1
|
Crandall JG, Fisher KJ, Sato TK, Hittinger CT. Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism. PLoS Biol 2023; 21:e3001909. [PMID: 37943740 PMCID: PMC10635434 DOI: 10.1371/journal.pbio.3001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type skews in some fungi hint at links between cell type and adaptive traits. Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding yeast Saccharomyces eubayanus experimentally evolved for improvement of a key metabolic trait, the ability to use maltose as a carbon source. We find that haploids have a substantial, but conditional, fitness advantage in the absence of other genetic variation. Using engineered genotypes that decouple the effects of ploidy and cell type, we show that increased fitness is primarily due to the distinct transcriptional program deployed by haploid-like cell types, with a significant but smaller contribution from absolute ploidy. The link between cell-type specification and the carbon metabolism adaptation can be traced to the noncanonical regulation of a maltose transporter by a haploid-specific gene. This study provides novel mechanistic insight into the molecular basis of an environment-cell type fitness interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell types can drive karyotypic evolution in fungi.
Collapse
Affiliation(s)
- Johnathan G. Crandall
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kaitlin J. Fisher
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Summers DK, Perry DS, Rao B, Madhani HD. Coordinate genomic association of transcription factors controlled by an imported quorum sensing peptide in Cryptococcus neoformans. PLoS Genet 2020; 16:e1008744. [PMID: 32956370 PMCID: PMC7537855 DOI: 10.1371/journal.pgen.1008744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/06/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Qsp1 is a secreted quorum sensing peptide required for virulence of the fungal meningitis pathogen Cryptococcus neoformans. Qsp1 functions to control cell wall integrity in vegetatively growing cells and also functions in mating. Rather than acting on a cell surface receptor, Qsp1 is imported to act intracellularly via the predicted oligopeptide transporter Opt1. Here, we identify a transcription factor network as a target of Qsp1. Using whole-genome chromatin immunoprecipitation, we find Qsp1 controls the genomic associations of three transcription factors to genes whose outputs are regulated by Qsp1. One of these transcription factors, Cqs2, is also required for the action of Qsp1 during mating, indicating that it might be a shared proximal target of Qsp1. Consistent with this hypothesis, deletion of CQS2 impacts the binding of other network transcription factors specifically to Qsp1-regulated genes. These genetic and genomic studies illuminate mechanisms by which an imported peptide acts to modulate eukaryotic gene expression.
Collapse
Affiliation(s)
- Diana K. Summers
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Daniela S. Perry
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Hiten D. Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
- Chan-Zuckerberg Biohub, San Francisco, CA, United States of America
| |
Collapse
|
3
|
Burns LT, Sislak CD, Gibbon NL, Saylor NR, Seymour MR, Shaner LM, Gibney PA. Improved Functional Assays and Risk Assessment for STA1+ Strains of Saccharomyces cerevisiae. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1796175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | | | | | - Marete R. Seymour
- Omega Yeast Labs, Chicago, IL, U.S.A
- Department of Food Science, Cornell University, Ithaca, NY, U.S.A
| | | | | |
Collapse
|
4
|
Krogerus K, Gibson B. A re-evaluation of diastatic Saccharomyces cerevisiae strains and their role in brewing. Appl Microbiol Biotechnol 2020; 104:3745-3756. [PMID: 32170387 PMCID: PMC7162825 DOI: 10.1007/s00253-020-10531-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Abstract Diastatic strains of Saccharomyces cerevisiae possess the unique ability to hydrolyze and ferment long-chain oligosaccharides like dextrin and starch. They have long been regarded as important spoilage microbes in beer, but recent studies have inspired a re-evaluation of the significance of the group. Rather than being merely wild-yeast contaminants, they are highly specialized, domesticated yeasts belonging to a major brewing yeast lineage. In fact, many diastatic strains have unknowingly been used as production strains for decades. These yeasts are used in the production of traditional beer styles, like saison, but also show potential for creation of new beers with novel chemical and physical properties. Herein, we review results of the most recent studies and provide a detailed account of the structure, regulation, and functional role of the glucoamylase-encoding STA1 gene in relation to brewing and other fermentation industries. The state of the art in detecting diastatic yeast in the brewery is also summarized. In summary, these latest results highlight that having diastatic S. cerevisiae in your brewery is not necessarily a bad thing. Key Points •Diastatic S. cerevisiae strains are important spoilage microbes in brewery fermentations. •These strains belong to the ‘Beer 2’ or ‘Mosaic beer’ brewing yeast lineage. •Diastatic strains have unknowingly been used as production strains in breweries. •The STA1-encoded glucoamylase enables efficient maltotriose use. Electronic supplementary material The online version of this article (10.1007/s00253-020-10531-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
5
|
Krogerus K, Magalhães F, Kuivanen J, Gibson B. A deletion in the STA1 promoter determines maltotriose and starch utilization in STA1+ Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 2019; 103:7597-7615. [PMID: 31346683 PMCID: PMC6719335 DOI: 10.1007/s00253-019-10021-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022]
Abstract
Diastatic strains of Saccharomyces cerevisiae are common contaminants in beer fermentations and are capable of producing an extracellular STA1-encoded glucoamylase. Recent studies have revealed variable diastatic ability in strains tested positive for STA1, and here, we elucidate genetic determinants behind this variation. We show that poorly diastatic strains have a 1162-bp deletion in the promoter of STA1. With CRISPR/Cas9-aided reverse engineering, we show that this deletion greatly decreases the ability to grow in beer and consume dextrin, and the expression of STA1. New PCR primers were designed for differentiation of highly and poorly diastatic strains based on the presence of the deletion in the STA1 promoter. In addition, using publically available whole genome sequence data, we show that the STA1 gene is prevalent among the 'Beer 2'/'Mosaic Beer' brewing strains. These strains utilize maltotriose efficiently, but the mechanisms for this have been unknown. By deleting STA1 from a number of highly diastatic strains, we show here that extracellular hydrolysis of maltotriose through STA1 appears to be the dominant mechanism enabling maltotriose use during wort fermentation in STA1+ strains. The formation and retention of STA1 seems to be an alternative evolutionary strategy for efficient utilization of sugars present in brewer's wort. The results of this study allow for the improved reliability of molecular detection methods for diastatic contaminants in beer and can be exploited for strain development where maltotriose use is desired.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, FI-00076, Espoo, Finland.
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Joosu Kuivanen
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
- Tampere University, Tampere, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
6
|
Basso V, d'Enfert C, Znaidi S, Bachellier-Bassi S. From Genes to Networks: The Regulatory Circuitry Controlling Candida albicans Morphogenesis. Curr Top Microbiol Immunol 2018; 422:61-99. [PMID: 30368597 DOI: 10.1007/82_2018_144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Candida albicans is a commensal yeast of most healthy individuals, but also one of the most prevalent human fungal pathogens. During adaptation to the mammalian host, C. albicans encounters different niches where it is exposed to several types of stress, including oxidative, nitrosative (e.g., immune system), osmotic (e.g., kidney and oral cavity) stresses and pH variation (e.g., gastrointestinal (GI) tract and vagina). C. albicans has developed the capacity to respond to the environmental changes by modifying its morphology, which comprises the yeast-to-hypha transition, white-opaque switching, and chlamydospore formation. The yeast-to-hypha transition has been very well characterized and was shown to be modulated by several external stimuli that mimic the host environment. For instance, temperature above 37 ℃, serum, alkaline pH, and CO2 concentration are all reported to enhance filamentation. The transition is characterized by the activation of an intricate regulatory network of signaling pathways, involving many transcription factors. The regulatory pathways that control either the stress response or morphogenesis are required for full virulence and promote survival of C. albicans in the host. Many of these transcriptional circuitries have been characterized, highlighting the complexity and the interconnections between the different pathways. Here, we present the major signaling pathways and the main transcription factors involved in the yeast-to-hypha transition. Furthermore, we describe the role of heat shock transcription factors in the morphogenetic transition, providing an edifying example of the complex cross talk between pathways involved in morphogenesis and stress response.
Collapse
Affiliation(s)
- Virginia Basso
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 25 Rue Du Docteur Roux, Paris, France.,Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France
| | - Sadri Znaidi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France. .,Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, 1002, Tunis-Belvédère, Tunisia.
| | - Sophie Bachellier-Bassi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
7
|
Ogata T, Iwashita Y, Kawada T. Construction of a brewing yeast expressing the glucoamylase geneSTA1by mating. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tomoo Ogata
- Department of Biotechnology; Maebashi Institute of Technology; 460-1 Kamisadori Maebashi Gunma 371-0816 Japan
| | - Yuko Iwashita
- Department of Biotechnology; Maebashi Institute of Technology; 460-1 Kamisadori Maebashi Gunma 371-0816 Japan
| | - Takayo Kawada
- Department of Biotechnology; Maebashi Institute of Technology; 460-1 Kamisadori Maebashi Gunma 371-0816 Japan
| |
Collapse
|
8
|
Huffman RD, Nawrocki LD, Wilson WA, Brittingham A. Digestion of glycogen by a glucosidase released by Trichomonas vaginalis. Exp Parasitol 2015; 159:151-9. [DOI: 10.1016/j.exppara.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/03/2015] [Accepted: 09/24/2015] [Indexed: 11/27/2022]
|
9
|
Chen L, Noorbakhsh J, Adams RM, Samaniego-Evans J, Agollah G, Nevozhay D, Kuzdzal-Fick J, Mehta P, Balázsi G. Two-dimensionality of yeast colony expansion accompanied by pattern formation. PLoS Comput Biol 2014; 10:e1003979. [PMID: 25504059 PMCID: PMC4263361 DOI: 10.1371/journal.pcbi.1003979] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/10/2014] [Indexed: 11/19/2022] Open
Abstract
Yeasts can form multicellular patterns as they expand on agar plates, a phenotype that requires a functional copy of the FLO11 gene. Although the biochemical and molecular requirements for such patterns have been examined, the mechanisms underlying their formation are not entirely clear. Here we develop quantitative methods to accurately characterize the size, shape, and surface patterns of yeast colonies for various combinations of agar and sugar concentrations. We combine these measurements with mathematical and physical models and find that FLO11 gene constrains cells to grow near the agar surface, causing the formation of larger and more irregular colonies that undergo hierarchical wrinkling. Head-to-head competition assays on agar plates indicate that two-dimensional constraint on the expansion of FLO11 wild type (FLO11) cells confers a fitness advantage over FLO11 knockout (flo11Δ) cells on the agar surface. Microbial biofilms are commonly found in nature and are highly relevant to public health. Biofilms can impose high risks to drinking water distribution by stable adherence to the interior of water pipes, and to food industry by contamination of food processing systems. Biofilm adherence to indwelling medical devices causes high rates of clinical infections that are difficult to eliminate as biofilm microbes resist treatment with antibiotics and biocides. These microbial abilities are related to the spatial composition and overall morphology of the biofilm. While the mechanisms underlying biofilm structure and morphology have been examined for bacteria, much less is known about eukaryotic biofilms. Here we find that the size, shape and patterning of budding yeast colonies can arise from constraining colony expansion to the surface of agar plates. Through computational analysis and mathematical modeling, we find that rapid colony expansion, colony shape irregularity and hierarchical wrinkling of the yeast colony surface can result from two-dimensionality of expansion imposed by the adhesin FLO11. Finally, we find that two-dimensional expansion conveys competitive advantage during head-to-head competition with the mutant cells lacking FLO11.
Collapse
Affiliation(s)
- Lin Chen
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Javad Noorbakhsh
- Department of Physics, Metcalf Science Center (SCI), Boston University, Boston, Massachusetts, United States of America
| | - Rhys M. Adams
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Joseph Samaniego-Evans
- Department of Physics, Metcalf Science Center (SCI), Boston University, Boston, Massachusetts, United States of America
| | - Germaine Agollah
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Dmitry Nevozhay
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Jennie Kuzdzal-Fick
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Pankaj Mehta
- Department of Physics, Metcalf Science Center (SCI), Boston University, Boston, Massachusetts, United States of America
| | - Gábor Balázsi
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The Louis and Beatrice Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Navarro C, Lopez FJ, Cano C, Garcia-Alcalde F, Blanco A. CisMiner: genome-wide in-silico cis-regulatory module prediction by fuzzy itemset mining. PLoS One 2014; 9:e108065. [PMID: 25268582 PMCID: PMC4182448 DOI: 10.1371/journal.pone.0108065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/25/2014] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by the user.
Collapse
Affiliation(s)
- Carmen Navarro
- Department of Computer Science and AI, University of Granada, Granada, Spain
| | - Francisco J. Lopez
- Andalusian Human Genome Sequencing Centre (CASEGH), Medical Genome Project (MGP), Sevilla, Spain
| | - Carlos Cano
- Department of Computer Science and AI, University of Granada, Granada, Spain
| | | | - Armando Blanco
- Department of Computer Science and AI, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Two distinct domains of Flo8 activator mediates its role in transcriptional activation and the physical interaction with Mss11. Biochem Biophys Res Commun 2014; 449:202-7. [DOI: 10.1016/j.bbrc.2014.04.161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 04/30/2014] [Indexed: 11/23/2022]
|
12
|
Lee SB, Kang HS, Kim T. Nrg1 functions as a global transcriptional repressor of glucose-repressed genes through its direct binding to the specific promoter regions. Biochem Biophys Res Commun 2013; 439:501-5. [PMID: 24025681 DOI: 10.1016/j.bbrc.2013.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
Nrg1 is a zinc finger protein involved in the glucose repression of several glucose-repressed genes such as STA1, SUC2, and GAL1. Although the molecular details of the Nrg1-mediated repression of STA1 have been partly characterized, it still remains largely unknown how Nrg1 regulates these multiple target genes. In this study, we show that Nrg1 mediates the glucose repression of SUC2 and HXT2 through its direct binding to the specific promoter regions; it binds to the -404 to -360 region of the SUC2 promoter and the -957 to -810 region of the HXT2 promoter. Nrg1 also interacts with the -380 to -250 region of the PCK1 promoter, suggesting that it might also contribute to the PCK1 repression. In addition, ChIP assays confirmed that Nrg1 associated with specific promoter regions of these glucose-repressed genes in vivo. Analysis of the DNA fragments to which it binds indicates that Nrg1 may recognize T/ACCCC sequence within the promoters of these glucose-repressed genes as well as in its own promoter. Collectively, our findings indicate that Nrg1 mediates the glucose repression of multiple genes through its direct binding to the specific promoter regions.
Collapse
Affiliation(s)
- Sung Bae Lee
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
| | | | | |
Collapse
|
13
|
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2011; 36:25-58. [PMID: 21521246 DOI: 10.1111/j.1574-6976.2011.00275.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a eukaryotic microorganism that is able to choose between different unicellular and multicellular lifestyles. The potential of individual yeast cells to switch between different growth modes is advantageous for optimal dissemination, protection and substrate colonization at the population level. A crucial step in lifestyle adaptation is the control of self- and foreign adhesion. For this purpose, S. cerevisiae contains a set of cell wall-associated proteins, which confer adhesion to diverse biotic and abiotic surfaces. Here, we provide an overview of different aspects of S. cerevisiae adhesion, including a detailed description of known lifestyles, recent insights into adhesin structure and function and an outline of the complex regulatory network for adhesin gene regulation. Our review shows that S. cerevisiae is a model system suitable for studying not only the mechanisms and regulation of cell adhesion, but also the role of this process in microbial development, ecology and evolution.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
14
|
Li G, Zhou X, Kong L, Wang Y, Zhang H, Zhu H, Mitchell TK, Dean RA, Xu JR. MoSfl1 is important for virulence and heat tolerance in Magnaporthe oryzae. PLoS One 2011; 6:e19951. [PMID: 21625508 PMCID: PMC3098271 DOI: 10.1371/journal.pone.0019951] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/07/2011] [Indexed: 12/30/2022] Open
Abstract
The formation of appressoria, specialized plant penetration structures of Magnaporthe oryzae, is regulated by the MST11-MST7-PMK1 MAP kinase cascade. One of its downstream transcription factor, MST12, is important for penetration and invasive growth but dispensable for appressorium formation. To identify additional downstream targets that are regulated by Pmk1, in this study we performed phosphorylation assays with a protein microarray composed of 573 M. oryzae transcription factor (TF) genes. Three of the TF genes phosphorylated by Pmk1 in vitro were further analyzed by coimmunoprecipitation assays. One of them, MoSFL1, was found to interact with Pmk1 in vivo. Like other Sfl1 orthologs, the MoSfl1 protein has the HSF-like domain. When expressed in yeast, MoSFL1 functionally complemented the flocculation defects of the sfl1 mutant. In M. oryzae, deletion of MoSFl1 resulted in a significant reduction in virulence on rice and barley seedlings. Consistent with this observation, the Mosfl1 mutant was defective in invasive growth in penetration assays with rice leaf sheaths. In comparison with that of vegetative hyphae, the expression level of MoSFL1 was increased in appressoria and infected rice leaves. The Mosfl1 mutant also had increased sensitivity to elevated temperatures. In CM cultures of the Mosfl1 and pmk1 mutants grown at 30°C, the production of aerial hyphae and melanization were reduced but their growth rate was not altered. When assayed by qRT-PCR, the transcription levels of the MoHSP30 and MoHSP98 genes were reduced 10- and 3-fold, respectively, in the Mosfl1 mutant. SFL1 orthologs are conserved in filamentous ascomycetes but none of them have been functionally characterized in non-Saccharomycetales fungi. MoSfl1 has one putative MAPK docking site and three putative MAPK phosphorylation sites. Therefore, it may be functionally related to Pmk1 in the regulation of invasive growth and stress responses in M. oryzae.
Collapse
Affiliation(s)
- Guotian Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Lingan Kong
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Yuling Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Haifeng Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas K. Mitchell
- Department of Plant Pathology, Ohio State University, Columbia, Ohio, United States of America
| | - Ralph A. Dean
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chavel CA, Dionne HM, Birkaya B, Joshi J, Cullen PJ. Multiple signals converge on a differentiation MAPK pathway. PLoS Genet 2010; 6:e1000883. [PMID: 20333241 PMCID: PMC2841618 DOI: 10.1371/journal.pgen.1000883] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 02/14/2010] [Indexed: 12/12/2022] Open
Abstract
An important emerging question in the area of signal transduction is how information from different pathways becomes integrated into a highly coordinated response. In budding yeast, multiple pathways regulate filamentous growth, a complex differentiation response that occurs under specific environmental conditions. To identify new aspects of filamentous growth regulation, we used a novel screening approach (called secretion profiling) that measures release of the extracellular domain of Msb2p, the signaling mucin which functions at the head of the filamentous growth (FG) MAPK pathway. Secretion profiling of complementary genomic collections showed that many of the pathways that regulate filamentous growth (RAS, RIM101, OPI1, and RTG) were also required for FG pathway activation. This regulation sensitized the FG pathway to multiple stimuli and synchronized it to the global signaling network. Several of the regulators were required for MSB2 expression, which identifies the MSB2 promoter as a target “hub” where multiple signals converge. Accessibility to the MSB2 promoter was further regulated by the histone deacetylase (HDAC) Rpd3p(L), which positively regulated FG pathway activity and filamentous growth. Our findings provide the first glimpse of a global regulatory hierarchy among the pathways that control filamentous growth. Systems-level integration of signaling circuitry is likely to coordinate other regulatory networks that control complex behaviors. Signal integration is an essential feature of information flow through signal transduction pathways. The mechanisms by which signals from multiple pathways become integrated into a coordinated response remain unclear. We show that multiple pathways that regulate filamentous growth converge on a differentiation-dependent MAPK pathway. Our findings indicate that more extensive communication occurs between signaling pathways that control the filamentation response than has previously been appreciated. We suggest that global communication hierarchies regulate information flow in other systems, particularly higher eukaryotes where multiple pathways typically function simultaneously to modulate a complex response.
Collapse
Affiliation(s)
- Colin A. Chavel
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Heather M. Dionne
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Barbara Birkaya
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jyoti Joshi
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zhang T, Li D, Li W, Wang Y, Sang J. CaSfl1 plays a dual role in transcriptional regulation in Candida albicans. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Bauer J, Wendland J. Candida albicans Sfl1 suppresses flocculation and filamentation. EUKARYOTIC CELL 2007; 6:1736-44. [PMID: 17766464 PMCID: PMC2043394 DOI: 10.1128/ec.00236-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hyphal morphogenesis in Candida albicans is regulated by multiple pathways which act by either inducing or repressing filamentation. Most notably, Tup1, Nrg1, and Rfg1 are transcriptional repressors, while Efg1, Flo8, Cph1, and Czf1 can induce filamentation. Here, we present the functional analysis of CaSFL1, which encodes the C. albicans homolog of the Saccharomyces cerevisiae SFL1 (suppressor of flocculation) gene. Deletion of CaSFL1 results in flocculation (i.e., the formation of clumps) of yeast cells, which is most pronounced in minimal medium. The flocs contained hyphae already under noninducing conditions, and filamentation could be enhanced with hypha-inducing cues at 37 degrees C. Expression of SFL1 in a heterozygous mutant under the control of the CaMET3 promoter was shown to complement these defects and allowed switching between wild-type and mutant phenotypes. Interestingly, increased expression of SFL1 using a MET3prom-SFL1 construct prior to the induction of filamentation completely blocked germ tube formation. To localize Sfl1 in vivo, we generated a SFL1-GFP fusion. Sfl1-green fluorescent protein was found in the nucleus in both yeast cells and, to a lesser extent, hyphal cells. Using reverse transcription-PCR, we find an increased expression of ALS1, ALS3, HWP1, ECE1, and also FLO8. Our results suggest that Sfl1 functions in the repression of flocculation and filamentation and thus represents a novel negative regulator of C. albicans morphogenesis.
Collapse
Affiliation(s)
- Janine Bauer
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Copenhagen, Denmark
| | | |
Collapse
|
18
|
Doyon JB, Liu DR. Identification of eukaryotic promoter regulatory elements using nonhomologous random recombination. Nucleic Acids Res 2007; 35:5851-60. [PMID: 17720707 PMCID: PMC2034452 DOI: 10.1093/nar/gkm634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Understanding the regulatory logic of a eukaryotic promoter requires the elucidation of the regulatory elements within that promoter. Current experimental or computational methods to discover regulatory motifs within a promoter can be labor intensive and may miss redundant, unprecedented or weakly activating elements. We have developed an unbiased combinatorial approach to rapidly identify new upstream activating sequences (UASs) in a promoter. This approach couples nonhomologous random recombination with an in vivo screen to efficiently identify UASs and does not rely on preconceived hypotheses about promoter regulation or on similarity to known activating sequences. We validated this method using the unfolded protein response (UPR) in yeast and were able to identify both known and potentially novel UASs involved in the UPR. One of the new UASs discovered using this approach implicates Crz1 as a possible activator of Hac1, a transcription factor involved in the UPR. This method has several advantages over existing methods for UAS discovery including its speed, potential generality, sensitivity and lack of false positives and negatives.
Collapse
Affiliation(s)
| | - David R. Liu
- *To whom correspondence should be addressed. Tel:+ 1 617 496 1067; Fax:+ 1 617 496 5688
| |
Collapse
|
19
|
Li Y, Su C, Mao X, Cao F, Chen J. Roles of Candida albicans Sfl1 in hyphal development. EUKARYOTIC CELL 2007; 6:2112-21. [PMID: 17715361 PMCID: PMC2168412 DOI: 10.1128/ec.00199-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to switch between different morphological forms is an important feature of Candida albicans and is relevant to its pathogenesis. Many conserved positive and negative transcription factors are involved in morphogenetic regulation of the two dimorphic fungi Candida albicans and Saccharomyces cerevisiae. In S. cerevisiae, the transcriptional repressor Sfl1 and the activator Flo8 function antagonistically in invasive and filamentous growth. We have previously reported that Candida albicans Flo8 is a transcription factor essential for hyphal development and virulence in C. albicans. To determine whether a similar negative factor exists in C. albicans, we identified Candida albicans Sfl1 as a functional homolog of the S. cerevisiae sfl1 mutant. Sfl1 is a negative regulator of hyphal development in C. albicans. Deletion of C. albicans SFL1 enhanced filamentous growth and hypha-specific gene expression in several media and at several growth temperatures. Overexpression of the SFL1 led to a significant reduction of filament formation. Both deletion and overexpression of the SFL1 attenuated virulence of C. albicans in a mouse model. Deleting FLO8 in an sfl1/sfl1 mutant completely blocked hyphal development in various growth conditions examined, suggesting that C. albicans Sfl1 may act as a negative regulator of filamentous growth by antagonizing Flo8 functions. We suggest that, similar to the case for S. cerevisiae, a combination of dual control by activation and repression of Flo8 and Sfl1 may contribute to the fine regulatory network in C. albicans morphogenesis responding to different environmental cues.
Collapse
Affiliation(s)
- Yandong Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, SIBS, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
20
|
Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1311-40. [PMID: 17604854 PMCID: PMC2031910 DOI: 10.1016/j.bbamcr.2007.05.003] [Citation(s) in RCA: 469] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells.
Collapse
Affiliation(s)
- Raymond E Chen
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
21
|
Galeote VA, Alexandre H, Bach B, Delobel P, Dequin S, Blondin B. Sfl1p acts as an activator of the HSP30 gene in Saccharomyces cerevisiae. Curr Genet 2007; 52:55-63. [PMID: 17594096 DOI: 10.1007/s00294-007-0136-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 05/22/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
In the yeast, environmental challenges are known to induce both specific and general stress response. The HSP30 gene is strongly induced when cells are exposed to various stresses but this activation is largely independent of the major stress-related transcription factor Hsf1p and partly independent from Msn2p/Msn4p. In order to identify new potential regulators of HSP30 we isolated insertion mutants affected in HSP30 expression. We identified SFL1 gene encoding a protein previously shown to repress several genes. We show that Sfl1 is involved in the transcriptional activation of HSP30. Mutation of sfl1 reduces HSP30-lacZ expression under both basal and stress-induced conditions. We also show, using site-directed mutagenesis, that HSL motifs (Heat-Shock-Like putative DNA binding sequence) located in HSP30 promoter are required for HSP30 activation. Finally, a genome-wide analysis of the effects of SFL1 deletion on gene expression revealed that Sfl1p controls the expression of a small number of genes, with some being activated by the protein and others repressed. As a whole our data show that Sfl1p is a key component of the transcriptional control of the stress responsive gene HSP30. Moreover, we show that Sfl1, which was previously described as being a transcriptional repressor, can also act as an activator.
Collapse
|
22
|
Shen H, Iha H, Yaguchi SI, Tsurugi K. The mechanism by which overexpression of Gts1p induces flocculation in aFLO8-inactive strain of the yeastSaccharomyces cerevisiae. FEMS Yeast Res 2006; 6:914-23. [PMID: 16911513 DOI: 10.1111/j.1567-1364.2006.00086.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
GTS1 induces flocculation when overexpressed in the Saccharomyces cerevisiae strain W303-1A, which carries a mutant FLO8, the activator of flocculin genes. Herein, we report that the GTS1-induced flocculation was flocculin-dependent in nature and was caused by expression of the major flocculin Flo1p. Gts1p bound to the repressor Sfl1p, and their interaction at the transcriptional level was shown by reporter gene assays using the FLO1 promoter, suggesting that Gts1p induces the expression of FLO1 by inhibiting Sfl1p. Furthermore, the Q-rich domain with the preceding 18 amino acids of Gts1p bound mediators for RNA polymerase II.
Collapse
Affiliation(s)
- Hua Shen
- Department of Biochemistry 2, University of Yamanashi, Faculty of Medicine, Shimokato, Tamaho, Nakakoma, Yamanashi, Japan
| | | | | | | |
Collapse
|
23
|
Kim TS, Kim HY, Yoon JH, Kang HS. Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression. Mol Cell Biol 2004; 24:9542-56. [PMID: 15485921 PMCID: PMC522284 DOI: 10.1128/mcb.24.21.9542-9556.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the yeast Saccharomyces diastaticus, expression of the STA1 gene, which encodes an extracellular glucoamylase, is activated by the specific DNA-binding activators Flo8, Mss11, Ste12, and Tec1 and the Swi/Snf chromatin-remodeling complex. Here we show that Flo8 interacts physically and functionally with Mss11. Flo8 and Mss11 bind cooperatively to the inverted repeat sequence TTTGC-n-GCAAA (n = 97) in UAS1-2 of the STA1 promoter. In addition, Flo8 and Mss11 bind indirectly to UAS2-1 of the STA1 promoter by interacting with Ste12 and Tec1, which bind to the filamentation and invasion response element (FRE) in UAS2-1. Furthermore, our findings indicate that the Ste12, Tec1, Flo8, and Mss11 activators and the Swi/Snf complex bind sequentially to the STA1 promoter, as follows: Ste12 and Tec1 bind first to the FRE, whereby they recruit the Swi/Snf complex to the STA1 promoter. Next, the Swi/Snf complex enhances Flo8 and Mss11 binding to UAS1-2. In the final step, Flo8 and Mss11 directly promote association of RNA polymerase II with the STA1 promoter to activate STA1 expression. In the absence of glucose, the levels of Flo8 and Tec1 are greatly increased, whereas the abundances of two repressors, Nrg1 and Sfl1, are reduced, suggesting that the balance of transcriptional regulators may be important for determining activation or repression of STA1 expression.
Collapse
Affiliation(s)
- Tae Soo Kim
- School of Biological Sciences, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|