1
|
Hamze H, Jaafar M, Khreiss A, Dominique C, Bourdeaux J, Santo P, Méndez-Godoy A, Kressler D, Humbert O, Plisson-Chastang C, Albert B, Henras A, Henry Y. The snoRNP chaperone snR190 and the Npa1 complex form a macromolecular assembly required for 60S ribosomal subunit maturation. Nucleic Acids Res 2025; 53:gkaf134. [PMID: 40037705 PMCID: PMC11879421 DOI: 10.1093/nar/gkaf134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/01/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
The early steps of large-ribosomal-subunit assembly feature among the least understood steps of ribosome synthesis in eukaryotes. In Saccharomyces cerevisiae, the box C/D chaperone small nucleolar ribonucleoprotein (snoRNP) snR190 and the Npa1 complex, composed of the α-solenoid scaffold proteins Npa1 and Npa2, the DEAD-box helicase Dbp6, the RNA-binding protein Nop8, and Rsa3, are likely involved in early 25S ribosomal RNA (rRNA) folding events. Here, we report for the first time the existence outside pre-ribosomal particles of an independent macromolecular assembly constituted by the Npa1 complex and the chaperone snoRNP snR190. Nop8 mediates the formation of this assembly and can associate on its own with free snR190 snoRNP. Moreover, Nop8 RNA Recognition Motif (RRM) helps tether the snR190 snoRNP to pre-ribosomal particles. The snR190 snoRNA features a specific central stem-loop structure, which is required for high-affinity binding between free snR190 snoRNP and the Npa1 complex. Deleting this extension does not prevent snR190 snoRNA association with pre-ribosomal particles but impairs snR190 activity in early pre-rRNA processing events. This work establishes the importance of association with auxiliary protein complexes for optimum snoRNP chaperone activity during rRNA folding events.
Collapse
Affiliation(s)
- Hussein Hamze
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Ali Khreiss
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Jessie Bourdeaux
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Paulo Espirito Santo
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Alfonso Méndez-Godoy
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Odile Humbert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Célia Plisson-Chastang
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Benjamin Albert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Henry
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| |
Collapse
|
2
|
Félix-Pérez T, Mora-García M, Rebolloso-Gómez Y, DelaGarza-Varela A, Castro-Velázquez G, Peña-Gómez SG, Riego-Ruiz L, Sánchez-Olea R, Calera MR. Translation initiation factor eIF1A rescues hygromycin B sensitivity caused by deleting the carboxy-terminal tail in the GPN-loop GTPase Npa3. FEBS J 2024; 291:2191-2208. [PMID: 38431777 DOI: 10.1111/febs.17106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The essential yeast protein GPN-loop GTPase 1 (Npa3) plays a critical role in RNA polymerase II (RNAPII) assembly and subsequent nuclear import. We previously identified a synthetic lethal interaction between a mutant lacking the carboxy-terminal 106-amino acid tail of Npa3 (npa3ΔC) and a bud27Δ mutant. As the prefoldin-like Bud27 protein participates in ribosome biogenesis and translation, we hypothesized that Npa3 may also regulate these biological processes. We investigated this proposal by using Saccharomyces cerevisiae strains episomally expressing either wild-type Npa3 or hypomorphic mutants (Npa3ΔC, Npa3K16R, and Npa3G70A). The Npa3ΔC mutant fully supports RNAPII nuclear localization and activity. However, the Npa3K16R and Npa3G70A mutants only partially mediate RNAPII nuclear targeting and exhibit a higher reduction in Npa3 function. Cell proliferation in these strains displayed an increased sensitivity to protein synthesis inhibitors hygromycin B and geneticin/G418 (npa3G70A > npa3K16R > npa3ΔC > NPA3 cells) but not to transcriptional elongation inhibitors 6-azauracil, mycophenolic acid or 1,10-phenanthroline. In all three mutant strains, the increase in sensitivity to both aminoglycoside antibiotics was totally rescued by expressing NPA3. Protein synthesis, visualized by quantifying puromycin incorporation into nascent-polypeptide chains, was markedly more sensitive to hygromycin B inhibition in npa3ΔC, npa3K16R, and npa3G70A than NPA3 cells. Notably, high-copy expression of the TIF11 gene, that encodes the eukaryotic translation initiation factor 1A (eIF1A) protein, completely suppressed both phenotypes (of reduced basal cell growth and increased sensitivity to hygromycin B) in npa3ΔC cells but not npa3K16R or npa3G70A cells. We conclude that Npa3 plays a critical RNAPII-independent and previously unrecognized role in translation initiation.
Collapse
Affiliation(s)
- Tania Félix-Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | | | | | | | | | | | - Lina Riego-Ruiz
- División de Biología Molecular, IPICYT, San Luis Potosí, Mexico
| | | | - Mónica R Calera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| |
Collapse
|
3
|
Fernández-Fernández J, Martín-Villanueva S, Perez-Fernandez J, de la Cruz J. The Role of Ribosomal Proteins eL15 and eL36 in the Early Steps of Yeast 60S Ribosomal Subunit Assembly. J Mol Biol 2023; 435:168321. [PMID: 37865285 DOI: 10.1016/j.jmb.2023.168321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Ribosomal proteins have important roles in maintaining the structure and function of mature ribosomes, but they also drive crucial rearrangement reactions during ribosome biogenesis. The contribution of most, but not all, ribosomal proteins to ribosome synthesis has been previously analyzed in the yeast Saccharomyces cerevisiae. Herein, we characterize the role of yeast eL15 during 60S ribosomal subunit formation. In vivo depletion of eL15 results in a shortage of 60S subunits and the appearance of half-mer polysomes. This is likely due to defective processing of the 27SA3 to the 27SBS pre-rRNA and impaired subsequent processing of both forms of 27SB pre-rRNAs to mature 25S and 5.8S rRNAs. Indeed, eL15 depletion leads to the efficient turnover of the de novo formed 27S pre-rRNAs. Additionally, depletion of eL15 blocks nucleocytoplasmic export of pre-60S particles. Moreover, we have analyzed the impact of depleting either eL15 or eL36 on the composition of early pre-60S particles, thereby revealing that the depletion of eL15 or eL36 not only affects each other's assembly into pre-60S particles but also that of neighboring ribosomal proteins, including eL8. These intermediates also lack most ribosome assembly factors required for 27SA3 and 27SB pre-rRNA processing, named A3- and B-factors, respectively. Importantly, our results recapitulate previous ones obtained upon eL8 depletion. We conclude that assembly of eL15, together with that of eL8 and eL36, is a prerequisite to shape domain I of 5.8S/25S rRNA within early pre-60S particles, through their binding to this rRNA domain and the recruitment of specific groups of assembly factors.
Collapse
Affiliation(s)
- José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain
| | - Jorge Perez-Fernandez
- Department of Biochemistry III, University of Regensburg, D-93051 Regensburg, Germany.
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain.
| |
Collapse
|
4
|
Shan L, Xu G, Yao RW, Luan PF, Huang Y, Zhang PH, Pan YH, Zhang L, Gao X, Li Y, Cao SM, Gao SX, Yang ZH, Li S, Yang LZ, Wang Y, Wong CCL, Yu L, Li J, Yang L, Chen LL. Nucleolar URB1 ensures 3' ETS rRNA removal to prevent exosome surveillance. Nature 2023; 615:526-534. [PMID: 36890225 DOI: 10.1038/s41586-023-05767-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023]
Abstract
The nucleolus is the most prominent membraneless condensate in the nucleus. It comprises hundreds of proteins with distinct roles in the rapid transcription of ribosomal RNA (rRNA) and efficient processing within units comprising a fibrillar centre and a dense fibrillar component and ribosome assembly in a granular component1. The precise localization of most nucleolar proteins and whether their specific localization contributes to the radial flux of pre-rRNA processing have remained unknown owing to insufficient resolution in imaging studies2-5. Therefore, how these nucleolar proteins are functionally coordinated with stepwise pre-rRNA processing requires further investigation. Here we screened 200 candidate nucleolar proteins using high-resolution live-cell microscopy and identified 12 proteins that are enriched towards the periphery of the dense fibrillar component (PDFC). Among these proteins, unhealthy ribosome biogenesis 1 (URB1) is a static, nucleolar protein that ensures 3' end pre-rRNA anchoring and folding for U8 small nucleolar RNA recognition and the subsequent removal of the 3' external transcribed spacer (ETS) at the dense fibrillar component-PDFC boundary. URB1 depletion leads to a disrupted PDFC, uncontrolled pre-rRNA movement, altered pre-rRNA conformation and retention of the 3' ETS. These aberrant 3' ETS-attached pre-rRNA intermediates activate exosome-dependent nucleolar surveillance, resulting in decreased 28S rRNA production, head malformations in zebrafish and delayed embryonic development in mice. This study provides insight into functional sub-nucleolar organization and identifies a physiologically essential step in rRNA maturation that requires the static protein URB1 in the phase-separated nucleolus.
Collapse
Affiliation(s)
- Lin Shan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Run-Wen Yao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peng-Fei Luan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Youkui Huang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pei-Hong Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Hang Pan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Gao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying Li
- Cryo EM facility, Technology Center for Protein Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Shi-Meng Cao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuai-Xin Gao
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, China
| | - Zheng-Hu Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Siqi Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Catharine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- New Cornerstone Science Laboratory, Shenzhen, China.
| |
Collapse
|
5
|
Khreiss A, Capeyrou R, Lebaron S, Albert B, Bohnsack K, Bohnsack M, Henry Y, Henras A, Humbert O. The DEAD-box protein Dbp6 is an ATPase and RNA annealase interacting with the peptidyl transferase center (PTC) of the ribosome. Nucleic Acids Res 2023; 51:744-764. [PMID: 36610750 PMCID: PMC9881158 DOI: 10.1093/nar/gkac1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are ribozymes, hence correct folding of the rRNAs during ribosome biogenesis is crucial to ensure catalytic activity. RNA helicases, which can modulate RNA-RNA and RNA/protein interactions, are proposed to participate in rRNA tridimensional folding. Here, we analyze the biochemical properties of Dbp6, a DEAD-box RNA helicase required for the conversion of the initial 90S pre-ribosomal particle into the first pre-60S particle. We demonstrate that in vitro, Dbp6 shows ATPase as well as annealing and clamping activities negatively regulated by ATP. Mutations in Dbp6 core motifs involved in ATP binding and ATP hydrolysis are lethal and impair Dbp6 ATPase activity but increase its RNA binding and RNA annealing activities. These data suggest that correct regulation of these activities is important for Dbp6 function in vivo. Using in vivo cross-linking (CRAC) experiments, we show that Dbp6 interacts with 25S rRNA sequences located in the 5' domain I and in the peptidyl transferase center (PTC), and also crosslinks to snoRNAs hybridizing to the immature PTC. We propose that the ATPase and RNA clamping/annealing activities of Dbp6 modulate interactions of snoRNAs with the immature PTC and/or contribute directly to the folding of this region.
Collapse
Affiliation(s)
- Ali Khreiss
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Régine Capeyrou
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Simon Lebaron
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Benjamin Albert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Yves Henry
- Correspondence may also be addressed to Yves Henry. Tel: +33 5 61 33 59 53; Fax: +33 5 61 33 58 86;
| | - Anthony K Henras
- Correspondence may also be addressed to Anthony Henras. Tel: +33 5 61 33 59 55; Fax: +33 5 61 33 58 86;
| | - Odile Humbert
- To whom correspondence should be addressed. Tel: +33 5 61 33 59 52; Fax: +33 5 61 33 58 86;
| |
Collapse
|
6
|
Temaj G, Hadziselimovic R, Nefic H, Nuhii N. Ribosome biogenesis and ribosome therapy in cancer cells. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.81706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Introduction: The process of protein synthesis is a vital process for all kingdoms of life. The ribosome is a ribonucleoprotein complex that reads the genetic code, from messenger RNA (mRNA) to produce proteins and to tightly regulate and ensure cells growth. The fact that numerous diseases are caused by defect during the ribosome biogenesis is important to understand this pathway.
Materials and methods: We have analyzed the literature for ribosome biogenesis and its links with different diseases which have been found.
Results and discussion: We have discussed the key aspect of human ribosome biogenesis and its links to diseases. We have also proposed the potential of applying this knowledge to the development of a ribosomal stress-based cancer therapy.
Conclusion: Major challenges in the future will be to determine factors which play a pivotal role during ribosome biogenesis. Therefore, more anti-cancer drugs and gene therapy for genetic diseases will be developed against ribosomal biogenesis in the coming years.
Graphical abstract:
Collapse
|
7
|
Bhutada P, Favre S, Jaafar M, Hafner J, Liesinger L, Unterweger S, Bischof K, Darnhofer B, Siva Sankar D, Rechberger G, Abou Merhi R, Lebaron S, Birner-Gruenberger R, Kressler D, Henras AK, Pertschy B. Rbp95 binds to 25S rRNA helix H95 and cooperates with the Npa1 complex during early pre-60S particle maturation. Nucleic Acids Res 2022; 50:10053-10077. [PMID: 36018804 PMCID: PMC9508819 DOI: 10.1093/nar/gkac724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic ribosome synthesis involves more than 200 assembly factors, which promote ribosomal RNA (rRNA) processing, modification and folding, and assembly of ribosomal proteins. The formation and maturation of the earliest pre-60S particles requires structural remodeling by the Npa1 complex, but is otherwise still poorly understood. Here, we introduce Rbp95 (Ycr016w), a constituent of early pre-60S particles, as a novel ribosome assembly factor. We show that Rbp95 is both genetically and physically linked to most Npa1 complex members and to ribosomal protein Rpl3. We demonstrate that Rbp95 is an RNA-binding protein containing two independent RNA-interacting domains. In vivo, Rbp95 associates with helix H95 in the 3′ region of the 25S rRNA, in close proximity to the binding sites of Npa1 and Rpl3. Additionally, Rbp95 interacts with several snoRNAs. The absence of Rbp95 results in alterations in the protein composition of early pre-60S particles. Moreover, combined mutation of Rbp95 and Npa1 complex members leads to a delay in the maturation of early pre-60S particles. We propose that Rbp95 acts together with the Npa1 complex during early pre-60S maturation, potentially by promoting pre-rRNA folding events within pre-60S particles.
Collapse
Affiliation(s)
- Priya Bhutada
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Sébastien Favre
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.,Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Jutta Hafner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Laura Liesinger
- BioTechMed-Graz, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Stefan Unterweger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Karin Bischof
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Barbara Darnhofer
- BioTechMed-Graz, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Devanarayanan Siva Sankar
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Gerald Rechberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Simon Lebaron
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Ruth Birner-Gruenberger
- BioTechMed-Graz, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria.,Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Vienna, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
8
|
Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae. Curr Genet 2022; 68:343-360. [PMID: 35660944 DOI: 10.1007/s00294-022-01243-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/21/2022] [Accepted: 04/30/2022] [Indexed: 11/03/2022]
Abstract
The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast Saccharomyces cerevisiae. Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene. Discovering synthetic negative genetic interactions has long been used as a tool to delineate the functional relatedness between pairs of genes participating in common or compensatory biological pathways. Previously, our group showed that nuclear targeting and transcriptional activity of RNAPII were unaffected in cells expressing exclusively a C-terminal truncated mutant version of Npa3 (npa3∆C) lacking the last 106 residues naturally absent from the single GPN protein in Archaea, but universally conserved in all Npa3 orthologs of eukaryotes. To gain insight into novel cellular functions for Npa3, we performed here a genome-wide Synthetic Genetic Array (SGA) study coupled to bulk fluorescence monitoring to identify negative genetic interactions of NPA3 by crossing an npa3∆C strain with a 4,389 nonessential gene-deletion collection. This genetic screen revealed previously unknown synthetic negative interactions between NPA3 and 15 genes. Our results revealed that the Npa3 C-terminal tail extension regulates the participation of this essential GTPase in previously unknown biological processes related to mitochondrial homeostasis and ribosome biogenesis.
Collapse
|
9
|
Ismail S, Flemming D, Thoms M, Gomes-Filho JV, Randau L, Beckmann R, Hurt E. Emergence of the primordial pre-60S from the 90S pre-ribosome. Cell Rep 2022; 39:110640. [PMID: 35385737 PMCID: PMC8994135 DOI: 10.1016/j.celrep.2022.110640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023] Open
Abstract
Synthesis of ribosomes begins in the nucleolus with formation of the 90S pre-ribosome, during which the pre-40S and pre-60S pathways diverge by pre-rRNA cleavage. However, it remains unclear how, after this uncoupling, the earliest pre-60S subunit continues to develop. Here, we reveal a large-subunit intermediate at the beginning of its construction when still linked to the 90S, the precursor to the 40S subunit. This primordial pre-60S is characterized by the SPOUT domain methyltransferase Upa1-Upa2, large α-solenoid scaffolds, Mak5, one of several RNA helicases, and two small nucleolar RNA (snoRNAs), C/D box snR190 and H/ACA box snR37. The emerging pre-60S does not efficiently disconnect from the 90S pre-ribosome in a dominant mak5 helicase mutant, allowing a 70-nm 90S-pre-60S bipartite particle to be visualized by electron microscopy. Our study provides insight into the assembly pathway when the still-connected nascent 40S and 60S subunits are beginning to separate.
Collapse
Affiliation(s)
- Sherif Ismail
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Matthias Thoms
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | | | - Lennart Randau
- Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Mitterer V, Pertschy B. RNA folding and functions of RNA helicases in ribosome biogenesis. RNA Biol 2022; 19:781-810. [PMID: 35678541 PMCID: PMC9196750 DOI: 10.1080/15476286.2022.2079890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic ribosome biogenesis involves the synthesis of ribosomal RNA (rRNA) and its stepwise folding into the unique structure present in mature ribosomes. rRNA folding starts already co-transcriptionally in the nucleolus and continues when pre-ribosomal particles further maturate in the nucleolus and upon their transit to the nucleoplasm and cytoplasm. While the approximate order of folding of rRNA subdomains is known, especially from cryo-EM structures of pre-ribosomal particles, the actual mechanisms of rRNA folding are less well understood. Both small nucleolar RNAs (snoRNAs) and proteins have been implicated in rRNA folding. snoRNAs hybridize to precursor rRNAs (pre-rRNAs) and thereby prevent premature folding of the respective rRNA elements. Ribosomal proteins (r-proteins) and ribosome assembly factors might have a similar function by binding to rRNA elements and preventing their premature folding. Besides that, a small group of ribosome assembly factors are thought to play a more active role in rRNA folding. In particular, multiple RNA helicases participate in individual ribosome assembly steps, where they are believed to coordinate RNA folding/unfolding events or the release of proteins from the rRNA. In this review, we summarize the current knowledge on mechanisms of RNA folding and on the specific function of the individual RNA helicases involved. As the yeast Saccharomyces cerevisiae is the organism in which ribosome biogenesis and the role of RNA helicases in this process is best studied, we focused our review on insights from this model organism, but also make comparisons to other organisms where applicable.
Collapse
Affiliation(s)
- Valentin Mitterer
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany
- BioTechMed-Graz, Graz, Austria
| | - Brigitte Pertschy
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, Graz, Austria
| |
Collapse
|
11
|
Jaafar M, Contreras J, Dominique C, Martín-Villanueva S, Capeyrou R, Vitali P, Rodríguez-Galán O, Velasco C, Humbert O, Watkins NJ, Villalobo E, Bohnsack KE, Bohnsack MT, Henry Y, Merhi RA, de la Cruz J, Henras AK. Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast. Nat Commun 2021; 12:6153. [PMID: 34686656 PMCID: PMC8536666 DOI: 10.1038/s41467-021-26207-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit. The molecular events underlying the assembly and maturation of the early pre-60S particles during eukaryotic ribosome synthesis are not well understood. Here, the authors combine yeast genetics and biochemical experiments to characterise the functions of two important players of eukaryotic ribosome biogenesis, the box C/D snoRNP snR190 and the helicase Dbp7, which both interact. They show that the snR190 snoRNA acts as a RNA chaperone that assists the structuring of the 25S rRNA during the maturation of early pre-60S particles and that Dbp7 is important for facilitating remodeling events in the peptidyl transferase center region of the 25S rRNAs during the maturation of early pre-60S particles.
Collapse
Affiliation(s)
- Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.,Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon.,Cancer Research Center of Lyon (CRCL), 69 008, Lyon, France
| | - Julia Contreras
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Régine Capeyrou
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Patrice Vitali
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Carmen Velasco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Odile Humbert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Nicholas J Watkins
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073, Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077, Göttingen, Germany
| | - Yves Henry
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
12
|
Aquino GRR, Hackert P, Krogh N, Pan KT, Jaafar M, Henras AK, Nielsen H, Urlaub H, Bohnsack KE, Bohnsack MT. The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly. Nat Commun 2021; 12:6152. [PMID: 34686661 PMCID: PMC8536713 DOI: 10.1038/s41467-021-26208-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center (PTC) and is responsible for stabilizing interactions between the 5′ and 3′ ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation. Early steps of large 60S ribosomal subunit biogenesis are not well understood. Here, the authors combine biochemical experiments with protein-RNA crosslinking and mass spectrometry to show that the RNA helicase Dbp7 is key player during early 60S ribosomal assembly. Dbp7 regulates a series of events driving compaction of domain V/VI in early pre60S ribosomal particles.
Collapse
Affiliation(s)
- Gerald Ryan R Aquino
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200N, Copenhagen, Denmark
| | - Kuan-Ting Pan
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, 37077, Göttingen, Germany.,Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt am Main, Germany
| | - Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200N, Copenhagen, Denmark.,Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, 37077, Göttingen, Germany.,Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany. .,Göttingen Centre for Molecular Biosciences, Georg-August-University, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
13
|
Wang T, Li LY, Chen YF, Fu SW, Wu ZW, Du BB, Yang XF, Zhang WS, Hao XY, Guo TK. Ribosome assembly factor URB1 contributes to colorectal cancer proliferation through transcriptional activation of ATF4. Cancer Sci 2020; 112:101-116. [PMID: 32888357 PMCID: PMC7780016 DOI: 10.1111/cas.14643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome assembly factor URB1 is essential for ribosome biogenesis. However, its latent role in cancer remains unclear. Analysis of The Cancer Genome Atlas database and clinical tissue microarray staining showed that URB1 expression was upregulated in colorectal cancer (CRC) and prominently related to clinicopathological characteristics. Silencing of URB1 hampered human CRC cell proliferation and growth in vitro and in vivo. Microarray screening, ingenuity pathway analysis, and JASPAR assessment indicated that activating transcription factor 4 (ATF4) and X‐box binding protein 1 (XBP1) are potential downstream targets of URB1 and could transcriptionally interact through direct binding. Silencing of URB1 significantly decreased ATF4 and cyclin A2 (CCNA2) expression in vivo and in vitro. Restoration of ATF4 effectively reversed the malignant proliferation phenotype of URB1‐silenced CRC cells. Dual‐luciferase reporter and ChIP assays indicated that XBP1 transcriptionally activated ATF4 by binding with its promoter region. X‐box binding protein 1 colocalized with ATF4 in the nuclei of RKO cells, and ATF4 mRNA expression was positively regulated by XBP1. This study shows that URB1 contributes to oncogenesis and CRC growth through XBP1‐mediated transcriptional activation of ATF4. Therefore, URB1 could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lai-Yuan Li
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yi-Feng Chen
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Si-Wu Fu
- The School of Medical College, Northwest Minzu University, Lanzhou, China
| | - Zhi-Wei Wu
- The School of Preclinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bin-Bin Du
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiong-Fei Yang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Wei-Sheng Zhang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiang-Yong Hao
- Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Tian-Kang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| |
Collapse
|
14
|
Wang T, Zhang WS, Wang ZX, Wu ZW, Du BB, Li LY, Chen YF, Yang XF, Hao XY, Guo TK. RAPTOR promotes colorectal cancer proliferation by inducing mTORC1 and upregulating ribosome assembly factor URB1. Cancer Med 2019; 9:1529-1543. [PMID: 31886628 PMCID: PMC7013072 DOI: 10.1002/cam4.2810] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/15/2022] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is evolutionally conserved and frequently activated in various tumors, including colorectal cancer (CRC). It has been reported that the ribosome assembly factor Urb1 acts downstream of mTORC1/raptor signaling and contributes to digestive organ development in zebrafish. Previously, we highlighted that URB1 was overexpressed in CRC. Here, we assessed the mTORC1/regulatory associated protein with mTOR (RAPTOR)-URB1 axis in CRC tumorigenesis. We found that RAPTOR was overexpressed in CRC tissues and cell lines, was a favorable predictor in patients with CRC, and positively correlated with URB1. Silencing of RAPTOR suppressed CRC cell proliferation and migration and induced cell cycle arrest and apoptosis in vitro and inhibited xenograft growth in vivo. Moreover, ectopic overexpression of RAPTOR exerted an inverse biological phenotype. Knockdown of RAPTOR quenched mTORC1 activity and reduced the expression of URB1 and cyclinA2 (CCNA2). In contrast, overexpression of RAPTOR activated mTORC1 and upregulated URB1 and CCNA2. Furthermore, URB1 and CCNA2 expression were also impeded by rapamycin, which is a specific inhibitor of mTORC1. Thus, RAPTOR promoted CRC proliferation, migration, and cell cycle progression by inducing mTORC1 signaling and transcriptional activation of both URB1 and CCNA2. Taken together, we concluded that RAPTOR has the potential to serve as a novel biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Wei-Sheng Zhang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Zheng-Xia Wang
- Department of Otolaryngology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhi-Wei Wu
- The School of Preclinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Bin-Bin Du
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Lai-Yuan Li
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yi-Feng Chen
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiong-Fei Yang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiang-Yong Hao
- Department of General surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Tian-Kang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General surgery, Gansu Provincial People's Hospital, Lanzhou, China
| |
Collapse
|
15
|
Abstract
In the past 25 years, genetic and biochemical analyses of ribosome assembly in yeast have identified most of the factors that participate in this complex pathway and have generated models for the mechanisms driving the assembly. More recently, the publication of numerous cryo-electron microscopy structures of yeast ribosome assembly intermediates has provided near-atomic resolution snapshots of ribosome precursor particles. Satisfyingly, these structural data support the genetic and biochemical models and provide additional mechanistic insight into ribosome assembly. In this Review, we discuss the mechanisms of assembly of the yeast small ribosomal subunit and large ribosomal subunit in the nucleolus, nucleus and cytoplasm. Particular emphasis is placed on concepts such as the mechanisms of RNA compaction, the functions of molecular switches and molecular mimicry, the irreversibility of assembly checkpoints and the roles of structural and functional proofreading of pre-ribosomal particles.
Collapse
|
16
|
Bustamante-Marin XM, Shapiro A, Sears PR, Charng WL, Conrad DF, Leigh MW, Knowles MR, Ostrowski LE, Zariwala MA. Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. J Hum Genet 2019; 65:175-180. [PMID: 31636325 PMCID: PMC6920546 DOI: 10.1038/s10038-019-0686-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a rare disorder that affects the biogenesis or function of motile cilia resulting in chronic airway disease. PCD is genetically and phenotypically heterogeneous, with causative mutations identified in over 40 genes; however, the genetic basis of many cases is unknown. Using whole exome sequencing, we identified three affected siblings with clinical symptoms of PCD but normal ciliary structure, carrying compound heterozygous loss-of-function variants in CFAP221. Computational analysis suggests that these variants are the most damaging alleles shared by all three siblings. Nasal epithelial cells from one of the subjects demonstrated slightly reduced beat frequency (16.5 Hz vs 17.7 Hz, p=0.16); however, waveform analysis revealed that the CFAP221 defective cilia beat in an aberrant circular pattern. These results show that genetic variants in CFAP221 cause PCD and that CFAP221 should be considered a candidate gene in cases where PCD is suspected but cilia structure and beat frequency appear normal.
Collapse
Affiliation(s)
- Ximena M Bustamante-Marin
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam Shapiro
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Patrick R Sears
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Wu-Lin Charng
- Department of Genetics and Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Donald F Conrad
- Department of Genetics and Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Margaret W Leigh
- Department of Pediatrics, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael R Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lawrence E Ostrowski
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Maimoona A Zariwala
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
17
|
Joret C, Capeyrou R, Belhabich-Baumas K, Plisson-Chastang C, Ghandour R, Humbert O, Fribourg S, Leulliot N, Lebaron S, Henras AK, Henry Y. The Npa1p complex chaperones the assembly of the earliest eukaryotic large ribosomal subunit precursor. PLoS Genet 2018; 14:e1007597. [PMID: 30169518 PMCID: PMC6136799 DOI: 10.1371/journal.pgen.1007597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/13/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022] Open
Abstract
The early steps of the production of the large ribosomal subunit are probably the least understood stages of eukaryotic ribosome biogenesis. The first specific precursor to the yeast large ribosomal subunit, the first pre-60S particle, contains 30 assembly factors (AFs), including 8 RNA helicases. These helicases, presumed to drive conformational rearrangements, usually lack substrate specificity in vitro. The mechanisms by which they are targeted to their correct substrate within pre-ribosomal particles and their precise molecular roles remain largely unknown. We demonstrate that the Dbp6p helicase, essential for the normal accumulation of the first pre-60S pre-ribosomal particle in S. cerevisiae, associates with a complex of four AFs, namely Npa1p, Npa2p, Nop8p and Rsa3p, prior to their incorporation into the 90S pre-ribosomal particles. By tandem affinity purifications using yeast extracts depleted of one component of the complex, we show that Npa1p forms the backbone of the complex. We provide evidence that Npa1p and Npa2p directly bind Dbp6p and we demonstrate that Npa1p is essential for the insertion of the Dbp6p helicase within 90S pre-ribosomal particles. In addition, by an in vivo cross-linking analysis (CRAC), we map Npa1p rRNA binding sites on 25S rRNA adjacent to the root helices of the first and last secondary structure domains of 25S rRNA. This finding supports the notion that Npa1p and Dbp6p function in the formation and/or clustering of root helices of large subunit rRNAs which creates the core of the large ribosomal subunit RNA structure. Npa1p also crosslinks to snoRNAs involved in decoding center and peptidyl transferase center modifications and in the immediate vicinity of the binding sites of these snoRNAs on 25S rRNA. Our data suggest that the Dbp6p helicase and the Npa1p complex play key roles in the compaction of the central core of 25S rRNA and the control of snoRNA-pre-rRNA interactions. Ribosomes, the molecular machines synthesizing proteins, are composed of a small and large subunit, formed by the binding of numerous ribosomal proteins (RPs) to properly folded ribosomal RNAs (rRNAs). RP incorporation as well as processing and folding of rRNAs occur within a succession of pre-ribosomal particles. Formation of the initial pre-60S particle, the first precursor to the large ribosomal subunit, is the least understood step of ribosome biogenesis in eukaryotes. This pre-ribosomal particle contains several assembly factors (AFs), including RNA helicases believed to catalyse key conformational rearrangements. These helicases usually lack substrate specificity on their own. Here, we show that the Dbp6p helicase, a component of the first pre-60S particle and essential for its normal accumulation, associates with a complex of four AFs, including Npa1p. We demonstrate that Npa1p directly binds Dbp6p, forms the backbone of the complex and is required for the integration of Dbp6p within pre-ribosomal particles. We show that Npa1p binds to sequences forming the core of large subunit rRNAs as well as small nucleolar RNAs required for chemical modification of large subunit rRNAs. Altogether our results suggest that the Npa1p complex plays a crucial role in the chemical modification and folding of large subunit rRNAs.
Collapse
Affiliation(s)
- Clément Joret
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Régine Capeyrou
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Kamila Belhabich-Baumas
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rabea Ghandour
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Humbert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Nicolas Leulliot
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Simon Lebaron
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail: (SL); (AKH); (YH)
| | - Anthony K. Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail: (SL); (AKH); (YH)
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail: (SL); (AKH); (YH)
| |
Collapse
|
18
|
Choque E, Schneider C, Gadal O, Dez C. Turnover of aberrant pre-40S pre-ribosomal particles is initiated by a novel endonucleolytic decay pathway. Nucleic Acids Res 2018; 46:4699-4714. [PMID: 29481617 PMCID: PMC5961177 DOI: 10.1093/nar/gky116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 01/05/2023] Open
Abstract
Ribosome biogenesis requires more than 200 trans-acting factors to achieve the correct production of the two mature ribosomal subunits. Here, we have identified Efg1 as a novel, nucleolar ribosome biogenesis factor in Saccharomyces cerevisiae that is directly linked to the surveillance of pre-40S particles. Depletion of Efg1 impairs early pre-rRNA processing, leading to a strong decrease in 18S rRNA and 40S subunit levels and an accumulation of the aberrant 23S rRNA. Using Efg1 as bait, we revealed a novel degradation pathway of the 23S rRNA. Co-immunoprecipitation experiments showed that Efg1 is a component of 90S pre-ribosomes, as it is associated with the 35S pre-rRNA and U3 snoRNA, but has stronger affinity for 23S pre-rRNA and its novel degradation intermediate 11S rRNA. 23S is cleaved at a new site, Q1, within the 18S sequence by the endonuclease Utp24, generating 11S and 17S' rRNA. Both of these cleavage products are targeted for degradation by the TRAMP/exosome complexes. Therefore, the Q1 site defines a novel endonucleolytic cleavage site of ribosomal RNA exclusively dedicated to surveillance of pre-ribosomal particles.
Collapse
Affiliation(s)
- Elodie Choque
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 9, France
| | - Claudia Schneider
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 9, France
| | - Christophe Dez
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 9, France
| |
Collapse
|
19
|
Wang H, Wang K, Du Q, Wang Y, Fu Z, Guo Z, Kang D, Li WX, Tang J. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. THE NEW PHYTOLOGIST 2018; 218:1233-1246. [PMID: 29479724 DOI: 10.1111/nph.15057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Ribosome biogenesis is a fundamental process in eukaryotic cells. Although Urb2 protein has been implicated in ribosome biogenesis in yeast, the Urb2 domain is loosely conserved between plants and yeast, and the function of Urb2 protein in plants remains unknown. Here, we isolated a maize mutant, designated as urb2, with defects in kernel development and vegetative growth. Positional cloning and transgenic analysis revealed that urb2 encodes an Urb2 domain-containing protein. Compared with the wild-type (WT), the urb2 mutant showed decreased ratios of 60S/40S and 80S/40S and increased ratios of polyribosomes. The pre-rRNA intermediates of 35/33S rRNA, P-A3 and 18S-A3 were significantly accumulated in the urb2 mutant. Transcriptome profiling of the urb2 mutant indicated that ZmUrb2 affects the expression of a number of ribosome-related genes. We further demonstrated that natural variations in ZmUrb2 are significantly associated with maize kernel length. The overall results indicate that, by affecting pre-rRNA processing, the Urb2 protein is required for ribosome biogenesis in maize.
Collapse
Affiliation(s)
- Hongqiu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Kai Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yafei Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dingming Kang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
20
|
He J, Yang Y, Zhang J, Chen J, Wei X, He J, Luo L. Ribosome biogenesis protein Urb1 acts downstream of mTOR complex 1 to modulate digestive organ development in zebrafish. J Genet Genomics 2017; 44:567-576. [DOI: 10.1016/j.jgg.2017.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
|
21
|
Robert-Paganin J, Halladjian M, Blaud M, Lebaron S, Delbos L, Chardon F, Capeyrou R, Humbert O, Henry Y, Henras AK, Réty S, Leulliot N. Functional link between DEAH/RHA helicase Prp43 activation and ATP base binding. Nucleic Acids Res 2017; 45:1539-1552. [PMID: 28180308 PMCID: PMC5388414 DOI: 10.1093/nar/gkw1233] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 11/17/2016] [Accepted: 11/26/2016] [Indexed: 02/05/2023] Open
Abstract
The DEAH box helicase Prp43 is a bifunctional enzyme from the DEAH/RHA helicase family required both for the maturation of ribosomes and for lariat intron release during splicing. It interacts with G-patch domain containing proteins which activate the enzymatic activity of Prp43 in vitro by an unknown mechanism. In this work, we show that the activation by G-patch domains is linked to the unique nucleotide binding mode of this helicase family. The base of the ATP molecule is stacked between two residues, R159 of the RecA1 domain (R-motif) and F357 of the RecA2 domain (F-motif). Using Prp43 F357A mutants or pyrimidine nucleotides, we show that the lack of stacking of the nucleotide base to the F-motif decouples the NTPase and helicase activities of Prp43. In contrast the R159A mutant (R-motif) showed reduced ATPase and helicase activities. We show that the Prp43 R-motif mutant induces the same phenotype as the absence of the G-patch protein Gno1, strongly suggesting that the processing defects observed in the absence of Gno1 result from a failure to activate the Prp43 helicase. Overall we propose that the stacking between the R- and F-motifs and the nucleotide base is important for the activity and regulation of this helicase family.
Collapse
Affiliation(s)
- Julien Robert-Paganin
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Maral Halladjian
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Magali Blaud
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Simon Lebaron
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Lila Delbos
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Florian Chardon
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Régine Capeyrou
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Odile Humbert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Stéphane Réty
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Nicolas Leulliot
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| |
Collapse
|
22
|
Kressler D, Hurt E, Baßler J. A Puzzle of Life: Crafting Ribosomal Subunits. Trends Biochem Sci 2017; 42:640-654. [DOI: 10.1016/j.tibs.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/16/2017] [Accepted: 05/05/2017] [Indexed: 01/24/2023]
|
23
|
Talkish J, Biedka S, Jakovljevic J, Zhang J, Tang L, Strahler JR, Andrews PC, Maddock JR, Woolford JL. Disruption of ribosome assembly in yeast blocks cotranscriptional pre-rRNA processing and affects the global hierarchy of ribosome biogenesis. RNA (NEW YORK, N.Y.) 2016; 22:852-66. [PMID: 27036125 PMCID: PMC4878612 DOI: 10.1261/rna.055780.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/18/2016] [Indexed: 05/11/2023]
Abstract
In higher eukaryotes, pre-rRNA processing occurs almost exclusively post-transcriptionally. This is not the case in rapidly dividing yeast, as the majority of nascent pre-rRNAs are processed cotranscriptionally, with cleavage at the A2 site first releasing a pre-40S ribosomal subunit followed by release of a pre-60S ribosomal subunit upon transcription termination. Ribosome assembly is driven in part by hierarchical association of assembly factors and r-proteins. Groups of proteins are thought to associate with pre-ribosomes cotranscriptionally during early assembly steps, whereas others associate later, after transcription is completed. Here we describe a previously uncharacterized phenotype observed upon disruption of ribosome assembly, in which normally late-binding proteins associate earlier, with pre-ribosomes containing 35S pre-rRNA. As previously observed by many other groups, we show that disruption of 60S subunit biogenesis results in increased amounts of 35S pre-rRNA, suggesting that a greater fraction of pre-rRNAs are processed post-transcriptionally. Surprisingly, we found that early pre-ribosomes containing 35S pre-rRNA also contain proteins previously thought to only associate with pre-ribosomes after early pre-rRNA processing steps have separated maturation of the two subunits. We believe the shift to post-transcriptional processing is ultimately due to decreased cellular division upon disruption of ribosome assembly. When cells are grown under stress or to high density, a greater fraction of pre-rRNAs are processed post-transcriptionally and follow an alternative processing pathway. Together, these results affirm the principle that ribosome assembly occurs through different, parallel assembly pathways and suggest that there is a kinetic foot-race between the formation of protein binding sites and pre-rRNA processing events.
Collapse
Affiliation(s)
- Jason Talkish
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Stephanie Biedka
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jingyu Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Lan Tang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - John R Strahler
- Department of Biological Chemistry, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Philip C Andrews
- Department of Biological Chemistry, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Janine R Maddock
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
24
|
Structure of GPN-Loop GTPase Npa3 and Implications for RNA Polymerase II Assembly. Mol Cell Biol 2015; 36:820-31. [PMID: 26711263 DOI: 10.1128/mcb.01009-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022] Open
Abstract
Biogenesis of the 12-subunit RNA polymerase II (Pol II) transcription complex requires so-called GPN-loop GTPases, but the function of these enzymes is unknown. Here we report the first crystal structure of a eukaryotic GPN-loop GTPase, the Saccharomyces cerevisiae enzyme Npa3 (a homolog of human GPN1, also called RPAP4, XAB1, and MBDin), and analyze its catalytic mechanism. The enzyme was trapped in a GDP-bound closed conformation and in a novel GTP analog-bound open conformation displaying a conserved hydrophobic pocket distant from the active site. We show that Npa3 has chaperone activity and interacts with hydrophobic peptide regions of Pol II subunits that form interfaces in the assembled Pol II complex. Biochemical results are consistent with a model that the hydrophobic pocket binds peptides and that this can allosterically stimulate GTPase activity and subsequent peptide release. These results suggest that GPN-loop GTPases are assembly chaperones for Pol II and other protein complexes.
Collapse
|
25
|
Pillet B, García-Gómez JJ, Pausch P, Falquet L, Bange G, de la Cruz J, Kressler D. The Dedicated Chaperone Acl4 Escorts Ribosomal Protein Rpl4 to Its Nuclear Pre-60S Assembly Site. PLoS Genet 2015; 11:e1005565. [PMID: 26447800 PMCID: PMC4598080 DOI: 10.1371/journal.pgen.1005565] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022] Open
Abstract
Ribosomes are the highly complex macromolecular assemblies dedicated to the synthesis of all cellular proteins from mRNA templates. The main principles underlying the making of ribosomes are conserved across eukaryotic organisms and this process has been studied in most detail in the yeast Saccharomyces cerevisiae. Yeast ribosomes are composed of four ribosomal RNAs (rRNAs) and 79 ribosomal proteins (r-proteins). Most r-proteins need to be transported from the cytoplasm to the nucleus where they get incorporated into the evolving pre-ribosomal particles. Due to the high abundance and difficult physicochemical properties of r-proteins, their correct folding and fail-safe targeting to the assembly site depends largely on general, as well as highly specialized, chaperone and transport systems. Many r-proteins contain universally conserved or eukaryote-specific internal loops and/or terminal extensions, which were shown to mediate their nuclear targeting and association with dedicated chaperones in a growing number of cases. The 60S r-protein Rpl4 is particularly interesting since it harbours a conserved long internal loop and a prominent C-terminal eukaryote-specific extension. Here we show that both the long internal loop and the C-terminal eukaryote-specific extension are strictly required for the functionality of Rpl4. While Rpl4 contains at least five distinct nuclear localization signals (NLS), the C-terminal part of the long internal loop associates with a specific binding partner, termed Acl4. Absence of Acl4 confers a severe slow-growth phenotype and a deficiency in the production of 60S subunits. Genetic and biochemical evidence indicates that Acl4 can be considered as a dedicated chaperone of Rpl4. Notably, Acl4 localizes to both the cytoplasm and nucleus and it has the capacity to capture nascent Rpl4 in a co-translational manner. Taken together, our findings indicate that the dedicated chaperone Acl4 accompanies Rpl4 from the cytoplasm to its pre-60S assembly site in the nucleus.
Collapse
Affiliation(s)
- Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Juan J. García-Gómez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Patrick Pausch
- LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Laurent Falquet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
26
|
McCann KL, Charette JM, Vincent NG, Baserga SJ. A protein interaction map of the LSU processome. Genes Dev 2015; 29:862-75. [PMID: 25877921 PMCID: PMC4403261 DOI: 10.1101/gad.256370.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/04/2015] [Indexed: 01/12/2023]
Abstract
Maturation of the large ribosomal subunit (LSU) in eukaryotes is a complex and highly coordinated process that requires the concerted action of a large, dynamic, ribonucleoprotein complex, the LSU processome. To interrogate its organization and architecture, McCann et al. assayed 4800 protein–protein interactions and identified 232 high-confidence, binary-interacting protein pairs, representing a fourfold increase from current knowledge. The resulting LSU processome interactome map enhances our understanding of the organization and function of the biogenesis factors within the LSU processome. Maturation of the large ribosomal subunit (LSU) in eukaryotes is a complex and highly coordinated process that requires the concerted action of a large, dynamic, ribonucleoprotein complex, the LSU processome. While we know that >80 ribosome biogenesis factors are required throughout the course of LSU assembly, little is known about how these factors interact with each other within the LSU processome. To interrogate its organization and architecture, we took a systems biology approach and performed a semi-high-throughput, array-based, directed yeast two-hybrid assay. Assaying 4800 protein–protein interactions, we identified 232 high-confidence, binary-interacting protein pairs, representing a fourfold increase from current knowledge. The resulting LSU processome interactome map has enhanced our understanding of the organization and function of the biogenesis factors within the LSU processome, revealing both novel and previously identified subcomplexes and hub proteins, including Nop4.
Collapse
Affiliation(s)
- Kathleen L McCann
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - J Michael Charette
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Nicholas G Vincent
- Department of Microbiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
27
|
Abstract
The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79-80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type-specific disorders that often transition from hypoproliferative to hyperproliferative growth.
Collapse
Affiliation(s)
- Jesus de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
- Departamento de Genetica, Universidad de Sevilla, E-41013 Sevilla, Spain
| | - Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
28
|
Chen YL, Capeyrou R, Humbert O, Mouffok S, Kadri YA, Lebaron S, Henras AK, Henry Y. The telomerase inhibitor Gno1p/PINX1 activates the helicase Prp43p during ribosome biogenesis. Nucleic Acids Res 2014; 42:7330-45. [PMID: 24823796 PMCID: PMC4066782 DOI: 10.1093/nar/gku357] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We provide evidence that a central player in ribosome synthesis, the ribonucleic acid helicase Prp43p, can be activated by yeast Gno1p and its human ortholog, the telomerase inhibitor PINX1. Gno1p and PINX1 expressed in yeast interact with Prp43p and the integrity of their G-patch domain is required for this interaction. Moreover, PINX1 interacts with human PRP43 (DHX15) in HeLa cells. PINX1 directly binds to yeast Prp43p and stimulates its adenosine triphosphatase activity, while alterations of the G patch abolish formation of the PINX1/Prp43p complex and the stimulation of Prp43p. In yeast, lack of Gno1p leads to a decrease in the levels of pre-40S and intermediate pre-60S pre-ribosomal particles, defects that can be corrected by PINX1 expression. We show that Gno1p associates with 90S and early pre-60S pre-ribosomal particles and is released from intermediate pre-60S particles. G-patch alterations in Gno1p or PINX1 that inhibit their interactions with Prp43p completely abolish their function in yeast ribosome biogenesis. Altogether, our results suggest that activation of Prp43p by Gno1p/PINX1 within early pre-ribosomal particles is crucial for their subsequent maturation.
Collapse
Affiliation(s)
- Yan-Ling Chen
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Régine Capeyrou
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Odile Humbert
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Saïda Mouffok
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Yasmine Al Kadri
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Simon Lebaron
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Anthony K Henras
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Yves Henry
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| |
Collapse
|
29
|
Pratte D, Singh U, Murat G, Kressler D. Mak5 and Ebp2 act together on early pre-60S particles and their reduced functionality bypasses the requirement for the essential pre-60S factor Nsa1. PLoS One 2013; 8:e82741. [PMID: 24312670 PMCID: PMC3846774 DOI: 10.1371/journal.pone.0082741] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Ribosomes are the molecular machines that translate mRNAs into proteins. The synthesis of ribosomes is therefore a fundamental cellular process and consists in the ordered assembly of 79 ribosomal proteins (r-proteins) and four ribosomal RNAs (rRNAs) into a small 40S and a large 60S ribosomal subunit that form the translating 80S ribosomes. Most of our knowledge concerning this dynamic multi-step process comes from studies with the yeast Saccharomyces cerevisiae, which have shown that assembly and maturation of pre-ribosomal particles, as they travel from the nucleolus to the cytoplasm, relies on a multitude (>200) of biogenesis factors. Amongst these are many energy-consuming enzymes, including 19 ATP-dependent RNA helicases and three AAA-ATPases. We have previously shown that the AAA-ATPase Rix7 promotes the release of the essential biogenesis factor Nsa1 from late nucleolar pre-60S particles. Here we show that mutant alleles of genes encoding the DEAD-box RNA helicase Mak5, the C/D-box snoRNP component Nop1 and the rRNA-binding protein Nop4 bypass the requirement for Nsa1. Interestingly, dominant-negative alleles of RIX7 retain their phenotype in the absence of Nsa1, suggesting that Rix7 may have additional nuclear substrates besides Nsa1. Mak5 is associated with the Nsa1 pre-60S particle and synthetic lethal screens with mak5 alleles identified the r-protein Rpl14 and the 60S biogenesis factors Ebp2, Nop16 and Rpf1, which are genetically linked amongst each other. We propose that these 'Mak5 cluster' factors orchestrate the structural arrangement of a eukaryote-specific 60S subunit surface composed of Rpl6, Rpl14 and Rpl16 and rRNA expansion segments ES7L and ES39L. Finally, over-expression of Rix7 negatively affects growth of mak5 and ebp2 mutant cells both in the absence and presence of Nsa1, suggesting that Rix7, at least when excessively abundant, may act on structurally defective pre-60S subunits and may subject these to degradation.
Collapse
Affiliation(s)
- Dagmar Pratte
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ujjwala Singh
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
30
|
Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-81. [PMID: 24190922 PMCID: PMC3813855 DOI: 10.1534/genetics.113.153197] [Citation(s) in RCA: 588] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
Collapse
Affiliation(s)
- John L. Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Susan J. Baserga
- Molecular Biophysics and Biochemistry, Genetics and Therapeutic Radiology, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
31
|
Francisco-Velilla R, Remacha M, Ballesta JP. Carboxy terminal modifications of the P0 protein reveal alternative mechanisms of nuclear ribosomal stalk assembly. Nucleic Acids Res 2013; 41:8628-36. [PMID: 23880660 PMCID: PMC3794597 DOI: 10.1093/nar/gkt637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/20/2022] Open
Abstract
The P0 scaffold protein of the ribosomal stalk is mainly incorporated into pre-ribosomes in the cytoplasm where it replaces the assembly factor Mrt4. In analyzing the role of the P0 carboxyl terminal domain (CTD) during ribosomal stalk assembly, we found that its complete removal yields a protein that is functionally similar to Mrt4, whereas a chimeric Mrt4 containing the P0 CTD behaves more like P0. Deleting the P0 binding sites for the P1 and P2 proteins provoked the nuclear accumulation of P0ΔAB induced by either leptomycin B-mediated blockage of nuclear export or Mrt4 deletion. This effect was reversed by removing P1/P2 from the cell, whereas nuclear accumulation was restored on reintroduction of these proteins. Together, these results indicate that the CTD determines the function of the P0 in stalk assembly. Moreover, they indicate that in cells lacking Mrt4, P0 and its stalk base partner, the L12 protein, bind to pre-ribosomes in the nucleus, a complex that is then exported to the cytoplasm by a mechanism assisted by the interaction with P1/P2 proteins. Furthermore, in wild-type cells, the presence of nuclear pre-ribosome complexes containing P0 but not L12 is compatible with the existence of an alternative stalk assembly process.
Collapse
Affiliation(s)
| | - Miguel Remacha
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid
| | - Juan P.G. Ballesta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid
| |
Collapse
|
32
|
Babiano R, Badis G, Saveanu C, Namane A, Doyen A, Díaz-Quintana A, Jacquier A, Fromont-Racine M, de la Cruz J. Yeast ribosomal protein L7 and its homologue Rlp7 are simultaneously present at distinct sites on pre-60S ribosomal particles. Nucleic Acids Res 2013; 41:9461-70. [PMID: 23945946 PMCID: PMC3814368 DOI: 10.1093/nar/gkt726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ribosome biogenesis requires >300 assembly factors in Saccharomyces cerevisiae. Ribosome assembly factors Imp3, Mrt4, Rlp7 and Rlp24 have sequence similarity to ribosomal proteins S9, P0, L7 and L24, suggesting that these pre-ribosomal factors could be placeholders that prevent premature assembly of the corresponding ribosomal proteins to nascent ribosomes. However, we found L7 to be a highly specific component of Rlp7-associated complexes, revealing that the two proteins can bind simultaneously to pre-ribosomal particles. Cross-linking and cDNA analysis experiments showed that Rlp7 binds to the ITS2 region of 27S pre-rRNAs, at two sites, in helix III and in a region adjacent to the pre-rRNA processing sites C1 and E. However, L7 binds to mature 25S and 5S rRNAs and cross-linked predominantly to helix ES7Lb within 25S rRNA. Thus, despite their predicted structural similarity, our data show that Rlp7 and L7 clearly bind at different positions on the same pre-60S particles. Our results also suggest that Rlp7 facilitates the formation of the hairpin structure of ITS2 during 60S ribosomal subunit maturation.
Collapse
Affiliation(s)
- Reyes Babiano
- Departamento de Genética, Universidad de Sevilla, E-41012 Seville, Spain, Institut Pasteur, Génétique des Interactions Macromoléculaires, CNRS UMR-3525, Paris, France and Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Seville, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rodríguez-Galán O, García-Gómez JJ, de la Cruz J. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:775-90. [PMID: 23357782 DOI: 10.1016/j.bbagrm.2013.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
Abstract
Ribosome biogenesis is a fundamental process that is conserved in eukaryotes. Although spectacular progress has been made in understanding mammalian ribosome synthesis in recent years, by far, this process has still been best characterised in the yeast Saccharomyces cerevisiae. In yeast, besides the rRNAs, the ribosomal proteins and the 75 small nucleolar RNAs, more than 250 non-ribosomal proteins, generally referred to as trans-acting factors, are involved in ribosome biogenesis. These factors include nucleases, RNA modifying enzymes, ATPases, GTPases, kinases and RNA helicases. Altogether, they likely confer speed, accuracy and directionality to the ribosome synthesis process, however, the precise functions for most of them are still largely unknown. This review summarises our current knowledge on eukaryotic RNA helicases involved in ribosome biogenesis, particularly focusing on the most recent advances with respect to the molecular roles of these enzymes and their co-factors in yeast and human cells. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
|
34
|
Fernández-Pevida A, Rodríguez-Galán O, Díaz-Quintana A, Kressler D, de la Cruz J. Yeast ribosomal protein L40 assembles late into precursor 60 S ribosomes and is required for their cytoplasmic maturation. J Biol Chem 2012; 287:38390-407. [PMID: 22995916 DOI: 10.1074/jbc.m112.400564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process.
Collapse
|
35
|
Martin R, Straub AU, Doebele C, Bohnsack MT. DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol 2012; 10:4-18. [PMID: 22922795 DOI: 10.4161/rna.21879] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribosome synthesis requires a multitude of cofactors, among them DExD/H-box RNA helicases. Bacterial RNA helicases involved in ribosome assembly are not essential, while eukaryotes strictly require multiple DExD/H-box proteins that are involved in the much more complex ribosome biogenesis pathway. Here, RNA helicases are thought to act in structural remodeling of the RNPs including the modulation of protein binding, and they are required for allowing access or the release of specific snoRNPs from pre-ribosomes. Interestingly, helicase action is modulated by specific cofactors that can regulate recruitment and enzymatic activity. This review summarizes the current knowledge and focuses on recent findings and open questions on RNA helicase function and regulation in ribosome synthesis.
Collapse
Affiliation(s)
- Roman Martin
- Centre for Biochemistry and Molecular Cell Biology, Göttingen University, Göttingen, Germany
| | | | | | | |
Collapse
|
36
|
Reyes-Pardo H, Barbosa-Camacho AA, Pérez-Mejía AE, Lara-Chacón B, Salas-Estrada LA, Robledo-Rivera AY, Montero-Morán GM, Lara-González S, Calera MR, Sánchez-Olea R. A nuclear export sequence in GPN-loop GTPase 1, an essential protein for nuclear targeting of RNA polymerase II, is necessary and sufficient for nuclear export. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1756-66. [PMID: 22796641 DOI: 10.1016/j.bbamcr.2012.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/16/2022]
Abstract
XAB1/Gpn1 is a GTPase that associates with RNA polymerase II (RNAPII) in a GTP-dependent manner. Although XAB1/Gpn1 is essential for nuclear accumulation of RNAPII, the underlying mechanism is not known. A XAB1/Gpn1-EYFP fluorescent protein, like endogenous XAB1/Gpn1, localized to the cytoplasm but it rapidly accumulated in the cell nucleus in the presence of leptomycin B, a chemical inhibitor of the nuclear transport receptor Crm1. Crm1 recognizes short peptides in substrate proteins called nuclear export sequences (NES). Here, we employed site-directed mutagenesis and fluorescence microscopy to assess the functionality of all six putative NESs in XAB1/Gpn1. Mutating five of the six putative NESs did not alter the cytoplasmic localization of XAB1/Gpn1-EYFP. However, a V302A/L304A double mutant XAB1/Gpn1-EYFP protein was clearly accumulated in the cell nucleus, indicating the disruption of a functional NES. This functional XAB1/Gpn1 NES displays all features present in most common and potent NESs, including, in addition to Φ1-Φ4, a critical fifth hydrophobic amino acid Φ0. Therefore, in human Gpn1 this NES spans amino acids 292-LERLRKDMGSVAL-304. XAB1/Gpn1 NES is remarkably conserved during evolution. XAB1/Gpn1 NES was sufficient for nuclear export activity, as it caused a complete exclusion of EYFP from the cell nucleus. Molecular modeling of XAB1/Gpn1 provided a mechanistic reason for NES selection, as functionality correlated with accessibility, and it also suggested a mechanism for NES inhibition by intramolecular masking. In conclusion, we have identified a highly active, evolutionarily conserved NES in XAB1/Gpn1 that is critical for nucleo-cytoplasmic shuttling and steady-state cytoplasmic localization of XAB1/Gpn1.
Collapse
Affiliation(s)
- Humberto Reyes-Pardo
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Zona Universitaria, San Luis Potosí, San Luis Potosí, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Saccharomyces cerevisiae ribosomal protein L26 is not essential for ribosome assembly and function. Mol Cell Biol 2012; 32:3228-41. [PMID: 22688513 DOI: 10.1128/mcb.00539-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ribosomal proteins play important roles in ribosome biogenesis and function. Here, we study the evolutionarily conserved L26 in Saccharomyces cerevisiae, which assembles into pre-60S ribosomal particles in the nucle(ol)us. Yeast L26 is one of the many ribosomal proteins encoded by two functional genes. We have disrupted both genes; surprisingly, the growth of the resulting rpl26 null mutant is apparently identical to that of the isogenic wild-type strain. The absence of L26 minimally alters 60S ribosomal subunit biogenesis. Polysome analysis revealed the appearance of half-mers. Analysis of pre-rRNA processing indicated that L26 is mainly required to optimize 27S pre-rRNA maturation, without which the release of pre-60S particles from the nucle(ol)us is partially impaired. Ribosomes lacking L26 exhibit differential reactivity to dimethylsulfate in domain I of 25S/5.8S rRNAs but apparently are able to support translation in vivo with wild-type accuracy. The bacterial homologue of yeast L26, L24, is a primary rRNA binding protein required for 50S ribosomal subunit assembly in vitro and in vivo. Our results underscore potential differences between prokaryotic and eukaryotic ribosome assembly. We discuss the reasons why yeast L26 plays such an apparently nonessential role in the cell.
Collapse
|
38
|
Hoareau-Aveilla C, Fayet-Lebaron E, Jády BE, Henras AK, Kiss T. Utp23p is required for dissociation of snR30 small nucleolar RNP from preribosomal particles. Nucleic Acids Res 2011; 40:3641-52. [PMID: 22180534 PMCID: PMC3333846 DOI: 10.1093/nar/gkr1213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Yeast snR30 is an essential box H/ACA small nucleolar RNA (snoRNA) that promotes 18S rRNA processing through forming transient base-pairing interactions with the newly synthesized 35S pre-rRNA. By using a novel tandem RNA affinity selection approach, followed by coimmunoprecipitation and in vivo cross-linking experiments, we demonstrate that in addition to the four H/ACA core proteins, Cbf5p, Nhp2p, Nop10p and Gar1p, a fraction of snR30 specifically associates with the Utp23p and Kri1p nucleolar proteins. Depletion of Utp23p and Kri1p has no effect on the accumulation and recruitment of snR30 to the nascent pre-ribosomes. However, in the absence of Utp23p, the majority of snR30 accumulates in large pre-ribosomal particles. The retained snR30 is not base-paired with the 35S pre-rRNA, indicating that its aberrant tethering to nascent preribosomes is likely mediated by pre-ribosomal protein(s). Thus, Utp23p may promote conformational changes of the pre-ribosome, essential for snR30 release. Neither Utp23p nor Kri1p is required for recruitment of snR30 to the nascent pre-ribosome. On the contrary, depletion of snR30 prevents proper incorporation of both Utp23p and Kri1p into the 90S pre-ribosome containing the 35S pre-rRNA, indicating that snR30 plays a central role in the assembly of functionally active small subunit processome.
Collapse
Affiliation(s)
- Coralie Hoareau-Aveilla
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse-UPS and Centre National de La Recherche Scientifique, F-31000 Toulouse, France
| | | | | | | | | |
Collapse
|
39
|
Choque E, Marcellin M, Burlet-Schiltz O, Gadal O, Dez C. The nucleolar protein Nop19p interacts preferentially with Utp25p and Dhr2p and is essential for the production of the 40S ribosomal subunit in Saccharomyces cerevisiae. RNA Biol 2011; 8:1158-72. [PMID: 21941128 DOI: 10.4161/rna.8.6.17699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In eukaryotes, ribosome biogenesis is a process of major interest that requires more than 200 factors acting coordinately in time and space. Using genetic and proteomic studies, most of the components have now been identified. Based on its nucleolar localization, we characterized the protein encoded by the open reading frame YGR251W, we renamed Nop19p as playing an essential role in ribosome biogenesis. Depletion of the Nop19p in yeast impairs pre-rRNA processing at sites A₀, A₁ and A₂, leading to a strong decrease in 18S rRNA and 40S subunit levels. Nop19p is a component of 90S preribosomes which assembly is believed to result from stepwise incorporation of UTP modules. We show that Nop19p depletion does not impair the incorporation of UTP subcomplexes on preribosomes and conversely that depletion of UTP subcomplexes does not affect Nop19p recruitment on 90S preribosomes. TAP experiments under stringent conditions revealed that Nop19p interacts preferentially with the DEAH-box RNA helicase Dhr2p and Utp25p, both required for A 0, A 1 and A 2 cleavages. Nop19p appeared essential for the incorporation of Utp25p in preribosomes. In addition, our results suggest that in absence of Nop19p, Dhr2p remains trapped within aberrant preribosomes.
Collapse
Affiliation(s)
- Elodie Choque
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Moléculaire Eukaryote, Toulouse, France
| | | | | | | | | |
Collapse
|
40
|
Staresincic L, Walker J, Dirac-Svejstrup AB, Mitter R, Svejstrup JQ. GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein. J Biol Chem 2011; 286:35553-35561. [PMID: 21844196 PMCID: PMC3195585 DOI: 10.1074/jbc.m111.286161] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Indexed: 11/06/2022] Open
Abstract
We identified XAB1 in a proteomic screen for factors that interact with human RNA polymerase II (RNAPII). Because XAB1 has a conserved Saccharomyces cerevisiae homologue called Npa3, yeast genetics and biochemical analysis were used to dissect the significance of the interaction. Degron-dependent Npa3 depletion resulted in genome-wide transcription decreases, correlating with a loss of RNAPII from genes as measured by chromatin immunoprecipitation. Surprisingly, however, transcription in vitro was unaffected by Npa3, suggesting that it affects a process that is not required for transcription in yeast extracts. Indeed, Npa3 depletion in vivo affects nuclear localization of RNAPII; the polymerase accumulates in the cytoplasm. Npa3 is a member of the GPN-LOOP family of GTPases. Npa3 mutants that either cannot bind GTP or that bind but cannot hydrolyze it are inviable and unable to support nuclear transport of RNAPII. Surprisingly, we were unable to detect interactions between Npa3 and proteins in the classical importin α/β pathway for nuclear import. Interestingly, Npa3-RNAPII binding is significantly increased by the addition of GTP or its slowly hydrolyzable analogue guanosine 5'-3-O-(thio)triphosphate (GTPγS). Moreover, the Npa3 mutant that binds GTP, but cannot hydrolyze it, binds RNAPII even in the absence of added GTP, whereas the mutant that cannot bind GTP is unable to bind the polymerase. Together, our data suggest that Npa3 defines an unconventional pathway for nuclear import of RNAPII, which involves GTP-dependent binding of Npa3 to the polymerase.
Collapse
Affiliation(s)
- Lidija Staresincic
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD
| | - Jane Walker
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD
| | - A Barbara Dirac-Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD
| | - Richard Mitter
- Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD.
| |
Collapse
|
41
|
Santos MCT, Goldfeder MB, Zanchin NIT, Oliveira CC. The essential nucleolar yeast protein Nop8p controls the exosome function during 60S ribosomal subunit maturation. PLoS One 2011; 6:e21686. [PMID: 21747919 PMCID: PMC3126838 DOI: 10.1371/journal.pone.0021686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/08/2011] [Indexed: 11/19/2022] Open
Abstract
The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxyl-terminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Δnop8/GAL::NOP8. Interestingly, Nop8p mediates association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control the exosome function during pre-rRNA processing.
Collapse
Affiliation(s)
- Marcia C. T. Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Mauricio B. Goldfeder
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Nilson I. T. Zanchin
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, São Paulo, Brazil
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, São Paulo, Brazil
| | - Carla C. Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
42
|
A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J 2011; 30:882-93. [PMID: 21285948 DOI: 10.1038/emboj.2010.363] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/21/2010] [Indexed: 11/09/2022] Open
Abstract
The YgjD/Kae1 family (COG0533) has been on the top-10 list of universally conserved proteins of unknown function for over 5 years. It has been linked to DNA maintenance in bacteria and mitochondria and transcription regulation and telomere homeostasis in eukaryotes, but its actual function has never been found. Based on a comparative genomic and structural analysis, we predicted this family was involved in the biosynthesis of N(6)-threonylcarbamoyl adenosine, a universal modification found at position 37 of tRNAs decoding ANN codons. This was confirmed as a yeast mutant lacking Kae1 is devoid of t(6)A. t(6)A(-) strains were also used to reveal that t(6)A has a critical role in initiation codon restriction to AUG and in restricting frameshifting at tandem ANN codons. We also showed that YaeZ, a YgjD paralog, is required for YgjD function in vivo in bacteria. This work lays the foundation for understanding the pleiotropic role of this universal protein family.
Collapse
|
43
|
Forget D, Lacombe AA, Cloutier P, Al-Khoury R, Bouchard A, Lavallée-Adam M, Faubert D, Jeronimo C, Blanchette M, Coulombe B. The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II. Mol Cell Proteomics 2010; 9:2827-39. [PMID: 20855544 PMCID: PMC3002788 DOI: 10.1074/mcp.m110.003616] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
RNA polymerase II (RNAPII), the 12-subunit enzyme that synthesizes all mRNAs and several non-coding RNAs in eukaryotes, plays a central role in cell function. Although multiple proteins are known to regulate the activity of RNAPII during transcription, little is known about the machinery that controls the fate of the enzyme before or after transcription. We used systematic protein affinity purification coupled to mass spectrometry (AP-MS) to characterize the high resolution network of protein interactions of RNAPII in the soluble fraction of human cell extracts. Our analysis revealed that many components of this network participate in RNAPII biogenesis. We show here that RNAPII-associated protein 4 (RPAP4/GPN1) shuttles between the nucleus and the cytoplasm and regulates nuclear import of POLR2A/RPB1 and POLR2B/RPB2, the two largest subunits of RNAPII. RPAP4/GPN1 is a member of a newly discovered GTPase family that contains a unique and highly conserved GPN loop motif that we show is essential, in conjunction with its GTP-binding motifs, for nuclear localization of POLR2A/RPB1 in a process that also requires microtubule assembly. A model for RNAPII biogenesis is presented.
Collapse
Affiliation(s)
- Diane Forget
- Institut de recherches cliniques de Montréal, Montréal, Québec H2W1R7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Babiano R, de la Cruz J. Ribosomal protein L35 is required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 2010; 38:5177-92. [PMID: 20392820 PMCID: PMC2926614 DOI: 10.1093/nar/gkq260] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/19/2010] [Accepted: 03/29/2010] [Indexed: 11/12/2022] Open
Abstract
Ribosome synthesis involves the concomitance of pre-rRNA processing and ribosomal protein assembly. In eukaryotes, this is a complex process that requires the participation of specific sequences and structures within the pre-rRNAs, at least 200 trans-acting factors and the ribosomal proteins. There is little information on the function of individual 60S ribosomal proteins in ribosome synthesis. Herein, we have analysed the contribution of ribosomal protein L35 in ribosome biogenesis. In vivo depletion of L35 results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. Pulse-chase, northern hybridization and primer extension analyses show that processing of the 27SB to 7S pre-rRNAs is strongly delayed upon L35 depletion. Most likely as a consequence of this, release of pre-60S ribosomal particles from the nucleolus to the nucleoplasm is also blocked. Deletion of RPL35A leads to similar although less pronounced phenotypes. Moreover, we show that L35 assembles in the nucleolus and binds to early pre-60S ribosomal particles. Finally, flow cytometry analysis indicated that L35-depleted cells mildly delay the G1 phase of the cell cycle. We conclude that L35 assembly is a prerequisite for the efficient cleavage of the internal transcribed spacer 2 at site C(2).
Collapse
Affiliation(s)
| | - Jesús de la Cruz
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
45
|
Driving ribosome assembly. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:673-83. [DOI: 10.1016/j.bbamcr.2009.10.009] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/13/2009] [Accepted: 10/26/2009] [Indexed: 11/19/2022]
|
46
|
Kos M, Tollervey D. Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol Cell 2010; 37:809-20. [PMID: 20347423 PMCID: PMC2860240 DOI: 10.1016/j.molcel.2010.02.024] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 12/23/2009] [Accepted: 02/21/2010] [Indexed: 10/31/2022]
Abstract
To better understand yeast ribosome synthesis, we developed techniques for the rapid harvesting and analysis of metabolically labeled cultures. Modeling of the resulting kinetic data allowed predicted lifetimes and processing patterns to be compared with the experimental data. This supported a transcription time for the 35S primary transcripts of approximately 170 s at 30 degrees C (approximately 40 nt s(-1)), with a high fraction (approximately 70%) of nascent transcripts cleaved at the early processing sites that generate the 20S precursor to the 18S rRNA. This level of nascent transcript cleavage apparently conflicted with previous reports that modification of yeast pre-rRNA exclusively occurred on released transcripts. A second round of high-resolution kinetic labeling showed that 20S pre-rRNA predominately undergoes methylation as nascent transcripts, whereas the 27S precursor to the 25S/5.8S rRNAs was partially methylated on the nascent transcript. The results demonstrate that quantitative analyses of pre-rRNA processing can yield important biological insights.
Collapse
Affiliation(s)
- Martin Kos
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
47
|
Rodríguez-Mateos M, García-Gómez JJ, Francisco-Velilla R, Remacha M, de la Cruz J, Ballesta JPG. Role and dynamics of the ribosomal protein P0 and its related trans-acting factor Mrt4 during ribosome assembly in Saccharomyces cerevisiae. Nucleic Acids Res 2009; 37:7519-32. [PMID: 19789271 PMCID: PMC2794172 DOI: 10.1093/nar/gkp806] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 11/25/2022] Open
Abstract
Mrt4 is a nucleolar component of the ribosome assembly machinery that shares notable similarity and competes for binding to the 25S rRNA GAR domain with the ribosomal protein P0. Here, we show that loss of function of either P0 or Mrt4 results in a deficit in 60S subunits, which is apparently due to impaired rRNA processing of 27S precursors. Mrt4, which shuttles between the nucleus and the cytoplasm, defines medium pre-60S particles. In contrast, P0 is absent from medium but present in late/cytoplasmic pre-60S complexes. The absence of Mrt4 notably increased the amount of P0 in nuclear Nop7-TAP complexes and causes P0 assembly to medium pre-60S particles. Upon P0 depletion, Mrt4 is relocated to the cytoplasm within aberrant 60S subunits. We conclude that Mrt4 controls the position and timing of P0 assembly. In turn, P0 is required for the release of Mrt4 and exchanges with this factor at the cytoplasm. Our results also suggest other P0 assembly alternatives.
Collapse
Affiliation(s)
- María Rodríguez-Mateos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Juan J. García-Gómez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Miguel Remacha
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Jesús de la Cruz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Juan P. G. Ballesta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| |
Collapse
|
48
|
Soudet J, Gélugne JP, Belhabich-Baumas K, Caizergues-Ferrer M, Mougin A. Immature small ribosomal subunits can engage in translation initiation in Saccharomyces cerevisiae. EMBO J 2009; 29:80-92. [PMID: 19893492 DOI: 10.1038/emboj.2009.307] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 09/03/2009] [Indexed: 11/09/2022] Open
Abstract
It is generally assumed that, in Saccharomyces cerevisiae, immature 40S ribosomal subunits are not competent for translation initiation. Here, we show by different approaches that, in wild-type conditions, a portion of pre-40S particles (pre-SSU) associate with translating ribosomal complexes. When cytoplasmic 20S pre-rRNA processing is impaired, as in Rio1p- or Nob1p-depleted cells, a large part of pre-SSUs is associated with translating ribosomes complexes. Loading of pre-40S particles onto mRNAs presumably uses the canonical pathway as translation-initiation factors interact with 20S pre-rRNA. However, translation initiation is not required for 40S ribosomal subunit maturation. We also provide evidence suggesting that cytoplasmic 20S pre-rRNAs that associate with translating complexes are turned over by the no go decay (NGD) pathway, a process known to degrade mRNAs on which ribosomes are stalled. We propose that the cytoplasmic fate of 20S pre-rRNA is determined by the balance between pre-SSU processing kinetics and sensing of ribosome-like particles loaded onto mRNAs by the NGD machinery, which acts as an ultimate ribosome quality check point.
Collapse
Affiliation(s)
- Julien Soudet
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|
49
|
Rodríguez-Mateos M, Abia D, García-Gómez JJ, Morreale A, de la Cruz J, Santos C, Remacha M, Ballesta JPG. The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein. Nucleic Acids Res 2009; 37:3514-21. [PMID: 19346338 PMCID: PMC2699499 DOI: 10.1093/nar/gkp209] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/06/2009] [Accepted: 03/14/2009] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the Mrt4 protein is a component of the ribosome assembly machinery that shares notable sequence homology to the P0 ribosomal stalk protein. Here, we show that these proteins can not bind simultaneously to ribosomes and moreover, a chimera containing the first 137 amino acids of Mrt4 and the last 190 amino acids from P0 can partially complement the absence of the ribosomal protein in a conditional P0 null mutant. This chimera is associated with ribosomes isolated from this strain when grown under restrictive conditions, although its binding is weaker than that of P0. These ribosomes contain less P1 and P2 proteins, the other ribosomal stalk components. Similarly, the interaction of the L12 protein, a stalk base component, is affected by the presence of the chimera. These results indicate that Mrt4 and P0 bind to the same site in the 25S rRNA. Indeed, molecular dynamics simulations using modelled Mrt4 and P0 complexes provide further evidence that both proteins bind similarly to rRNA, although their interaction with L12 displays notable differences. Together, these data support the participation of the Mrt4 protein in the assembly of the P0 protein into the ribosome and probably, that also of the L12 protein.
Collapse
Affiliation(s)
- María Rodríguez-Mateos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - David Abia
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - Juan J. García-Gómez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - Antonio Morreale
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - Jesús de la Cruz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - Cruz Santos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - Miguel Remacha
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - Juan P. G. Ballesta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| |
Collapse
|
50
|
Dez C, Dlakić M, Tollervey D. Roles of the HEAT repeat proteins Utp10 and Utp20 in 40S ribosome maturation. RNA (NEW YORK, N.Y.) 2007; 13:1516-27. [PMID: 17652137 PMCID: PMC1950751 DOI: 10.1261/rna.609807] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A family of HEAT-repeat containing ribosome synthesis factors was previously identified in Saccharomyces cerevisiae. We report the detailed characterization of two of these factors, Utp10 and Utp20, which were initially identified as components of the small subunit processome. Coprecipitation analyses confirmed the association of Utp10 and Utp20 with U3 snoRNA and the early pre-rRNA processing intermediates. Particularly strong association was seen with aberrant processing intermediates, which may help target these RNAs for degradation. Genetic depletion of either protein inhibited the early pre-rRNA processing steps in 18S rRNA maturation but had little effect on pre-rRNA transcription or synthesis of the 25S or 5.8S rRNAs. The absence of the poly(A) polymerase Trf5, a component of the TRAMP5 complex and exosome cofactor, led to stabilization of the aberrant 23S RNA in strains depleted of Utp10 or Utp20. In the case of Utp10, 20S pre-rRNA synthesis was also modestly increased by this loss of surveillance activity.
Collapse
MESH Headings
- Models, Molecular
- RNA Processing, Post-Transcriptional/physiology
- RNA, Ribosomal, 18S/biosynthesis
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/physiology
- Repetitive Sequences, Amino Acid
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/physiology
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/physiology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/physiology
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Christophe Dez
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Scotland
| | | | | |
Collapse
|