1
|
Nakatsukasa K, Fujisawa M, Yang X, Kawarasaki T, Okumura F, Kamura T. Triacylglycerol lipase Tgl4 is a stable protein and its dephosphorylation is regulated in a cell cycle-dependent manner in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2022; 626:85-91. [PMID: 35981421 DOI: 10.1016/j.bbrc.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
Triacylglycerols (TGs) serve as reservoirs for diacylglycerols and fatty acids, which play important roles in synthesizing energy and membrane lipids that are required for cell cycle progression. In the yeast, Saccharomyces cerevisiae, Tgl4, the functional ortholog of murine adipose triacylglycerol lipase (ATGL), is activated by Cdk1/Cdc28-mediated phosphorylation and facilitates the G1/S transition. However, little is known about how Tgl4 is inactivated during the cell cycle. To monitor the phosphorylation status and the stability of endogenous Tgl4, we raised a specific antibody against Tgl4. We found that in contrast to the previous suggestion, Tgl4 was a stable protein throughout the cell cycle. We also showed that Tgl4 was dephosphorylated upon entry into G1 phase. These results suggest that Tgl4 is a stable protein and is inactivated during G1 phase by dephosphorylation.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan.
| | - Munetaka Fujisawa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Xiaotan Yang
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Tomoyuki Kawarasaki
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Fumihiko Okumura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, 813-8582, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
2
|
Piccirillo S, Morgan AP, Leon AY, Smith AL, Honigberg SM. Investigating cell autonomy in microorganisms. Curr Genet 2022; 68:305-318. [PMID: 35119506 PMCID: PMC9101301 DOI: 10.1007/s00294-022-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Cell-cell signaling in microorganisms is still poorly characterized. In this Methods paper, we describe a genetic procedure for detecting cell-nonautonomous genetic effects, and in particular cell-cell signaling, termed the chimeric colony assay (CCA). The CCA measures the effect of a gene on a biological response in a neighboring cell. This assay can measure cell autonomy for range of biological activities including transcript or protein accumulation, subcellular localization, and cell differentiation. To date, the CCA has been used exclusively to investigate colony patterning in the budding yeast Saccharomyces cerevisiae. To demonstrate the wider potential of the assay, we applied this assay to two other systems: the effect of Grr1 on glucose repression of GAL1 transcription in yeast and the effect of rpsL on stop-codon translational readthrough in Escherichia coli. We also describe variations of the standard CCA that address specific aspects of cell-cell signaling, and we delineate essential controls for this assay. Finally, we discuss complementary approaches to the CCA. Taken together, this Methods paper demonstrates how genetic assays can reveal and explore the roles of cell-cell signaling in microbial processes.
Collapse
Affiliation(s)
- Sarah Piccirillo
- Department of Genetics, Developmental and Evolutionary Biology, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5100 Rockhill Rd., Kansas City, MO 64110, USA
| | - Andrew P. Morgan
- Department of Genetics, Developmental and Evolutionary Biology, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5100 Rockhill Rd., Kansas City, MO 64110, USA
| | - Andy Y. Leon
- Department of Genetics, Developmental and Evolutionary Biology, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5100 Rockhill Rd., Kansas City, MO 64110, USA
| | - Annika L. Smith
- Department of Genetics, Developmental and Evolutionary Biology, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5100 Rockhill Rd., Kansas City, MO 64110, USA
| | - Saul M. Honigberg
- Department of Genetics, Developmental and Evolutionary Biology, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5100 Rockhill Rd., Kansas City, MO 64110, USA
| |
Collapse
|
3
|
Multi-Omics Analysis of Multiple Glucose-Sensing Receptor Systems in Yeast. Biomolecules 2022; 12:biom12020175. [PMID: 35204676 PMCID: PMC8961648 DOI: 10.3390/biom12020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has long been used to produce alcohol from glucose and other sugars. While much is known about glucose metabolism, relatively little is known about the receptors and signaling pathways that indicate glucose availability. Here, we compare the two glucose receptor systems in S. cerevisiae. The first is a heterodimer of transporter-like proteins (transceptors), while the second is a seven-transmembrane receptor coupled to a large G protein (Gpa2) that acts in coordination with two small G proteins (Ras1 and Ras2). Through comprehensive measurements of glucose-dependent transcription and metabolism, we demonstrate that the two receptor systems have distinct roles in glucose signaling: the G-protein-coupled receptor directs carbohydrate and energy metabolism, while the transceptors regulate ancillary processes such as ribosome, amino acids, cofactor and vitamin metabolism. The large G-protein transmits the signal from its cognate receptor, while the small G-protein Ras2 (but not Ras1) integrates responses from both receptor pathways. Collectively, our analysis reveals the molecular basis for glucose detection and the earliest events of glucose-dependent signal transduction in yeast.
Collapse
|
4
|
Laussel C, Léon S. Cellular toxicity of the metabolic inhibitor 2-deoxyglucose and associated resistance mechanisms. Biochem Pharmacol 2020; 182:114213. [PMID: 32890467 DOI: 10.1016/j.bcp.2020.114213] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
Most malignant cells display increased glucose absorption and metabolism compared to surrounding tissues. This well-described phenomenon results from a metabolic reprogramming occurring during transformation, that provides the building blocks and supports the high energetic cost of proliferation by increasing glycolysis. These features led to the idea that drugs targeting glycolysis might prove efficient in the context of cancer treatment. One of these drugs, 2-deoxyglucose (2-DG), is a synthetic glucose analog that can be imported into cells and interfere with glycolysis and ATP generation. Its preferential targeting to sites of cell proliferation is supported by the observation that a derived molecule, 2-fluoro-2-deoxyglucose (FDG) accumulates in tumors and is used for cancer imaging. Here, we review the toxicity mechanisms of this drug, from the early-described effects on glycolysis to its other cellular consequences, including inhibition of protein glycosylation and endoplasmic reticulum stress, and its interference with signaling pathways. Then, we summarize the current data on the use of 2-DG as an anti-cancer agent, especially in the context of combination therapies, as novel 2-DG-derived drugs are being developed. We also show how the use of 2-DG helped to decipher glucose-signaling pathways in yeast and favored their engineering for biotechnologies. Finally, we discuss the resistance strategies to this inhibitor that have been identified in the course of these studies and which may have important implications regarding a medical use of this drug.
Collapse
Affiliation(s)
- Clotilde Laussel
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Sébastien Léon
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
5
|
Regulation of Aspergillus nidulans CreA-Mediated Catabolite Repression by the F-Box Proteins Fbx23 and Fbx47. mBio 2018; 9:mBio.00840-18. [PMID: 29921666 PMCID: PMC6016232 DOI: 10.1128/mbio.00840-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The attachment of one or more ubiquitin molecules by SCF (Skp-Cullin-F-box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungus Aspergillus nidulans, CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δfbx23 mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications.IMPORTANCE The production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally thrive on decaying plant matter, are of particular interest for this process due to their ability to secrete enzymes required for the deconstruction of lignocellulosic material. A major drawback in fungal hydrolytic enzyme production is the repression of the corresponding genes in the presence of glucose, a process known as carbon catabolite repression (CCR). This report provides previously unknown mechanistic insights into CCR through elucidating part of the protein-protein interaction regulatory system that governs the CreA transcriptional regulator in the reference organism Aspergillus nidulans in the presence of glucose and the biotechnologically relevant plant polysaccharide xylan.
Collapse
|
6
|
Isom DG, Page SC, Collins LB, Kapolka NJ, Taghon GJ, Dohlman HG. Coordinated regulation of intracellular pH by two glucose-sensing pathways in yeast. J Biol Chem 2017; 293:2318-2329. [PMID: 29284676 DOI: 10.1074/jbc.ra117.000422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae employs multiple pathways to coordinate sugar availability and metabolism. Glucose and other sugars are detected by a G protein-coupled receptor, Gpr1, as well as a pair of transporter-like proteins, Rgt2 and Snf3. When glucose is limiting, however, an ATP-driven proton pump (Pma1) is inactivated, leading to a marked decrease in cytoplasmic pH. Here we determine the relative contribution of the two sugar-sensing pathways to pH regulation. Whereas cytoplasmic pH is strongly dependent on glucose abundance and is regulated by both glucose-sensing pathways, ATP is largely unaffected and therefore cannot account for the changes in Pma1 activity. These data suggest that the pH is a second messenger of the glucose-sensing pathways. We show further that different sugars differ in their ability to control cellular acidification, in the manner of inverse agonists. We conclude that the sugar-sensing pathways act via Pma1 to invoke coordinated changes in cellular pH and metabolism. More broadly, our findings support the emerging view that cellular systems have evolved the use of pH signals as a means of adapting to environmental stresses such as those caused by hypoxia, ischemia, and diabetes.
Collapse
Affiliation(s)
- Daniel G Isom
- From the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365, .,the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Stephani C Page
- From the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365
| | - Leonard B Collins
- the Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599-7432
| | - Nicholas J Kapolka
- the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Geoffrey J Taghon
- the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Henrik G Dohlman
- From the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365,
| |
Collapse
|
7
|
Hovsepian J, Defenouillère Q, Albanèse V, Váchová L, Garcia C, Palková Z, Léon S. Multilevel regulation of an α-arrestin by glucose depletion controls hexose transporter endocytosis. J Cell Biol 2017; 216:1811-1831. [PMID: 28468835 PMCID: PMC5461024 DOI: 10.1083/jcb.201610094] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/03/2017] [Accepted: 03/28/2017] [Indexed: 01/13/2023] Open
Abstract
Changes in nutrient availability trigger massive rearrangements of the yeast plasma membrane proteome. This work shows that the arrestin-related protein Csr2/Art8 is regulated by glucose signaling at multiple levels, allowing control of hexose transporter ubiquitylation and endocytosis upon glucose depletion. Nutrient availability controls the landscape of nutrient transporters present at the plasma membrane, notably by regulating their ubiquitylation and subsequent endocytosis. In yeast, this involves the Nedd4 ubiquitin ligase Rsp5 and arrestin-related trafficking adaptors (ARTs). ARTs are targeted by signaling pathways and warrant that cargo ubiquitylation and endocytosis appropriately respond to nutritional inputs. Here, we show that glucose deprivation regulates the ART protein Csr2/Art8 at multiple levels to trigger high-affinity glucose transporter endocytosis. Csr2 is transcriptionally induced in these conditions through the AMPK orthologue Snf1 and downstream transcriptional repressors. Upon synthesis, Csr2 becomes activated by ubiquitylation. In contrast, glucose replenishment induces CSR2 transcriptional shutdown and switches Csr2 to an inactive, deubiquitylated form. This glucose-induced deubiquitylation of Csr2 correlates with its phospho-dependent association with 14-3-3 proteins and involves protein kinase A. Thus, two glucose signaling pathways converge onto Csr2 to regulate hexose transporter endocytosis by glucose availability. These data illustrate novel mechanisms by which nutrients modulate ART activity and endocytosis.
Collapse
Affiliation(s)
- Junie Hovsepian
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Quentin Defenouillère
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Véronique Albanèse
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i. BIOCEV, 252 50 Vestec, Czech Republic.,Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Camille Garcia
- Proteomics Facility, Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Zdena Palková
- Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Sébastien Léon
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| |
Collapse
|
8
|
Van Dijck P, Brown NA, Goldman GH, Rutherford J, Xue C, Van Zeebroeck G. Nutrient Sensing at the Plasma Membrane of Fungal Cells. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0031-2016. [PMID: 28256189 PMCID: PMC11687466 DOI: 10.1128/microbiolspec.funk-0031-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 12/25/2022] Open
Abstract
To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology KU Leuven, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian Rutherford
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Chaoyang Xue
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, NJ 07103
| | - Griet Van Zeebroeck
- VIB-KU Leuven Center for Microbiology KU Leuven, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
9
|
Kaplon J, van Dam L, Peeper D. Two-way communication between the metabolic and cell cycle machineries: the molecular basis. Cell Cycle 2016; 14:2022-32. [PMID: 26038996 DOI: 10.1080/15384101.2015.1044172] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The relationship between cellular metabolism and the cell cycle machinery is by no means unidirectional. The ability of a cell to enter the cell cycle critically depends on the availability of metabolites. Conversely, the cell cycle machinery commits to regulating metabolic networks in order to support cell survival and proliferation. In this review, we will give an account of how the cell cycle machinery and metabolism are interconnected. Acquiring information on how communication takes place among metabolic signaling networks and the cell cycle controllers is crucial to increase our understanding of the deregulation thereof in disease, including cancer.
Collapse
Affiliation(s)
- Joanna Kaplon
- a Division of Molecular Oncology; The Netherlands Cancer Institute ; Amsterdam ; The Netherlands
| | | | | |
Collapse
|
10
|
Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol 2015; 50:489-502. [PMID: 26362128 DOI: 10.3109/10409238.2015.1081869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Fumihiko Okumura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Takumi Kamura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| |
Collapse
|
11
|
Abstract
Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. The role of Snf1 signaling in glucose repression and carbon metabolism in Saccharomyces cerevisae.
Collapse
Affiliation(s)
- Ömur Kayikci
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark
| |
Collapse
|
12
|
Edenberg ER, Mark KG, Toczyski DP. Ndd1 turnover by SCF(Grr1) is inhibited by the DNA damage checkpoint in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005162. [PMID: 25894965 PMCID: PMC4403921 DOI: 10.1371/journal.pgen.1005162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/20/2015] [Indexed: 12/16/2022] Open
Abstract
In Saccharomyces cerevisiae, Ndd1 is the dedicated transcriptional activator of the mitotic gene cluster, which includes thirty-three genes that encode key mitotic regulators, making Ndd1 a hub for the control of mitosis. Previous work has shown that multiple kinases, including cyclin-dependent kinase (Cdk1), phosphorylate Ndd1 to regulate its activity during the cell cycle. Previously, we showed that Ndd1 was inhibited by phosphorylation in response to DNA damage. Here, we show that Ndd1 is also subject to regulation by protein turnover during the mitotic cell cycle: Ndd1 is unstable during an unperturbed cell cycle, but is strongly stabilized in response to DNA damage. We find that Ndd1 turnover in metaphase requires Cdk1 activity and the ubiquitin ligase SCFGrr1. In response to DNA damage, Ndd1 stabilization requires the checkpoint kinases Mec1/Tel1 and Swe1, the S. cerevisiae homolog of the Wee1 kinase. In both humans and yeast, the checkpoint promotes Wee1-dependent inhibitory phosphorylation of Cdk1 following exposure to DNA damage. While this is critical for checkpoint-induced arrest in most organisms, this is not true in budding yeast, where the function of damage-induced inhibitory phosphorylation is less well understood. We propose that the DNA damage checkpoint stabilizes Ndd1 by inhibiting Cdk1, which we show is required for targeting Ndd1 for destruction. All cells must regulate cell division in response to extracellular and intracellular cues, and one of the most critical steps to regulate is the process of cell division, or mitosis. In response to DNA damage in budding yeast, cells activate a checkpoint that promotes DNA repair and arrests the cell cycle before division to give the cell time to repair the lesion. One of the key regulators of mitosis is an essential transcription factor called Ndd1. Ndd1 is known to be regulated by transcription and phosphorylation, both in unperturbed cells and following exposure to DNA damage. Here, we show that Ndd1 protein turnover is also regulated in both situations. Ndd1 is degraded quickly during an unperturbed cell cycle, but is strongly stabilized following exposure to DNA damage. We identify the machinery that targets Ndd1 for turnover and the signaling pathways required to stabilize Ndd1 in response to DNA damage. Maintaining high levels of Ndd1 after exposure to DNA damage may allow the cell to reactivate Ndd1 after the damage has been repaired to promote mitosis.
Collapse
Affiliation(s)
- Ellen R. Edenberg
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Kevin G. Mark
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - David P. Toczyski
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Roy A, Kim YB, Cho KH, Kim JH. Glucose starvation-induced turnover of the yeast glucose transporter Hxt1. Biochim Biophys Acta Gen Subj 2014; 1840:2878-85. [PMID: 24821015 DOI: 10.1016/j.bbagen.2014.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The budding yeast Saccharomyces cerevisiae possesses multiple glucose transporters with different affinities for glucose that enable it to respond to a wide range of glucose concentrations. The steady-state levels of glucose transporters are regulated in response to changes in the availability of glucose. This study investigates the glucose regulation of the low affinity, high capacity glucose transporter Hxt1. METHODS AND RESULTS Western blotting and confocal microscopy were performed to evaluate glucose regulation of the stability of Hxt1. Our results show that glucose starvation induces endocytosis and degradation of Hxt1 and that this event requires End3, a protein required for endocytosis, and the Doa4 deubiquitination enzyme. Mutational analysis of the lysine residues in the Hxt1 N-terminal domain demonstrates that the two lysine residues, K12 and K39, serve as the putative ubiquitin-acceptor sites by the Rsp5 ubiquitin ligase. We also demonstrate that inactivation of PKA (cAMP-dependent protein kinase A) is needed for Hxt1 turnover, implicating the role of the Ras/cAMP-PKA glucose signaling pathway in the stability of Hxt1. CONCLUSION AND GENERAL SIGNIFICANCE Hxt1, most useful when glucose is abundant, is internalized and degraded when glucose becomes depleted. Of note, the stability of Hxt1 is regulated by PKA, known as a positive regulator for glucose induction of HXT1 gene expression, demonstrating a dual role of PKA in regulation of Hxt1.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA
| | - Yong-Bae Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA
| | - Kyu Hong Cho
- Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA.
| |
Collapse
|
14
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
15
|
Roy A, Kim JH. Endocytosis and vacuolar degradation of the yeast cell surface glucose sensors Rgt2 and Snf3. J Biol Chem 2014; 289:7247-7256. [PMID: 24451370 DOI: 10.1074/jbc.m113.539411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sensing and signaling the presence of extracellular glucose is crucial for the yeast Saccharomyces cerevisiae because of its fermentative metabolism, characterized by high glucose flux through glycolysis. The yeast senses glucose through the cell surface glucose sensors Rgt2 and Snf3, which serve as glucose receptors that generate the signal for induction of genes involved in glucose uptake and metabolism. Rgt2 and Snf3 detect high and low glucose concentrations, respectively, perhaps because of their different affinities for glucose. Here, we provide evidence that cell surface levels of glucose sensors are regulated by ubiquitination and degradation. The glucose sensors are removed from the plasma membrane through endocytosis and targeted to the vacuole for degradation upon glucose depletion. The turnover of the glucose sensors is inhibited in endocytosis defective mutants, and the sensor proteins with a mutation at their putative ubiquitin-acceptor lysine residues are resistant to degradation. Of note, the low affinity glucose sensor Rgt2 remains stable only in high glucose grown cells, and the high affinity glucose sensor Snf3 is stable only in cells grown in low glucose. In addition, constitutively active, signaling forms of glucose sensors do not undergo endocytosis, whereas signaling defective sensors are constitutively targeted for degradation, suggesting that the stability of the glucose sensors may be associated with their ability to sense glucose. Therefore, our findings demonstrate that the amount of glucose available dictates the cell surface levels of the glucose sensors and that the regulation of glucose sensors by glucose concentration may enable yeast cells to maintain glucose sensing activity at the cell surface over a wide range of glucose concentrations.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Biochemistry and Molecular Medicine, George Washington University Medical Center, Washington, D.C. 20037
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, George Washington University Medical Center, Washington, D.C. 20037.
| |
Collapse
|
16
|
Roy A, Jouandot D, Cho KH, Kim JH. Understanding the mechanism of glucose-induced relief of Rgt1-mediated repression in yeast. FEBS Open Bio 2014; 4:105-11. [PMID: 24490134 PMCID: PMC3907687 DOI: 10.1016/j.fob.2013.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/05/2013] [Accepted: 12/24/2013] [Indexed: 11/24/2022] Open
Abstract
The yeast Rgt1 repressor inhibits transcription of the glucose transporter (HXT) genes in the absence of glucose. It does so by recruiting the general corepressor complex Ssn6-Tup1 and the HXT corepressor Mth1. In the presence of glucose, Rgt1 is phosphorylated by the cAMP-activated protein kinase A (PKA) and dissociates from the HXT promoters, resulting in expression of HXT genes. In this study, using Rgt1 chimeras that bind DNA constitutively, we investigate how glucose regulates Rgt1 function. Our results show that the DNA-bound Rgt1 constructs repress expression of the HXT1 gene in conjunction with Ssn6-Tup1 and Mth1, and that this repression is lifted when they dissociate from Ssn6-Tup1 in high glucose conditions. Mth1 mediates the interaction between the Rgt1 constructs and Ssn6-Tup1, and glucose-induced downregulation of Mth1 enables PKA to phosphorylate the Rgt1 constructs. This phosphorylation induces dissociation of Ssn6-Tup1 from the DNA-bound Rgt1 constructs, resulting in derepression of HXT gene expression. Therefore, Rgt1 removal from DNA occurs in response to glucose but is not necessary for glucose induction of HXT gene expression, suggesting that glucose regulates Rgt1 function by primarily modulating the Rgt1 interaction with Ssn6-Tup1. Rgt1 represses gene expression by recruiting Ssn6-Tup1 to its target promoters. Dissociation of Rgt1 from DNA is not required to lift Rgt1-mediated repression. Rgt1 dissociation from Ssn6-Tup1 is sufficient for derepression of its target genes.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA
| | - David Jouandot
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Dr., Hattiesburg, MS 39406, USA
| | - Kyu Hong Cho
- Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA
| |
Collapse
|
17
|
Miguel-Rojas C, Hera C. Proteomic identification of potential target proteins regulated by the SCF(F) (bp1) -mediated proteolysis pathway in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2013; 14:934-945. [PMID: 23855991 PMCID: PMC6638928 DOI: 10.1111/mpp.12060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
F-box proteins function in the recruitment of proteins for SCF ubiquitination and proteasome degradation. Here, we studied the role of Fbp1, a nonessential F-box protein of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. The Δfbp1 mutant showed a significant delay in the production of wilt symptoms on tomato plants and was impaired in invasive growth on cellophane membranes and on living plant tissue. To search for target proteins recruited by Fbp1, a combination of sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) was used to compare proteins in mycelia of the wild-type and Δfbp1 mutant. The proteomic approach identified 41 proteins differing significantly in abundance between the two strains, 17 of which were more abundant in the Δfbp1 mutant, suggesting a possible regulation by proteasome degradation. Interestingly, several of the identified proteins were related to vesicle trafficking. Microscopic analysis revealed an impairment of the Δfbp1 strain in directional growth and in the structure of the Spitzenkörper, suggesting a role of Fbp1 in hyphal orientation. Our results indicate that Fbp1 regulates protein turnover and pathogenicity in F. oxysporum.
Collapse
Affiliation(s)
- Cristina Miguel-Rojas
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, 14071, Córdoba, Spain; Campus de Excelencia Internacional Agroalimentario, ceiA3, 14071, Córdoba, Spain
| | | |
Collapse
|
18
|
dos Reis TF, Menino JF, Bom VLP, Brown NA, Colabardini AC, Savoldi M, Goldman MHS, Rodrigues F, Goldman GH. Identification of glucose transporters in Aspergillus nidulans. PLoS One 2013; 8:e81412. [PMID: 24282591 PMCID: PMC3839997 DOI: 10.1371/journal.pone.0081412] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/12/2013] [Indexed: 11/18/2022] Open
Abstract
To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and -E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.
Collapse
Affiliation(s)
- Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - João Filipe Menino
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Vinícius Leite Pedro Bom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcela Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Helena S. Goldman
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Gustavo Henrique Goldman
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE, Campinas, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Psy2 targets the PP4 family phosphatase Pph3 to dephosphorylate Mth1 and repress glucose transporter gene expression. Mol Cell Biol 2013; 34:452-63. [PMID: 24277933 DOI: 10.1128/mcb.00279-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The reversible nature of protein phosphorylation dictates that any protein kinase activity must be counteracted by protein phosphatase activity. How phosphatases target specific phosphoprotein substrates and reverse the action of kinases, however, is poorly understood in a biological context. We address this question by elucidating a novel function of the conserved PP4 family phosphatase Pph3-Psy2, the yeast counterpart of the mammalian PP4c-R3 complex, in the glucose-signaling pathway. Our studies show that Pph3-Psy2 specifically targets the glucose signal transducer protein Mth1 via direct binding of the EVH1 domain of the Psy2 regulatory subunit to the polyproline motif of Mth1. This activity is required for the timely dephosphorylation of the downstream transcriptional repressor Rgt1 upon glucose withdrawal, a critical event in the repression of HXT genes, which encode glucose transporters. Pph3-Psy2 dephosphorylates Mth1, an Rgt1 associated corepressor, but does not dephosphorylate Rgt1 at sites associated with inactivation, in vitro. We show that Pph3-Psy2 phosphatase antagonizes Mth1 phosphorylation by protein kinase A (PKA), the major protein kinase activated in response to glucose, in vitro and regulates Mth1 function via putative PKA phosphorylation sites in vivo. We conclude that the Pph3-Psy2 phosphatase modulates Mth1 activity to facilitate precise regulation of HXT gene expression by glucose.
Collapse
|
20
|
Zemla A, Thomas Y, Kedziora S, Knebel A, Wood NT, Rabut G, Kurz T. CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Nat Commun 2013; 4:1641. [PMID: 23535662 DOI: 10.1038/ncomms2628] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/20/2013] [Indexed: 01/10/2023] Open
Abstract
Cullin-RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8-dissociated-1) also promotes CRL activity, even though it only interacts with inactive ligase complexes. The molecular mechanism underlying this behaviour remains largely unclear. Here, we find that yeast SCF (Skp1-Cdc53-F-box) Cullin-RING complexes are remodelled in a CAND1-dependent manner, when cells are switched from growth in fermentable to non-fermentable carbon sources. Mechanistically, CAND1 promotes substrate adaptor release following SCF deneddylation by the COP9 signalosome (CSN). CSN- or CAND1-mutant cells fail to release substrate adaptors. This delays the formation of new complexes during SCF reactivation and results in substrate degradation defects. Our results shed light on how CAND1 regulates CRL activity and demonstrate that the cullin neddylation-deneddylation cycle is not only required to activate CRLs, but also to regulate substrate specificity through dynamic substrate adaptor exchange.
Collapse
Affiliation(s)
- Aleksandra Zemla
- Scottish Institute for Cell Signalling, Protein Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The AMP-activated protein kinase (AMPK) is a major stress sensor of mammalian cells. AMPK's homolog in the yeast Saccharomyces cerevisiae, the SNF1 protein kinase, is a central regulator of carbon metabolism that inhibits the Snf3/Rgt2-Rgt1 glucose sensing pathway and activates genes involved in respiration. We present evidence that glucose induces modification of the Snf1 catalytic subunt of SNF1 with the small ubiquitin-like modifier protein SUMO, catalyzed by the SUMO (E3) ligase Mms21. Our results suggest that SUMOylation of Snf1 inhibits its function in two ways: by interaction of SUMO attached to lysine 549 with a SUMO-interacting sequence motif located near the active site of Snf1, and by targeting Snf1 for destruction via the Slx5-Slx8 (SUMO-directed) ubiquitin ligase. These findings reveal another way SNF1 function is regulated in response to carbon source.
Collapse
|
22
|
Regulations of sugar transporters: insights from yeast. Curr Genet 2013; 59:1-31. [PMID: 23455612 DOI: 10.1007/s00294-013-0388-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 12/24/2022]
Abstract
Transport across the plasma membrane is the first step at which nutrient supply is tightly regulated in response to intracellular needs and often also rapidly changing external environment. In this review, I describe primarily our current understanding of multiple interconnected glucose-sensing systems and signal-transduction pathways that ensure fast and optimum expression of genes encoding hexose transporters in three yeast species, Saccharomyces cerevisiae, Kluyveromyces lactis and Candida albicans. In addition, an overview of GAL- and MAL-specific regulatory networks, controlling galactose and maltose utilization, is provided. Finally, pathways generating signals inducing posttranslational degradation of sugar transporters will be highlighted.
Collapse
|
23
|
Abstract
Availability of key nutrients, such as sugars, amino acids, and nitrogen compounds, dictates the developmental programs and the growth rates of yeast cells. A number of overlapping signaling networks--those centered on Ras/protein kinase A, AMP-activated kinase, and target of rapamycin complex I, for instance--inform cells on nutrient availability and influence the cells' transcriptional, translational, posttranslational, and metabolic profiles as well as their developmental decisions. Here I review our current understanding of the structures of the networks responsible for assessing the quantity and quality of carbon and nitrogen sources. I review how these signaling pathways impinge on transcriptional, metabolic, and developmental programs to optimize survival of cells under different environmental conditions. I highlight the profound knowledge we have gained on the structure of these signaling networks but also emphasize the limits of our current understanding of the dynamics of these signaling networks. Moreover, the conservation of these pathways has allowed us to extrapolate our finding with yeast to address issues of lifespan, cancer metabolism, and growth control in more complex organisms.
Collapse
Affiliation(s)
- James R Broach
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
24
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
25
|
Benanti JA. Coordination of cell growth and division by the ubiquitin-proteasome system. Semin Cell Dev Biol 2012; 23:492-8. [PMID: 22542766 DOI: 10.1016/j.semcdb.2012.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/13/2012] [Indexed: 01/25/2023]
Abstract
The coupling of cellular growth and division is crucial for a cell to make an accurate copy of itself. Regulated protein degradation by the ubiquitin-proteasome system (UPS) plays an important role in the coordination of these two processes. Many ubiquitin ligases, in particular the Skp1-Cullin-F-box (SCF) family and the Anaphase-Promoting Complex (APC), couple growth and division by targeting cell cycle and metabolic regulators for degradation. However, many regulatory proteins are targeted by multiple ubiquitin ligases. As a result, we are only just beginning to understand the complexities of the proteolytic regulatory network that connects cell growth and the cell cycle.
Collapse
Affiliation(s)
- Jennifer A Benanti
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
26
|
Jouandot D, Roy A, Kim JH. Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1. J Cell Biochem 2012; 112:3268-75. [PMID: 21748783 DOI: 10.1002/jcb.23253] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The yeast Rgt1 repressor is a bifunctional protein that acts as a transcriptional repressor and activator. Under glucose-limited conditions, Rgt1 induces transcriptional repression by forming a repressive complex with its corepressors Mth1 and Std1. Here, we show that Rgt1 is converted from a transcriptional repressor into an activator under high glucose conditions and this occurs through two independent but consecutive events mediated by two glucose signaling pathways: (1) disruption of the repressive complex by the Rgt2/Snf3 pathway; (2) phosphorylation of Rgt1 by the cAMP-dependent protein kinase (cAMP-PKA) pathway. Rgt1 is phosphorylated by PKA at four serine residues within its amino-terminal region, but this does not occur until the repressive complex is disrupted. While phosphorylation of any one of these sites is sufficient to enable Rgt1 to induce transcriptional activation, phosphorylation of all the sites results in the release of Rgt1 from DNA. We discuss how the bifunctional properties of Rgt1 are regulated through differential phosphorylation.
Collapse
Affiliation(s)
- David Jouandot
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Dr., Hattiesburg, Mississippi 39406, USA
| | | | | |
Collapse
|
27
|
von Zeska Kress MR, Harting R, Bayram Ö, Christmann M, Irmer H, Valerius O, Schinke J, Goldman GH, Braus GH. The COP9 signalosome counteracts the accumulation of cullin SCF ubiquitin E3 RING ligases during fungal development. Mol Microbiol 2012; 83:1162-77. [PMID: 22329854 DOI: 10.1111/j.1365-2958.2012.07999.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defects in the COP9 signalosome (CSN) impair multicellular development, including embryonic plant or animal death or a block in sexual development of the fungus Aspergillus nidulans. CSN deneddylates cullin-RING ligases (CRLs), which are activated by covalent linkage to ubiquitin-like NEDD8. Deneddylation allows CRL disassembly for subsequent reassembly. An attractive hypothesis is a consecutive order of CRLs for development, which demands repeated cycles of neddylation and deneddylation for reassembling CRLs. Interruption of these cycles could explain developmental blocks caused by csn mutations. This predicts an accumulation of neddylated CRLs exhibiting developmental functions when CSN is dysfunctional. We tested this hypothesis in A. nidulans, which tolerates reduced levels of neddylation for growth. We show that only genes for CRL subunits or neddylation are essential, whereas CSN is primarily required for development. We used functional tagged NEDD8, recruiting all three fungal cullins. Cullins are associated with the CSN1/CsnA subunit when deneddylation is defective. Two CRLs were identified which are specifically involved in differentiation and accumulate during the developmental block. This suggests that an active CSN complex is required to counteract the accumulation of specific CRLs during development.
Collapse
Affiliation(s)
- Marcia Regina von Zeska Kress
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lavoie M, Ge D, Abou Elela S. Regulation of conditional gene expression by coupled transcription repression and RNA degradation. Nucleic Acids Res 2011; 40:871-83. [PMID: 21933814 PMCID: PMC3258148 DOI: 10.1093/nar/gkr759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gene expression is determined by a combination of transcriptional and post-transcriptional regulatory events that were thought to occur independently. This report demonstrates that the genes associated with the Snf3p–Rgt2p glucose-sensing pathway are regulated by interconnected transcription repression and RNA degradation. Deletion of the dsRNA-specific ribonuclease III Rnt1p increased the expression of Snf3p–Rgt2p-associated transcription factors in vivo and the recombinant enzyme degraded their messenger RNA in vitro. Surprisingly, Rnt1ps effect on gene expression in vivo was both RNA and promoter dependent, thus linking RNA degradation to transcription. Strikingly, deletion of RNT1-induced promoter-specific transcription of the glucose sensing genes even in the absence of RNA cleavage signals. Together, the results presented here support a model in which co-transcriptional RNA degradation increases the efficiency of gene repression, thereby allowing an effective cellular response to the continuous changes in nutrient concentrations.
Collapse
Affiliation(s)
- Mathieu Lavoie
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | |
Collapse
|
29
|
The casein kinase I protein Cck1 regulates multiple signaling pathways and is essential for cell integrity and fungal virulence in Cryptococcus neoformans. EUKARYOTIC CELL 2011; 10:1455-64. [PMID: 21926330 DOI: 10.1128/ec.05207-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Casein kinases regulate a wide range of cellular functions in eukaryotes, including phosphorylation of proteins that are substrates for degradation via the ubiquitin-proteasome system (UPS). Our previous study demonstrated that Fbp1, a component of the SCF(FBP1) E3 ligase complex, was essential for Cryptococcus virulence. Because the Saccharomyces cerevisiae homolog of Fbp1, Grr1, requires casein kinase I (Yck1 and Yck2) to phosphorylate its substrates, we investigated the function of casein kinase I in Cryptococcus neoformans. In this report, we identified a C. neoformans casein kinase I protein homolog, Cck1. Similar to Fbp1, the expression of Cck1 is negatively regulated by glucose and during mating. cck1 null mutants showed significant virulence attenuation in a murine systemic infection model, but Cck1 was dispensable for the development of classical virulence factors (capsule, melanin, and growth at 37°C). cck1 mutants were hypersensitive to SDS treatment, indicating that Cck1 is required for cell integrity. The functional overlap between Cck1 and Fbp1 suggests that Cck1 may be required for the phosphorylation of Fbp1 substrates. Interestingly, the cck1 mutant also showed increased sensitivity to osmotic stress and oxidative stress, suggesting that Cck1 regulates both cell integrity and the cellular stress response. Our results show that Cck1 regulates the phosphorylation of both Mpk1 and Hog1 mitogen-activated protein kinases (MAPKs), demonstrating that Cck1 regulates cell integrity via the Mpk1 pathway and regulates cell adaptation to stresses via the Hog1 pathway. Overall, our study revealed that Cck1 plays important roles in regulating multiple signaling pathways and is required for fungal pathogenicity.
Collapse
|
30
|
Omnus DJ, Pfirrmann T, Andréasson C, Ljungdahl PO. A phosphodegron controls nutrient-induced proteasomal activation of the signaling protease Ssy5. Mol Biol Cell 2011; 22:2754-65. [PMID: 21653827 PMCID: PMC3145550 DOI: 10.1091/mbc.e11-04-0282] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The Ssy1-Ptr3-Ssy5 (SPS) sensor of extracellular amino acids coordinates the sequential activity of general signaling factors and the 26S proteasome in a novel proteolytic activation cascade to activate the intracellular signaling protease Ssy5, which endoproteolytically activates two latent transcription factors. Regulated proteolysis serves as a mechanism to control cellular processes. The SPS (Ssy1-Ptr3-Ssy5) sensor in yeast responds to extracellular amino acids by endoproteolytically activating transcription factors Stp1 and Stp2 (Stp1/2). The processing endoprotease Ssy5 is regulated via proteasomal degradation of its noncovalently associated N-terminal prodomain. We find that degradation of the prodomain requires a conserved phosphodegron comprising phosphoacceptor sites and ubiquitin-accepting lysine residues. Upon amino acid induction, the phosphodegron is modified in a series of linked events by a set of general regulatory factors involved in diverse signaling pathways. First, an amino acid–induced conformational change triggers phosphodegron phosphorylation by the constitutively active plasma membrane–localized casein kinase I (Yck1/2). Next the prodomain becomes a substrate for polyubiquitylation by the Skp1/Cullin/Grr1 E3 ubiquitin ligase complex (SCFGrr1). Finally, the modified prodomain is concomitantly degraded by the 26S proteasome. These integrated events are requisite for unfettering the Ssy5 endoprotease, and thus Stp1/2 processing. The Ssy5 phosphoacceptor motif resembles the Yck1/2- and Grr1-dependent degrons of regulators in the Snf3/Rgt2 glucose-sensing pathway. Our work defines a novel proteolytic activation cascade that regulates an intracellular signaling protease and illustrates how general signaling components are recruited to distinct pathways that achieve conditional and specific signaling outputs.
Collapse
Affiliation(s)
- Deike J Omnus
- Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
31
|
Roth AF, Papanayotou I, Davis NG. The yeast kinase Yck2 has a tripartite palmitoylation signal. Mol Biol Cell 2011; 22:2702-15. [PMID: 21653825 PMCID: PMC3145546 DOI: 10.1091/mbc.e11-02-0115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Yck2, like many palmitoylation substrate proteins, lacks hydrophobicity for targeting to membranes and thus to its Golgi-localized palmitoyl-transferase. Perhaps accommodating this targeting need, the Yck2 palmitoylation signal is found to be large and complex, consisting of domains local to, and distant from, the modification site cysteines. The yeast kinase Yck2 tethers to the cytoplasmic surface of the plasma membrane through dual palmitoylation of its C-terminal Cys-Cys dipeptide, mediated by the Golgi-localized palmitoyl-transferase Akr1. Here, the Yck2 palmitoylation signal is found to consist of three parts: 1) a 10-residue-long, conserved C-terminal peptide (CCTP) that includes the C-terminal Cys-Cys dipeptide; 2) the kinase catalytic domain (KD); and mapping between these two elements; and 3) a 176-residue-long, poorly conserved, glutamine-rich sequence. The CCTP, which contains the C-terminal cysteines as well as an important Phe-Phe dipeptide, likely serves as an Akr1 recognition element, because CCTP mutations disrupt palmitoylation within a purified in vitro palmitoylation system. The KD contribution appears to be complex with roles for both KD activity (e.g., Yck2-mediated phosphorylation) and structure (e.g., Akr1 recognition elements). KD and CCTP mutations are strongly synergistic, suggesting that, like the CCTP, the KD may also participate at the Yck2-Akr1 recognition step. The long, glutamine-rich domain, which is located between the KD and CCTP, is predicted to be intrinsically disordered and may function as a flexible, interdomain linker, allowing a coupled interaction of the KD and CCTP with Akr1. Multipart palmitoylation signals may prove to be a general feature of this large class of palmitoylation substrates. These soluble proteins have no clear means of accessing membranes and thus may require active capture out of the cytoplasm for palmitoylation by their membrane-localized transferases.
Collapse
Affiliation(s)
- Amy F Roth
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
32
|
The F-Box protein Fbp1 regulates sexual reproduction and virulence in Cryptococcus neoformans. EUKARYOTIC CELL 2011; 10:791-802. [PMID: 21478432 DOI: 10.1128/ec.00004-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cryptococcus neoformans is the leading cause of fungal meningitis in immunocomprised populations. Although extensive studies have been conducted on signal transduction pathways important for fungal sexual reproduction and virulence, how fungal virulence is regulated during infection is still not understood. In this study, we identified the F-box protein Fbp1, which contains a putative F-box domain and 12 leucine-rich repeats (LRR). Although fbp1 mutants showed normal growth and produced normal major virulence factors, such as melanin and capsule, Fbp1 was found to be essential for fungal virulence, as fbp1 mutants were avirulent in a murine systemic-infection model. Fbp1 is also important for fungal sexual reproduction. Basidiospore production was blocked in bilateral mating between fbp1 mutants, even though normal dikaryotic hyphae were observed during mating. In vitro assays of stress responses revealed that fbp1 mutants are hypersensitive to SDS, but not calcofluor white (CFW) or Congo red, indicating that Fbp1 may regulate cell membrane integrity. Fbp1 physically interacts with Skp1 homologues in both Saccharomyces cerevisiae and C. neoformans via its F-box domain, suggesting it may function as part of an SCF (Skp1, Cullins, F-box proteins) E3 ligase. Overall, our study revealed that the F-box protein Fbp1 is essential for fungal sporulation and virulence in C. neoformans, which likely represents a conserved novel virulence control mechanism that involves the SCF E3 ubiquitin ligase-mediated proteolysis pathway.
Collapse
|
33
|
Abdel-Sater F, Jean C, Merhi A, Vissers S, André B. Amino acid signaling in yeast: activation of Ssy5 protease is associated with its phosphorylation-induced ubiquitylation. J Biol Chem 2011; 286:12006-15. [PMID: 21310956 DOI: 10.1074/jbc.m110.200592] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Ssy5 protein is a serine-type endoprotease autoprocessed into a catalytic domain and a large inhibitory prodomain. When external amino acids are detected by the plasma membrane Ssy1 sensor, Ssy5 is activated and catalyzes endoproteolytic processing of the Stp1 and Stp2 transcription factors. These Stp proteins then migrate into the nucleus and activate transcription of several amino acid permease genes. Previous studies showed that Ssy5 activation involves the SCFGrr1 ubiquitin ligase complex, but the molecular mechanisms of this activation remain unclear. We here report that the prodomain of Ssy5 is phosphorylated in a casein kinase I-dependent manner in response to amino acid detection. We describe a mutant form of Ssy5 whose prodomain is not phosphorylated and show that it is nonfunctional. Amino acid detection also induces ubiquitylation of the Ssy5 prodomain. This prodomain ubiquitylation requires its prior phosphorylation and the SCFGrr1 complex. When this ubiquitylation is defective, Ssy5 accumulates as a phosphorylated form but remains inactive. A constitutive Ssy5 form in which the prodomain fails to inhibit the catalytic domain does not need to be phosphorylated or ubiquitylated to be active. Finally, we provide evidence that ubiquitylation of the inhibitory prodomain rather than its subsequent degradation is the key step in the Ssy5 activation mechanism. We propose that the Ssy5 protease is activated by phosphorylation-induced ubiquitylation, the effect of which is relief from inhibition by its prodomain.
Collapse
Affiliation(s)
- Fadi Abdel-Sater
- Laboratoire de Physiologie Moléculaire de la Cellule CP300, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 11 Rue des Pr. Jeener et Brachet, 6041 Gosselies, Belgium
| | | | | | | | | |
Collapse
|
34
|
Papanayotou I, Sun B, Roth AF, Davis NG. Protein aggregation induced during glass bead lysis of yeast. Yeast 2011; 27:801-16. [PMID: 20641011 DOI: 10.1002/yea.1771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Yeast cell lysates produced by mechanical glass bead disruption are widely used in a variety of applications, including for the analysis of native function, e.g. protein-protein interaction, enzyme assays and membrane fractionations. Below, we report a striking case of protein denaturation and aggregation that is induced by this lysis protocol. Most of this analysis focuses on the type 1 casein kinase Yck2, which normally tethers to the plasma membrane through C-terminal palmitoylation. Surprisingly, when cells are subjected to glass bead disruption, non-palmitoylated, cytosolic forms of the kinase denature and aggregate, while membrane-associated forms, whether attached through their native palmitoyl tethers or through a variety of artificial membrane-tethering sequences, are wholly protected from denaturation and aggregation. A wider look at the yeast proteome finds that, while the majority of proteins resist glass bead-induced aggregation, a significant subset does, in fact, succumb to such denaturation. Thus, yeast researchers should be aware of this potential artifact when embarking on biochemical analyses that employ glass bead lysates to look at native protein function. Finally, we demonstrate an experimental utility for glass bead-induced aggregation, using its fine discrimination of membrane-associated from non-associated Yck2 forms to discern fractional palmitoylation states of Yck2 mutants that are partially defective for palmitoylation.
Collapse
Affiliation(s)
- Irene Papanayotou
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
35
|
Tumusiime S, Zhang C, Overstreet MS, Liu Z. Differential regulation of transcription factors Stp1 and Stp2 in the Ssy1-Ptr3-Ssy5 amino acid sensing pathway. J Biol Chem 2010; 286:4620-31. [PMID: 21127045 DOI: 10.1074/jbc.m110.195313] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stp1 and Stp2 are two homologous transcription factors activated in response to extracellular amino acid stimuli. Here we show that both ubiquitin-dependent degradation of Stp1 and Stp2 and their intracellular localization are differentially regulated. We have found that the E2 ubiquitin-conjugating enzyme Cdc34 is required for degradation of both full-length and processed Stp1, but not Stp2. We have also found that Grr1, the F-box component of the SCF(Grr1) E3 ubiquitin ligase, is the primary factor in degradation of full-length Stp1, whereas both Grr1 and Cdc4 are required for degradation of processed Stp1. Our localization studies showed that full-length Stp1 is localized both in the cytoplasm and at the cell periphery, whereas full-length Stp2 is localized only diffusely in the cytoplasm. We identified two nuclear localization signals of Stp1 and found that the N-terminal domain of Stp1 is required for localization of full-length Stp1 to the cell periphery. We also found that Stp2 is the primary factor involved in basal activation of target gene expression. Our results indicate that the functions of two seemingly redundant transcription factors can be separated by differential degradation and distinct cellular localization.
Collapse
Affiliation(s)
- Sylvester Tumusiime
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | | | | | | |
Collapse
|
36
|
Karhumaa K, Wu B, Kielland-Brandt MC. Conditions with high intracellular glucose inhibit sensing through glucose sensor Snf3 in Saccharomyces cerevisiae. J Cell Biochem 2010; 110:920-5. [PMID: 20564191 DOI: 10.1002/jcb.22605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene expression in micro-organisms is regulated according to extracellular conditions and nutrient concentrations. In Saccharomyces cerevisiae, non-transporting sensors with high sequence similarity to transporters, that is, transporter-like sensors, have been identified for sugars as well as for amino acids. An alternating-access model of the function of transporter-like sensors has been previously suggested based on amino acid sensing, where intracellular ligand inhibits binding of extracellular ligand. Here we studied the effect of intracellular glucose on sensing of extracellular glucose through the transporter-like sensor Snf3 in yeast. Sensing through Snf3 was determined by measuring degradation of Mth1 protein. High intracellular glucose concentrations were achieved by using yeast strains lacking monohexose transporters which were grown on maltose. The apparent affinity of extracellular glucose to Snf3 was measured for cells grown in non-fermentative medium or on maltose. The apparent affinity for glucose was lowest when the intracellular glucose concentration was high. The results conform to an alternating-access model for transporter-like sensors.
Collapse
|
37
|
Busti S, Coccetti P, Alberghina L, Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. SENSORS 2010; 10:6195-240. [PMID: 22219709 PMCID: PMC3247754 DOI: 10.3390/s100606195] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/05/2023]
Abstract
Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.
Collapse
Affiliation(s)
- Stefano Busti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy.
| | | | | | | |
Collapse
|
38
|
The prodomain of Ssy5 protease controls receptor-activated proteolysis of transcription factor Stp1. Mol Cell Biol 2010; 30:3299-309. [PMID: 20421414 DOI: 10.1128/mcb.00323-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular amino acids induce the yeast SPS sensor to endoproteolytically cleave transcription factors Stp1 and Stp2 in a process termed receptor-activated proteolysis (RAP). Ssy5, the activating endoprotease, is synthesized with a large N-terminal prodomain and a C-terminal chymotrypsin-like catalytic (Cat) domain. During biogenesis, Ssy5 cleaves itself and the prodomain and Cat domain remain associated, forming an inactive primed protease. Here we show that the prodomain is a potent inhibitor of Cat domain activity and that its inactivation is a requisite for RAP. Accordingly, amino acid-induced signals trigger proteasome-dependent degradation of the prodomain. A mutation that stabilizes the prodomain prevents Stp1 processing, whereas destabilizing mutations lead to constitutive RAP-independent Stp1 processing. We fused a conditional degron to the prodomain to synthetically reprogram the amino acid-responsive SPS signaling pathway, placing it under temperature control. Our results define a regulatory mechanism that is novel for eukaryotic proteases functioning within cells.
Collapse
|
39
|
Pasula S, Chakraborty S, Choi JH, Kim JH. Role of casein kinase 1 in the glucose sensor-mediated signaling pathway in yeast. BMC Cell Biol 2010; 11:17. [PMID: 20205947 PMCID: PMC2846877 DOI: 10.1186/1471-2121-11-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/07/2010] [Indexed: 02/06/2023] Open
Abstract
Background In yeast, glucose-dependent degradation of the Mth1 protein, a corepressor of the glucose transporter gene (HXT) repressor Rgt1, is a crucial event enabling expression of several HXT. This event occurs through a signaling pathway that involves the Rgt2 and Snf3 glucose sensors and yeast casein kinase 1 and 2 (Yck1/2). In this study, we examined whether the glucose sensors directly couple with Yck1/2 to convert glucose binding into an intracellular signal that leads to the degradation of Mth1. Results High levels of glucose induce degradation of Mth1 through the Rgt2/Snf3 glucose signaling pathway. Fluorescence microscopy analysis indicates that, under glucose-limited conditions, GFP-Mth1 is localized in the nucleus and does not shuttle between the nucleus and cytoplasm. If glucose-induced degradation is prevented due to disruption of the Rgt2/Snf3 pathway, GFP-Mth1 accumulates in the nucleus. When engineered to be localized to the cytoplasm, GFP-Mth1 is degraded regardless of the presence of glucose or the glucose sensors. In addition, removal of Grr1 from the nucleus prevents degradation of GFP-Mth1. These results suggest that glucose-induced, glucose sensor-dependent Mth1 degradation occurs in the nucleus. We also show that, like Yck2, Yck1 is localized to the plasma membrane via C-terminal palmitoylation mediated by the palmitoyl transferase Akr1. However, glucose-dependent degradation of Mth1 is not impaired in the absence of Akr1, suggesting that a direct interaction between the glucose sensors and Yck1/2 is not required for Mth1 degradation. Conclusion Glucose-induced, glucose sensor-regulated degradation of Mth1 occurs in the nucleus and does not require direct interaction of the glucose sensors with Yck1/2.
Collapse
Affiliation(s)
- Satish Pasula
- The Mississippi Functional Genomics Network, Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | | | | |
Collapse
|
40
|
Npr2, yeast homolog of the human tumor suppressor NPRL2, is a target of Grr1 required for adaptation to growth on diverse nitrogen sources. EUKARYOTIC CELL 2010; 9:592-601. [PMID: 20154027 DOI: 10.1128/ec.00192-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Npr2, a putative "nitrogen permease regulator" and homolog of the human tumor suppressor NPRL2, was found to interact with Grr1, the F-box component of the SCF(Grr1) (Skp1-cullin-F-box protein complex containing Grr1) E3 ubiquitin ligase, by mass spectrometry-based multidimensional protein identification technology. Npr2 has two PEST sequences and has been previously identified among ubiquitinated proteins. Like other Grr1 targets, Npr2 is a phosphoprotein. Phosphorylated Npr2 accumulates in grr1Delta mutants, and Npr2 is stabilized in cells with inactivated proteasomes. Phosphorylation and instability depend upon the type I casein kinases (CK1) Yck1 and Yck2. Overexpression of Npr2 is detrimental to cells and is lethal in grr1Delta mutants. Npr2 is required for robust growth in defined medium containing ammonium or urea as a nitrogen source but not for growth on rich medium. npr2Delta mutants also fail to efficiently complete meiosis. Together, these data indicate that Npr2 is a phosphorylation-dependent target of the SCF(Grr1) E3 ubiquitin ligase that plays a role in cell growth on some nitrogen sources.
Collapse
|
41
|
Sabina J, Johnston M. Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in Saccharomyces cerevisiae. J Biol Chem 2009; 284:29635-43. [PMID: 19720826 DOI: 10.1074/jbc.m109.032102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Efficient uptake of glucose is especially critical to Saccharomyces cerevisiae because its preference to ferment this carbon source demands high flux through glycolysis. Glucose induces expression of HXT genes encoding hexose transporters through a signal generated by the Snf3 and Rgt2 glucose sensors that leads to depletion of the transcriptional regulators Mth1 and Std1. These paralogous proteins bind to Rgt1 and enable it to repress expression of HXT genes. Here we show that Mth1 and Std1 can substitute for one another and provide nearly normal regulation of their targets. However, their roles in the glucose signal transduction cascade have diverged significantly. Mth1 is the prominent effector of Rgt1 function because it is the more abundant of the two paralogs under conditions in which both are active (in the absence of glucose). Moreover, the cellular level of Mth1 is quite sensitive to the amount of available glucose. The abundance of Std1 protein, on the other hand, remains essentially constant over a similar range of glucose concentrations. The signal generated by low levels of glucose is amplified by rapid depletion of Mth1; the velocity of this depletion is dependent on both its rate of degradation and swift repression of MTH1 transcription by the Snf1-Mig1 glucose repression pathway. Quantitation of the contributions of Mth1 and Std1 to regulation of HXT expression reveals the unique roles played by each paralog in integrating nutrient availability with metabolic capacity: Mth1 is the primary regulator; Std1 serves to buffer the response to glucose.
Collapse
Affiliation(s)
- Jeffrey Sabina
- Department of Genetics, Washington University in Saint Louis, St. Louis, Missouri 63108, USA
| | | |
Collapse
|
42
|
Glucose sensing network in Candida albicans: a sweet spot for fungal morphogenesis. EUKARYOTIC CELL 2009; 8:1314-20. [PMID: 19617394 DOI: 10.1128/ec.00138-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Poulsen P, Gaber RF, Kielland-Brandt MC. Hyper- and hyporesponsive mutant forms of theSaccharomyces cerevisiaeSsy1 amino acid sensor. Mol Membr Biol 2009; 25:164-76. [DOI: 10.1080/09687680701771917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Peter Poulsen
- Carlsberg Laboratory, Copenhagen Valby, Denmark
- Department of Molecular Biology, University of Copenhagen, Copenhagen, Denmark
| | - Richard F. Gaber
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois, USA
| | | |
Collapse
|
44
|
Jourdain I, Spielewoy N, Thompson J, Dhut S, Yates JR, Toda T. Identification of a conserved F-box protein 6 interactor essential for endocytosis and cytokinesis in fission yeast. Biochem J 2009; 420:169-77. [PMID: 19243310 PMCID: PMC2950653 DOI: 10.1042/bj20081659] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The F-box domain is a degenerated motif consisting of approximately 40 amino acid residues that specifically bind Skp1, a core component of the SCF (Skp1-Cdc53/Cullin 1-F-box protein) ubiquitin ligase. Recent work, mainly performed in budding yeast, indicates that certain F-box proteins form non-SCF complexes together with Skp1 in the absence of cullins and play various roles in cell cycle and signalling pathways. However, it is not established whether these non-SCF complexes are unique to budding yeast or common in other eukaryotes. In the present paper, using TAP (tandem affinity purification) coupled to MudPIT (Multidimensional Protein Identification Technology) analysis, we have identified a novel conserved protein, Sip1, in fission yeast, as an interacting partner of an essential F-box protein Pof6. Sip1 is a large HEAT (huntingtin, elongation factor 3, the PR65/A subunit of protein phosphatase 2A and the lipid kinase Tor)-repeats containing protein (217 kDa) and forms a complex with Pof6 and Skp1. This complex does not contain cullins, indicating that it is a novel non-SCF complex. Like Pof6 and Skp1, Sip1 is essential for cell viability and temperature-sensitive sip1 mutants display cell division arrest as binucleate cells with septa. Sip1 localizes to the nucleus and dynamic cytoplasmic dots, which are shown in the present study to be endocytic vesicles. Consistent with this, sip1 mutants are defective in endocytosis. Furthermore, towards the end of cytokinesis, constriction of the actomyosin ring and dissociation of type II myosin and septum materials are substantially delayed in the absence of functional Sip1. These results indicate that the conserved Sip1 protein comprises a novel non-SCF F-box complex that plays an essential role in endocytosis, cytokinesis and cell division.
Collapse
Affiliation(s)
- Isabelle Jourdain
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| | - Nathalie Spielewoy
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| | - James Thompson
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Susheela Dhut
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
45
|
Yurina NP, Odintsova MS. Mitochondrial signaling: Retrograde regulation in yeast Saccharomyces cerevisiae. RUSS J GENET+ 2009. [DOI: 10.1134/s102279540811001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Abstract
Yeast cells rely on the SPS-sensing pathway to respond to extracellular amino acids. This nutrient-induced signal transduction pathway regulates gene expression by controlling the activity of two redundant transcription factors: Stp1 and Stp2. These factors are synthesized as latent cytoplasmic proteins with N-terminal regulatory domains. Upon induction by extracellular amino acids, the plasma membrane SPS-sensor catalyses an endoproteolytic processing event that cleaves away the regulatory N-terminal domains. The shorter forms of Stp1 and Stp2 efficiently target to the nucleus, where they bind and activate transcription of selected genes encoding a subset of amino acid permeases that function at the plasma membrane to catalyse the transport of amino acids into cells. In the present article, the current understanding of events in the SPS-sensing pathway that enable external amino acids to induce their own uptake are reviewed with a focus on two key issues: (i) the maintenance of Stp1 and Stp2 latency in the absence of amino acid induction; and (ii) the amino-acid-induced SPS-sensor-mediated proteolytic cleavage of Stp1 and Stp2.
Collapse
|
47
|
Abstract
Yeast cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profile and developmental program to adapt readily and appropriately to changing nutritional states. We present our current understanding of the nutritional sensing networks yeast cells rely on for perceiving the nutritional landscape, with particular emphasis on those sensitive to carbon and nitrogen sources. We describe the means by which these networks inform the cell's decision among the different developmental programs available to them-growth, quiescence, filamentous development, or meiosis/sporulation. We conclude that the highly interconnected signaling networks provide the cell with a highly nuanced view of the environment and that the cell can interpret that information through a sophisticated calculus to achieve optimum responses to any nutritional condition.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
48
|
Xia Z, Turner GC, Hwang CS, Byrd C, Varshavsky A. Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter. J Biol Chem 2008; 283:28958-68. [PMID: 18708352 DOI: 10.1074/jbc.m803980200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple pathways link expression of PTR2, the transporter of di- and tripeptides in the yeast Saccharomyces cerevisiae, to the availability and quality of nitrogen sources. Previous work has shown that induction of PTR2 by extracellular amino acids requires, in particular, SSY1 and PTR3. SSY1 is structurally similar to amino acid transporters but functions as a sensor of amino acids. PTR3 acts downstream of SSY1. Expression of the PTR2 peptide transporter is induced not only by amino acids but also by dipeptides with destabilizing N-terminal residues. These dipeptides bind to UBR1, the ubiquitin ligase of the N-end rule pathway, and allosterically accelerate the UBR1-dependent degradation of CUP9, a transcriptional repressor of PTR2. UBR1 targets CUP9 through its internal degron. Here we demonstrate that the repression of PTR2 by CUP9 requires TUP1 and SSN6, the corepressor proteins that form a complex with CUP9. We also show that the induction of PTR2 by amino acids is mediated by the UBR1-dependent acceleration of CUP9 degradation that requires both SSY1 and PTR3. The acceleration of CUP9 degradation is shown to be attained without increasing the activity of the N-end rule pathway toward substrates with destabilizing N-terminal residues. We also found that GAP1, a general amino acid transporter, strongly contributes to the induction of PTR2 by Trp. Although several aspects of this complex circuit remain to be understood, our findings establish new functional links between the amino acids-sensing SPS system, the CUP9-TUP1-SSN6 repressor complex, the PTR2 peptide transporter, and the UBR1-dependent N-end rule pathway.
Collapse
Affiliation(s)
- Zanxian Xia
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
In the presence of glucose, yeast undergoes an important remodelling of its metabolism. There are changes in the concentration of intracellular metabolites and in the stability of proteins and mRNAs; modifications occur in the activity of enzymes as well as in the rate of transcription of a large number of genes, some of the genes being induced while others are repressed. Diverse combinations of input signals are required for glucose regulation of gene expression and of other cellular processes. This review focuses on the early elements in glucose signalling and discusses their relevance for the regulation of specific processes. Glucose sensing involves the plasma membrane proteins Snf3, Rgt2 and Gpr1 and the glucose-phosphorylating enzyme Hxk2, as well as other regulatory elements whose functions are still incompletely understood. The similarities and differences in the way in which yeasts and mammalian cells respond to glucose are also examined. It is shown that in Saccharomyces cerevisiae, sensing systems for other nutrients share some of the characteristics of the glucose-sensing pathways.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
50
|
Gray M, Piccirillo S, Purnapatre K, Schneider BL, Honigberg SM. Glucose induction pathway regulates meiosis in Saccharomyces cerevisiae in part by controlling turnover of Ime2p meiotic kinase. FEMS Yeast Res 2008; 8:676-84. [PMID: 18616605 PMCID: PMC2810309 DOI: 10.1111/j.1567-1364.2008.00406.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Several components of the glucose induction pathway, namely the Snf3p glucose sensor and the Rgt1p and Mth1p transcription factors, were shown to be involved in inhibition of sporulation by glucose. The glucose sensors had only a minor role in regulating transcript levels of the two key regulators of meiotic initiation, the Ime1p transcription factor and the Ime2p kinase, but a major role in regulating Ime2p stability. Interestingly, Rgt1p was involved in glucose inhibition of spore formation but not inhibition of Ime2p stability. Thus, the glucose induction pathway may regulate meiosis through both RGT1-dependent and RGT1-independent pathways.
Collapse
Affiliation(s)
- Misa Gray
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah Piccirillo
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Kedar Purnapatre
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Brandt L. Schneider
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Saul M. Honigberg
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|