China
| | - Yanlin Wang
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, 256603 China
| | - Guanghua Zhang
- Tianjin Medical University Cancer Hospital, Tianjin, 300060 China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Guangdong, China
| | - Sean C. Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
| | - Yuning Xiong
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
| | - Fengming Liu
- Department of Research and Development, Guangxi Medicinal Botanical Institute, Nanning, 530024 China
| | - Run Zhang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| | - Jinping Li
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
- Curtis & Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, 4700 Waters Avenue, Savannah, GA 31404 USA
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| | - Shi-Wen Jiang
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
- Curtis & Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, 4700 Waters Avenue, Savannah, GA 31404 USA
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, 4700 Waters Avenue, Savannah, GA 31404 USA
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| |
Collapse
|
21
|
Cheishvili D, Chik F, Li CC, Bhattacharya B, Suderman M, Arakelian A, Hallett M, Rabbani SA, Szyf M. Synergistic effects of combined DNA methyltransferase inhibition and MBD2 depletion on breast cancer cells; MBD2 depletion blocks 5-aza-2'-deoxycytidine-triggered invasiveness. Carcinogenesis 2014; 35:2436-46. [PMID: 25178277 DOI: 10.1093/carcin/bgu181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
5-Aza-2'-deoxycytidine (5-azaCdR) not only inhibits growth of non-invasive breast cancer cells but also increases their invasiveness through induction of pro-metastatic genes. Methylated DNA binding protein 2 (MBD2) is involved in silencing methylated tumor suppressor genes as well as activation of pro-metastatic genes. In this study, we show that a combination of MBD2 depletion and DNA methyltransferases (DNMT) inhibition in breast cancer cells results in a combined effect in vitro and in vivo, enhancing tumor growth arrest on one hand, while inhibiting invasiveness triggered by 5-azaCdR on the other hand. The combined treatment of MBD2 depletion and 5-azaCdR suppresses and augments distinct gene networks that are induced by DNMT inhibition alone. These data point to a potential new approach in targeting the DNA methylation machinery by combination of MBD2 and DNMT inhibitors.
Collapse
Affiliation(s)
- David Cheishvili
- Department of Pharmacology and Therapeutics, McGill University and
| | - Flora Chik
- Department of Pharmacology and Therapeutics, McGill University and
| | - Chen Chen Li
- Department of Pharmacology and Therapeutics, McGill University and
| | - Bishnu Bhattacharya
- Department of Pharmacology and Therapeutics, McGill University and Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada and
| | - Matthew Suderman
- Department of Pharmacology and Therapeutics, McGill University and Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada and
| | - Ani Arakelian
- Department of Medicine, McGill University Health Centre, 687 Pine Avenue West, Room H4.67, Montreal, Quebec H3A 1A1, Canada
| | - Michael Hallett
- McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada and
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, 687 Pine Avenue West, Room H4.67, Montreal, Quebec H3A 1A1, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University and Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada,
| |
Collapse
|
22
|
Stefanska B, Suderman M, Machnes Z, Bhattacharyya B, Hallett M, Szyf M. Transcription onset of genes critical in liver carcinogenesis is epigenetically regulated by methylated DNA-binding protein MBD2. Carcinogenesis 2013; 34:2738-49. [PMID: 23955541 DOI: 10.1093/carcin/bgt273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously delineated genes whose promoters are hypomethylated and induced in hepatocellular carcinoma (HCC) patients. The purpose of this study was to establish the players that regulate these genes in liver cancer cells. We performed chromatin immunoprecipitation with methyl-CpG-binding domain protein 2 (MBD2), RNA polymerase II (RNA pol II), CCAAT/enhancer-binding protein alpha (CEBPA) antibodies and methylated DNA immunoprecipitation in HepG2 liver cancer cells treated with scrambled small interfering RNA (siRNA) and siRNA to MBD2 or CEBPA. We then hybridized DNA to microarrays spanning the entire coding sequences, introns and regulatory regions of several hundred HCC-hypomethylated genes. These analyses reveal that MBD2 binds a significant fraction of the hypomethylated genes, determines RNA pol II binding and DNA methylation state. MBD2 binding can result in promoter activation and hypomethylation or in repression. In activated target genes, MBD2 colocalizes with the transcription factor CEBPA, and MBD2 binding at these positions is reduced upon CEBPA depletion. Significant fraction of MBD2 effects on DNA methylation and transcription appears to be indirect since changes occur upon MBD2 depletion in genes where no MBD2 binding was detected. Our study delineates the rules governing the interaction of MBD2 with its targets and the consequences to RNA pol II binding and DNA methylation states. This has important implications for understanding the role of DNA methylation in cancer and targeting DNA methylation proteins in cancer therapy.
Collapse
Affiliation(s)
- Barbara Stefanska
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Kasap E, Boyacioglu SÖ, Korkmaz M, Yuksel ES, Unsal B, Kahraman E, Ozütemiz O, Yuceyar H. Aurora kinase A (AURKA) and never in mitosis gene A-related kinase 6 (NEK6) genes are upregulated in erosive esophagitis and esophageal adenocarcinoma. Exp Ther Med 2012; 4:33-42. [PMID: 23060919 DOI: 10.3892/etm.2012.561] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/19/2012] [Indexed: 02/07/2023] Open
Abstract
Gastroesophageal reflux disease is a risk factor for esophageal adenocarcinoma yet studies that have investigated the relationship between erosive esophagitis and esophageal adenocarcinoma have usually focused on symptom-related evidence or polymorphisms. There are no epigenetic gene expression studies on this topic. In this study, we aimed to evaluate the relationship between erosive esophagitis and esophageal adenocarcinoma to identify whether there is a genetic predisposition for esophageal adenocarcinoma. The Human Epigenetic Chromatin Modification Enzyme RT(2) Profiler(™) PCR array (PAHS-085A) was used to detect the expression of 84 key genes encoding enzymes. This was carried out prospectively for samples from 60 patients (20 patients as a control group, 20 patients with erosive esophagitis and 20 patients with esophageal adenocarcinoma). AURKA, AURKB, NEK6 were expressed at significantly higher levels in esophageal adenocarcinoma compared to the control group. MBD2 was expressed at significantly lower levels in the esophageal adenocarcinoma group compared to the control group. AURKA, AURKC, HDAC9 and NEK6 were expressed at significantly higher levels in erosive esophagitis compared to the control group. There was no difference in upregulated gene expression between the erosive esophagitis and esophageal adenocarcinoma. MBD2 was significantly downregulated in esophageal adenocarcinoma compared to erosive esophagitis. NEK6 and AURKA were significantly upregulated in esophageal adenocarcinoma and erosive esophagitis compared to the control group. This is a novel study on the genetic predisposition for erosive esophagitis and esophageal adenocarcinoma. AURKA and NEK6 are two promising genetic markers for erosive esophagitis and esophageal adenocarcinoma.
Collapse
|
24
|
Katz S, Kushnir O, Tovy A, Siman Tov R, Ankri S. The Entamoeba histolytica methylated LINE-binding protein EhMLBP provides protection against heat shock. Cell Microbiol 2011; 14:58-70. [DOI: 10.1111/j.1462-5822.2011.01697.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Szyf M. The early life social environment and DNA methylation: DNA methylation mediating the long-term impact of social environments early in life. Epigenetics 2011; 6:971-8. [PMID: 21772123 DOI: 10.4161/epi.6.8.16793] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although epidemiological data provides evidence that there is an interaction between genetics (nature) and the social and physical environments (nurture) in human development; the main open question remains the mechanism. The pattern of distribution of methyl groups in DNA is different from cell-type to cell type and is conferring cell specific identity on DNA during cellular differentiation and organogenesis. This is an innate and highly programmed process. However, recent data suggests that DNA methylation is not only involved in cellular differentiation but that it is also involved in modulation of genome function in response to signals from the physical, biological and social environments. We propose that modulation of DNA methylation in response to environmental cues early in life serves as a mechanism of life-long genome "adaptation" that molecularly embeds the early experiences of a child ("nurture") in the genome ("nature"). There is an emerging line of data supporting this hypothesis in rodents, non-human primates and humans that will be reviewed here. However, several critical questions remain including the identification of mechanisms that transmit the signals from the social environment to the DNA methylation/demethylation enzymes.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University Montreal CA, USA.
| |
Collapse
|
26
|
Szyf M. DNA methylation, the early-life social environment and behavioral disorders. J Neurodev Disord 2011; 3:238-49. [PMID: 21484196 PMCID: PMC3261271 DOI: 10.1007/s11689-011-9079-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/14/2011] [Indexed: 01/12/2023] Open
Abstract
One of the outstanding questions in behavioral disorders is untangling the complex relationship between nurture and nature. Although epidemiological data provide evidence that there is an interaction between genetics (nature) and the social and physical environments (nurture) in a spectrum of behavioral disorders, the main open question remains the mechanism. Emerging data support the hypothesis that DNA methylation, a covalent modification of the DNA molecule that is a component of its chemical structure, serves as an interface between the dynamic environment and the fixed genome. We propose that modulation of DNA methylation in response to environmental cues early in life serves as a mechanism of life-long genome adaptation. Under certain contexts, this adaptation can turn maladaptive resulting in behavioral disorders. This hypothesis has important implications on understanding, predicting, preventing, and treating behavioral disorders including autism that will be discussed.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada,
| |
Collapse
|
27
|
Szyf M. The implications of DNA methylation for toxicology: toward toxicomethylomics, the toxicology of DNA methylation. Toxicol Sci 2011; 120:235-55. [PMID: 21297083 DOI: 10.1093/toxsci/kfr024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying agents that have long-term deleterious impact on health but exhibit no immediate toxicity is of prime importance. It is well established that long-term toxicity of chemicals could be caused by their ability to generate changes in the DNA sequence through the process of mutagenesis. Several assays including the Ames test and its different modifications were developed to assess the mutagenic potential of chemicals (Ames, B. N., Durston, W. E., Yamasaki, E., and Lee, F. D. (1973a). Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. U.S.A. 70, 2281-2285; Ames, B. N., Lee, F. D., and Durston, W. E. (1973b). An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Natl. Acad. Sci. U.S.A. 70, 782-786). These tests have also been employed for assessing the carcinogenic potential of compounds. However, the DNA molecule contains within its chemical structure two layers of information. The DNA sequence that bears the ancestral genetic information and the pattern of distribution of covalently bound methyl groups on cytosines in DNA. DNA methylation patterns are generated by an innate program during gestation but are attuned to the environment in utero and throughout life including physical and social exposures. DNA function and health could be stably altered by exposure to environmental agents without changing the sequence, just by changing the state of DNA methylation. Our current screening tests do not detect agents that have long-range impact on the phenotype without altering the genotype. The realization that long-range damage could be caused without changing the DNA sequence has important implications on the way we assess the safety of chemicals, drugs, and food and broadens the scope of definition of toxic agents.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
28
|
Epigenetic regulation of the neural transcriptome: the meaning of the marks. Nat Neurosci 2010; 13:1313-8. [PMID: 20975754 DOI: 10.1038/nn1110-1313] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The field of epigenetics provides neurobiologists with candidate mechanisms for experience-dependent changes in gene transcription. The ability to realize the potential of epigenetics in defining the causal pathways lying between environmental signals, transcriptional regulation and neural function will depend on moving beyond correlational studies focusing on individual epigenetic marks. Here we attempt to provide a conceptual framework for integrative research on nucleotide sequence, chromatin modifications, RNA signaling and their interactions in understanding experience-dependent phenotypic plasticity. Studies in genomic imprinting may serve as an existing model for such approaches.
Collapse
|
29
|
Szyf M. DNA methylation and demethylation probed by small molecules. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:750-9. [DOI: 10.1016/j.bbagrm.2010.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
30
|
Müller I, Wischnewski F, Pantel K, Schwarzenbach H. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by methyl-CpG binding proteins and histone modifications. BMC Cancer 2010; 10:297. [PMID: 20565761 PMCID: PMC2912262 DOI: 10.1186/1471-2407-10-297] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 06/17/2010] [Indexed: 12/14/2022] Open
Abstract
Background The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. Methods In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Results Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. Conclusions This study is one of the first to reveal the histone code and MBD profile at the promoters of CD44, Cyclin D2, GLIPR1 and PTEN in different tumour cells and associated changes after stimulation with methylation inhibitor 5-aza-CdR.
Collapse
Affiliation(s)
- Imke Müller
- Department of Tumour Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
31
|
Gautier VW, Gu L, O'Donoghue N, Pennington S, Sheehy N, Hall WW. In vitro nuclear interactome of the HIV-1 Tat protein. Retrovirology 2009; 6:47. [PMID: 19454010 PMCID: PMC2702331 DOI: 10.1186/1742-4690-6-47] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/19/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86-101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry. RESULTS Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture. CONCLUSION We have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.
Collapse
Affiliation(s)
- Virginie W Gautier
- UCD-Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| | | | | | | | | | | |
Collapse
|
32
|
Patra SK, Patra A, Rizzi F, Ghosh TC, Bettuzzi S. Demethylation of (Cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer Metastasis Rev 2008; 27:315-34. [DOI: 10.1007/s10555-008-9118-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Ishizawa M, Matsunawa M, Adachi R, Uno S, Ikeda K, Masuno H, Shimizu M, Iwasaki KI, Yamada S, Makishima M. Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia. J Lipid Res 2008; 49:763-72. [PMID: 18180267 DOI: 10.1194/jlr.m700293-jlr200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
1alpha,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], a vitamin D receptor (VDR) ligand, regulates calcium homeostasis and also exhibits noncalcemic actions on immunity and cell differentiation. In addition to disorders of bone and calcium metabolism, VDR ligands are potential therapeutic agents in the treatment of immune disorders, microbial infections, and malignancies. Hypercalcemia, the major adverse effect of vitamin D(3) derivatives, limits their clinical application. The secondary bile acid lithocholic acid (LCA) is an additional physiological ligand for VDR, and its synthetic derivative, LCA acetate, is a potent VDR agonist. In this study, we found that an additional derivative, LCA propionate, is a more selective VDR activator than LCA acetate. LCA acetate and LCA propionate induced the expression of the calcium channel transient receptor potential vanilloid type 6 (TRPV6) as effectively as that of 1alpha,25-dihydroxyvitamin D(3) 24-hydroxylase (CYP24A1), whereas 1,25(OH)(2)D(3) was more effective on TRPV6 than on CYP24A1 in intestinal cells. In vivo experiments showed that LCA acetate and LCA propionate effectively induced tissue VDR activation without causing hypercalcemia. These bile acid derivatives have the ability to function as selective VDR modulators.
Collapse
Affiliation(s)
- Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wischnewski F, Friese O, Pantel K, Schwarzenbach H. Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters. Mol Cancer Res 2007; 5:749-59. [PMID: 17634428 DOI: 10.1158/1541-7786.mcr-06-0364] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Promoter hypermethylation is responsible for the restricted expression of the tumor-associated MAGE antigens. In order to elucidate the mechanism underlying methylation-dependent repression, we examined the involvement of methyl-CpG binding proteins, MBD1, MBD2a, and MeCP2, in silencing of MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 genes. Electrophoretic mobility shift assays displayed binding of MBD1 to the methylated and unmethylated MAGE-A promoters. Using chromatin immunoprecipitation assays, in vivo binding of MBD1 and MeCP2 to the promoters could be observed in MCF-7 and T47D cells. Transient transfection assays of MCF-7 cells were done with the transcriptional repression domains (TRD) of MBD1, MBD2a, and MeCP2, and MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 promoters. Whereas the TRD of MBD1 and MeCP2 repressed the MAGE-A promoters, the TRD of MBD2 had no inhibiting effect on the promoter activity. Furthermore, cotransfections of Mbd1-deficient mouse fibroblasts and MCF-7 cells with MBD2a, MeCP2, and the MBD1 splice variants, 1v1 and 1v3, showed that strong methylation-dependent repression of the MAGE-A promoters could not be further down-regulated by these proteins. However, the two MBD1 splice variants, 1v1 and 1v3, were able to repress the basal activity of unmethylated MAGE-A promoters. Additional cotransfection experiments with both isoforms of MBD1 and the transcription factor Ets-1 showed that Ets-1 could not abrogate the MBD1-mediated suppression. In contrast with the repressive effect mediated by MBD1, MBD2a was found to up-regulate the basal activity of the promoters. In conclusion, these data show, for the first time, the involvement of methyl-CpG binding domain proteins in the regulation of the MAGE-A genes.
Collapse
Affiliation(s)
- Frank Wischnewski
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinstrasse 52, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
Within the human genome there are hundreds of copies of the rRNA gene, but only a fraction of these genes are active. Silencing through epigenetics has been extensively studied; however, it is essential to understand how active rRNA genes are maintained. Here, we propose a role for the methyl-CpG binding domain protein MBD3 in epigenetically maintaining active rRNA promoters. We show that MBD3 is localized to the nucleolus, colocalizes with upstream binding factor, and binds to unmethylated rRNA promoters. Knockdown of MBD3 by small interfering RNA results in increased methylation of the rRNA promoter coupled with a decrease in RNA polymerase I binding and pre-rRNA transcription. Conversely, overexpression of MBD3 results in decreased methylation of the rRNA promoter. Additionally, overexpression of MBD3 induces demethylation of nonreplicating plasmids containing the rRNA promoter. We demonstrate that this demethylation occurs following the overexpression of MBD3 and its increased interaction with the methylated rRNA promoter. This is the first demonstration that MBD3 is involved in inducing and maintaining the demethylated state of a specific promoter.
Collapse
Affiliation(s)
- Shelley E Brown
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montréal, Québec H3G 1Y6, Canada
| | | |
Collapse
|
36
|
D'Alessio AC, Szyf M. Epigenetic tête-à-tête: the bilateral relationship between chromatin modifications and DNA methylation. Biochem Cell Biol 2007; 84:463-76. [PMID: 16936820 DOI: 10.1139/o06-090] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epigenome, which comprises chromatin, associated proteins, and the pattern of covalent modification of DNA by methylation, sets up and maintains gene expression programs. It was originally believed that DNA methylation was the dominant reaction in determining the chromatin structure. However, emerging data suggest that chromatin can affect DNA methylation in both directions, triggering either de novo DNA methylation or demethylation. These events are particularly important for the understanding of cellular transformation, which requires a coordinated change in gene expression profiles. While genetic alterations can explain some of the changes, the important role of epigenetic reprogramming is becoming more and more evident. Cancer cells exhibit a paradoxical coexistence of global loss of DNA methylation with regional hypermethylation.
Collapse
Affiliation(s)
- Ana C D'Alessio
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | | |
Collapse
|
37
|
Ruddock-D'Cruz NT, Xue J, Wilson KJ, Heffernan C, Prashadkumar S, Cooney MA, Sanchez-Partida LG, French AJ, Holland MK. Dynamic changes in the localization of five members of the methyl binding domain (MBD) gene family during murine and bovine preimplantation embryo development. Mol Reprod Dev 2007; 75:48-59. [PMID: 17546630 DOI: 10.1002/mrd.20712] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There are five methyl binding domain (MBD) proteins characterized by a methyl CpG-binding domain. Four MBD proteins (MeCP2 and MBDs 1-3) are linked to transcriptional repression and one (MBD4), to DNA repair. During preimplantation development, the embryo undergoes global demethylation following fertilization and selective remethylation following the maternal to zygotic transition (MZT). This study characterized changes in MBD mRNA expression and protein localization during both murine and bovine preimplantation development. These species were selected because they undergo MZT at different developmental stages. Gene expression profiling during preimplantation development detected the presence of all MBDs examined, although stage and species-specific differences were observed. MBD2 was not expressed in murine or bovine oocytes and MeCP2 was not detected in murine blastocysts, subcellular protein localization was found to vary at time points critical in development. Most MBDs showed species-specificity in localization patterns and differences were found between individual MBDs. MBD1 localization is consistent with a novel role during MZT for both species. MBD3, known to play a crucial role in murine embryogenesis, was highly localized to the nucleus before and after, but not during the MZT in the bovine. MBD2, MBD4, and MeCP2 show varying patterns of localization which indicate possible roles in the early cleavage stages and in inner cell mass differentiation. Further experiments are currently underway to define discreet functional roles for specific MBDs during bovine preimplantation embryogenesis.
Collapse
|
38
|
Angrisano T, Lembo F, Pero R, Natale F, Fusco A, Avvedimento VE, Bruni CB, Chiariotti L. TACC3 mediates the association of MBD2 with histone acetyltransferases and relieves transcriptional repression of methylated promoters. Nucleic Acids Res 2006; 34:364-72. [PMID: 16410616 PMCID: PMC1331987 DOI: 10.1093/nar/gkj400] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have recently reported that a novel MBD2 interactor (MBDin) has the capacity to reactivate transcription from MBD2-repressed methylated promoters even in the absence of demethylation events. Here we show that another unrelated protein, TACC3, displays a similar activity on methylated genes. In addition the data reported here provide possible molecular mechanisms for the observed phenomenon. Immunoprecipitation experiments showed that MBD2/TACC3 form a complex in vivo with the histone acetyltransferase pCAF. MBD2 could also associate with HDAC2, a component of MeCP1 repression complex. However, we found that the complexes formed by MBD2 with TACC3/pCAF and with HDAC2 were mutually exclusive. Moreover, HAT enzymatic assays demonstrated that HAT activity associates with MBD2 in vivo and that such association significantly increased when TACC3 was over-expressed. Overall our findings suggest that TACC3 can be recruited by MBD2 on methylated promoters and is able to reactivate transcription possibly by favoring the formation of an HAT-containing MBD2 complex and, thus, switching the repression potential of MBD2 in activation even prior to eventual demethylation.
Collapse
Affiliation(s)
- Tiziana Angrisano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare ‘L. Califano’, Università degli Studi di Napoli ‘Federico II’80131 Naples, Italy
| | - Francesca Lembo
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università degli Studi di Napoli ‘Federico II’80131 Naples, Italy
| | - Raffaela Pero
- Dipartimento di Biologia e Patologia Cellulare e Molecolare ‘L. Califano’, Università degli Studi di Napoli ‘Federico II’80131 Naples, Italy
| | - Francesco Natale
- Dipartimento di Biologia e Patologia Cellulare e Molecolare ‘L. Califano’, Università degli Studi di Napoli ‘Federico II’80131 Naples, Italy
| | - Alfredo Fusco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare ‘L. Califano’, Università degli Studi di Napoli ‘Federico II’80131 Naples, Italy
- NOGEC, Naples Oncogenomic Center, CEINGE Biotecnologie AvanzateNaples, Italy
| | - Vittorio E. Avvedimento
- Dipartimento di Biologia e Patologia Cellulare e Molecolare ‘L. Califano’, Università degli Studi di Napoli ‘Federico II’80131 Naples, Italy
- NOGEC, Naples Oncogenomic Center, CEINGE Biotecnologie AvanzateNaples, Italy
| | - Carmelo B. Bruni
- Dipartimento di Biologia e Patologia Cellulare e Molecolare ‘L. Califano’, Università degli Studi di Napoli ‘Federico II’80131 Naples, Italy
| | - Lorenzo Chiariotti
- Dipartimento di Biologia e Patologia Cellulare e Molecolare ‘L. Califano’, Università degli Studi di Napoli ‘Federico II’80131 Naples, Italy
- Dipartimento di Scienze per la Salute, Università degli Studi del Molise86100 Campobasso, Italy
- NOGEC, Naples Oncogenomic Center, CEINGE Biotecnologie AvanzateNaples, Italy
- To whom correspondence should be addressed. Tel: +39 081 7462056; Fax: +39 081 7703285;
| |
Collapse
|
39
|
Ballestar E, Esteller M. Methyl-CpG-binding proteins in cancer: blaming the DNA methylation messenger. Biochem Cell Biol 2005; 83:374-84. [PMID: 15959563 DOI: 10.1139/o05-035] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In recent years, epigenetic alterations have come to prominence in cancer research. In particular, hypermethylation of CpG islands located in the promoter regions of tumor-suppressor genes is now firmly established as an important mechanism for gene inactivation in cancer. One of the most remarkable achievements in the field has been the identification of the methyl-CpG-binding domain family of proteins, which provide mechanistic links between specific patterns of DNA methylation and histone modifications. Although many of the current data indicate that methyl-CpG-binding proteins play a key role in maintaining a transcriptionally inactive state of methylated genes, MBD4 is also known to be involved in excision repair of T:G mismatches. The latter is a member of this family of proteins and appears to play a role in reducing mutations at 5-methylcytosine. This review examines the contribution of methyl-CpG-binding proteins in the epigenetic pathway of cancer.Key words: methyl-CpG-binding, MeCP2, DNA methylation, Rett syndrome, cancer epigenetics.
Collapse
Affiliation(s)
- Esteban Ballestar
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre, Madrid, Spain
| | | |
Collapse
|
40
|
Ego T, Tanaka Y, Shimotohno K. Interaction of HTLV-1 Tax and methyl-CpG-binding domain 2 positively regulates the gene expression from the hypermethylated LTR. Oncogene 2005; 24:1914-23. [PMID: 15674330 DOI: 10.1038/sj.onc.1208394] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic regulation of gene expression is critical in the maintenance of cellular homeostasis. Dysregulation of normal epigenetic transcription occurs in abnormal physiological conditions, such as those seen in cancer cells and cells infected with parasites, making the mechanism underlying abnormal epigenetic transcription of great interest. Gene expression of human T-cell leukemia virus type 1 (HTLV-1) is regulated by a viral transcriptional stimulator, Tax. We herein report a novel mechanism of transcription from the HTLV-1 long terminal repeat (LTR) that is regulated by Tax. In this study, we determined that Tax is able to activate transcription from the LTR, even when it was heavily methylated. In addition, the methyl-CpG-binding domain 2 (MBD2) protein played an important role in Tax-mediated transcriptional activation. We demonstrated the importance of a physical interaction between Tax and MBD2 in enhancing the transcriptional activity of Tax against the methylated LTR. Furthermore, we identified the formation of a protein complex composed of MBD2 and Tax bound to the methylated LTR. We propose a new model of epigenetic regulation by MBD2 acting in concert with a virally encoded transactivator, Tax. Our observation provides insight into the epigenetic regulation of gene expression and the diverse mechanisms of transcriptional regulation using methylated promoters.
Collapse
Affiliation(s)
- Takeshi Ego
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
41
|
Abstract
Classical methyl-CpG binding proteins contain the conserved DNA binding motif methyl-cytosine binding domain (MBD), which preferentially binds to methylated CpG dinucleotides. These proteins serve as transcriptional repressors, mediating gene silencing via DNA cytosine methylation. Mutations in methyl-CpG binding protein 2 (MeCP2) have been linked to the human mental retardation disorder Rett syndrome, suggesting an important role for methyl-CpG binding proteins in brain development and function. This mini-review summarizes the recent advances in studying the diverse functions of MeCP2 as a prototype for other methyl-CpG binding proteins in the development and function of the vertebrate nervous system.
Collapse
Affiliation(s)
- Guoping Fan
- Department of Human Genetics and Interdepartmental Program of Neuroscience, David Geffen School of Medicine, University of California at Los Angeles, 90095-7088, USA.
| | | |
Collapse
|
42
|
Mischo HE, Hemmerich P, Grosse F, Zhang S. Actinomycin D induces histone gamma-H2AX foci and complex formation of gamma-H2AX with Ku70 and nuclear DNA helicase II. J Biol Chem 2004; 280:9586-94. [PMID: 15613478 DOI: 10.1074/jbc.m411444200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Formation of gamma-H2AX foci is a P. O.cellular response to genotoxic stress, such as DNA double strand breaks or stalled replication forks. Here we show that gamma-H2AX foci were also formed when cells were incubated with 0.5 microg/ml DNA intercalating agent actinomycin D. In untreated cells, gamma-H2AX co-immunoprecipitated with Ku70, a subunit of DNA-dependent protein kinase, as well as with nuclear DNA helicase II (NDH II), a DEXH family helicase also known as RNA helicase A or DHX9. This association was increased manifold after actinomycin D treatment. DNA degradation diminished the amount of Ku70 associated with gamma-H2AX but not that of NDH II. In vitro binding studies with recombinant NDH II and H2AX phosphorylated by DNA-dependent protein kinase confirmed a direct physical interaction between NDH II and gamma-H2AX. Thereby, the NDH II DEXH domain alone, i.e. its catalytic core, was able to support binding to gamma-H2AX. Congruently, after actinomycin D treatment, NDH II accumulated in RNA-containing nuclear bodies that predominantly co-localized with gamma-H2AX foci. Taken together, these results suggest that histone gamma-H2AX promotes binding of NDH II to transcriptionally stalled sites on chromosomal DNA.
Collapse
Affiliation(s)
- Hannah Elisabeth Mischo
- Departments of Biochemistry and Molecular Biology, Institute of Molecular Biotechnology, Postfach 100 813, D-07708 Jena, Germany
| | | | | | | |
Collapse
|
43
|
Spin JM, Nallamshetty S, Tabibiazar R, Ashley EA, King JY, Chen M, Tsao PS, Quertermous T. Transcriptional profiling of in vitro smooth muscle cell differentiation identifies specific patterns of gene and pathway activation. Physiol Genomics 2004; 19:292-302. [PMID: 15340120 DOI: 10.1152/physiolgenomics.00148.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mesodermal and epidermal precursor cells undergo phenotypic changes during differentiation to the smooth muscle cell (SMC) lineage that are relevant to pathophysiological processes in the adult. Molecular mechanisms that underlie lineage determination and terminal differentiation of this cell type have received much attention, but the genetic program that regulates these processes has not been fully defined. Study of SMC differentiation has been facilitated by development of the P19-derived A404 embryonal cell line, which differentiates toward this lineage in the presence of retinoic acid and allows selection for cells adopting a SMC fate through a differentiation-specific drug marker. We sought to define global alterations in gene expression by studying A404 cells during SMC differentiation with oligonucleotide microarray transcriptional profiling. Using an in situ 60-mer array platform with more than 20,000 mouse genes derived from the National Institute on Aging clone set, we identified 2,739 genes that were significantly upregulated after differentiation was completed (false-detection ratio <1). These genes encode numerous markers known to characterize differentiated SMC, as well as many unknown factors. We further characterized the sequential patterns of gene expression during the differentiation time course, particularly for known transcription factor families, providing new insights into the regulation of the differentiation process. Changes in genes associated with specific biological ontology-based pathways were evaluated, and temporal trends were identified for functional pathways. In addition to confirming the utility of the A404 model, our data provide a large-scale perspective of gene regulation during SMC differentiation.
Collapse
Affiliation(s)
- Joshua M Spin
- Donald W. Reynolds Cardiovascular Clinical Research Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Marhold J, Kramer K, Kremmer E, Lyko F. The Drosophila MBD2/3 protein mediates interactions between the MI-2 chromatin complex and CpT/A-methylated DNA. Development 2004; 131:6033-9. [PMID: 15537686 DOI: 10.1242/dev.01531] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methyl-DNA binding proteins play an important role in epigenetic gene regulation. The Drosophila genome encodes a single protein (MBD2/3) with extended homologies to the vertebrate methyl-DNA binding proteins MBD2 and MBD3. However, very little is known about its functional properties. We have now characterized an MBD2/3 null mutant allele that is viable and fertile. This mutation caused a strong dominant suppression of position-effect variegation and also resulted in a high rate of chromosome segregation defects during early embryogenesis. Confocal analysis of mutant embryos showed local displacement of MI-2 from DNA and indicated that MBD2/3 is associated with only a subset of MI-2 complexes. In addition, band shift experiments demonstrated a specific binding of MBD2/3 to CpT/A-methylated DNA, which reflects the endogenous DNA methylation pattern of Drosophila. Consistently, the localization of MBD2/3 was disrupted in embryos with reduced levels of DNA methylation. Our data provide novel insights into the function of MBD2/3 proteins and strongly suggest the existence of methylation-dependent chromatin structures in Drosophila.
Collapse
Affiliation(s)
- Joachim Marhold
- Research Group Epigenetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
45
|
Marhold J, Brehm A, Kramer K. The Drosophila methyl-DNA binding protein MBD2/3 interacts with the NuRD complex via p55 and MI-2. BMC Mol Biol 2004; 5:20. [PMID: 15516265 PMCID: PMC529442 DOI: 10.1186/1471-2199-5-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 10/29/2004] [Indexed: 11/13/2022] Open
Abstract
Background Methyl-DNA binding proteins help to translate epigenetic information encoded by DNA methylation into covalent histone modifications. MBD2/3 is the only candidate gene in the Drosophila genome with extended homologies to mammalian MBD2 and MBD3 proteins, which represent a co-repressor and an integral component of the Nucleosome Remodelling and Deacetylase (NuRD) complex, respectively. An association of Drosophila MBD2/3 with the Drosophila NuRD complex has been suggested previously. We have now analyzed the molecular interactions between MBD2/3 and the NuRD complex in greater detail. Results The two MBD2/3 isoforms precisely cofractionated with NuRD proteins during gel filtration of extracts derived from early and late embryos. In addition, we demonstrate that MBD2/3 forms multimers, and engages in specific interactions with the p55 and MI-2 subunits of the Drosophila NuRD complex. Conclusion Our data provide novel insights into the association between Drosophila MBD2/3 and NuRD proteins. Additionally, this work provides a first analysis of the architecture of the Drosophila NuRD complex.
Collapse
Affiliation(s)
- Joachim Marhold
- Research Group Epigenetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Alexander Brehm
- Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, Schillerstrasse 44, 80336 München, Germany
| | - Katja Kramer
- Research Group Epigenetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
46
|
Zhong X, Safa AR. RNA Helicase A in the MEF1 Transcription Factor Complex Up-regulates the MDR1 Gene in Multidrug-resistant Cancer Cells. J Biol Chem 2004; 279:17134-41. [PMID: 14769796 DOI: 10.1074/jbc.m311057200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA helicase A (RHA) is a member of the DEAD/H family of RNA helicases and unwinds duplex RNA and DNA. Recent studies have shown that RHA regulates the activity of gene promoters. However, little information is available about the in vivo relevance of RHA in the regulation of natural genes. We previously characterized a nuclear protein (MEF1) that binds to the proximal promoter of the multidrug resistance gene (MDR1) and up-regulates the promoter activity. In the present study, we isolated and identified RHA as a component of the MEF1 complex by using DNA-affinity chromatography and mass spectrometry. The antibody against RHA specifically disrupted the complex formation in electrophoretic mobility shift assay, confirming the identity of RHA. Western blotting showed that RHA in drug-resistant cells had a higher molecular weight than that in drug-sensitive cells. Similar results were obtained when FLAG-tagged RHA was overexpressed in these cells. This size difference probably reflects posttranslational modification(s) of RHA in drug-resistant cells. Chromatin immunoprecipitation revealed that RHA occupies the MDR1 promoter in vivo. Overexpression of RHA enhanced expression of the MDR1 promoter/reporter construct and endogenous P-glycoprotein (P-gp), the MDR1 gene product, and increased drug resistance of drug-resistant cells but not the drug-sensitive counterpart. Introduction of short interfering RNA targeting the RHA gene sequence selectively knocked-down RHA expression and concomitantly reduced P-gp level. Thus, our study demonstrates, for the first time, the involvement of RHA in up-regulation of the MDR1 gene. Interactions of RHA with other protein factors in the MEF1 complex bound to the promoter element may contribute to P-gp overexpression and multidrug resistance phenotype in drug-resistant cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- Amino Acid Motifs
- Autoantigens/physiology
- Blotting, Western
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatin/metabolism
- Chromatography, Affinity
- Coloring Agents/pharmacology
- DEAD-box RNA Helicases
- DNA/chemistry
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Drug Resistance, Multiple
- Electroporation
- HL-60 Cells
- Humans
- Luciferases/metabolism
- Mass Spectrometry
- Neoplasm Proteins
- Phenotype
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Isoforms
- Protein Processing, Post-Translational
- RNA/chemistry
- RNA/metabolism
- RNA Helicases/physiology
- RNA, Small Interfering/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tetrazolium Salts/pharmacology
- Thiazoles/pharmacology
- Transcription Factors/physiology
- Transcriptional Activation
- Up-Regulation
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of Pharmacology and Toxicology and Indiana University Cancer Center, Indianapolis, Indiana 46202
| | | |
Collapse
|