1
|
Ohama N, Moo TL, Chung K, Mitsuda N, Boonyaves K, Urano D, Chua NH. MEDIATOR15 destabilizes DELLA protein to promote gibberellin-mediated plant development. THE NEW PHYTOLOGIST 2025; 245:2665-2680. [PMID: 39807571 DOI: 10.1111/nph.20397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Mediator, a transcriptional coactivator, regulates plant growth and development by interacting with various transcriptional regulators. MEDIATOR15 (MED15) is a subunit in the Mediator complex potentially involved in developmental control. To uncover molecular functions of Arabidopsis MED15 in development, we searched for its interactors. MED15 was found to interact with DELLA proteins, which negatively regulate gibberellic acid (GA) signaling and positively regulate GA biosynthesis. Mutants and overexpressors of MED15 exhibited multiple GA-related growth phenotypes, which resembled the phenotypes of the DELLA overexpressor and mutant, respectively. Consistent with this observation, DELLA protein levels were inversely correlated with MED15 protein levels, suggesting that MED15 activates GA signaling through DELLA degradation. MED15 was required not only for DELLA-mediated induction of GA-biosynthesis gene expression but also for GA-mediated degradation of DELLA. Therefore, MED15 facilitates DELLA destruction not only by promoting GA biosynthesis but also by accelerating DELLA turnover. Furthermore, MED15-mediated GA signaling was required for timely developmental responses to dark and warm conditions. Our results provide insight into developmental control by Mediator via precise regulation of DELLA stability. These findings are potentially useful for the generation of new crop cultivars with ideal body architecture.
Collapse
Affiliation(s)
- Naohiko Ohama
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Teck Lim Moo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - KwiMi Chung
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kulaporn Boonyaves
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| |
Collapse
|
2
|
Zhou DH, Jeon J, Farheen N, Friedman LJ, Kondev J, Buratowski S, Gelles J. Mechanisms of synergistic Mediator recruitment in RNA polymerase II transcription activation revealed by single-molecule fluorescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627625. [PMID: 39713438 PMCID: PMC11661148 DOI: 10.1101/2024.12.10.627625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Transcription activators trigger transcript production by RNA Polymerase II (RNApII) via the Mediator coactivator complex. Here the dynamics of activator, Mediator, and RNApII binding at promoter DNA were analyzed using multi-wavelength single-molecule microscopy of fluorescently labeled proteins in budding yeast nuclear extract. Binding of Mediator and RNApII to the template required activator and an upstream activator sequence (UAS), but not a core promoter. While Mediator and RNApII sometimes bind as a pre-formed complex, more commonly Mediator binds first and subsequently recruits RNApII to form a preinitiation complex precursor (pre-PIC) tethered to activators on the UAS. Interestingly, Mediator occupancy has a highly non-linear response to activator concentration, and fluorescence intensity measurements show Mediator preferentially associates with templates having at least two activators bound. Statistical mechanical modeling suggests this "synergy" is not due to cooperative binding between activators, but instead occurs when multiple DNA-bound activator molecules simultaneously interact with a single Mediator.
Collapse
Affiliation(s)
- Daniel H. Zhou
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | - Jongcheol Jeon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Nida Farheen
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | | | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02453
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| |
Collapse
|
3
|
Freytes SN, Gobbini ML, Cerdán PD. The Plant Mediator Complex in the Initiation of Transcription by RNA Polymerase II. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:211-237. [PMID: 38277699 DOI: 10.1146/annurev-arplant-070623-114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Thirty years have passed since the discovery of the Mediator complex in yeast. We are witnessing breakthroughs and advances that have led to high-resolution structural models of yeast and mammalian Mediators in the preinitiation complex, showing how it is assembled and how it positions the RNA polymerase II and its C-terminal domain (CTD) to facilitate the CTD phosphorylation that initiates transcription. This information may be also used to guide future plant research on the mechanisms of Mediator transcriptional control. Here, we review what we know about the subunit composition and structure of plant Mediators, the roles of the individual subunits and the genetic analyses that pioneered Mediator research, and how transcription factors recruit Mediators to regulatory regions adjoining promoters. What emerges from the research is a Mediator that regulates transcription activity and recruits hormonal signaling modules and histone-modifying activities to set up an off or on transcriptional state that recruits general transcription factors for preinitiation complex assembly.
Collapse
Affiliation(s)
| | | | - Pablo D Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina; , ,
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
4
|
Gorbea Colón JJ, Palao L, Chen SF, Kim HJ, Snyder L, Chang YW, Tsai KL, Murakami K. Structural basis of a transcription pre-initiation complex on a divergent promoter. Mol Cell 2023; 83:574-588.e11. [PMID: 36731470 PMCID: PMC10162435 DOI: 10.1016/j.molcel.2023.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with ∼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.
Collapse
Affiliation(s)
- Jose J Gorbea Colón
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Snyder
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Lambert É, Puwakdandawa K, Tao YF, Robert F. From structure to molecular condensates: emerging mechanisms for Mediator function. FEBS J 2023; 290:286-309. [PMID: 34698446 DOI: 10.1111/febs.16250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
Mediator is a large modular protein assembly whose function as a coactivator of transcription is conserved in all eukaryotes. The Mediator complex can integrate and relay signals from gene-specific activators bound at enhancers to activate the general transcription machinery located at promoters. It has thus been described as a bridge between these elements during initiation of transcription. Here, we review recent studies on Mediator relating to its structure, gene specificity and general requirement, roles in chromatin architecture as well as novel concepts involving phase separation and transcriptional bursting. We revisit the mechanism of action of Mediator and ultimately put forward models for its mode of action in gene activation.
Collapse
Affiliation(s)
- Élie Lambert
- Institut de recherches cliniques de Montréal, Canada
| | | | - Yi Fei Tao
- Institut de recherches cliniques de Montréal, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Canada
| |
Collapse
|
6
|
Saleh MM, Hundley HA, Zentner GE. Involvement of the SAGA and TFIID coactivator complexes in transcriptional dysregulation caused by the separation of core and tail Mediator modules. G3 (BETHESDA, MD.) 2022; 12:jkac290. [PMID: 36331351 PMCID: PMC9713439 DOI: 10.1093/g3journal/jkac290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 02/17/2024]
Abstract
Regulation of RNA polymerase II transcription requires the concerted efforts of several multisubunit coactivator complexes, which interact with the RNA polymerase II preinitiation complex to stimulate transcription. We previously showed that separation of the Mediator core from Mediator's tail module results in modest overactivation of genes annotated as highly dependent on TFIID for expression. However, it is unclear if other coactivators are involved in this phenomenon. Here, we show that the overactivation of certain genes by Mediator core/tail separation is blunted by disruption of the Spt-Ada-Gcn5-Acetyl transferase complex through the removal of its structural Spt20 subunit, though this downregulation does not appear to completely depend on reduced Spt-Ada-Gcn5-Acetyl transferase association with the genome. Consistent with the enrichment of TFIID-dependent genes among genes overactivated by Mediator core/tail separation, depletion of the essential TFIID subunit Taf13 suppressed the overactivation of these genes when Med16 was simultaneously removed. As with Spt-Ada-Gcn5-Acetyl transferase, this effect did not appear to be fully dependent on the reduced genomic association of TFIID. Given that the observed changes in gene expression could not be clearly linked to alterations in Spt-Ada-Gcn5-Acetyl transferase or TFIID occupancy, our data may suggest that the Mediator core/tail connection is important for the modulation of Spt-Ada-Gcn5-Acetyl transferase and/or TFIID conformation and/or function at target genes.
Collapse
Affiliation(s)
- Moustafa M Saleh
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Warfield L, Donczew R, Mahendrawada L, Hahn S. Yeast Mediator facilitates transcription initiation at most promoters via a Tail-independent mechanism. Mol Cell 2022; 82:4033-4048.e7. [PMID: 36208626 PMCID: PMC9637718 DOI: 10.1016/j.molcel.2022.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/12/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
Mediator (MED) is a conserved factor with important roles in basal and activated transcription. Here, we investigate the genome-wide roles of yeast MED by rapid depletion of its activator-binding domain (Tail) and monitoring changes in nascent transcription. Rapid Tail depletion surprisingly reduces transcription from only a small subset of genes. At most of these Tail-dependent genes, in unperturbed conditions, MED is detected at both the UASs and promoters. In contrast, at most Tail-independent genes, we find MED primarily at promoters but not at the UASs. These results suggest that MED Tail and activator-mediated MED recruitment regulates only a small subset of genes. Furthermore, we define three classes of genes that differ in PIC assembly pathways and the requirements for MED Tail, SAGA, TFIID, and BET factors Bdf1/2. Our combined results have broad implications for the roles of MED, other coactivators, and mechanisms of transcriptional regulation at different gene classes.
Collapse
Affiliation(s)
- Linda Warfield
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA
| | - Rafal Donczew
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA
| | - Lakshmi Mahendrawada
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA
| | - Steven Hahn
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA.
| |
Collapse
|
8
|
Morse RH. Function and dynamics of the Mediator complex: novel insights and new frontiers. Transcription 2022; 13:39-52. [PMID: 35708525 PMCID: PMC9467533 DOI: 10.1080/21541264.2022.2085502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The Mediator complex was discovered in the early 1990s as a biochemically fractionated factor from yeast extracts that was necessary for activator-stimulated transcriptional activation to be observed in in vitro transcription assays. The structure of this large, multi-protein complex is now understood in great detail, and novel genetic approaches have provided rich insights into its dynamics during transcriptional activation and the mechanism by which it facilitates activated transcription. Here I review recent findings and unanswered questions regarding Mediator dynamics, the roles of individual subunits, and differences between its function in yeast and metazoan cells.
Collapse
Affiliation(s)
- Randall H Morse
- Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, United States
| |
Collapse
|
9
|
Stanek TJ, Gennaro VJ, Tracewell MA, Di Marcantonio D, Pauley KL, Butt S, McNair C, Wang F, Kossenkov AV, Knudsen KE, Butt T, Sykes SM, McMahon SB. The SAGA complex regulates early steps in transcription via its deubiquitylase module subunit USP22. EMBO J 2021; 40:e102509. [PMID: 34155658 PMCID: PMC8365265 DOI: 10.15252/embj.2019102509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The SAGA coactivator complex is essential for eukaryotic transcription and comprises four distinct modules, one of which contains the ubiquitin hydrolase USP22. In yeast, the USP22 ortholog deubiquitylates H2B, resulting in Pol II Ser2 phosphorylation and subsequent transcriptional elongation. In contrast to this H2B-associated role in transcription, we report here that human USP22 contributes to the early stages of stimulus-responsive transcription, where USP22 is required for pre-initiation complex (PIC) stability. Specifically, USP22 maintains long-range enhancer-promoter contacts and controls loading of Mediator tail and general transcription factors (GTFs) onto promoters, with Mediator core recruitment being USP22-independent. In addition, we identify Mediator tail subunits MED16 and MED24 and the Pol II subunit RBP1 as potential non-histone substrates of USP22. Overall, these findings define a role for human SAGA within the earliest steps of transcription.
Collapse
Affiliation(s)
- Timothy J Stanek
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Victoria J Gennaro
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Mason A Tracewell
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | - Kristen L Pauley
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Sabrina Butt
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Christopher McNair
- Department of Cancer BiologySidney Kimmel Medical College and Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | | | - Karen E Knudsen
- Department of Cancer BiologySidney Kimmel Medical College and Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | - Stephen M Sykes
- Blood Cell Development and Function ProgramFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Steven B McMahon
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
10
|
Connection of core and tail Mediator modules restrains transcription from TFIID-dependent promoters. PLoS Genet 2021; 17:e1009529. [PMID: 34383744 PMCID: PMC8384189 DOI: 10.1371/journal.pgen.1009529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/24/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
The Mediator coactivator complex is divided into four modules: head, middle, tail, and kinase. Deletion of the architectural subunit Med16 separates core Mediator (cMed), comprising the head, middle, and scaffold (Med14), from the tail. However, the direct global effects of tail/cMed disconnection are unclear. We find that rapid depletion of Med16 downregulates genes that require the SAGA complex for full expression, consistent with their reported tail dependence, but also moderately overactivates TFIID-dependent genes in a manner partly dependent on the separated tail, which remains associated with upstream activating sequences. Suppression of TBP dynamics via removal of the Mot1 ATPase partially restores normal transcriptional activity to Med16-depleted cells, suggesting that cMed/tail separation results in an imbalance in the levels of PIC formation at SAGA-requiring and TFIID-dependent genes. We propose that the preferential regulation of SAGA-requiring genes by tailed Mediator helps maintain a proper balance of transcription between these genes and those more dependent on TFIID. Composed of over two dozen subunits, the Mediator complex plays several roles in RNA polymerase II (RNAPII) transcription in eukaryotes. In yeast, deletion of Med16, which splits Mediator into two stable subcomplexes, both increases and decreases transcript levels, suggesting that Med16 might play a repressive role. However, the direct effects of Med16 removal on RNAPII transcription have not been assessed, owing to the use of deletion mutants and measurement of steady-state RNA levels in prior studies. Here, using a combination of inducible protein depletion and analysis of nascent RNA, we find that Med16 removal 1) downregulates a small group of genes reported to be highly dependent on the SAGA complex and 2) upregulates a larger set of genes reported to be more dependent on the TFIID complex in a manner dependent on another component of Mediator. We find that artificially altering the balance of transcription pre-initiation complex (PIC) formation toward SAGA-requiring promoters and away from TFIID-dependent promoters partially restores normal transcription, indicating a contribution of altered PIC formation to the transcriptional alterations observed with Med16 loss. Taken together, our results indicate that the structural integrity of Mediator is important for maintaining balanced transcription between different gene classes.
Collapse
|
11
|
Sanborn AL, Yeh BT, Feigerle JT, Hao CV, Townshend RJ, Lieberman Aiden E, Dror RO, Kornberg RD. Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator. eLife 2021; 10:68068. [PMID: 33904398 PMCID: PMC8137143 DOI: 10.7554/elife.68068] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/25/2021] [Indexed: 01/07/2023] Open
Abstract
Gene activator proteins comprise distinct DNA-binding and transcriptional activation domains (ADs). Because few ADs have been described, we tested domains tiling all yeast transcription factors for activation in vivo and identified 150 ADs. By mRNA display, we showed that 73% of ADs bound the Med15 subunit of Mediator, and that binding strength was correlated with activation. AD-Mediator interaction in vitro was unaffected by a large excess of free activator protein, pointing to a dynamic mechanism of interaction. Structural modeling showed that ADs interact with Med15 without shape complementarity (‘fuzzy’ binding). ADs shared no sequence motifs, but mutagenesis revealed biochemical and structural constraints. Finally, a neural network trained on AD sequences accurately predicted ADs in human proteins and in other yeast proteins, including chromosomal proteins and chromatin remodeling complexes. These findings solve the longstanding enigma of AD structure and function and provide a rationale for their role in biology. Cells adapt and respond to changes by regulating the activity of their genes. To turn genes on or off, they use a family of proteins called transcription factors. Transcription factors influence specific but overlapping groups of genes, so that each gene is controlled by several transcription factors that act together like a dimmer switch to regulate gene activity. The presence of transcription factors attracts proteins such as the Mediator complex, which activates genes by gathering the protein machines that read the genes. The more transcription factors are found near a specific gene, the more strongly they attract Mediator and the more active the gene is. A specific region on the transcription factor called the activation domain is necessary for this process. The biochemical sequences of these domains vary greatly between species, yet activation domains from, for example, yeast and human proteins are often interchangeable. To understand why this is the case, Sanborn et al. analyzed the genome of baker’s yeast and identified 150 activation domains, each very different in sequence. Three-quarters of them bound to a subunit of the Mediator complex called Med15. Sanborn et al. then developed a machine learning algorithm to predict activation domains in both yeast and humans. This algorithm also showed that negatively charged and greasy regions on the activation domains were essential to be activated by the Mediator complex. Further analyses revealed that activation domains used different poses to bind multiple sites on Med15, a behavior known as ‘fuzzy’ binding. This creates a high overall affinity even though the binding strength at each individual site is low, enabling the protein complexes to remain dynamic. These weak interactions together permit fine control over the activity of several genes, allowing cells to respond quickly and precisely to many changes. The computer algorithm used here provides a new way to identify activation domains across species and could improve our understanding of how living things grow, adapt and evolve. It could also give new insights into mechanisms of disease, particularly cancer, where transcription factors are often faulty.
Collapse
Affiliation(s)
- Adrian L Sanborn
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States.,Department of Computer Science, Stanford University, Stanford, United States
| | - Benjamin T Yeh
- Department of Computer Science, Stanford University, Stanford, United States
| | - Jordan T Feigerle
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Cynthia V Hao
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | | | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, United States.,Center for Theoretical Biological Physics, Rice University, Houston, United States
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, United States
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
12
|
Liao Y, Hua Y, Li Y, Zhang C, Yu W, Guo P, Zou K, Li W, Sun Y, Wang R, Zuo Y, Sui S, Tian C, Hao J, Chen M, Hu S, Chen M, Long Q, Wang X, Zou L, Xie F, Guo W, Deng W. CRSP8 promotes thyroid cancer progression by antagonizing IKKα-induced cell differentiation. Cell Death Differ 2021; 28:1347-1363. [PMID: 33162555 PMCID: PMC8027816 DOI: 10.1038/s41418-020-00656-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
CRSP8 plays an important role in recruiting mediators to genes through direct interaction with various DNA-bound transactivators. In this study, we uncovered the unique function of CRSP8 in suppressing thyroid cancer differentiation and promoting thyroid cancer progression via targeting IKKα signaling. CRSP8 was highly expressed in human thyroid cancer cells and tissues, especially in anaplastic thyroid cancer (ATC). Knockdown of CRSP8 suppressed cell growth, migration, invasion, stemness, and induced apoptosis and differentiation in ATC cells, while its overexpression displayed opposite effects in differentiated thyroid cancer (DTC) cells. Mechanistically, CRSP8 downregulated IKKα expression by binding to the IKKα promoter region (-257 to -143) to negatively regulate its transcription. Knockdown or overexpression of IKKα significantly reversed the expression changes of the differentiation and EMT-related markers and cell growth changes mediated by CRSP8 knockdown or overexpression in ATC or DTC cells. The in vivo study also validated that CRSP8 knockdown inhibited the growth of thyroid cancer by upregulating IKKα signaling in a mouse model of human ATC. Furthermore, we found that CRSP8 regulated the sensitivity of thyroid cancer cells to chemotherapeutics, including cisplatin and epirubicin. Collectively, our results demonstrated that CRSP8 functioned as a modulator of IKKα signaling and a suppressor of thyroid cancer differentiation, suggesting a potential therapeutic strategy for ATC by targeting CRSP8/IKKα pathway.
Collapse
Affiliation(s)
- Yina Liao
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yijun Hua
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yizhuo Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changlin Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wendan Yu
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kun Zou
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenyang Li
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yao Sun
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ruozhu Wang
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yan Zuo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Silei Sui
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunfang Tian
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Manyu Chen
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Qian Long
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaonan Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Lijuan Zou
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Fangyun Xie
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wei Guo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
13
|
Tourigny JP, Schumacher K, Saleh MM, Devys D, Zentner GE. Architectural Mediator subunits are differentially essential for global transcription in Saccharomyces cerevisiae. Genetics 2021; 217:iyaa042. [PMID: 33789343 PMCID: PMC8045717 DOI: 10.1093/genetics/iyaa042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Mediator is a modular coactivator complex involved in the transcription of the majority of RNA polymerase II-regulated genes. However, the degrees to which individual core subunits of Mediator contribute to its activity have been unclear. Here, we investigate the contribution of two essential architectural subunits of Mediator to transcription in Saccharomyces cerevisiae. We show that acute depletion of the main complex scaffold Med14 or the head module nucleator Med17 is lethal and results in global transcriptional downregulation, though Med17 removal has a markedly greater negative effect. Consistent with this, Med17 depletion impairs preinitiation complex (PIC) assembly to a greater extent than Med14 removal. Co-depletion of Med14 and Med17 reduced transcription and TFIIB promoter occupancy similarly to Med17 ablation alone, indicating that the contributions of Med14 and Med17 to Mediator function are not additive. We propose that, while the structural integrity of complete Mediator and the head module are both important for PIC assembly and transcription, the head module plays a greater role in this process and is thus the key functional module of Mediator in this regard.
Collapse
Affiliation(s)
- Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kenny Schumacher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Moustafa M Saleh
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Zhao H, Young N, Kalchschmidt J, Lieberman J, El Khattabi L, Casellas R, Asturias FJ. Structure of mammalian Mediator complex reveals Tail module architecture and interaction with a conserved core. Nat Commun 2021; 12:1355. [PMID: 33649303 PMCID: PMC7921410 DOI: 10.1038/s41467-021-21601-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
The Mediator complex plays an essential and multi-faceted role in regulation of RNA polymerase II transcription in all eukaryotes. Structural analysis of yeast Mediator has provided an understanding of the conserved core of the complex and its interaction with RNA polymerase II but failed to reveal the structure of the Tail module that contains most subunits targeted by activators and repressors. Here we present a molecular model of mammalian (Mus musculus) Mediator, derived from a 4.0 Å resolution cryo-EM map of the complex. The mammalian Mediator structure reveals that the previously unresolved Tail module, which includes a number of metazoan specific subunits, interacts extensively with core Mediator and has the potential to influence its conformation and interactions.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Natalie Young
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | | | | | - Laila El Khattabi
- Institut Cochin Laboratoire de Cytogénétique Constitutionnelle Pré et Post Natale, Paris, France
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA.,Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Francisco J Asturias
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO, USA.
| |
Collapse
|
15
|
Dash S, Bhatt S, Sandell LL, Seidel CW, Ahn Y, Krumlauf RE, Trainor PA. The Mediator Subunit, Med23 Is Required for Embryonic Survival and Regulation of Canonical WNT Signaling During Cranial Ganglia Development. Front Physiol 2020; 11:531933. [PMID: 33192541 PMCID: PMC7642510 DOI: 10.3389/fphys.2020.531933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Development of the vertebrate head is a complex and dynamic process, which requires integration of all three germ layers and their derivatives. Of special importance are ectoderm-derived cells that form the cranial placodes, which then differentiate into the cranial ganglia and sensory organs. Critical to a fully functioning head, defects in cranial placode and sensory organ development can result in congenital craniofacial anomalies. In a forward genetic screen aimed at identifying novel regulators of craniofacial development, we discovered an embryonically lethal mouse mutant, snouty, which exhibits malformation of the facial prominences, cranial nerves and vasculature. The snouty mutation was mapped to a single nucleotide change in a ubiquitously expressed gene, Med23, which encodes a subunit of the global transcription co-factor complex, Mediator. Phenotypic analyses revealed that the craniofacial anomalies, particularly of the cranial ganglia, were caused by a failure in the proper specification of cranial placode neuronal precursors. Molecular analyses determined that defects in cranial placode neuronal differentiation in Med23 sn/sn mutants were associated with elevated WNT/β-catenin signaling, which can be partially rescued through combined Lrp6 and Wise loss-of-function. Our work therefore reveals a surprisingly tissue specific role for the ubiquitously expressed mediator complex protein Med23 in placode differentiation during cranial ganglia development. This highlights the importance of coupling general transcription to the regulation of WNT signaling during embryogenesis.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | | | - Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Robb E Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
16
|
Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II. PLoS Genet 2020; 16:e1008979. [PMID: 32877410 PMCID: PMC7467262 DOI: 10.1371/journal.pgen.1008979] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
The ascomycete Trichoderma reesei is a highly prolific cellulase producer. While XYR1 (Xylanase regulator 1) has been firmly established to be the master activator of cellulase gene expression in T. reesei, its precise transcriptional activation mechanism remains poorly understood. In the present study, TrGAL11, a component of the Mediator tail module, was identified as a putative interacting partner of XYR1. Deletion of Trgal11 markedly impaired the induced expression of most (hemi)cellulase genes, but not that of the major β-glucosidase encoding genes. This differential involvement of TrGAL11 in the full induction of cellulase genes was reflected by the RNA polymerase II (Pol II) recruitment on their core promoters, indicating that TrGAL11 was required for the efficient transcriptional initiation of the majority of cellulase genes. In addition, we found that TrGAL11 recruitment to cellulase gene promoters largely occurred in an XYR1-dependent manner. Although xyr1 expression was significantly tuned down without TrGAL11, the binding of XYR1 to cellulase gene promoters did not entail TrGAL11. These results indicate that TrGAL11 represents a direct in vivo target of XYR1 and may play a critical role in contributing to Mediator and the following RNA Pol II recruitment to ensure the induced cellulase gene expression. As a model cellulolytic fungus, T. reesei is capable of rapidly producing a large quantity of (hemi)cellulases when appropriate substrates are present. This outstanding characteristic has made T. reesei a prominent producer of cellulase in industry and also a model organism for studying eukaryotic gene expression. The expression of these hydrolytic enzymes encoding genes in T. reesei is precisely regulated at a transcriptional level and controlled by a suite of transcription factors. Among others, the transcription activator XYR1 has been firmly established to be absolutely necessary for activating the expression of almost all cellulase genes. However, the precise mechanism it acts remains largely unknown. In eukaryotes, the multisubunit Mediator complex has been shown to be critical for expression of most, if not all, protein-coding genes by conveying regulatory information to the basal transcription machinery. Here, we find that XYR1 interacts with the Mediator tail module subunit, TrGAL11, which contributes to cellobiohydrolase (cbh) and endoglucanase (eg) genes but not β-glucosidase (bgl) genes expression. Thus, the induced XYR1 binding to cellulase gene promoters led to TrGAL11 and RNA Pol II recruitment to these promoters. These results show that TrGAL11 represents a direct in vivo target of XYR1 and provide evidence for not only the evolutionarily conserved function of Mediator, but also for the existence of some subtle difference in its action to mediate gene expression in different eukaryotes.
Collapse
|
17
|
Yarrington RM, Yu Y, Yan C, Bai L, Stillman DJ. A Role for Mediator Core in Limiting Coactivator Recruitment in Saccharomyces cerevisiae. Genetics 2020; 215:407-420. [PMID: 32327563 PMCID: PMC7268993 DOI: 10.1534/genetics.120.303254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
Mediator is an essential, multisubunit complex that functions as a transcriptional coactivator in yeast and other eukaryotic organisms. Mediator has four conserved modules, Head, Middle, Tail, and Kinase, and has been implicated in nearly all aspects of gene regulation. The Tail module has been shown to recruit the Mediator complex to the enhancer or upstream activating sequence (UAS) regions of genes via interactions with transcription factors, and the Kinase module facilitates the transition of Mediator from the UAS/enhancer to the preinitiation complex via protein phosphorylation. Here, we analyze expression of the Saccharomyces cerevisiaeHO gene using a sin4 Mediator Tail mutation that separates the Tail module from the rest of the complex; the sin4 mutation permits independent recruitment of the Tail module to promoters without the rest of Mediator. Significant increases in recruitment of the SWI/SNF and SAGA coactivators to the HO promoter UAS were observed in a sin4 mutant, along with increased gene activation. These results are consistent with recent studies that have suggested that the Kinase module functions negatively to inhibit activation by the Tail. However, we found that Kinase module mutations did not mimic the effect of a sin4 mutation on HO expression. This suggests that at HO the core Mediator complex (Middle and Head modules) must play a role in limiting Tail binding to the promoter UAS and gene activation. We propose that the core Mediator complex helps modulate Mediator binding to the UAS regions of genes to limit coactivator recruitment and ensure proper regulation of gene transcription.
Collapse
Affiliation(s)
- Robert M Yarrington
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Yaxin Yu
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Chao Yan
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Lu Bai
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
18
|
Gallagher JE, Ser SL, Ayers MC, Nassif C, Pupo A. The Polymorphic PolyQ Tail Protein of the Mediator Complex, Med15, Regulates the Variable Response to Diverse Stresses. Int J Mol Sci 2020; 21:ijms21051894. [PMID: 32164312 PMCID: PMC7094212 DOI: 10.3390/ijms21051894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/01/2023] Open
Abstract
The Mediator is composed of multiple subunits conserved from yeast to humans and plays a central role in transcription. The tail components are not required for basal transcription but are required for responses to different stresses. While some stresses are familiar, such as heat, desiccation, and starvation, others are exotic, yet yeast can elicit a successful stress response. 4-Methylcyclohexane methanol (MCHM) is a hydrotrope that induces growth arrest in yeast. We found that a naturally occurring variation in the Med15 allele, a component of the Mediator tail, altered the stress response to many chemicals in addition to MCHM. Med15 contains two polyglutamine repeats (polyQ) of variable lengths that change the gene expression of diverse pathways. The Med15 protein existed in multiple isoforms and its stability was dependent on Ydj1, a protein chaperone. The protein level of Med15 with longer polyQ tracts was lower and turned over faster than the allele with shorter polyQ repeats. MCHM sensitivity via variation of Med15 was regulated by Snf1 in a Myc-tag-dependent manner. Tagging Med15 with Myc altered its function in response to stress. Genetic variation in transcriptional regulators magnified genetic differences in response to environmental changes. These polymorphic control genes were master variators.
Collapse
|
19
|
Tuttle LM, Pacheco D, Warfield L, Luo J, Ranish J, Hahn S, Klevit RE. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex. Cell Rep 2019; 22:3251-3264. [PMID: 29562181 PMCID: PMC5908246 DOI: 10.1016/j.celrep.2018.02.097] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/17/2018] [Accepted: 02/25/2018] [Indexed: 11/12/2022] Open
Abstract
Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements.
Collapse
Affiliation(s)
- Lisa M Tuttle
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Derek Pacheco
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Linda Warfield
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jie Luo
- The Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jeff Ranish
- The Institute for Systems Biology, Seattle, WA 98109, USA
| | - Steven Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
20
|
Cooper DG, Fassler JS. Med15: Glutamine-Rich Mediator Subunit with Potential for Plasticity. Trends Biochem Sci 2019; 44:737-751. [PMID: 31036407 DOI: 10.1016/j.tibs.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
The Mediator complex is required for basal activity of the RNA polymerase (Pol) II transcriptional apparatus and for responsiveness to some activator proteins. Med15, situated in the Mediator tail, plays a role in transmitting regulatory information from distant DNA-bound transcription factors to the transcriptional apparatus poised at promoters. Yeast Med15 and its orthologs share an unusual, glutamine-rich amino acid composition. Here, we discuss this sequence feature and the tendency of polyglutamine tracts to vary in length among strains of Saccharomyces cerevisiae, and we propose that different polyglutamine tract lengths may be adaptive within certain domestication habitats.
Collapse
Affiliation(s)
- David G Cooper
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
21
|
Trnka MJ, Pellarin R, Robinson PJ. Role of integrative structural biology in understanding transcriptional initiation. Methods 2019; 159-160:4-22. [PMID: 30890443 PMCID: PMC6617507 DOI: 10.1016/j.ymeth.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Integrative structural biology combines data from multiple experimental techniques to generate complete structural models for the biological system of interest. Most commonly cross-linking data sets are employed alongside electron microscopy maps, crystallographic structures, and other data by computational methods that integrate all known information and produce structural models at a level of resolution that is appropriate to the input data. The precision of these modelled solutions is limited by the sparseness of cross-links observed, the length of the cross-linking reagent, the ambiguity arisen from the presence of multiple copies of the same protein, and structural and compositional heterogeneity. In recent years integrative structural biology approaches have been successfully applied to a range of RNA polymerase II complexes. Here we will provide a general background to integrative structural biology, a description of how it should be practically implemented and how it has furthered our understanding of the biology of large transcriptional assemblies. Finally, in the context of recent breakthroughs in microscope and direct electron detector technology, where increasingly EM is capable of resolving structural features directly without the aid of other structural techniques, we will discuss the future role of integrative structural techniques.
Collapse
Affiliation(s)
- Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Riccardo Pellarin
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756 CNRS & IP, Paris, France
| | - Philip J Robinson
- Department of Biological Sciences, Birkbeck University of London, Institute of Structural and Molecular Biology, London, United Kingdom.
| |
Collapse
|
22
|
Twenty years of Mediator complex structural studies. Biochem Soc Trans 2019; 47:399-410. [PMID: 30733343 PMCID: PMC6393861 DOI: 10.1042/bst20180608] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/18/2022]
Abstract
Mediator is a large multiprotein complex conserved in all eukaryotes that plays an essential role in transcriptional regulation. Mediator comprises 25 subunits in yeast and 30 subunits in humans that form three main modules and a separable four-subunit kinase module. For nearly 20 years, because of its size and complexity, Mediator has posed a formidable challenge to structural biologists. The first two-dimensional electron microscopy (EM) projection map of Mediator leading to the canonical view of its division in three topological modules named Head, Middle and Tail, was published in 1999. Within the last few years, optimization of Mediator purification combined with technical and methodological advances in cryo-electron microscopy (cryo-EM) have revealed unprecedented details of Mediator subunit organization, interactions with RNA polymerase II and parts of its core structure at high resolution. To celebrate the twentieth anniversary of the first Mediator EM reconstruction, we look back on the structural studies of Mediator complex from a historical perspective and discuss them in the light of our current understanding of its role in transcriptional regulation.
Collapse
|
23
|
Knoll ER, Zhu ZI, Sarkar D, Landsman D, Morse RH. Role of the pre-initiation complex in Mediator recruitment and dynamics. eLife 2018; 7:39633. [PMID: 30540252 PMCID: PMC6322861 DOI: 10.7554/elife.39633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
The Mediator complex stimulates the cooperative assembly of a pre-initiation complex (PIC) and recruitment of RNA Polymerase II (Pol II) for gene activation. The core Mediator complex is organized into head, middle, and tail modules, and in budding yeast (Saccharomyces cerevisiae), Mediator recruitment has generally been ascribed to sequence-specific activators engaging the tail module triad of Med2-Med3-Med15 at upstream activating sequences (UASs). We show that yeast lacking Med2-Med3-Med15 are viable and that Mediator and PolII are recruited to promoters genome-wide in these cells, albeit at reduced levels. To test whether Mediator might alternatively be recruited via interactions with the PIC, we examined Mediator association genome-wide after depleting PIC components. We found that depletion of Taf1, Rpb3, and TBP profoundly affected Mediator association at active gene promoters, with TBP being critical for transit of Mediator from UAS to promoter, while Pol II and Taf1 stabilize Mediator association at proximal promoters.
Collapse
Affiliation(s)
- Elisabeth R Knoll
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, United States
| | - Z Iris Zhu
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, Bethesda, United States
| | - Debasish Sarkar
- Wadsworth Center, New York State Department of Health, Albany, United States
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, Bethesda, United States
| | - Randall H Morse
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, United States.,Wadsworth Center, New York State Department of Health, Albany, United States
| |
Collapse
|
24
|
Transcriptome Analysis of Four Arabidopsis thaliana Mediator Tail Mutants Reveals Overlapping and Unique Functions in Gene Regulation. G3-GENES GENOMES GENETICS 2018; 8:3093-3108. [PMID: 30049745 PMCID: PMC6118316 DOI: 10.1534/g3.118.200573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Mediator complex is a central component of transcriptional regulation in Eukaryotes. The complex is structurally divided into four modules known as the head, middle, tail and kinase modules, and in Arabidopsis thaliana, comprises 28-34 subunits. Here, we explore the functions of four Arabidopsis Mediator tail subunits, MED2, MED5a/b, MED16, and MED23, by comparing the impact of mutations in each on the Arabidopsis transcriptome. We find that these subunits affect both unique and overlapping sets of genes, providing insight into the functional and structural relationships between them. The mutants primarily exhibit changes in the expression of genes related to biotic and abiotic stress. We find evidence for a tissue specific role for MED23, as well as in the production of alternative transcripts. Together, our data help disentangle the individual contributions of these MED subunits to global gene expression and suggest new avenues for future research into their functions.
Collapse
|
25
|
Salinero AC, Knoll ER, Zhu ZI, Landsman D, Curcio MJ, Morse RH. The Mediator co-activator complex regulates Ty1 retromobility by controlling the balance between Ty1i and Ty1 promoters. PLoS Genet 2018; 14:e1007232. [PMID: 29462141 PMCID: PMC5834202 DOI: 10.1371/journal.pgen.1007232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/02/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022] Open
Abstract
The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility. Retrotransposons are mobile genetic elements that copy their RNA genomes into DNA and insert the DNA copies into the host genome. These elements contribute to genome instability, control of host gene expression and adaptation to changing environments. Retrotransposons depend on numerous host factors for their own propagation and control. The retrovirus-like retrotransposon, Ty1, in the yeast Saccharomyces cerevisiae has been an invaluable model for retrotransposon research, and hundreds of host factors that regulate Ty1 retrotransposition have been identified. Non-essential subunits of the Mediator transcriptional co-activator complex have been identified as one set of host factors implicated in Ty1 regulation. Here, we report a systematic investigation of the effects of loss of these non-essential subunits of Mediator on Ty1 retrotransposition. Our findings reveal a heretofore unknown mechanism by which Mediator influences the balance between transcription from two promoters in Ty1 to modulate expression of an autoinhibitory transcript known as Ty1i RNA. Our results provide new insights into host control of retrotransposon activity via promoter choice and elucidate a novel mechanism by which the Mediator co-activator governs this choice.
Collapse
Affiliation(s)
- Alicia C. Salinero
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Elisabeth R. Knoll
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Z. Iris Zhu
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - M. Joan Curcio
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail: (MJC); (RHM)
| | - Randall H. Morse
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail: (MJC); (RHM)
| |
Collapse
|
26
|
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2018; 82:82/1/e00040-17. [PMID: 29436478 DOI: 10.1128/mmbr.00040-17] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast Saccharomyces cerevisiae was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in S. cerevisiae, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in S. cerevisiae not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.
Collapse
|
27
|
Dolan WL, Dilkes BP, Stout JM, Bonawitz ND, Chapple C. Mediator Complex Subunits MED2, MED5, MED16, and MED23 Genetically Interact in the Regulation of Phenylpropanoid Biosynthesis. THE PLANT CELL 2017; 29:3269-3285. [PMID: 29203634 PMCID: PMC5757269 DOI: 10.1105/tpc.17.00282] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 05/19/2023]
Abstract
The phenylpropanoid pathway is a major global carbon sink and is important for plant fitness and the engineering of bioenergy feedstocks. In Arabidopsis thaliana, disruption of two subunits of the transcriptional regulatory Mediator complex, MED5a and MED5b, results in an increase in phenylpropanoid accumulation. By contrast, the semidominant MED5b mutation reduced epidermal fluorescence4-3 (ref4-3) results in dwarfism and constitutively repressed phenylpropanoid accumulation. Here, we report the results of a forward genetic screen for suppressors of ref4-3. We identified 13 independent lines that restore growth and/or phenylpropanoid accumulation in the ref4-3 background. Two of the suppressors restore growth without restoring soluble phenylpropanoid accumulation, indicating that the growth and metabolic phenotypes of the ref4-3 mutant can be genetically disentangled. Whole-genome sequencing revealed that all but one of the suppressors carry mutations in MED5b or other Mediator subunits. RNA-seq analysis showed that the ref4-3 mutation causes widespread changes in gene expression, including the upregulation of negative regulators of the phenylpropanoid pathway, and that the suppressors reverse many of these changes. Together, our data highlight the interdependence of individual Mediator subunits and provide greater insight into the transcriptional regulation of phenylpropanoid biosynthesis by the Mediator complex.
Collapse
Affiliation(s)
- Whitney L Dolan
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, West Lafayette, Indiana 47907
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, West Lafayette, Indiana 47907
| | - Jake M Stout
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, West Lafayette, Indiana 47907
| | - Nicholas D Bonawitz
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, West Lafayette, Indiana 47907
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, West Lafayette, Indiana 47907
| |
Collapse
|
28
|
Chereji RV, Bharatula V, Elfving N, Blomberg J, Larsson M, Morozov AV, Broach JR, Björklund S. Mediator binds to boundaries of chromosomal interaction domains and to proteins involved in DNA looping, RNA metabolism, chromatin remodeling, and actin assembly. Nucleic Acids Res 2017; 45:8806-8821. [PMID: 28575439 PMCID: PMC5587782 DOI: 10.1093/nar/gkx491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/23/2017] [Indexed: 01/24/2023] Open
Abstract
Mediator is a multi-unit molecular complex that plays a key role in transferring signals from transcriptional regulators to RNA polymerase II in eukaryotes. We have combined biochemical purification of the Saccharomyces cerevisiae Mediator from chromatin with chromatin immunoprecipitation in order to reveal Mediator occupancy on DNA genome-wide, and to identify proteins interacting specifically with Mediator on the chromatin template. Tandem mass spectrometry of proteins in immunoprecipitates of mediator complexes revealed specific interactions between Mediator and the RSC, Arp2/Arp3, CPF, CF 1A and Lsm complexes in chromatin. These factors are primarily involved in chromatin remodeling, actin assembly, mRNA 3′-end processing, gene looping and mRNA decay, but they have also been shown to enter the nucleus and participate in Pol II transcription. Moreover, we have found that Mediator, in addition to binding Pol II promoters, occupies chromosomal interacting domain (CID) boundaries and that Mediator in chromatin associates with proteins that have been shown to interact with CID boundaries, such as Sth1, Ssu72 and histone H4. This suggests that Mediator plays a significant role in higher-order genome organization.
Collapse
Affiliation(s)
- Razvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vasudha Bharatula
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Nils Elfving
- Department of Medical Biochemistry and Biophysics Umeå University, 901 87 Umeå, Sweden
| | - Jeanette Blomberg
- Department of Medical Biochemistry and Biophysics Umeå University, 901 87 Umeå, Sweden
| | - Miriam Larsson
- Department of Medical Biochemistry and Biophysics Umeå University, 901 87 Umeå, Sweden
| | - Alexandre V Morozov
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA.,Center for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - James R Broach
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
29
|
Petrenko N, Jin Y, Wong KH, Struhl K. Evidence that Mediator is essential for Pol II transcription, but is not a required component of the preinitiation complex in vivo. eLife 2017; 6. [PMID: 28699889 PMCID: PMC5529107 DOI: 10.7554/elife.28447] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 07/09/2017] [Indexed: 12/27/2022] Open
Abstract
The Mediator complex has been described as a general transcription factor, but it is unclear if it is essential for Pol II transcription and/or is a required component of the preinitiation complex (PIC) in vivo. Here, we show that depletion of individual subunits, even those essential for cell growth, causes a general but only modest decrease in transcription. In contrast, simultaneous depletion of all Mediator modules causes a drastic decrease in transcription. Depletion of head or middle subunits, but not tail subunits, causes a downstream shift in the Pol II occupancy profile, suggesting that Mediator at the core promoter inhibits promoter escape. Interestingly, a functional PIC and Pol II transcription can occur when Mediator is not detected at core promoters. These results provide strong evidence that Mediator is essential for Pol II transcription and stimulates PIC formation, but it is not a required component of the PIC in vivo. DOI:http://dx.doi.org/10.7554/eLife.28447.001
Collapse
Affiliation(s)
- Natalia Petrenko
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, Boston, United States
| | - Yi Jin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, Boston, United States
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, Boston, United States
| |
Collapse
|
30
|
Mediator, SWI/SNF and SAGA complexes regulate Yap8-dependent transcriptional activation of ACR2 in response to arsenate. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:472-481. [DOI: 10.1016/j.bbagrm.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/12/2023]
|
31
|
Robinson PJ, Trnka MJ, Bushnell DA, Davis RE, Mattei PJ, Burlingame AL, Kornberg RD. Structure of a Complete Mediator-RNA Polymerase II Pre-Initiation Complex. Cell 2016; 166:1411-1422.e16. [PMID: 27610567 DOI: 10.1016/j.cell.2016.08.050] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/14/2016] [Accepted: 08/19/2016] [Indexed: 12/23/2022]
Abstract
A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription.
Collapse
Affiliation(s)
- Philip J Robinson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ralph E Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pierre-Jean Mattei
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
32
|
Jeronimo C, Langelier MF, Bataille AR, Pascal JM, Pugh BF, Robert F. Tail and Kinase Modules Differently Regulate Core Mediator Recruitment and Function In Vivo. Mol Cell 2016; 64:455-466. [PMID: 27773677 DOI: 10.1016/j.molcel.2016.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/22/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
Mediator is a highly conserved transcriptional coactivator organized into four modules, namely Tail, Middle, Head, and Kinase (CKM). Previous work suggests regulatory roles for Tail and CKM, but an integrated model for these activities is lacking. Here, we analyzed the genome-wide distribution of Mediator subunits in wild-type and mutant yeast cells in which RNA polymerase II promoter escape is blocked, allowing detection of transient Mediator forms. We found that although all modules are recruited to upstream activated regions (UAS), assembly of Mediator within the pre-initiation complex is accompanied by the release of CKM. Interestingly, our data show that CKM regulates Mediator-UAS interaction rather than Mediator-promoter association. In addition, although Tail is required for Mediator recruitment to UAS, Tailless Mediator nevertheless interacts with core promoters. Collectively, our data suggest that the essential function of Mediator is mediated by Head and Middle at core promoters, while Tail and CKM play regulatory roles.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Marie-France Langelier
- Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Alain R Bataille
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 456A North Frear Laboratory, University Park, PA 16802, USA
| | - John M Pascal
- Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 456A North Frear Laboratory, University Park, PA 16802, USA
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
33
|
Petrenko N, Jin Y, Wong KH, Struhl K. Mediator Undergoes a Compositional Change during Transcriptional Activation. Mol Cell 2016; 64:443-454. [PMID: 27773675 DOI: 10.1016/j.molcel.2016.09.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 09/09/2016] [Indexed: 10/20/2022]
Abstract
Mediator is a transcriptional co-activator recruited to enhancers by DNA-binding activators, and it also interacts with RNA polymerase (Pol) II as part of the preinitiation complex (PIC). We demonstrate that a single Mediator complex associates with the enhancer and core promoter in vivo, indicating that it can physically bridge these transcriptional elements. However, the Mediator kinase module associates strongly with the enhancer, but not with the core promoter, and it dissociates from the enhancer upon depletion of the TFIIH kinase. Severing the kinase module from Mediator by removing the connecting subunit Med13 does not affect Mediator association at the core promoter but increases occupancy at enhancers. Thus, Mediator undergoes a compositional change in which the kinase module, recruited via Mediator to the enhancer, dissociates from Mediator to permit association with Pol II and the PIC. As such, Mediator acts as a dynamic bridge between the enhancer and core promoter.
Collapse
Affiliation(s)
- Natalia Petrenko
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yi Jin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Koon Ho Wong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Liu Z, Moran GP, Sullivan DJ, MacCallum DM, Myers LC. Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp. PLoS Genet 2016; 12:e1006373. [PMID: 27741243 PMCID: PMC5065183 DOI: 10.1371/journal.pgen.1006373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/19/2016] [Indexed: 01/06/2023] Open
Abstract
Filamentous growth is a hallmark of C. albicans pathogenicity compared to less-virulent ascomycetes. A multitude of transcription factors regulate filamentous growth in response to specific environmental cues. Our work, however, suggests the evolutionary history of C. albicans that resulted in its filamentous growth plasticity may be tied to a change in the general transcription machinery rather than transcription factors and their specific targets. A key genomic difference between C. albicans and its less-virulent relatives, including its closest relative C. dubliniensis, is the unique expansion of the TLO (TeLOmere-associated) gene family in C. albicans. Individual Tlo proteins are fungal-specific subunits of Mediator, a large multi-subunit eukaryotic transcriptional co-activator complex. This amplification results in a large pool of ‘free,’ non-Mediator associated, Tlo protein present in C. albicans, but not in C. dubliniensis or other ascomycetes with attenuated virulence. We show that engineering a large ‘free’ pool of the C. dubliniensis Tlo2 (CdTlo2) protein in C. dubliniensis, through overexpression, results in a number of filamentation phenotypes typically associated only with C. albicans. The amplitude of these phenotypes is proportional to the amount of overexpressed CdTlo2 protein. Overexpression of other C. dubliniensis and C. albicans Tlo proteins do result in these phenotypes. Tlo proteins and their orthologs contain a Mediator interaction domain, and a potent transcriptional activation domain. Nuclear localization of the CdTlo2 activation domain, facilitated naturally by the Tlo Mediator binding domain or artificially through an appended nuclear localization signal, is sufficient for the CdTlo2 overexpression phenotypes. A C. albicans med3 null mutant causes multiple defects including the inability to localize Tlo proteins to the nucleus and reduced virulence in a murine systemic infection model. Our data supports a model in which the activation domain of ‘free’ Tlo protein competes with DNA bound transcription factors for targets that regulate key aspects of C. albicans cell physiology. The ascomycete fungus Candida albicans is a leading cause of hospital-acquired bloodstream infections in the United States. Due to limited anti-fungal drug options, there is an approximately 40% mortality rate and over 10,000 deaths per year associated with systemic C. albicans infections. It is unknown why C. albicans is the primary cause of systemic Candidiasis, versus related ascomycetes such as Candida dubliniensis. The genomes of C. albicans and C. dubliniensis are remarkably similar, yet C. dubliniensis has reduced virulence and exhibits less phenotypic plasticity. A striking genomic difference between the fungi is the amplification of the TLO (TeLOmere-associated) genes in C. albicans, which encode a fungal-specific subunit of the Mediator co-activator complex. Amplification results in a large pool of ‘free’ (non-Mediator associated) Tlo protein in C. albicans that is absent in C. dubliniensis. Engineering a large ‘free’ pool of Tlo protein in C. dubliniensis, through overexpression, results in phenotypes common in C. albicans, yet typically absent in C. dubliniensis. Tlo proteins contain a potent transcriptional activation domain. Nuclear localization of the Tlo activation domain is necessary and sufficient for the TLO overexpression phenotypes. This study provides a mechanistic explanation for how TLO amplification in C. albicans may enhance its virulence.
Collapse
Affiliation(s)
- Zhongle Liu
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Gary P. Moran
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Dublin, Ireland
| | - Derek J. Sullivan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Dublin, Ireland
| | - Donna M. MacCallum
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Lawrence C. Myers
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medical Education, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
35
|
Sathianathan A, Ravichandran P, Lippi JM, Cohen L, Messina A, Shaju S, Swede MJ, Ginsburg DS. The Eaf3/5/7 Subcomplex Stimulates NuA4 Interaction with Methylated Histone H3 Lys-36 and RNA Polymerase II. J Biol Chem 2016; 291:21195-21207. [PMID: 27535225 DOI: 10.1074/jbc.m116.718742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/06/2022] Open
Abstract
NuA4 is the only essential lysine acetyltransferase complex in Saccharomyces cerevisiae, where it has been shown to stimulate transcription initiation and elongation. Interaction with nucleosomes is stimulated by histone H3 Lys-4 and Lys-36 methylation, but the mechanism of this interaction is unknown. Eaf3, Eaf5, and Eaf7 form a subcomplex within NuA4 that may also function independently of the lysine acetyltransferase complex. The Eaf3/5/7 complex and the Rpd3C(S) histone deacetylase complex have both been shown to bind di- and trimethylated histone H3 Lys-36 stimulated by Eaf3. We investigated the role of the Eaf3/5/7 subcomplex in NuA4 binding to nucleosomes. Different phenotypes of eaf3/5/7Δ mutants support functions for the complex as both part of and independent of NuA4. Further evidence for Eaf3/5/7 within NuA4 came from mutations in the subcomplex leading to ∼40% reductions in H4 acetylation in bulk histones, probably caused by binding defects to both nucleosomes and RNA polymerase II. In vitro binding assays showed that Eaf3/5/7 specifically stimulates NuA4 binding to di- and trimethylated histone H3 Lys-36 and that this binding is important for NuA4 occupancy in transcribed ORFs. Consistent with the role of NuA4 in stimulating transcription elongation, loss of EAF5 or EAF7 resulted in a processivity defect. Overall, these results reveal the function of Eaf3/5/7 within NuA4 to be important for both NuA4 and RNA polymerase II binding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marci J Swede
- Health Sciences Departments, LIU Post, Brookville, New York 11548
| | | |
Collapse
|
36
|
Evidence for Multiple Mediator Complexes in Yeast Independently Recruited by Activated Heat Shock Factor. Mol Cell Biol 2016; 36:1943-60. [PMID: 27185874 DOI: 10.1128/mcb.00005-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/04/2016] [Indexed: 11/20/2022] Open
Abstract
Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that in Saccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural state in vivo remains unclear. Using the "anchor away" (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains.
Collapse
|
37
|
Rli1/ABCE1 Recycles Terminating Ribosomes and Controls Translation Reinitiation in 3'UTRs In Vivo. Cell 2016; 162:872-84. [PMID: 26276635 DOI: 10.1016/j.cell.2015.07.041] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/21/2015] [Accepted: 07/10/2015] [Indexed: 02/05/2023]
Abstract
To study the function of Rli1/ABCE1 in vivo, we used ribosome profiling and biochemistry to characterize its contribution to ribosome recycling. When Rli1 levels were diminished, 80S ribosomes accumulated both at stop codons and in the adjoining 3'UTRs of most mRNAs. Frequently, these ribosomes reinitiated translation without the need for a canonical start codon, as small peptide products predicted by 3'UTR ribosome occupancy in all three reading frames were confirmed by western analysis and mass spectrometry. Eliminating the ribosome-rescue factor Dom34 dramatically increased 3'UTR ribosome occupancy in Rli1 depleted cells, indicating that Dom34 clears the bulk of unrecycled ribosomes. Thus, Rli1 is crucial for ribosome recycling in vivo and controls ribosome homeostasis. 3'UTR translation occurs in wild-type cells as well, and observations of elevated 3'UTR ribosomes during stress suggest that modulating recycling and reinitiation is involved in responding to environmental changes.
Collapse
|
38
|
Qiu H, Chereji RV, Hu C, Cole HA, Rawal Y, Clark DJ, Hinnebusch AG. Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation. Genome Res 2015; 26:211-25. [PMID: 26602697 PMCID: PMC4728374 DOI: 10.1101/gr.196337.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022]
Abstract
Chaperones, nucleosome remodeling complexes, and histone acetyltransferases have been implicated in nucleosome disassembly at promoters of particular yeast genes, but whether these cofactors function ubiquitously, as well as the impact of nucleosome eviction on transcription genome-wide, is poorly understood. We used chromatin immunoprecipitation of histone H3 and RNA polymerase II (Pol II) in mutants lacking single or multiple cofactors to address these issues for about 200 genes belonging to the Gcn4 transcriptome, of which about 70 exhibit marked reductions in H3 promoter occupancy on induction by amino acid starvation. Examining four target genes in a panel of mutants indicated that SWI/SNF, Gcn5, the Hsp70 cochaperone Ydj1, and chromatin-associated factor Yta7 are required downstream from Gcn4 binding, whereas Asf1/Rtt109, Nap1, RSC, and H2AZ are dispensable for robust H3 eviction in otherwise wild-type cells. Using ChIP-seq to interrogate all 70 exemplar genes in single, double, and triple mutants implicated Gcn5, Snf2, and Ydj1 in H3 eviction at most, but not all, Gcn4 target promoters, with Gcn5 generally playing the greatest role and Ydj1 the least. Remarkably, these three cofactors cooperate similarly in H3 eviction at virtually all yeast promoters. Defective H3 eviction in cofactor mutants was coupled with reduced Pol II occupancies for the Gcn4 transcriptome and the most highly expressed uninduced genes, but the relative Pol II levels at most genes were unaffected or even elevated. These findings indicate that nucleosome eviction is crucial for robust transcription of highly expressed genes but that other steps in gene activation are more rate-limiting for most other yeast genes.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Răzvan V Chereji
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Cuihua Hu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hope A Cole
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yashpal Rawal
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David J Clark
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
39
|
Robinson PJ, Trnka MJ, Pellarin R, Greenberg CH, Bushnell DA, Davis R, Burlingame AL, Sali A, Kornberg RD. Molecular architecture of the yeast Mediator complex. eLife 2015; 4. [PMID: 26402457 PMCID: PMC4631838 DOI: 10.7554/elife.08719] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022] Open
Abstract
The 21-subunit Mediator complex transduces regulatory information from enhancers to promoters, and performs an essential role in the initiation of transcription in all eukaryotes. Structural information on two-thirds of the complex has been limited to coarse subunit mapping onto 2-D images from electron micrographs. We have performed chemical cross-linking and mass spectrometry, and combined the results with information from X-ray crystallography, homology modeling, and cryo-electron microscopy by an integrative modeling approach to determine a 3-D model of the entire Mediator complex. The approach is validated by the use of X-ray crystal structures as internal controls and by consistency with previous results from electron microscopy and yeast two-hybrid screens. The model shows the locations and orientations of all Mediator subunits, as well as subunit interfaces and some secondary structural elements. Segments of 20–40 amino acid residues are placed with an average precision of 20 Å. The model reveals roles of individual subunits in the organization of the complex. DOI:http://dx.doi.org/10.7554/eLife.08719.001 Inside a cell, proteins are made from instructions encoded by DNA. To produce a particular protein, a section of DNA within a gene is copied into a molecule of messenger ribonucleic acid (or mRNA). This process is called transcription and is carried out by an enzyme known as RNA polymerase. Transcription begins in a region of DNA called a promoter, which is found at the start of the gene. RNA polymerase is brought to the DNA by many proteins, including the so-called Mediator complex. Mediator receives signals from within the cell and from the environment, processes the information, and instructs RNA polymerase whether to transcribe the gene or not. Mediator performs this important role in all organisms from yeast to humans, but it is not clear how it works. A crucial step towards the solution of this problem is to understand the three-dimensional structure of the complex. Previous research using a technique called ‘electron microscopy’ showed that Mediator is composed of three modules, referred to as Head, Middle and Tail. The images from electron microscopy were not sufficiently detailed to reveal the organization of the proteins within these modules. An open-source Integrative Modeling Platform (IMP for short) was recently developed to arrive at structural models of large protein complexes from a combination of experimental data and computer models. Now, Robinson, Trnka, Pellarin et al. have used this platform to study the Mediator complex. First, Robinson, Trnka, Pellarin et al. collected experimental data on the structure of the Mediator complex using two approaches called ‘chemical cross-linking’ and ‘mass spectrometry’. This data was combined with biochemical and structural information from previous studies to generate a three-dimensional model of the structure of the entire Mediator using IMP. The model is detailed enough to show the location and orientation of all the proteins in the complex. For example, a protein called Med17 connects the Head and Middle modules, while another subunit—known as Med14—spans the entire complex and makes extensive contacts with other proteins in all three modules. DOI:http://dx.doi.org/10.7554/eLife.08719.002
Collapse
Affiliation(s)
- Philip J Robinson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States.,Structural Bioinformatics Unit, Paris, France
| | - Charles H Greenberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Ralph Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
40
|
Analysis of Polygenic Mutants Suggests a Role for Mediator in Regulating Transcriptional Activation Distance in Saccharomyces cerevisiae. Genetics 2015; 201:599-612. [PMID: 26281848 DOI: 10.1534/genetics.115.181164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/17/2015] [Indexed: 12/24/2022] Open
Abstract
Studies of natural populations of many organisms have shown that traits are often complex, caused by contributions of mutations in multiple genes. In contrast, genetic studies in the laboratory primarily focus on studying the phenotypes caused by mutations in a single gene. However, the single mutation approach may be limited with respect to the breadth and degree of new phenotypes that can be found. We have taken the approach of isolating complex, or polygenic mutants in the lab to study the regulation of transcriptional activation distance in yeast. While most aspects of eukaryotic transcription are conserved from yeast to human, transcriptional activation distance is not. In Saccharomyces cerevisiae, the upstream activating sequence (UAS) is generally found within 450 base pairs of the transcription start site (TSS) and when the UAS is moved too far away, activation no longer occurs. In contrast, metazoan enhancers can activate from as far as several hundred kilobases from the TSS. Previously, we identified single mutations that allow transcription activation to occur at a greater-than-normal distance from the GAL1 UAS. As the single mutant phenotypes were weak, we have now isolated polygenic mutants that possess strong long-distance phenotypes. By identification of the causative mutations we have accounted for most of the heritability of the phenotype in each strain and have provided evidence that the Mediator coactivator complex plays both positive and negative roles in the regulation of transcription activation distance.
Collapse
|
41
|
Zhu X, Chen L, Carlsten JOP, Liu Q, Yang J, Liu B, Gustafsson CM. Mediator tail subunits can form amyloid-like aggregates in vivo and affect stress response in yeast. Nucleic Acids Res 2015; 43:7306-14. [PMID: 26138482 PMCID: PMC4551914 DOI: 10.1093/nar/gkv629] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/07/2015] [Indexed: 12/15/2022] Open
Abstract
The Med2, Med3 and Med15 proteins form a heterotrimeric subdomain in the budding yeast Mediator complex. This Med15 module is an important target for many gene specific transcription activators. A previous proteome wide screen in yeast identified Med3 as a protein with priogenic potential. In the present work, we have extended this observation and demonstrate that both Med3 and Med15 form amyloid-like protein aggregates under H2O2 stress conditions. Amyloid formation can also be stimulated by overexpression of Med3 or of a glutamine-rich domain present in Med15, which in turn leads to loss of the entire Med15 module from Mediator and a change in stress response. In combination with genome wide transcription analysis, our data demonstrate that amyloid formation can change the subunit composition of Mediator and thereby influence transcriptional output in budding yeast.
Collapse
Affiliation(s)
- Xuefeng Zhu
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Göteborg, Sweden
| | - Lihua Chen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Jonas O P Carlsten
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Göteborg, Sweden
| | - Qian Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Junsheng Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Claes M Gustafsson
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Göteborg, Sweden
| |
Collapse
|
42
|
Fungal mediator tail subunits contain classical transcriptional activation domains. Mol Cell Biol 2015; 35:1363-75. [PMID: 25645928 DOI: 10.1128/mcb.01508-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Classical activation domains within DNA-bound eukaryotic transcription factors make weak interactions with coactivator complexes, such as Mediator, to stimulate transcription. How these interactions stimulate transcription, however, is unknown. The activation of reporter genes by artificial fusion of Mediator subunits to DNA binding domains that bind to their promoters has been cited as evidence that the primary role of activators is simply to recruit Mediator. We have identified potent classical transcriptional activation domains in the C termini of several tail module subunits of Saccharomyces cerevisiae, Candida albicans, and Candida dubliniensis Mediator, while their N-terminal domains are necessary and sufficient for their incorporation into Mediator but do not possess the ability to activate transcription when fused to a DNA binding domain. This suggests that Mediator fusion proteins actually are functioning in a manner similar to that of a classical DNA-bound activator rather than just recruiting Mediator. Our finding that deletion of the activation domains of S. cerevisiae Med2 and Med3, as well as C. dubliniensis Tlo1 (a Med2 ortholog), impairs the induction of certain genes shows these domains function at native promoters. Activation domains within coactivators are likely an important feature of these complexes and one that may have been uniquely leveraged by a common fungal pathogen.
Collapse
|
43
|
A functional portrait of Med7 and the mediator complex in Candida albicans. PLoS Genet 2014; 10:e1004770. [PMID: 25375174 PMCID: PMC4222720 DOI: 10.1371/journal.pgen.1004770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
Mediator is a multi-subunit protein complex that regulates gene expression in eukaryotes by integrating physiological and developmental signals and transmitting them to the general RNA polymerase II machinery. We examined, in the fungal pathogen Candida albicans, a set of conditional alleles of genes encoding Mediator subunits of the head, middle, and tail modules that were found to be essential in the related ascomycete Saccharomyces cerevisiae. Intriguingly, while the Med4, 8, 10, 11, 14, 17, 21 and 22 subunits were essential in both fungi, the structurally highly conserved Med7 subunit was apparently non-essential in C. albicans. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used epitope tagging and location profiling of the Med7 subunit to examine the distribution of the DNA sites bound by Mediator during growth in either the yeast or the hyphal form, two distinct morphologies characterized by different transcription profiles. We observed a core set of 200 genes bound by Med7 under both conditions; this core set is expanded moderately during yeast growth, but is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7p-influenced regulons including genes related to glycolysis and the Filamentous Growth Regulator family. In the absence of Med7, the ribosomal regulon is de-repressed, suggesting Med7 is involved in central aspects of growth control. In this study, we have investigated Mediator function in the human fungal pathogen C. albicans. An initial screening of conditionally regulated Mediator subunits showed that the Med7 of C. albicans was not essential, in contrast to the situation noted for S. cerevisiae. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used location profiling to determine Mediator binding under yeast and hyphal morphologies characterized by different transcription profiles. We observed a core set of specific and common genes bound by Med7 under both conditions; this specific core set is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also of inactive genes and within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7 regulons including genes related to glycolysis and the Filamentous Growth Regulator family.
Collapse
|
44
|
Ginsburg DS, Anlembom TE, Wang J, Patel SR, Li B, Hinnebusch AG. NuA4 links methylation of histone H3 lysines 4 and 36 to acetylation of histones H4 and H3. J Biol Chem 2014; 289:32656-70. [PMID: 25301943 DOI: 10.1074/jbc.m114.585588] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cotranscriptional methylation of histone H3 lysines 4 and 36 by Set1 and Set2, respectively, stimulates interaction between nucleosomes and histone deacetylase complexes to block cryptic transcription in budding yeast. We previously showed that loss of all H3K4 and H3K36 methylation in a set1Δset2Δ mutant reduces interaction between native nucleosomes and the NuA4 lysine acetyltransferase (KAT) complex. We now provide evidence that NuA4 preferentially binds H3 tails mono- and dimethylated on H3K4 and di- and trimethylated on H3K36, an H3 methylation pattern distinct from that recognized by the RPD3C(S) and Hos2/Set3 histone deacetylase complexes (HDACs). Loss of H3K4 or H3K36 methylation in set1Δ or set2Δ mutants reduces NuA4 interaction with bulk nucleosomes in vitro and in vivo, and reduces NuA4 occupancy of transcribed coding sequences at particular genes. We also provide evidence that NuA4 acetylation of lysine residues in the histone H4 tail stimulates SAGA interaction with nucleosomes and its recruitment to coding sequences and attendant acetylation of histone H3 in vivo. Thus, H3 methylation exerts opposing effects of enhancing nucleosome acetylation by both NuA4 and SAGA as well as stimulating nucleosome deacetylation by multiple HDACs to maintain the proper level of histone acetylation in transcribed coding sequences.
Collapse
Affiliation(s)
- Daniel S Ginsburg
- From the Biomedical Sciences Department, LIU Post, Brookville, New York 11548,
| | | | - Jianing Wang
- From the Biomedical Sciences Department, LIU Post, Brookville, New York 11548
| | - Sanket R Patel
- From the Biomedical Sciences Department, LIU Post, Brookville, New York 11548
| | - Bing Li
- the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Alan G Hinnebusch
- the Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
45
|
Rawal Y, Qiu H, Hinnebusch AG. Accumulation of a threonine biosynthetic intermediate attenuates general amino acid control by accelerating degradation of Gcn4 via Pho85 and Cdk8. PLoS Genet 2014; 10:e1004534. [PMID: 25079372 PMCID: PMC4117449 DOI: 10.1371/journal.pgen.1004534] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022] Open
Abstract
Gcn4 is a master transcriptional regulator of amino acid and vitamin biosynthetic enzymes subject to the general amino acid control (GAAC), whose expression is upregulated in response to amino acid starvation in Saccharomyces cerevisiae. We found that accumulation of the threonine pathway intermediate β-aspartate semialdehyde (ASA), substrate of homoserine dehydrogenase (Hom6), attenuates the GAAC transcriptional response by accelerating degradation of Gcn4, already an exceedingly unstable protein, in cells starved for isoleucine and valine. The reduction in Gcn4 abundance on ASA accumulation requires Cdk8/Srb10 and Pho85, cyclin-dependent kinases (CDKs) known to mediate rapid turnover of Gcn4 by the proteasome via phosphorylation of the Gcn4 activation domain under nonstarvation conditions. Interestingly, rescue of Gcn4 abundance in hom6 cells by elimination of SRB10 is not accompanied by recovery of transcriptional activation, while equivalent rescue of UAS-bound Gcn4 in hom6 pho85 cells restores greater than wild-type activation of Gcn4 target genes. These and other findings suggest that the two CDKs target different populations of Gcn4 on ASA accumulation, with Srb10 clearing mostly inactive Gcn4 molecules at the promoter that are enriched for sumoylation of the activation domain, and Pho85 clearing molecules unbound to the UAS that include both fully functional and inactive Gcn4 species. Transcriptional activator Gcn4 maintains amino acid homeostasis in budding yeast by inducing multiple amino acid biosynthetic pathways in response to starvation for any amino acid—the general amino acid control. Gcn4 abundance is tightly regulated by the interplay between an intricate translational control mechanism, which induces Gcn4 synthesis in starved cells, and a pathway of phosphorylation and ubiquitylation that mediates its rapid degradation by the proteasome. Here, we discovered that accumulation of a threonine biosynthetic pathway intermediate, β-aspartate semialdehyde (ASA), in hom6Δ mutant cells impairs general amino acid control in cells starved for isoleucine and valine by accelerating the already rapid degradation of Gcn4, in a manner requiring its phosphorylation by cyclin-dependent kinases Cdk8/Srb10 and Pho85. Interestingly, our results unveil a division of labor between these two kinases wherein Srb10 primarily targets inactive Gcn4 molecules—presumably damaged under conditions of ASA excess—while Pho85 clears a greater proportion of functional Gcn4 species from the cell. The ability of ASA to inhibit transcriptional induction of threonine pathway enzymes by Gcn4, dampening ASA accumulation and its toxic effects on cell physiology, should be adaptive in the wild when yeast encounters natural antibiotics that target Hom6 enzymatic activity.
Collapse
Affiliation(s)
- Yashpal Rawal
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hongfang Qiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Pivotal role for a tail subunit of the RNA polymerase II mediator complex CgMed2 in azole tolerance and adherence in Candida glabrata. Antimicrob Agents Chemother 2014; 58:5976-86. [PMID: 25070095 DOI: 10.1128/aac.02786-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antifungal therapy failure can be associated with increased resistance to the employed antifungal agents. Candida glabrata, the second most common cause of invasive candidiasis, is intrinsically less susceptible to the azole class of antifungals and accounts for 15% of all Candida bloodstream infections. Here, we show that C. glabrata MED2 (CgMED2), which codes for a tail subunit of the RNA polymerase II Mediator complex, is required for resistance to azole antifungal drugs in C. glabrata. An inability to transcriptionally activate genes encoding a zinc finger transcriptional factor, CgPdr1, and multidrug efflux pump, CgCdr1, primarily contributes to the elevated susceptibility of the Cgmed2Δ mutant toward azole antifungals. We also report for the first time that the Cgmed2Δ mutant exhibits sensitivity to caspofungin, a constitutively activated protein kinase C-mediated cell wall integrity pathway, and elevated adherence to epithelial cells. The increased adherence of the Cgmed2Δ mutant was attributed to the elevated expression of the EPA1 and EPA7 genes. Further, our data demonstrate that CgMED2 is required for intracellular proliferation in human macrophages and modulates survival in a murine model of disseminated candidiasis. Lastly, we show an essential requirement for CgMed2, along with the Mediator middle subunit CgNut1 and the Mediator cyclin-dependent kinase/cyclin subunit CgSrb8, for the high-level fluconazole resistance conferred by the hyperactive allele of CgPdr1. Together, our findings underscore a pivotal role for CgMed2 in basal tolerance and acquired resistance to azole antifungals.
Collapse
|
47
|
Tsai KL, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Asturias FJ. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell 2014; 157:1430-1444. [PMID: 24882805 DOI: 10.1016/j.cell.2014.05.015] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/18/2014] [Accepted: 05/10/2014] [Indexed: 11/16/2022]
Abstract
The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism.
Collapse
Affiliation(s)
- Kuang-Lei Tsai
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Shigeo Sato
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry & Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry & Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Francisco J Asturias
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Wang X, Sun Q, Ding Z, Ji J, Wang J, Kong X, Yang J, Cai G. Redefining the modular organization of the core Mediator complex. Cell Res 2014; 24:796-808. [PMID: 24810298 PMCID: PMC4085763 DOI: 10.1038/cr.2014.64] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/13/2014] [Accepted: 03/13/2014] [Indexed: 01/24/2023] Open
Abstract
The Mediator complex plays an essential role in the regulation of eukaryotic transcription. The Saccharomyces cerevisiae core Mediator comprises 21 subunits, which are organized into Head, Middle and Tail modules. Previously, the Head module was assigned to a distinct dense domain at the base, and the Middle and Tail modules were identified to form a tight structure above the Head module, which apparently contradicted findings from many biochemical and functional studies. Here, we compared the structures of the core Mediator and its subcomplexes, especially the first 3D structure of the Head + Middle modules, which permitted an unambiguous assignment of the three modules. Furthermore, nanogold labeling pinpointing four Mediator subunits from different modules conclusively validated the modular assignment, in which the Head and Middle modules fold back on one another and form the upper portion of the core Mediator, while the Tail module forms a distinct dense domain at the base. The new modular model of the core Mediator has reconciled the previous inconsistencies between the structurally and functionally defined Mediator modules. Collectively, these analyses completely redefine the modular organization of the core Mediator, which allow us to integrate the structural and functional information into a coherent mechanism for the Mediator's modularity and regulation in transcription initiation.
Collapse
Affiliation(s)
- Xuejuan Wang
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Qianqian Sun
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Zhenrui Ding
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Jinhua Ji
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Jianye Wang
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Xiao Kong
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Jianghong Yang
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Gang Cai
- 1] School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China [2] Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, 443 Huang-Shan Road, Hefei, Anhui 230027, China [3] Center for Biomedical Engineering, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| |
Collapse
|
49
|
Ansari SA, Paul E, Sommer S, Lieleg C, He Q, Daly AZ, Rode KA, Barber WT, Ellis LC, LaPorta E, Orzechowski AM, Taylor E, Reeb T, Wong J, Korber P, Morse RH. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast. J Biol Chem 2014; 289:14981-95. [PMID: 24727477 DOI: 10.1074/jbc.m113.529354] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction.
Collapse
Affiliation(s)
- Suraiya A Ansari
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Emily Paul
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Sebastian Sommer
- the Adolf-Butenandt-Institut, Universität München, 80336 Munich, Germany
| | - Corinna Lieleg
- the Adolf-Butenandt-Institut, Universität München, 80336 Munich, Germany
| | - Qiye He
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, the Department of Biomedical Science, University at Albany School of Public Health, Albany, New York 12201-0509, and
| | - Alexandre Z Daly
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Kara A Rode
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Wesley T Barber
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Laura C Ellis
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Erika LaPorta
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, the Department of Biomedical Science, University at Albany School of Public Health, Albany, New York 12201-0509, and
| | - Amanda M Orzechowski
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Emily Taylor
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Tanner Reeb
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Jason Wong
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Philipp Korber
- the Adolf-Butenandt-Institut, Universität München, 80336 Munich, Germany
| | - Randall H Morse
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, the Department of Biomedical Science, University at Albany School of Public Health, Albany, New York 12201-0509, and
| |
Collapse
|
50
|
The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation. Mol Cell Biol 2014; 34:1547-63. [PMID: 24550006 DOI: 10.1128/mcb.01060-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A common function of the TFIID and SAGA complexes, which are recruited by transcriptional activators, is to deliver TBP to promoters to stimulate transcription. Neither the relative contributions of the five shared TBP-associated factor (TAF) subunits in TFIID and SAGA nor the requirement for different domains in shared TAFs for transcriptional activation is well understood. In this study, we uncovered the essential requirement for the highly conserved C-terminal region (CRD) of Taf9, a shared TAF, for transcriptional activation in yeast. Transcriptome profiling performed under Gcn4-activating conditions showed that the Taf9 CRD is required for induced expression of ∼9% of the yeast genome. The CRD was not essential for the Taf9-Taf6 interaction, TFIID or SAGA integrity, or Gcn4 interaction with SAGA in cell extracts. Microarray profiling of a SAGA mutant (spt20Δ) yielded a common set of genes induced by Spt20 and the Taf9 CRD. Chromatin immunoprecipitation (ChIP) assays showed that, although the Taf9 CRD mutation did not impair Gcn4 occupancy, the occupancies of TFIID, SAGA, and the preinitiation complex were severely impaired at several promoters. These results suggest a crucial role for the Taf9 CRD in genome-wide transcription and highlight the importance of conserved domains, other than histone fold domains, as a common determinant for TFIID and SAGA functions.
Collapse
|