1
|
Wang J, Gao T, Zhang D, Tang Y, Gu J. Phospholipase C epsilon 1 as a therapeutic target in cardiovascular diseases. J Adv Res 2025:S2090-1232(25)00051-7. [PMID: 39855298 DOI: 10.1016/j.jare.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Phospholipase C epsilon 1 (PLCε1) can hydrolyze phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-4-phosphate at the plasma membrane and perinuclear membrane in the cardiovascular system, producing lipid-derived second messengers. These messengers are considered prominent triggers for various signal transduction processes. Notably, diverse cardiac phenotypes have been observed in cardiac-specific and global Plce1 knockout mice under conditions of pathological stress. It is well established that the cardiac-specific Plce1 knockout confers cardioprotective benefits. Therefore, the development of tissue/cell-specific targeting approaches is critical for advancing therapeutic interventions. AIM OF REVIEW This review aims to distill the foundational biology and functional significance of PLCε1 in cardiovascular diseases, as well as to explore potential avenues for research and the development of novel therapeutic strategies targeting PLCε1. KEY SCIENTIFIC CONCEPTS OF REVIEW Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide, with incidence rates escalating annually. A comprehensive understanding of the multifaceted role of PLCε1 is essential for enhancing the diagnosis, management, and prognostic assessment of patients suffering from cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dongmei Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Zhu J, Cao X, Chen Z, Lai B, Xi L, Zhang J, Zhu S, Qi S, Liang Y, Cao F, Zhou B, Song Y, Jiang S, Wang T, Kang X, Kong E. Inhibiting S-palmitoylation arrests metastasis by relocating Rap2b from plasma membrane in colorectal cancer. Cell Death Dis 2024; 15:675. [PMID: 39277583 PMCID: PMC11401852 DOI: 10.1038/s41419-024-07061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Rap2b, a proto-oncogene upregulated in colorectal cancer (CRC), undergoes protein S-palmitoylation at specific C-terminus sites (C176/C177). These palmitoylation sites are crucial for Rap2b localization on the plasma membrane (PM), as mutation of C176 or C177 results in cytosolic relocation of Rap2b. Our study demonstrates that Rap2b influences cell migration and invasion in CRC cells, independent of proliferation, and this activity relies on its palmitoylation. We identify ABHD17a as the depalmitoylating enzyme for Rap2b, altering PM localization and inhibiting cell migration and invasion. EGFR/PI3K signaling regulates Rap2b palmitoylation, with PI3K phosphorylating ABHD17a to modulate its activity. These findings highlight the potential of targeting Rap2b palmitoylation as an intervention strategy. Blocking the C176/C177 sites using an interacting peptide attenuates Rap2b palmitoylation, disrupting PM localization, and suppressing CRC metastasis. This study offers insights into therapeutic approaches targeting Rap2b palmitoylation for the treatment of metastatic CRC, presenting opportunities to improve patient outcomes.
Collapse
Affiliation(s)
- Jiangli Zhu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Xize Cao
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Zhenshuai Chen
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
- Lankao County Central Hospital, Lankao, China
| | - Birou Lai
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Lingling Xi
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Jinghang Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, China
| | - Shaohui Zhu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shiqian Qi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Yinming Liang
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Fei Cao
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Binhui Zhou
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Yu Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Xiaohong Kang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Eryan Kong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China.
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
3
|
Li XY, Kuang DD, Guo AJ, Deng YY, Pan LH, Li QM, Luo JP, Zha XQ. Inhibition of Ca 2+-calpain signaling is a new mechanism using Laminaria japonica polysaccharide to prevent macrophage foam cell formation and atherosclerosis. Food Funct 2023; 14:4036-4048. [PMID: 37067393 DOI: 10.1039/d2fo04099a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The Ca2+-calpain signaling plays a pivotal role in regulating the upstream signaling pathway of cellular autophagy. The aim of the current work was to investigate the role of Ca2+-calpain signaling in the regulation of macrophage autophagy by a Laminaria japonica polysaccharide (LJP61A) in Ox-LDL induced macrophages and high fat diet fed atherosclerotic mice. Results revealed that the LJP61A markedly decreased the levels of intracellular Ca2+, calpain1, calpain2 and their downstream effectors (Gsα, cAMP and IP3), and simultaneously enhanced autophagy activity and lipid metabolism, thereby reducing lipid accumulation in the Ox-LDL stimulated macrophages and lipid-laden plaques in atherosclerotic mice. Moreover, BAPTA-AM (a Ca2+ chelator) and calpeptin (a calpain inhibitor) synergistically strengthened the beneficial effects of LJP61A on autophagy and lipid metabolism by decreasing the levels of intracellular Ca2+, calpain1, calpain2, and their downstream effectors (Gsα, cAMP and IP3) induced by Ox-LDL. These findings suggested that the LJP61A suppressed macrophage derived foam cell formation and atherosclerosis by modulating the Ca2+-calpain-mediated autophagy.
Collapse
Affiliation(s)
- Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Dan-Dan Kuang
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - An-Jun Guo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Yuan-Yuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, People's Republic of China
- Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
- Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| |
Collapse
|
4
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
5
|
Han F, Li CF, Cai Z, Zhang X, Jin G, Zhang WN, Xu C, Wang CY, Morrow J, Zhang S, Xu D, Wang G, Lin HK. The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat Commun 2018; 9:4728. [PMID: 30413706 PMCID: PMC6226490 DOI: 10.1038/s41467-018-07188-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
PI3K/Akt signaling is activated in cancers and governs tumor initiation and progression, but how Akt is activated under diverse stresses is poorly understood. Here we identify AMPK as an essential regulator for Akt activation by various stresses. Surprisingly, AMPK is also activated by growth factor EGF through Ca2+/Calmodulin-dependent kinase and is essential for EGF-mediated Akt activation and biological functions. AMPK phosphorylates Skp2 at S256 and promotes the integrity and E3 ligase activity of Skp2 SCF complex leading to K63-linked ubiquitination and activation of Akt and subsequent oncogenic processes. Importantly, AMPK-mediated Skp2 S256 phosphorylation promotes breast cancer progression in mouse tumor models, correlates with Akt and AMPK activation in breast cancer patients, and predicts poor survival outcomes. Finally, targeting AMPK-mediated Skp2 S256 phosphorylation sensitizes cells to anti-EGF receptor targeted therapy. Our study sheds light on how stress and EGF induce Akt activation and new mechanisms for AMPK-mediated oncogenesis and drug resistance.
Collapse
Affiliation(s)
- Fei Han
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Foundational Medical Center, Tainan, 710, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xian Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guoxiang Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei-Na Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Chuan Xu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Chi-Yun Wang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Morrow
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shuxing Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dazhi Xu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Gastric and Pancreatic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Guihua Wang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
6
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
7
|
Zhu Z, Di J, Lu Z, Gao K, Zheng J. Rap2B GTPase: structure, functions, and regulation. Tumour Biol 2016; 37:7085-93. [PMID: 27012552 DOI: 10.1007/s13277-016-5033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/18/2016] [Indexed: 02/08/2023] Open
Abstract
Rap2B GTPase, a member of Ras-related protein superfamily, was first discovered from a platelet cDNA library in the early 1990s. Since then, it has been reported to play an important role in regulating cellular processes including cytoskeletal organization, cell growth, and proliferation. It can be stimulated and suppressed by a wide range of external and internal inducers, circulating between GTP-bound active state and GDP-bound inactive state. Increasing focus on Ras signaling pathway reveals critical effects of Rap2B on tumorigenesis. In particular, Rap2B behaves in a p53-dependent manner in regulation of apoptosis and migration. Apart from being an oncogenic activator, Rap2B has been found to participate in many other physiological events via diverse downstream effectors. In this review, we present recent studies on the structure, regulation, and multiple biological functions of Rap2B, shedding light on its potential status in treatment of cancer as well as other diseases.
Collapse
Affiliation(s)
- Zhesi Zhu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.,Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Keyu Gao
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|
8
|
Qu D, Huang H, DI J, Gao K, Lu Z, Zheng J. Structure, functional regulation and signaling properties of Rap2B. Oncol Lett 2016; 11:2339-2346. [PMID: 27073477 DOI: 10.3892/ol.2016.4261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 12/17/2015] [Indexed: 12/16/2022] Open
Abstract
The Ras family small guanosine 5'-triphosphate (GTP)-binding protein Rap2B is is a member of the Ras oncogene family and a novel target of p53 that regulates the p53-mediated pro-survival function of cells. The Rap2B protein shares ~90% homology with Rap2A, and its sequence is 70% identical to other members of the Rap family such as RaplA and RaplB. As a result, Rap2B has been theorized to have similar signaling effectors to the GTPase-binding protein Rap, which mediates various biological functions, including the regulation of sterile 20/mitogen-activated proteins. Since its identification in the early 1990s, Rap2B has elicited a considerable interest. Numerous studies indicate that Rap2B exerts specific biological functions, including binding and stimulating phospholipase C-ε and interferon-γ. In addition, downregulation of Rap2B affects the growth of melanoma cells. The present review summarizes the possible effectors and biological functions of Rap2B. Increasing evidence clearly supports the association between Rap2B function and tumor development. Therefore, it is conceivable that anticancer drugs targeting Rap2B may be generated as novel therapies against cancer.
Collapse
Affiliation(s)
- Debao Qu
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China; Department of Radiotherapy, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Hui Huang
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jiehui DI
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Keyu Gao
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
9
|
Di J, Huang H, Qu D, Tang J, Cao W, Lu Z, Cheng Q, Yang J, Bai J, Zhang Y, Zheng J. Rap2B promotes proliferation, migration, and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway. Sci Rep 2015. [PMID: 26201295 PMCID: PMC4512009 DOI: 10.1038/srep12363] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rap2B, a member of GTP-binding proteins, is widely upregulated in many types of tumors and promotes migration and invasion of human suprarenal epithelioma. However, the function of Rap2B in breast cancer is unknown. Expression of Rap2B was examined in breast cancer cell lines and human normal breast cell line using Western blot analysis. Using the CCK-8 cell proliferation assay, cell cycle analysis, and transwell migration assay, we also elucidated the role of Rap2B in breast cancer cell proliferation, migration, and invasion. Results showed that the expression of Rap2B is higher in tumor cells than in normal cells. Flow cytometry and Western blot analysis revealed that Rap2B elevates the intracellular calcium level and further promotes extracellular signal-related kinase (ERK) 1/2 phosphorylation. By contrast, calcium chelator BAPTM/AM and MEK inhibitor (U0126) can reverse Rap2B-induced ERK1/2 phosphorylation. Furthermore, Rap2B knockdown inhibits cell proliferation, migration, and invasion abilities via calcium related-ERK1/2 signaling. In addition, overexpression of Rap2B promotes cell proliferation, migration and invasion abilities, which could be neutralized by BAPTM/AM and U0126. Taken together, these findings shed light on Rap2B as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jiehui Di
- 1] Cancer Institute, Xuzhou Medical College, Xuzhou 221002, Jiangsu, P.R. China [2] Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27514, USA
| | - Hui Huang
- 1] Cancer Institute, Xuzhou Medical College, Xuzhou 221002, Jiangsu, P.R. China [2] Department of Oncology, the People's Hospital of Kaixian, Kaixian 405400, Chongqing, P.R. China
| | - Debao Qu
- Cancer Institute, Xuzhou Medical College, Xuzhou 221002, Jiangsu, P.R. China
| | - Juangjuan Tang
- Cancer Institute, Xuzhou Medical College, Xuzhou 221002, Jiangsu, P.R. China
| | - Wenjia Cao
- Cancer Institute, Xuzhou Medical College, Xuzhou 221002, Jiangsu, P.R. China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical College, Xuzhou 221002, Jiangsu, P.R. China
| | - Qian Cheng
- Cancer Institute, Xuzhou Medical College, Xuzhou 221002, Jiangsu, P.R. China
| | - Jing Yang
- Cancer Institute, Xuzhou Medical College, Xuzhou 221002, Jiangsu, P.R. China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical College, Xuzhou 221002, Jiangsu, P.R. China
| | - Yanping Zhang
- 1] Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou 221002, Jiangsu, P.R. China [2] Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27514, USA
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou 221002, Jiangsu, P.R. China
| |
Collapse
|
10
|
Mechanisms of isoform specific Rap2 signaling during enterocytic brush border formation. PLoS One 2014; 9:e106687. [PMID: 25203140 PMCID: PMC4159233 DOI: 10.1371/journal.pone.0106687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/08/2014] [Indexed: 01/01/2023] Open
Abstract
Brush border formation during polarity establishment of intestinal epithelial cells is uniquely governed by the Rap2A GTPase, despite expression of the other highly similar Rap2 isoforms (Rap2B and Rap2C). We investigated the mechanisms of this remarkable specificity and found that Rap2C is spatially segregated from Rap2A signaling as it is not enriched at the apical membrane after polarization. In contrast, both Rap2A and Rap2B are similarly located at Rab11 positive apical recycling endosomes and inside the brush border. However, although Rap2B localizes similarly it is not equally activated as Rap2A during brush border formation. We reveal that the C-terminal hypervariable region allows selective activation of Rap2A, yet this selectivity does not originate from the known differential lipid modifications of this region. In conclusion, we demonstrate that Rap2 specificity during brush border formation is determined by two distinct mechanisms involving segregated localization and selective activation.
Collapse
|
11
|
Nagy Z, Kovács I, Török M, Tóth D, Vereb G, Buzás K, Juhász I, Blumberg PM, Bíró T, Czifra G. Function of RasGRP3 in the formation and progression of human breast cancer. Mol Cancer 2014; 13:96. [PMID: 24779681 PMCID: PMC4113147 DOI: 10.1186/1476-4598-13-96] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/21/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Ras guanine nucleotide exchange factors (RasGEFs) mediate the activation of the Ras signaling pathway that is over activated in many human cancers. The RasGRP3, an activator of H-Ras and R-Ras protein exerts oncogenic effects and the overexpression of the protein is observed in numerous malignant cancer types. Here, we investigated the putative alteration of expression and potential function of RasGRP3 in the formation and progression of human breast cancer. Methods The RasGRP3 and phosphoRasGRP3 expressions were examined in human invasive ductal adenocarcinoma derived samples and cell lines (BT-474, JIMT-1, MCF7, SK-BR-3, MDA-MB-453, T-47D) both in mRNA (Q-PCR) and protein (Western blot; immunohistochemistry) levels. To explore the biological function of the protein, RasGRP3 knockdown cultures were established. To assess the role of RasGRP3 in the viability of cells, annexin-V/PI staining and MitoProbe™ DilC1 (5) assay were performed. To clarify the function of the protein in cell proliferation and in the development of chemotherapeutic resistance, CyQuant assay was performed. To observe the RasGRP3 function in tumor formation, the Severe combined immunodeficiency (SCID) mouse model was used. To investigate the role of the protein in Ras-related signaling Q-PCR and Western blot experiments were performed. Results RasGRP3 expression was elevated in human breast tumor tissue samples as well as in multiple human breast cancer cell lines. Down-regulation of RasGRP3 expression in breast cancer cells decreased cell proliferation, induced apoptosis in MCF7 cells, and sensitized T-47D cells to the action of drugs Tamoxifen and trastuzumab (Herceptin). Gene silencing of RasGRP3 reduced tumor formation in mouse xenografts as well. Inhibition of RasGRP3 expression also reduced Akt, ERK1/2 and estrogen receptor alpha phosphorylation downstream from IGF-I insulin like growth factor-I (IGF-I) or epidermal growth factor (EGF) stimulation confirming the functional role of RasGRP3 in the altered behavior of these cells. Conclusions Taken together, our results suggest that the Ras activator RasGRP3 may have a role in the pathological behavior of breast cancer cells and may constitute a therapeutic target for human breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gabriella Czifra
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Nagyerdei krt, 98, PO Box 22, Debrecen H-4032, Hungary.
| |
Collapse
|
12
|
Martins M, Warren S, Kimberley C, Margineanu A, Peschard P, McCarthy A, Yeo M, Marshall CJ, Dunsby C, French PMW, Katan M. Activity of PLCε contributes to chemotaxis of fibroblasts towards PDGF. J Cell Sci 2012; 125:5758-69. [PMID: 22992460 DOI: 10.1242/jcs.110007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell chemotaxis, such as migration of fibroblasts towards growth factors during development and wound healing, requires precise spatial coordination of signalling events. Phosphoinositides and signalling enzymes involved in their generation and hydrolysis have been implicated in regulation of chemotaxis; however, the role and importance of specific components remain poorly understood. Here, we demonstrate that phospholipase C epsilon (PLCε) contributes to fibroblast chemotaxis towards platelet-derived growth factor (PDGF-BB). Using PLCe1 null fibroblasts we show that cells deficient in PLCε have greatly reduced directionality towards PDGF-BB without detrimental effect on their basal ability to migrate. Furthermore, we show that in intact fibroblasts, signalling events, such as activation of Rac, are spatially compromised by the absence of PLCε that affects the ability of cells to enlarge their protrusions in the direction of the chemoattractant. By further application of live cell imaging and the use of FRET-based biosensors, we show that generation of Ins(1,4,5)P(3) and recruitment of PLCε are most pronounced in protrusions responding to the PDGF-BB gradient. Furthermore, the phospholipase C activity of PLCε is critical for its role in chemotaxis, consistent with the importance of Ins(1,4,5)P(3) generation and sustained calcium responses in this process. As PLCε has extensive signalling connectivity, using transgenic fibroblasts we ruled out its activation by direct binding to Ras or Rap GTPases, and suggest instead new unexpected links for PLCε in the context of chemotaxis.
Collapse
Affiliation(s)
- Marta Martins
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shirshev SV. Role of Epac proteins in mechanisms of cAMP-dependent immunoregulation. BIOCHEMISTRY (MOSCOW) 2012; 76:981-98. [PMID: 22082266 DOI: 10.1134/s000629791109001x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents observations on the role of Epac proteins (exchange protein directly activated by cAMP) in immunoregulation mechanisms. Signaling pathways that involve Epac proteins and their domain organization and functions are considered. The role of Epac1 protein expressed in the immune system cells is especially emphasized. Molecular mechanisms of the cAMP-dependent signal via Epac1 are analyzed in monocytes/macrophages, T-cells, and B-lymphocytes. The role of Epac1 is shown in the regulation of adhesion, leukocyte chemotaxis, as well as in phagocytosis and bacterial killing. The molecular cascade initiated by Epac1 is examined under conditions of antigen activation of T-cells and immature B-lymphocytes.
Collapse
Affiliation(s)
- S V Shirshev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia.
| |
Collapse
|
14
|
Yang D, Tao J, Li L, Kedei N, Tóth ZE, Czap A, Velasquez JF, Mihova D, Michalowski AM, Yuspa SH, Blumberg PM. RasGRP3, a Ras activator, contributes to signaling and the tumorigenic phenotype in human melanoma. Oncogene 2011; 30:4590-4600. [PMID: 21602881 PMCID: PMC3951887 DOI: 10.1038/onc.2011.166] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/03/2011] [Accepted: 04/03/2011] [Indexed: 12/31/2022]
Abstract
RasGRP3, an activator for H-Ras, R-Ras and Ras-associated protein-1/2, has emerged as an important mediator of signaling downstream from receptor coupled phosphoinositide turnover in B and T cells. Here, we report that RasGRP3 showed a high level of expression in multiple human melanoma cell lines as well as in a subset of human melanoma tissue samples. Suppression of endogenous RasGRP3 expression in these melanoma cell lines reduced Ras-GTP formation as well as c-Met expression and Akt phosphorylation downstream from hepatocyte growth factor (HGF) or epidermal growth factor (EGF) stimulation. RasGRP3 suppression also inhibited cell proliferation and reduced both colony formation in soft agar and xenograft tumor growth in immunodeficient mice, demonstrating the importance of RasGRP3 for the transformed phenotype of the melanoma cells. Reciprocally, overexpression of RasGRP3 in human primary melanocytes altered cellular morphology, markedly enhanced cell proliferation and rendered the cells tumorigenic in a mouse xenograft model. Suppression of RasGRP3 expression in these cells inhibited downstream RasGRP3 responses and suppressed cell growth, confirming the functional role of RasGRP3 in the altered behavior of these cells. The identification of the role of RasGRP3 in melanoma highlights its importance, as a Ras activator, in the phosphoinositide signaling pathway in human melanoma and provides a new potential therapeutic target.
Collapse
Affiliation(s)
- Dazhi Yang
- Laboratory of Cancer Biology and Genetics Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Juan Tao
- Laboratory of Cancer Biology and Genetics Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Luowei Li
- Laboratory of Cancer Biology and Genetics Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Zsuzsanna E. Tóth
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Alexandra Czap
- Laboratory of Cancer Biology and Genetics Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Julia F. Velasquez
- Laboratory of Cancer Biology and Genetics Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Daniela Mihova
- Laboratory of Cancer Biology and Genetics Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Aleksandra M. Michalowski
- Laboratory of Cancer Biology and Genetics Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| |
Collapse
|
15
|
Limnander A, Weiss A. Ca-dependent Ras/Erk signaling mediates negative selection of autoreactive B cells. Small GTPases 2011; 2:282-288. [PMID: 22292132 DOI: 10.4161/sgtp.2.5.17794] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/08/2011] [Accepted: 08/18/2011] [Indexed: 12/17/2022] Open
Abstract
Signaling via the Ras/Erk pathway has long been recognized to be critical in lymphocyte development and function, yet the mechanisms that control the distinct functional outputs of this pathway in different cellular contexts remain poorly understood. Our recent results have demonstrated unexpected involvement of Ras/Erk signaling in the sensitization of B cells to apoptosis in order to eliminate autoreactive cells. Increases in cytosolic Ca(2+) are necessary and sufficient to induce activation of this Ras/Erk pathway, and the biochemical events involved in its activation are different from the ones involved in diacylglycerol (DAG)-mediated Ras/Erk activation. Developmental regulation of upstream mediators of these distinct pathways contributes to their predominant activation at different stages of B cell development. These findings have revealed a mechanism by which antigen stimulation can activate distinct Ras/Erk pathways at different developmental stages to mediate appropriate functional outputs that control the selection, development and activation of B cells. Despite these recent findings, however, much remains to be learned about the molecular mechanisms that confer functional specificity to common Ras/Erk signaling modules.
Collapse
Affiliation(s)
- Andre Limnander
- Department of Medicine; Howard Hughes Medical Institute; Rosalind Russell Medical Research Center for Arthritis; University of California at San Francisco; San Francisco, CA USA
| | | |
Collapse
|
16
|
Phospholipase C-η1 is activated by intracellular Ca(2+) mobilization and enhances GPCRs/PLC/Ca(2+) signaling. Cell Signal 2011; 23:1022-9. [PMID: 21262355 DOI: 10.1016/j.cellsig.2011.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/14/2011] [Indexed: 11/20/2022]
Abstract
Phospholipase C-η1 (PLC-η1) is the most recently identified PLC isotype and is primarily expressed in nerve tissue. However, its functional role is unclear. In the present study, we report for the first time that PLC-η1 acts as a signal amplifier in G protein-coupled receptor (GPCR)-mediated PLC and Ca(2+) signaling. Short-hairpin RNA (shRNA)-mediated knockdown of endogenous PLC-η1 reduced lysophosphatidic acid (LPA)-, bradykinin (BK)-, and PACAP-induced PLC activity in mouse neuroblastoma Neuro2A (N2A) cells, indicating that PLC-η1 participates in GPCR-mediated PLC activation. Interestingly, ionomycin-induced PLC activity was significantly decreased by PLC-η1, but not PLC-η2, knockdown. In addition, we found that intracellular Ca(2+) source is enough for PLC-η1 activation. Furthermore, the IP(3) receptor inhibitor, 2-APB, inhibited LPA-induced PLC activity in control N2A cells, whereas this effect was not observed in PLC-η1 knockdown N2A cells, suggesting a pivotal role of intracellular Ca(2+) mobilization in PLC-η1 activation. Finally, we found that LPA-induced ERK1/2 phosphorylation and expression of the downstream target gene, krox-24, were significantly decreased by PLC-η1 knockdown, and these knockdown effects were abolished by 2-APB. Taken together, our results strongly suggest that PLC-η1 is activated via intracellular Ca(2+) mobilization from the ER, and therefore amplifies GPCR-mediated signaling.
Collapse
|
17
|
Chung CP, Hsu HY, Huang DW, Hsu HH, Lin JT, Shih CK, Chiang W. Ethyl acetate fraction of adlay bran ethanolic extract inhibits oncogene expression and suppresses DMH-induced preneoplastic lesions of the colon in F344 rats through an anti-inflammatory pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7616-7623. [PMID: 20536243 DOI: 10.1021/jf101084e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) is a grass crop and was reported to possess anti-inflammatory activity and an antiproliferative effect in cancer cell lines. The purpose of this study was to evaluate the effects of the ethyl acetate fraction of an adlay bran ethanolic extract (ABE-Ea) on colon carcinogenesis in an animal model and investigate its mechanism. Male F344 rats received 1,2-dimethylhydrazine (DMH) and consumed different doses of ABE-Ea. The medium-dose group (17.28 mg of ABE-Ea/day) exhibited the best suppressive effect on colon carcinogenesis and prevented preneoplastic mucin-depleted foci (MDF) formation. Moreover, RAS and Ets2 oncogenes were significantly down-regulated in this group compared to the negative control group, whereas Wee1, a gene involved in the cell cycle, was up-regulated. Cyclooxygenase-2 (COX-2) protein expression was significantly suppressed in all colons receiving the ABE-Ea, indicating that ABE-Ea delayed carcinogenesis by suppressing chronic inflammation. ABE-Ea included considerable a proportion of phenolic compounds, and ferulic acid was the major phenolic acid (5206 microg/g ABE-Ea) on the basis of HPLC analysis. Results from this study suggest that ABE-Ea suppressed DMH-indued preneoplastic lesions of the colon in F344 rats and that ferulic acid may be one of the active compounds.
Collapse
Affiliation(s)
- Cheng-Pei Chung
- Graduate Institute of Food Science and Technology, Center for Food and Biomolecules, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
18
|
Grandoch M, López de Jesús M, Oude Weernink PA, Weber AA, Jakobs KH, Schmidt M. B cell receptor-induced growth arrest and apoptosis in WEHI-231 immature B lymphoma cells involve cyclic AMP and Epac proteins. Cell Signal 2009; 21:609-21. [PMID: 19167486 DOI: 10.1016/j.cellsig.2009.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/23/2008] [Accepted: 01/01/2009] [Indexed: 12/13/2022]
Abstract
Signaling by the B cell antigen receptor (BCR) is essential for B lymphocyte homeostasis and immune function. In immature B cells, ligation of the BCR promotes growth arrest and apoptosis, and BCR-driven balancing between pro-apoptotic extracellular signal-regulated kinase 1 and 2 (ERK1/2) and anti-apoptotic phosphoinositide 3-kinase-dependent Akt seems to define the final cellular apoptotic response. Dysfunction of these late BCR signaling events can lead to the development of immunological diseases. Here we report on novel cyclic AMP-dependent mechanisms of BCR-induced growth arrest and apoptosis in the immature B lymphoma cell line WEHI-231. BCR signaling to ERK1/2 and Akt requires cyclic AMP-regulated Epac, the latter acting as a guanine nucleotide exchange factor for Rap1 and H-Ras independent of protein kinase A. Importantly, activation of endogenously expressed Epac by a specific cyclic AMP analog enhanced the induction of growth arrest (reduced DNA synthesis) and apoptosis (nuclear condensation, annexin V binding, caspase-3 cleavage and poly-ADP-ribose polymerase processing) by the BCR. Our data indicate that cyclic AMP-dependent Epac signals to ERK1/2 and Akt upon activation of Rap1 and H-Ras, and is involved in BCR-induced growth arrest and apoptosis in WEHI-231 cells.
Collapse
Affiliation(s)
- Maria Grandoch
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Bastian P, Balcarek A, Altanis C, Strell C, Niggemann B, Zaenker KS, Entschladen F. The inhibitory effect of norepinephrine on the migration of ES-2 ovarian carcinoma cells involves a Rap1-dependent pathway. Cancer Lett 2008; 274:218-24. [PMID: 18849110 DOI: 10.1016/j.canlet.2008.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 08/13/2008] [Accepted: 09/10/2008] [Indexed: 02/06/2023]
Abstract
Our previous studies have shown that norepinephrine induces the migratory activity of human PC-3 prostate, SW 480 colon and MDA-MB-468 breast carcinoma cells. In contrast to these results, we show here that human ES-2 ovarian carcinoma cells have a reduced migratory activity after norepinephrine treatment. This inhibitory effect is possibly mediated by a cAMP-dependent activation of the small GTPase Rap1 via Epac. Furthermore, a key signalling event of the promigratory effect of norepinephrine in the above mentioned carcinoma cells is the activation of phospholipase C enzymes. In ES-2 cells, this part of the signalling cascade is constitutively active.
Collapse
Affiliation(s)
- Philipp Bastian
- Institute of Immunology, Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Jankowski A, Zhu P, Marshall JG. Capture of an activated receptor complex from the surface of live cells by affinity receptor chromatography. Anal Biochem 2008; 380:235-48. [DOI: 10.1016/j.ab.2008.05.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/16/2008] [Accepted: 05/18/2008] [Indexed: 11/30/2022]
|
21
|
Canobbio I, Trionfini P, Guidetti GF, Balduini C, Torti M. Targeting of the small GTPase Rap2b, but not Rap1b, to lipid rafts is promoted by palmitoylation at Cys176 and Cys177 and is required for efficient protein activation in human platelets. Cell Signal 2008; 20:1662-70. [DOI: 10.1016/j.cellsig.2008.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/26/2008] [Indexed: 10/22/2022]
|
22
|
Blumberg PM, Kedei N, Lewin NE, Yang D, Czifra G, Pu Y, Peach ML, Marquez VE. Wealth of opportunity - the C1 domain as a target for drug development. Curr Drug Targets 2008; 9:641-52. [PMID: 18691011 PMCID: PMC3420355 DOI: 10.2174/138945008785132376] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diacylglycerol-responsive C1 domains of protein kinase C and of the related classes of signaling proteins represent highly attractive targets for drug development. The signaling functions that are regulated by C1 domains are central to cellular control, thereby impacting many pathological conditions. Our understanding of the diacylglycerol signaling pathways provides great confidence in the utility of intervention in these pathways for treatment of cancer and other conditions. Multiple compounds directed at these signaling proteins, including compounds directed at the C1 domains, are currently in clinical trials, providing strong validation for these targets. Extensive understanding of the structure and function of C1 domains, coupled with detailed insights into the molecular details of ligand - C1 domain interactions, provides a solid basis for rational and semi-rational drug design. Finally, the complexity of the factors contributing to ligand - C1 domain interactions affords abundant opportunities for manipulation of selectivity; indeed, substantially selective compounds have already been identified.
Collapse
Affiliation(s)
- P M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun SU, Ryu SH. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 2008; 41:415-34. [DOI: 10.5483/bmbrep.2008.41.6.415] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
24
|
Han L, Stope MB, de Jesús ML, Oude Weernink PA, Urban M, Wieland T, Rosskopf D, Mizuno K, Jakobs KH, Schmidt M. Direct stimulation of receptor-controlled phospholipase D1 by phospho-cofilin. EMBO J 2007; 26:4189-202. [PMID: 17853892 PMCID: PMC2230846 DOI: 10.1038/sj.emboj.7601852] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 08/02/2007] [Indexed: 01/10/2023] Open
Abstract
The activity state of cofilin, which controls actin dynamics, is driven by a phosphorylation-dephosphorylation cycle. Phosphorylation of cofilin by LIM-kinases results in its inactivation, a process supported by 14-3-3zeta and reversed by dephosphorylation by slingshot phosphatases. Here we report on a novel cellular function for the phosphorylation-dephosphorylation cycle of cofilin. We demonstrate that muscarinic receptor-mediated stimulation of phospholipase D1 (PLD1) is controlled by LIM-kinase, slingshot phosphatase as well as 14-3-3zeta, and requires phosphorylatable cofilin. Cofilin directly and specifically interacts with PLD1 and upon phosphorylation by LIM-kinase1, stimulates PLD1 activity, an effect mimicked by phosphorylation-mimic cofilin mutants. The interaction of cofilin with PLD1 is under receptor control and encompasses a PLD1-specific fragment (aa 585-712). Expression of this fragment suppresses receptor-induced cofilin-PLD1 interaction as well as PLD stimulation and actin stress fiber formation. These data indicate that till now designated inactive phospho-cofilin exhibits an active cellular function, and suggest that phospho-cofilin by its stimulatory effect on PLD1 may control a large variety of cellular functions.
Collapse
Affiliation(s)
- Li Han
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | - Matthias B Stope
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | | | | | - Martina Urban
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | - Thomas Wieland
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Dieter Rosskopf
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Sendai, Miyagi, Japan
| | - Karl H Jakobs
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | - Martina Schmidt
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands. Tel.: +31 50 363 3322; Fax: +31 50 363 6908; E-mail:
| |
Collapse
|
25
|
Jia Q, Jia Z, Zhao Z, Liu B, Liang H, Zhang H. Activation of epidermal growth factor receptor inhibits KCNQ2/3 current through two distinct pathways: membrane PtdIns(4,5)P2 hydrolysis and channel phosphorylation. J Neurosci 2007; 27:2503-12. [PMID: 17344388 PMCID: PMC6672518 DOI: 10.1523/jneurosci.2911-06.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
KCNQ2/3 currents are the molecular basis of the neuronal M currents that play a critical role in neuron excitability. Many neurotransmitters modulate M/KCNQ currents through their G-protein-coupled receptors. Membrane PtdIns(4,5)P2 hydrolysis and channel phosphorylation are two mechanisms that have been proposed for modulation of KCNQ2/3 currents. In this study, we studied regulation of KCNQ2/3 currents by the epidermal growth factor (EGF) receptor, a member of another family of membrane receptors, receptor tyrosine kinases. We demonstrate here that EGF induces biphasic inhibition of KCNQ2/3 currents in human embryonic kidney 293 cells and in rat superior cervical ganglia neurons, an initial fast inhibition and a later slow inhibition. Additional studies indicate that the early and late inhibitions resulted from PtdIns(4,5)P2 hydrolysis and tyrosine phosphorylation, respectively. We further demonstrate that these two processes are mutually dependent. This study indicates that EGF is a potent modulator of M/KCNQ currents and provides a new dimension to the understanding of the modulation of these channels.
Collapse
Affiliation(s)
- Qingzhong Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhiying Zhao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Boyi Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Huiling Liang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
26
|
Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin D, Zhang X, Feng L, Lei W, Zhang Z, Guo S, Han N, Tong W, Feng X, Gao Y, Cheng S. Identification of genes differentially expressed in human primary lung squamous cell carcinoma. Lung Cancer 2007; 56:307-17. [PMID: 17316888 DOI: 10.1016/j.lungcan.2007.01.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/12/2007] [Accepted: 01/14/2007] [Indexed: 11/22/2022]
Abstract
To identify differentially expressed genes in lung squamous cell carcinomas (SCCs), the suppression subtractive hybridization method (SSH) was performed comparing six lung tumour tissues and 10 morphologically normal bronchial epithelial tissues. A cDNA library consisting of 220 upregulated genes in tumour tissue was established and named as LSCC (lung squamous cell carcinoma). Of them, six were tested using semi-quantitative reverse transcription-PCR on 27 pairs of tumour tissue and normal lung tissue. Differential expression was confirmed in five of these six genes, including IGFBP5, SQLE, RAP2B, CLDN1, and TBL1XR1. The elevated mRNA expression of RAP2B, CLDN1 and TBL1XR1, three genes located on chromosome 3q, were further validated in 64.3% (18/28), 82.1% (23/28), and 75.0% (21/28) of lung SCC tumour tissues, respectively, by quantitative real-time reverse transcription-PCR analysis. Moreover, western blot analysis showed that the protein expression of TBL1XR1 was also upregulated in 53.3% (8/15) of lung SCC tumour samples, as well as in five lung cancer cell lines and in one human immortalized bronchial epithelial cell line. All the initial characteristics of these genes were first reported in the lung SCCs. The differentially expressed genes reported in this study will provide a valuable resource for understanding the pathogenesis of lung SCCs and for discovery of novel diagnostic or therapeutic targets.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/genetics
- Biopsy
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Chromosomes, Human, Pair 3/genetics
- Claudin-1
- Diagnosis, Differential
- Epithelial Cells/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Insulin-Like Growth Factor Binding Protein 5/genetics
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Membrane Proteins/genetics
- Middle Aged
- Nuclear Proteins/genetics
- RNA, Neoplasm/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Repressor Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Squalene Monooxygenase/genetics
- Tight Junctions
- rap GTP-Binding Proteins/genetics
Collapse
Affiliation(s)
- Yan Liu
- Department of Etiology and Carcinogenesis, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Oude Weernink PA, Han L, Jakobs KH, Schmidt M. Dynamic phospholipid signaling by G protein-coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:888-900. [PMID: 17054901 DOI: 10.1016/j.bbamem.2006.09.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/18/2006] [Accepted: 09/18/2006] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP(2) by phospholipase C (PLC) into the second messengers IP(3) and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP(2), has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP(2) by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.
Collapse
Affiliation(s)
- Paschal A Oude Weernink
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | |
Collapse
|
28
|
Miller K, Krause H. Forschung in urologischen Universitätskliniken. Urologe A 2006; 45 Suppl 4:15-9. [PMID: 16865381 DOI: 10.1007/s00120-006-1140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- K Miller
- Urologische Klinik und Poliklinik, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin.
| | | |
Collapse
|
29
|
De Jesús ML, Stope MB, Weernink PAO, Mahlke Y, Börgermann C, Ananaba VN, Rimmbach C, Rosskopf D, Michel MC, Jakobs KH, Schmidt M. Cyclic AMP-dependent and Epac-mediated activation of R-Ras by G protein-coupled receptors leads to phospholipase D stimulation. J Biol Chem 2006; 281:21837-21847. [PMID: 16754664 DOI: 10.1074/jbc.m604156200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of the Ras-related GTPase R-Ras, which has been implicated in the regulation of various cellular functions, by G protein-coupled receptors (GPCRs) was studied in HEK-293 cells stably expressing the M3 muscarinic acetylcholine receptor (mAChR), which can couple to several types of heterotrimeric G proteins. Activation of the receptor induced a very rapid and transient activation of R-Ras. Studies with inhibitors and activators of various signaling pathways indicated that R-Ras activation by the M3 mAChR is dependent on cyclic AMP formation but is independent of protein kinase A. Similar to the rather promiscuous M3 mAChR, two typical G(s)-coupled receptors also induced R-Ras activation. The receptor actions were mimicked by an Epac-specific cyclic AMP analog and suppressed by depletion of endogenous Epac1 by small interfering RNAs, as well as expression of a cyclic AMP binding-deficient Epac1 mutant, but not by expression of dominant negative Rap GTPases. In vitro studies demonstrated that Epac1 directly interacts with R-Ras and catalyzes GDP/GTP exchange at this GTPase. Finally, it is shown that the cyclic AMP- and Epac-activated R-Ras plays a major role in the M3 mAChR-mediated stimulation of phospholipase D but not phospholipase C. Collectively, our data indicate that GPCRs rapidly activate R-Ras, that R-Ras activation by the GPCRs is apparently directly induced by cyclic AMP-regulated Epac proteins, and that activated R-Ras specifically controls GPCR-mediated phospholipase D stimulation.
Collapse
Affiliation(s)
| | - Matthias B Stope
- Institut für Pharmakologie, Universitätsklinikum Essen, 45122 Essen, Germany
| | | | - Yvonne Mahlke
- Institut für Pharmakologie, Universitätsklinikum Essen, 45122 Essen, Germany
| | - Christof Börgermann
- Institut für Pharmakologie, Universitätsklinikum Essen, 45122 Essen, Germany
| | - Viktoria N Ananaba
- Institut für Pharmakologie, Universitätsklinikum Essen, 45122 Essen, Germany
| | - Christian Rimmbach
- Institut für Pharmakologie, Universitätsklinikum Essen, 45122 Essen, Germany
| | - Dieter Rosskopf
- Institut für Pharmakologie, Universitätsklinikum Essen, 45122 Essen, Germany
| | - Martin C Michel
- Department of Pharmacology and Pharmacotherapy, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Karl H Jakobs
- Institut für Pharmakologie, Universitätsklinikum Essen, 45122 Essen, Germany
| | - Martina Schmidt
- Institut für Pharmakologie, Universitätsklinikum Essen, 45122 Essen, Germany; Department of Pharmacology and Pharmacotherapy, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Hains MD, Wing MR, Maddileti S, Siderovski DP, Harden TK. Galpha12/13- and rho-dependent activation of phospholipase C-epsilon by lysophosphatidic acid and thrombin receptors. Mol Pharmacol 2006; 69:2068-75. [PMID: 16554409 DOI: 10.1124/mol.105.017921] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because phospholipase C epsilon (PLC-epsilon) is activated by Galpha(12/13) and Rho family GTPases, we investigated whether these G proteins contribute to the increased inositol lipid hydrolysis observed in COS-7 cells after activation of certain G protein-coupled receptors. Stimulation of inositol lipid hydrolysis by endogenous lysophosphatidic acid (LPA) or thrombin receptors was markedly enhanced by the expression of PLC-epsilon. Expression of the LPA(1) or PAR1 receptor increased inositol phosphate production in response to LPA or SFLLRN, respectively, and these agonist-stimulated responses were markedly enhanced by coexpression of PLC-epsilon. Both LPA(1) and PAR1 receptor-mediated activation of PLC-epsilon was inhibited by coexpression of the regulator of G protein signaling (RGS) domain of p115RhoGEF, a GTPase-activating protein for Galpha(12/13) but not by expression of the RGS domain of GRK2, which inhibits Galpha(q) signaling. In contrast, activation of the G(q)-coupled M1 muscarinic or P2Y(2) purinergic receptor was neither enhanced by coexpression with PLC-epsilon nor inhibited by the RGS domain of p115RhoGEF but was blocked by expression of the RGS domain of GRK2. Expression of the Rho inhibitor C3 botulinum toxin did not affect LPA- or SFLLRN-stimulated inositol lipid hydrolysis in the absence of PLC-epsilon but completely prevented the PLC-epsilon-dependent increase in inositol phosphate accumulation. Likewise, C3 toxin blocked the PLC-epsilon-dependent stimulatory effects of the LPA(1), LPA(2), LPA(3), or PAR1 receptor but had no effect on the agonist-promoted inositol phosphate response of the M1 or P2Y(2) receptor. Moreover, PLC-epsilon-dependent stimulation of inositol phosphate accumulation by activation of the epidermal growth factor receptor, which involves Ras- but not Rho-mediated activation of the phospholipase, was unaffected by C3 toxin. These studies illustrate that specific LPA and thrombin receptors promote inositol lipid signaling via activation of Galpha(12/13) and Rho.
Collapse
Affiliation(s)
- Melinda D Hains
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | |
Collapse
|
31
|
Ada-Nguema AS, Xenias H, Hofman JM, Wiggins CH, Sheetz MP, Keely PJ. The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the activity of PLCepsilon. J Cell Sci 2006; 119:1307-19. [PMID: 16537651 DOI: 10.1242/jcs.02835] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
R-Ras, an atypical member of the Ras subfamily of small GTPases, enhances integrin-mediated adhesion and signaling through a poorly understood mechanism. Dynamic analysis of cell spreading by total internal reflection fluorescence (TIRF) microscopy demonstrated that active R-Ras lengthened the duration of initial membrane protrusion, and promoted the formation of a ruffling lamellipod, rich in branched actin structures and devoid of filopodia. By contrast, dominant-negative R-Ras enhanced filopodia formation. Moreover, RNA interference (RNAi) approaches demonstrated that endogenous R-Ras contributed to cell spreading. These observations suggest that R-Ras regulates membrane protrusions through organization of the actin cytoskeleton. Our results suggest that phospholipase Cepsilon (PLCepsilon) is a novel R-Ras effector mediating the effects of R-Ras on the actin cytoskeleton and membrane protrusion, because R-Ras was co-precipitated with PLCepsilon and increased its activity. Knockdown of PLCepsilon with siRNA reduced the formation of the ruffling lamellipod in R-Ras cells. Consistent with this pathway, inhibitors of PLC activity, or chelating intracellular Ca2+ abolished the ability of R-Ras to promote membrane protrusions and spreading. Overall, these data suggest that R-Ras signaling regulates the organization of the actin cytoskeleton to sustain membrane protrusion through the activity of PLCepsilon.
Collapse
Affiliation(s)
- Aude S Ada-Nguema
- Department of Pharmacology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
32
|
Satoh T, Edamatsu H, Kataoka T. Phospholipase Cepsilon guanine nucleotide exchange factor activity and activation of Rap1. Methods Enzymol 2006; 407:281-90. [PMID: 16757332 DOI: 10.1016/s0076-6879(05)07024-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phospholipase C (PLC) epsilon is directly regulated by Ras and Rap1 small GTPases: Ras and Rap1, in their GTP-bound form, interact with the Ras/Rap1-associationg (RA) domain of PLCepsilon, thereby translocating PLCepsilon to the plasma membrane and the Golgi apparatus, respectively. In the plasma membrane and the Golgi apparatus, PLCepsilon acts as a phosphoinositide-specific PLC, regulating various downstream signaling pathways. PLCepsilon also contains a CDC25 homology domain, which enhances guanine nucleotide exchange on Rap1. Here, we describe biochemical characterization of the CDC25 homology domain of PLCepsilon and provide insights into its physiological role in the regulation of PLCepsilon activity.
Collapse
Affiliation(s)
- Takaya Satoh
- Division of Molecular Biology, Department of Molecular and Cellular Biology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | | | | |
Collapse
|
33
|
Lambert QT, Reuther GW. Activation of Ras Proteins by Ras Guanine Nucleotide Releasing Protein Family Members. Methods Enzymol 2006; 407:82-98. [PMID: 16757316 DOI: 10.1016/s0076-6879(05)07008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ras guanine nucleotide releasing proteins (RasGRPs) function as guanine nucleotide exchange factors for Ras proteins. Thus, RasGRPs are direct activators of Ras proteins and contribute an important role in various cell-signaling pathways that are regulated by the activation state of Ras proteins. RasGRPs are regulated by the second messengers diacylglycerol and intracellular calcium and are also known as CalDAG-GEFs or calcium and diacylglycerol-regulated guanine nucleotide exchange factors. RasGRPs couple signaling events that generate these second messengers in the cell into activation of signaling pathways that are regulated by Ras. RasGRPs, therefore, increase the repertoire of extracellular stimuli that lead to activation of Ras. Analyzing the regulation of RasGRP activity should continue to play an important role in understanding the mechanisms by which signal transduction pathways use RasGRP proteins to activate Ras proteins in cells.
Collapse
Affiliation(s)
- Que T Lambert
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA
| | | |
Collapse
|
34
|
Kaytor MD, Byam CE, Tousey SK, Stevens SD, Zoghbi HY, Orr HT. A cell-based screen for modulators of ataxin-1 phosphorylation. Hum Mol Genet 2005; 14:1095-105. [PMID: 15757972 DOI: 10.1093/hmg/ddi122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by the expansion of a glutamine repeat within the SCA1-encoded protein ataxin-1. We have previously shown that serine 776 (S776) of both wild-type and mutant ataxin-1 is phosphorylated in vivo and in vitro. Moreover, preventing phosphorylation of this residue by replacing it with alanine resulted in a mutant protein, which was not pathogenic in spite of its nuclear localization. To further investigate pathways leading to S776 phosphorylation of ataxin-1, we developed a cell-culture based assay to screen for modulators of S776 phosphorylation. In this assay, ataxin-1 expression was monitored by enhanced green fluorescent protein (EGFP) fluorescence in cell lines stably expressing EGFP-ataxin-1 fusion protein. The phospho-S776 ataxin-1 specific antibody (PN1168) was used to assess ataxin-1 S776 phosphorylation. A library of 84 known kinase and phosphatase inhibitors was screened. Analysis of the list of drugs that modified S776 phosphorylation places many of the inhibited kinases into known cell signaling pathways. A pathway associated with calcium signaling resulted in phosphorylation of both wild-type and mutant ataxin-1. Interestingly, inhibitors of the PI3K/Akt pathway predominantly diminished mutant ataxin-1 phosphorylation. These results provide new molecular tools to aid in elucidating the biological role of ataxin-1 phosphorylation and perhaps provide potential leads toward the development of a therapy for SCA1.
Collapse
Affiliation(s)
- Michael D Kaytor
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Galpha.GDP/Gbetagamma heterotrimers to promote GDP release and GTP binding, resulting in liberation of Galpha from Gbetagamma. Galpha.GTP and Gbetagamma target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Galpha and heterotrimer reformation - a cycle accelerated by 'regulators of G-protein signaling' (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) beta is activated by Galpha(q) and Gbetagamma, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Galpha nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways.
Collapse
Affiliation(s)
- C R McCudden
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.
| | | | | | | | | |
Collapse
|
36
|
Zheng Y, Liu H, Coughlin J, Zheng J, Li L, Stone JC. Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and Ras signaling systems in B cells. Blood 2005; 105:3648-54. [PMID: 15657177 DOI: 10.1182/blood-2004-10-3916] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
B-cell receptor (BCR) signaling activates a number of intracellular signaling molecules including phospholipase C-gamma2 (PLC-gamma2), which generates membrane diacylglycerol (DAG). DAG recruits both protein kinase C (PKC) and RasGRP family members to the membrane and contributes to their activation. We have hypothesized that membrane colocalization facilitates activation of RasGRP3 by PKC. Here we demonstrate that PKC phosphorylates RasGRP3 on Thr133 in vitro, as determined by mass spectrometry. RasGRP3 with a Thr133Ala substitution is a poor PKC substrate in vitro and a poor Ras activator in vivo. Antiphosphopeptide antibodies recognize Thr133-phosphorylated RasGRP3 in B cells after BCR stimulation or DAG analog treatment, but much less so in resting cells. PKC inhibitors block RasGRP3 Thr133 phosphorylation and Ras-extracellular signal-related kinase (Erk) signaling with a similar pattern. After stimulation of T-cell receptor (TCR) or DAG analog treatment of T cells, PKC-catalyzed phosphorylation of RasGRP1 occurs on the homologous residue, Thr184. These studies shed light on the proposed "PKC-Ras pathway" and support the hypothesis that RasGRP phosphorylation by PKC is a mechanism that integrates DAG signaling systems in T and B cells. PKC-mediated regulation of RasGRPs in lymphocytes may generate cooperative signaling in response to increases in DAG. The mast- and myeloid-selective family member RasGRP4 is regulated by different means.
Collapse
Affiliation(s)
- Yong Zheng
- Department of Biochemistry, University of Alberta, Edmonton AB, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Roberts DM, Anderson AL, Hidaka M, Swetenburg RL, Patterson C, Stanford WL, Bautch VL. A vascular gene trap screen defines RasGRP3 as an angiogenesis-regulated gene required for the endothelial response to phorbol esters. Mol Cell Biol 2004; 24:10515-28. [PMID: 15572660 PMCID: PMC533983 DOI: 10.1128/mcb.24.24.10515-10528.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified Ras guanine-releasing protein 3 (RasGRP3) as a guanine exchange factor expressed in blood vessels via an embryonic stem (ES) cell-based gene trap screen to identify novel vascular genes. RasGRP3 is expressed in embryonic blood vessels, down-regulated in mature adult vessels, and reexpressed in newly formed vessels during pregnancy and tumorigenesis. This expression pattern is consistent with an angiogenic function for RasGRP3. Although a loss-of-function mutation in RasGRP3 did not affect viability, RasGRP3 was up-regulated in response to vascular endothelial growth factor (VEGF) stimulation of human umbilical vein endothelial cells, placing RasGRP3 regulation downstream of VEGF signaling. Phorbol esters mimic the second messenger diacylglycerol (DAG) in activating both protein kinase C (PKC) and non-PKC phorbol ester receptors such as RasGRP3. ES cell-derived wild-type blood vessels exposed to phorbol myristate acetate (PMA) underwent extensive aberrant morphogenesis that resulted in the formation of large endothelial sheets rather than properly branched vessels. This response to PMA was completely dependent on the presence of RasGRP3, as mutant vessels were refractory to the treatment. Taken together, these findings show that endothelial RasGRP3 is up-regulated in response to VEGF stimulation and that RasGRP3 functions as an endothelial cell phorbol ester receptor in a pathway whose stimulation perturbs normal angiogenesis. This suggests that RasGRP3 activity may exacerbate vascular complications in diseases characterized by excess DAG, such as diabetes.
Collapse
Affiliation(s)
- David M Roberts
- Curriculum in Genetics and Molecular Biology, Department of Biology, CB#3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Keiper M, Stope MB, Szatkowski D, Böhm A, Tysack K, Vom Dorp F, Saur O, Oude Weernink PA, Evellin S, Jakobs KH, Schmidt M. Epac- and Ca2+ -controlled activation of Ras and extracellular signal-regulated kinases by Gs-coupled receptors. J Biol Chem 2004; 279:46497-508. [PMID: 15319437 DOI: 10.1074/jbc.m403604200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that two typical Gs-coupled receptors, the beta2-adrenergic receptor and the receptor for prostaglandin E1, stimulate phospholipase C-epsilon (PLC-epsilon) and increase intracellular Ca2+ concentration ([Ca2+]i) in HEK-293 cells and N1E-115 neuroblastoma cells, respectively, by a pathway involving Epac1, a cAMP-activated and Rap-specific guanine nucleotide exchange factor (GEF), and the GTPase Rap2B. Here we have demonstrated that these Gs-coupled receptors use this pathway to activate H-Ras and the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Specifically, agonist activation of the receptors resulted in activation of H-Ras and ERK1/2. The latter action was suppressed by dominant negative H-Ras, but not Rap1A. The receptor actions were independent of protein kinase A but fully mimicked by an Epac-specific cAMP analog as well as by a constitutively active Rap2B mutant. On the other hand, a cAMP-binding-deficient Epac1 mutant, the Rap GTPase-activating proteinII, and a dominant negative Rap2B mutant suppressed receptor- and Epac-mediated activation of H-Ras and ERK1/2. Finally, we have demonstrated that activation of H-Ras and ERK1/2 requires the lipase activity of PLC-epsilon and the subsequent [Ca2+]i increase, suggesting that H-Ras activation is mediated by a Ca2+ -activated GEF. In line with this hypothesis, receptor-mediated activation of H-Ras and ERK1/2 was strongly enhanced by expression of RasGRP1, a Ca2+ -regulated Ras-GEF. Collectively, our data indicated that Gs-coupled receptors can activate H-Ras and subsequently the mitogen-activated protein kinases ERK1/2 by a Ca2+ -activated Ras-GEF, possibly RasGRP1, mediated by cAMP-activated Epac proteins, which then lead via Rap2B and PLC-epsilon stimulation to [Ca2+]i increase.
Collapse
Affiliation(s)
- Melanie Keiper
- Institut für Pharmakologie, Universitätsklinikum Essen, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|