1
|
Abstract
Gene transcription does not only require writers of active histone modifications; on-site opposition by erasers is essential for many genes. Here, we propose the concept of dynamic opposition of histone modifications to explain this conundrum. We highlight the requirement of HDACs for acetylation balance at superenhancers, and the requirement of KDM5A for H4K3me3 recycling at highly active gene promoters. We propose that histone post-translational modifications regulate charge balance for biomolecular condensate formation and nucleosome turnover and form a short-term memory that informs lock-and-step checkpoints for chromatin engagement by RNA polymerase II.
Collapse
Affiliation(s)
- Ana María Garzón-Porras
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Emma Chory
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Berkley E. Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Ribeiro JR, Lovasco LA, Vanderhyden BC, Freiman RN. Targeting TBP-Associated Factors in Ovarian Cancer. Front Oncol 2014; 4:45. [PMID: 24653979 PMCID: PMC3949196 DOI: 10.3389/fonc.2014.00045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022] Open
Abstract
As ovarian tumors progress, they undergo a process of dedifferentiation, allowing adaptive changes in growth and morphology that promote metastasis and chemoresistance. Herein, we outline a hypothesis that TATA-box binding protein associated factors (TAFs), which compose the RNA Polymerase II initiation factor, TFIID, contribute to regulation of dedifferentiation states in ovarian cancer. Numerous studies demonstrate that TAFs regulate differentiation and proliferation states; their expression is typically high in pluripotent cells and reduced upon differentiation. Strikingly, TAF2 exhibits copy number increases or mRNA overexpression in 73% of high-grade serous ovarian cancers (HGSC). At the biochemical level, TAF2 directs TFIID to TATA-less promoters by contact with an Initiator element, which may lead to the deregulation of the transcriptional output of these tumor cells. TAF4, which is altered in 66% of HGSC, is crucial for the stability of the TFIID complex and helps drive dedifferentiation of mouse embryonic fibroblasts to induced pluripotent stem cells. Its ovary-enriched paralog, TAF4B, is altered in 26% of HGSC. Here, we show that TAF4B mRNA correlates with Cyclin D2 mRNA expression in human granulosa cell tumors. TAF4B may also contribute to regulation of tumor microenvironment due to its estrogen-responsiveness and ability to act as a cofactor for NFκB. Conversely, TAF9, a cofactor for p53 in regulating apoptosis, may act as a tumor suppressor in ovarian cancer, since it is downregulated or deleted in 98% of HGSC. We conclude that a greater understanding of mechanisms of transcriptional regulation that execute signals from oncogenic signaling cascades is needed in order to expand our understanding of the etiology and progression of ovarian cancer, and most importantly to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Lindsay A Lovasco
- Molecular and Cellular Biology and Biochemistry, Brown University , Providence, RI , USA
| | - Barbara C Vanderhyden
- Cellular and Molecular Medicine, University of Ottawa , Ottawa, ON , Canada ; Centre for Cancer Therapeutics, Ottawa Hospital Research Institute , Ottawa, ON , Canada
| | - Richard N Freiman
- Pathobiology Graduate Program, Brown University , Providence, RI , USA ; Molecular and Cellular Biology and Biochemistry, Brown University , Providence, RI , USA
| |
Collapse
|
3
|
Down-regulation of matrix metalloproteinase-7 inhibits metastasis of human anaplastic thyroid cancer cell line. Clin Exp Metastasis 2011; 29:71-82. [PMID: 22042554 DOI: 10.1007/s10585-011-9430-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/07/2011] [Indexed: 12/26/2022]
Abstract
Epigenetic drugs such as histone deacetylase inhibitors (HDACIs) possess anticancer properties due to its ability to regulate genes associated with tumor growth, differentiation, apoptosis and metastasis. In addition to its apoptotic effect, phenylbutyrate (PB), a carboxylic acid HDACI, inhibited an anaplastic (ATC) thyroid cancer cell line ARO from penetrating a matrigel coated transwell with concomitant suppression of a metastasis-associated gene, matrix metalloproteinase-7 (MMP-7) and stimulation of a transformation suppressor protein, reversion-inducing- cysteine-rich protein with Kazal motifs without affecting MMP-2 expression levels. Direct evidence suggesting MMP-7 down-regulated cancer metastasis came from the observation of a decreased pulmonary metastasis in SCID mice xeno-transplanted with MMP-7-knocked-down ARO cells. In addition, H-89, a protein kinase A inhibitor, remarkably restored the down-regulaed MMP-7 level treated by PB. Thus, the suppressive effect of PB on MMP-7 was partially carried out through H3 phosphoacetylation. To conclude, our findings suggest PB inhibits MMP-7 expression epigenetically through phosphoacetylation of histone proteins, and thereby, reduced invasive ability of an ATC thyroid cancer cell line.
Collapse
|
4
|
HDAC activity is required for efficient core promoter function at the mouse mammary tumor virus promoter. J Biomed Biotechnol 2010; 2011:416905. [PMID: 21253530 PMCID: PMC3021843 DOI: 10.1155/2011/416905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/01/2010] [Indexed: 11/26/2022] Open
Abstract
Histone deacetylases (HDACs) have been shown to be required for basal or inducible transcription at a variety of genes by poorly understood mechanisms. We demonstrated previously that HDAC inhibition rapidly repressed transcription from the mouse mammary tumor virus (MMTV) promoter by a mechanism that does not require the binding of upstream transcription factors. In the current study, we find that HDACs work through the core promoter sequences of MMTV as well as those of several cellular genes to facilitate transcriptional initiation through deacetylation of nonhistone proteins.
Collapse
|
5
|
Hirsch CL, Ellis DJP, Bonham K. Histone deacetylase inhibitors mediate post-transcriptional regulation of p21WAF1 through novel cis-acting elements in the 3' untranslated region. Biochem Biophys Res Commun 2010; 402:687-92. [PMID: 20977880 DOI: 10.1016/j.bbrc.2010.10.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 12/11/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) are promising anti-tumor agents that selectively induce cell cycle arrest, differentiation and/or apoptosis of tumor cells. Fundamentally, HDACIs are proposed to function by activating the transcription of genes, including the potent cyclin dependent kinase inhibitor p21(WAF1). However, HDACIs primarily increase p21(WAF1) expression at the post-transcriptional level in HepG2 cells, implying that these anti-tumor agents regulate genes at multiple levels. Here, two novel cis-acting elements in the 3' untranslated region (UTR) of p21(WAF1) are identified that control the ability of HDACIs to induce p21(WAF1) mRNA stabilization. Collectively, these studies highlight the complexity of HDACIs in gene regulation.
Collapse
Affiliation(s)
- Calley L Hirsch
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | |
Collapse
|
6
|
Singh N, Thangaraju M, Prasad PD, Martin PM, Lambert NA, Boettger T, Offermanns S, Ganapathy V. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J Biol Chem 2010; 285:27601-8. [PMID: 20601425 DOI: 10.1074/jbc.m110.102947] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na(+)-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8(-/-) and Gpr109a(-/-) mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate.
Collapse
Affiliation(s)
- Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Schroeder FA, Penta KL, Matevossian A, Jones SR, Konradi C, Tapper AR, Akbarian S. Drug-induced activation of dopamine D(1) receptor signaling and inhibition of class I/II histone deacetylase induce chromatin remodeling in reward circuitry and modulate cocaine-related behaviors. Neuropsychopharmacology 2008; 33:2981-92. [PMID: 18288092 PMCID: PMC2746694 DOI: 10.1038/npp.2008.15] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatin remodeling, including histone modification, is involved in stimulant-induced gene expression and addiction behavior. To further explore the role of dopamine D(1) receptor signaling, we measured cocaine-related locomotor activity and place preference in mice pretreated for up to 10 days with the D(1) agonist SKF82958 and/or the histone deacetylase inhibitor (HDACi), sodium butyrate. Cotreatment with D(1) agonist and HDACi significantly enhanced cocaine-induced locomotor activity and place preference, in comparison to single-drug regimens. However, butyrate-mediated reward effects were transient and only apparent within 2 days after the last HDACi treatment. These behavioral changes were associated with histone modification changes in striatum and ventral midbrain: (1) a generalized increase in H3 phosphoacetylation in striatal neurons was dependent on activation of D(1) receptors; (2) H3 deacetylation at promoter sequences of tyrosine hydroxylase (Th) and brain-derived neurotrophic factor (Bdnf) in ventral midbrain, together with upregulation of the corresponding gene transcripts after cotreatment with D(1) agonist and HDACi. Collectively, these findings imply that D(1) receptor-regulated histone (phospho)acetylation and gene expression in reward circuitry is differentially regulated in a region-specific manner. Given that the combination of D(1) agonist and HDACi enhances cocaine-related sensitization and reward, the therapeutic benefits of D(1) receptor antagonists and histone acetyl-transferase inhibitors (HATi) warrant further investigation in experimental models of stimulant abuse.
Collapse
Affiliation(s)
- Frederick A. Schroeder
- Brudnick Neuropsychiatric Research Institute, 303 Belmont St.,University of Massachusetts Graduate School of Biomedical Sciences, 54 Lake Avenue North, Worcester, MA 01604
| | - Krista L. Penta
- Brudnick Neuropsychiatric Research Institute, 303 Belmont St
| | | | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Christine Konradi
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232
| | | | - Schahram Akbarian
- Brudnick Neuropsychiatric Research Institute, 303 Belmont St.,Corresponding author: Schahram Akbarian, MD, PhD Associate Professor in Psychiatry University of Massachusetts Medical School Brudnick Neuropsychiatric Research Institute 303 Belmont Street Worcester, MA 01604 Phone: 508 856 2674 Fax: 508 856 3937
| |
Collapse
|
8
|
Inhibitory effect of HGF on invasiveness of aggressive MDA-MB231 breast carcinoma cells, and role of HDACs. Br J Cancer 2008; 99:1623-34. [PMID: 18941460 PMCID: PMC2584948 DOI: 10.1038/sj.bjc.6604726] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatocyte growth factor (HGF), through Met receptor binding, fulfils numerous functions in invasive tumour growth (survival/proliferation, motility, apoptosis), but epigenetic control of gene expression in this process is poorly understood. In HGF-treated breast cancer cells we studied (a) the chemoinvasion towards CXCL12 (ligand of the chemokine-receptor CXCR4) and (b) the mechanistic basis, that is, the transduction pathways that regulate CXCR4-mediated invasion, and the role played by histone deacetylases (HDACs) after blockade with trichostatin A (TSA). In highly invasive and metastatic MDA-MB231 cells HGF had a dual inhibitory effect, reducing spontaneous migration and specific chemoinvasion towards CXCL12, the latter by decreasing CXCR4 transactivation and protein level. After HGF the levels of phosphorylated (therefore active) c-Src and Akt persistently increased, indicating a role of these signal transducers in the HGF-dependent cellular and molecular effects. c-Src wild-type expression vector (Srcwt) increased active c-Src and mimicked the HGF-dependent inhibition of CXCR4 transactivation. Our findings indicate that HDACs participated in the HGF-inhibitory effects. In fact, blockade of HDACs hindered the HGF- and Srcwt-dependent reductions of CXCR4 transactivation and invasiveness, while inhibition of endogenous c-Src was additive with HGF, further reducing specific chemoinvasion. In conclusion, in MDA-MB231 cells HDAC blockade with TSA partly counteracted the HGF-dependent effects through molecular events that included enhancement of the expression of the genes for invasiveness Met and CXCR4 (depending on serum conditions), reduction of endogenous phospho-c-Src/c-Src and phosphoAkt/Akt ratios and triggering of apoptosis. The potential therapeutic use of TSA should take into account the variable aggressiveness of breast carcinoma cells and microenvironment signals such as HGF at the secondary growth site of the tumour. It was interesting that HGF reduced motility and CXCR4 functionality only of MDA-MB231 cells, and not of low-invasive MCF-7 cells, suggesting a mechanism implicated in metastatic cell homing.
Collapse
|
9
|
Abstract
Transcriptional repression and silencing have been strongly associated with hypoacetylation of histones. Accordingly, histone deacetylases, which remove acetyl groups from histones, have been shown to participate in mechanisms of transcriptional repression. Therefore, current models of the role of acetylation in transcriptional regulation focus on the acetylation status of histones and designate histone acetyltransferases, which add acetyl groups to histones, as transcriptional coactivators and histone deacetylases as corepressors. In recent years, an accumulation of studies have shown that these enzymes also target non-histone proteins and that histone deacetylases have clear roles as coactivators at a variety of genes, some of which are key regulators of cell growth and survival. This review summarizes the evidence for histone deacetylases as coactivators and provides models of coactivation mechanisms, some of which integrate roles of acetylated histones and non-histone proteins in transcription.
Collapse
Affiliation(s)
- Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA.
| |
Collapse
|
10
|
Histone acetylation is not an accurate predictor of gene expression following treatment with histone deacetylase inhibitors. Biochem Biophys Res Commun 2008; 367:656-62. [DOI: 10.1016/j.bbrc.2007.12.157] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 12/22/2007] [Indexed: 11/18/2022]
|
11
|
Rada-Iglesias A, Enroth S, Ameur A, Koch CM, Clelland GK, Respuela-Alonso P, Wilcox S, Dovey OM, Ellis PD, Langford CF, Dunham I, Komorowski J, Wadelius C. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. Genome Res 2007; 17:708-19. [PMID: 17567991 PMCID: PMC1891332 DOI: 10.1101/gr.5540007] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Butyrate is a histone deacetylase inhibitor (HDACi) with anti-neoplastic properties, which theoretically reactivates epigenetically silenced genes by increasing global histone acetylation. However, recent studies indicate that a similar number or even more genes are down-regulated than up-regulated by this drug. We treated hepatocarcinoma HepG2 cells with butyrate and characterized the levels of acetylation at DNA-bound histones H3 and H4 by ChIP-chip along the ENCODE regions. In contrast to the global increases of histone acetylation, many genomic regions close to transcription start sites were deacetylated after butyrate exposure. In order to validate these findings, we found that both butyrate and trichostatin A treatment resulted in histone deacetylation at selected regions, while nucleosome loss or changes in histone H3 lysine 4 trimethylation (H3K4me3) did not occur in such locations. Furthermore, similar histone deacetylation events were observed when colon adenocarcinoma HT-29 cells were treated with butyrate. In addition, genes with deacetylated promoters were down-regulated by butyrate, and this was mediated at the transcriptional level by affecting RNA polymerase II (POLR2A) initiation/elongation. Finally, the global increase in acetylated histones was preferentially localized to the nuclear periphery, indicating that it might not be associated to euchromatin. Our results are significant for the evaluation of HDACi as anti-tumourogenic drugs, suggesting that previous models of action might need to be revised, and provides an explanation for the frequently observed repression of many genes during HDACi treatment.
Collapse
Affiliation(s)
- Alvaro Rada-Iglesias
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 05 Sweden
- Corresponding authors.E-mail ; fax 46-18-471-4808
| | - Stefan Enroth
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, SE-751 05 Sweden
| | - Adam Ameur
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, SE-751 05 Sweden
| | | | | | - Patricia Respuela-Alonso
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 05 Sweden
| | - Sarah Wilcox
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Peter D. Ellis
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Ian Dunham
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Jan Komorowski
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, SE-751 05 Sweden
| | - Claes Wadelius
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 05 Sweden
- Corresponding authors.E-mail ; fax 46-18-471-4808
| |
Collapse
|
12
|
Requirement of histone deacetylase activity for the expression of critical photoreceptor genes. BMC DEVELOPMENTAL BIOLOGY 2007; 7:78. [PMID: 17603891 PMCID: PMC1914050 DOI: 10.1186/1471-213x-7-78] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 06/29/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Histone deacetylases (HDACs) play a major role in the regulation of gene transcription, often leading to transcriptional repression, as well as other effects following deacetylation of non-histone proteins. RESULTS To investigate the role of HDACs in the developing mammalian retina, a general inhibitor of HDACs, trichostatin-A (TSA), was used to treat newborn murine retinae in explant cultures. Inhibition of HDAC activity resulted in a reduction in RNA levels for genes that regulate retinal development, as well as cell cycle regulators. Several of the genes encode transcription factors essential for rod photoreceptor development, Otx2, Nrl, and Crx. Using luciferase reporter assays, the promoter activity of both Nrl and Crx was found to be compromised by HDAC inhibition. Furthermore, downregulation of gene expression by HDAC inhibition didn't require de novo protein synthesis, and was associated with hyperacetylation of histones and non-histone proteins. Finally, HDAC inhibition in retinal explant cultures resulted in increased cell death, reduction in proliferation, a complete loss of rod photoreceptors and Müller glial cells, and an increase in bipolar cells. CONCLUSION HDAC activity is required for the expression of critical pro-rod transcription factors and the development of rod photoreceptor cells.
Collapse
|
13
|
Abstract
TATA-binding protein-associated factor 1 (TAF1) is an essential component of the general transcription factor IID (TFIID), which nucleates assembly of the preinitiation complex for transcription by RNA polymerase II. TATA-binding protein and TAF1.TAF2 heterodimers are the only components of TFIID shown to bind specific DNA sequences (the TATA box and initiator, respectively), raising the question of how TFIID localizes to gene promoters that lack binding sites for these proteins. Here we demonstrate that Drosophila TAF1 protein isoforms TAF1-2 and TAF1-4 directly bind DNA independently of TAF2. DNA binding by TAF1 isoforms is mediated by cooperative interactions of two identical AT-hook motifs, one of which is encoded by an alternatively spliced exon. Electrophoretic mobility shift assays revealed that TAF1-2 bound the minor groove of adenine-thymine-rich DNA with a preference for the sequence AAT. Alanine-scanning mutagenesis of the alternatively spliced AT-hook indicated that Lys and Arg residues made essential DNA contacts, whereas Gly and Pro residues within the Arg-Gly-Arg-Pro core sequence were less important for DNA binding, suggesting that AT-hooks are more divergent than previously predicted. TAF1-2 bound with variable affinity to the transcription start site of several Drosophila genes, and binding to the hsp70 promoter was reduced by mutation of a single base pair at the transcription start site. Collectively, these data indicate that AT-hooks serve to anchor TAF1 isoforms to the minor groove of adenine-thymine-rich Drosophila gene promoters and suggest a model in which regulated expression of TAF1 isoforms by alternative splicing contributes to gene-specific transcription.
Collapse
Affiliation(s)
- Chad E Metcalf
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
14
|
Ellis DJP, Dehm SM, Bonham K. The modification of Sp3 isoforms by SUMOylation has differential effects on the SRC1A promoter. Gene 2006; 379:68-78. [PMID: 16781829 DOI: 10.1016/j.gene.2006.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/26/2022]
Abstract
Previously, we had described a housekeeping like promoter that regulates expression of the SRC gene in many cell types. This promoter was found to be regulated by Sp1 and hnRNP-K. However, at that time we could find little evidence supporting a significant role for Sp3 in SRC activation. Interestingly, despite its first description some 12 years ago, a full length Sp3 clone has only recently been described. Previous mechanistic studies, including our own, employed a version of Sp3 that was significantly N-terminally truncated. In addition, several shorter Sp3 isoforms exist that result from internally initiated translation sites. To complicate matters further, all Sp3 isoforms can be modified by SUMO-1. Due to this newly emerging information few reports exist that systematically explore these various Sp3 isoforms (SUMOylated or not) and how they affect activity of specific mammalian promoters. We therefore undertook such a study to re-evaluate regulation of SRC by these various Sp3 isoforms. Using human and insect cells we found that the newly isolated full length version of Sp3 was only a weak to moderate activator of SRC. However, to our surprise, the more commonly used N-terminally truncated version of Sp3 was up to five times more active. We also found that mutations preventing SUMOylation of the shorter Sp3 isoforms were sufficient to convert them into potent transactivators of SRC. In contrast to other studies, however, we found that SUMOylation of full length Sp3 had little effect on its transcriptional properties. These results provide new insights into the complexity of Sp3 mediated transcription which appears to be highly dependent on the isoform bound, SUMOylation status and the promoter context.
Collapse
Affiliation(s)
- Danielle J P Ellis
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, Saskatoon, SK, Canada
| | | | | |
Collapse
|
15
|
Jung JW, Cho SD, Ahn NS, Yang SR, Park JS, Jo EH, Hwang JW, Aruoma OI, Lee YS, Kang KS. Effects of the histone deacetylases inhibitors sodium butyrate and trichostatin A on the inhibition of gap junctional intercellular communication by H2O2- and 12-O-tetradecanoylphorbol-13-acetate in rat liver epithelial cells. Cancer Lett 2006; 241:301-8. [PMID: 16337085 DOI: 10.1016/j.canlet.2005.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 01/11/2023]
Abstract
The histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and sodium butyrate (NaBu) are considered as potent therapeutic agents for cancer treatment presenting therapeutic benefits with less risk of side effects. The microbial metabolite, TSA is a potent reversible and highly specific inhibitor of mammalian histone deacetylases. NaBu causes hyperacetylation of core histones with effects similar to TSA but it is not a specific inhibitor of HDACs. The gap junction is a channel in the plasma membrane of most cell types which allows direct communication (gap junctional intercellular communication; GJIC) of small molecules and ions. Modulation of GJIC is a known cellular event associated with tumor promotion. The effects of NaBu and TSA on the H(2)O(2)- and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced GJIC inhibition of WB cells and the mechanisms involved in the process were assessed. TSA and NaBu exerted differential preventive effects on the H(2)O(2) and TPA-induced inhibition of GJIC as well as hyperphosphorylation of connexin43 (Cx43) in WB-F344 rat liver epithelial cells (WB cells). NaBu prevented the TPA-induced GJIC inhibition via ERK1/2 inactivation whilst TSA restored the H(2)O(2)-induced GJIC inhibition and Cx43 hyperphosphorylation by preventing p38 MAP kinase. The inhibition of tyrosine phosphorylation and down-regulation of src protein observed may also contribute to Connexin 43 dephosphorylation and GJIC restoration by TSA and NaBu partly through depletion of src protein pool. Thus, TSA and NaBu exert differential effects on chemically induced GJIC inhibition via modulation of MAP kinases and partly, tyrosine kinases.
Collapse
Affiliation(s)
- Ji-Won Jung
- Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, San 56-1, Sillim-dong, Gwanakgu, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sabbah M, Saucier C, Redeuilh G. Human B-ind1 gene promoter: Cloning and regulation by histone deacetylase inhibitors. Gene 2006; 374:128-33. [PMID: 16516406 DOI: 10.1016/j.gene.2006.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/05/2006] [Accepted: 01/25/2006] [Indexed: 11/24/2022]
Abstract
Histone deacetylase inhibitors (HDIs) induced expression of the B-ind1 protein that is a component of Rac-1-signaling pathways leading to the modulation of gene expression. In the present study, we have determined the structure of the human B-ind1 gene promoter region. The oligocapping method revealed that the transcriptional start site of the human B-ind1 gene is located at 166 bases upstream of the first adenine residue of the translation start site that is highly homologous to an initiator (Inr) consensus sequence. In reporter assays, transactivation of the B-ind1 promoter was observed up to 300 bp of the initiation site. Deletion analysis of the promoter region revealed that histone deacetylase inhibitors (HDIs)-induced luciferase response was regulated by the core promoter elements. Mutation introduced into the proximal CG-boxes decreased most of the basal and HDIs-induced promoter activity. These results suggested a novel mechanism, which implicate minimal core promoter elements as potential mediator of HDIs.
Collapse
Affiliation(s)
- Michèle Sabbah
- Institut National de la Santé et de la Recherche Médicale U673, 184, rue du Faubourg Saint-Antoine, Hôpital Saint-Antoine, 75571 Paris cedex 12, France
| | | | | |
Collapse
|
17
|
Hirsch CL, Smith-Windsor EL, Bonham K. Src family kinase members have a common response to histone deacetylase inhibitors in human colon cancer cells. Int J Cancer 2006; 118:547-54. [PMID: 16094635 DOI: 10.1002/ijc.21383] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Histone deacetylase inhibitors (HDIs) induce cell cycle arrest, differentiation and/or apoptosis in numerous cancer cell types and have shown promise in clinical trials. These agents are particularly novel, given their ability to selectively influence gene expression. Previously, we demonstrated that the HDIs butyrate and trichostatin A (TSA) directly repress c-Src proto-oncogene expression in many cancer cell lines. Activation and/or overexpression of c-Src have been frequently observed in numerous malignancies, especially of the colon. Therefore, our observation was particularly interesting since butyrate is a naturally abundant component of the large intestine and has been suggested to be a cancer-preventive agent. However, c-Src is not the only Src family kinase (SFK) member to be implicated in the development of human cancers, including those of the colon. Therefore, the relative expression levels of known SFKs were examined in a panel of human colon cancer cell lines. We found a surprisingly diverse expression pattern but noted that most cell lines expressed relatively high levels of at least 2 SFKs. When the effects of butyrate and TSA were examined in representative cell lines, the expression of all SFKs was repressed in a dose- and time-dependent manner. Further, detailed examination of Lck, Yes and Lyn demonstrated that this repression had a direct effect on transcription and was independent of new protein synthesis. These results mirror our earlier data obtained with c-Src and suggest that SFKs are a major target of HDIs and likely account in part for the anticancer effects of these promising new drugs.
Collapse
Affiliation(s)
- Calley L Hirsch
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
18
|
Matheu A, Klatt P, Serrano M. Regulation of the INK4a/ARF locus by histone deacetylase inhibitors. J Biol Chem 2005; 280:42433-41. [PMID: 16251190 DOI: 10.1074/jbc.m508270200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the importance of the INK4a/ARF locus in tumor suppression, its modulation by histone deacetylase inhibitors (HDACis) remains to be characterized. Here, we have shown that the levels of p16INK4a are decreased in human and murine fibroblasts upon exposure to relatively high concentrations of trichostatin A and sodium butyrate. Interestingly, the levels of p19ARF are strongly upregulated in murine cells even at low concentrations of HDACis. Using ARF-deficient cells, we have demonstrated that p19ARF plays an active role in HDACi-triggered cytostasis and the contribution of p19ARF to this arrest is of higher magnitude than that of the well established HDACi target p21Waf1/Cip. Moreover, chemically induced fibrosarcomas in ARF-null mice are more resistant to the therapeutic effect of HDACis than similar tumors in wild type or p21Waf1/Cip-null mice. Together, our results have established the tumor suppressor ARF as a relevant target for HDACi chemotherapy.
Collapse
Affiliation(s)
- Ander Matheu
- Molecular Oncology Program, Spanish National Cancer Center (CNIO), 28029 Madrid, Spain
| | | | | |
Collapse
|
19
|
Espino PS, Drobic B, Dunn KL, Davie JR. Histone modifications as a platform for cancer therapy. J Cell Biochem 2005; 94:1088-102. [PMID: 15723344 DOI: 10.1002/jcb.20387] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tumorigenesis and metastasis are a progression of events resulting from alterations in the processing of the genetic information. These alterations result from stable genetic changes (mutations) involving tumor suppressor genes and oncogenes (e.g., ras, BRAF) and potentially reversible epigenetic changes, which are modifications in gene function without a change in the DNA sequence. Mutations of genes coding for proteins that directly or indirectly influence epigenetic processes will alter the cell's gene expression program. Epigenetic mechanisms often altered in cancer cells are DNA methylation and histone modifications (acetylation, methylation, phosphorylation). This article will review the potential of these reversible epigenetic processes as targets for cancer therapies.
Collapse
Affiliation(s)
- Paula S Espino
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | | | | | | |
Collapse
|
20
|
Nusinzon I, Horvath CM. Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci Signal 2005; 2005:re11. [PMID: 16091625 DOI: 10.1126/stke.2962005re11] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Histone deacetylation enzymes have often been associated with the suppression of eukaryotic gene transcription. In contrast, recent studies of inducible gene regulation indicate that protein deacetylation can also be required as a transcriptional activation signal. The concept of protein deacetylation as a requirement for transcription activation seems to contradict earlier conclusions about the function of deacetylation in gene suppression. However, in the context of a more global interpretation, these opposing effects of deacetylation imply its dynamic role in the overall control of gene expression. The exact requirement for deacetylation differs among promoters, depending on their specific architecture and regulation scenario.
Collapse
Affiliation(s)
- Inna Nusinzon
- Department of Medicine, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
21
|
Duan H, Heckman CA, Boxer LM. Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 2005; 25:1608-19. [PMID: 15713621 PMCID: PMC549348 DOI: 10.1128/mcb.25.5.1608-1619.2005] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors are promising antitumor agents, but they have not been extensively explored in B-cell lymphomas. Many of these lymphomas have the t(14;18) translocation, which results in increased bcl-2 expression and resistance to apoptosis. In this study, we examined the effects of two structurally different HDAC inhibitors, trichostatin A (TSA) and sodium butyrate (NaB), on the cell cycle, apoptosis, and bcl-2 expression in t(14;18) lymphoma cells. We found that in addition to potent cell cycle arrest, TSA and NaB also dramatically induced apoptosis and down-regulated bcl-2 expression, and overexpression of bcl-2 inhibited TSA-induced apoptosis. The repression of bcl-2 by TSA occurred at the transcriptional level. Western blot analysis and quantitative chromatin immunoprecipitation (ChIP) assay showed that even though HDAC inhibitors increased overall acetylation of histones, localized histone H3 deacetylation occurred at both bcl-2 promoters. TSA treatment increased the acetylation of the transcription factors Sp1 and C/EBPalpha and decreased their binding as well as the binding of CBP and HDAC2 to the bcl-2 promoters. Mutation of Sp1 and C/EBPalpha binding sites reduced the TSA-induced repression of bcl-2 promoter activity. This study provides a mechanistic rationale for the use of HDAC inhibitors in the treatment of human t(14;18) lymphomas.
Collapse
MESH Headings
- Acetylation/drug effects
- Apoptosis
- Barbiturates/pharmacology
- Binding Sites/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cell Cycle/drug effects
- Cell Line, Tumor
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 18
- Down-Regulation
- Enzyme Inhibitors/pharmacology
- Histone Deacetylase 2
- Histone Deacetylase Inhibitors
- Histone Deacetylases/metabolism
- Histone Deacetylases/physiology
- Histones/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Mutation/genetics
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Protein Kinases/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/metabolism
- Repressor Proteins/physiology
- Translocation, Genetic
Collapse
Affiliation(s)
- Hong Duan
- Center for Molecular Biology in Medicine, Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, USA
| | | | | |
Collapse
|
22
|
Vance KW, Carreira S, Brosch G, Goding CR. Tbx2 Is Overexpressed and Plays an Important Role in Maintaining Proliferation and Suppression of Senescence in Melanomas. Cancer Res 2005; 65:2260-8. [PMID: 15781639 DOI: 10.1158/0008-5472.can-04-3045] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The INK4a and ARF genes found at the CDKN2A locus are key effectors of cellular senescence that is believed to act as a powerful anticancer mechanism. Accordingly, mutations in these genes are present in a wide variety of spontaneous human cancers and CDKN2A germ line mutations are found in familial melanoma. The TBX2 gene encoding a key developmental transcription factor is amplified in pancreatic cancer cell lines and preferentially amplified and overexpressed in BRCA1 and BRCA2 mutated breast tumors. Overexpression of Tbx2 and the related factor Tbx3, which is also overexpressed in breast cancer and melanomas, can suppress senescence in defined experimental systems through repression of ARF expression. However, it is not known how Tbx2 mediates its repressive effect nor whether endogenous Tbx2 or Tbx3 perform a similar antisenescence function in transformed cells. This is a particularly important question because the loss of CDKN2A in many human cancers would, in principle, bypass the requirement for Tbx2/3-mediated repression of ARF in suppressing senescence. We show here that Tbx2 is overexpressed in melanoma cell lines and that Tbx2 targets histone deacetylase 1 to the p21Cip1 (CDKN1A) initiator. Strikingly, expression of an inducible dominant-negative Tbx2 (dnTbx2) leads to displacement of histone deacetylase 1, up-regulation of p21(Cip1) expression, and the induction of replicative senescence in CDKN2A-null B16 melanoma cells. In human melanoma cells, expression of dnTbx2 leads to severely reduced growth and induction of senescence-associated heterochromatin foci. The results suggest that the activity of endogenous Tbx2 is critically required to maintain proliferation and suppress senescence in melanomas.
Collapse
Affiliation(s)
- Keith W Vance
- Signaling and Development Laboratory, Marie Curie Research Institute, Surrey, United Kingdom
| | | | | | | |
Collapse
|
23
|
Tong X, Yin L, Joshi S, Rosenberg DW, Giardina C. Cyclooxygenase-2 regulation in colon cancer cells: modulation of RNA polymerase II elongation by histone deacetylase inhibitors. J Biol Chem 2005; 280:15503-9. [PMID: 15713675 DOI: 10.1074/jbc.m411978200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We are interested in the mechanism of cyclooxygenase-2 (Cox-2) regulation in colon cancer cells because this knowledge could provide insight into colon carcinogenesis and suggest ways to suppress Cox-2 expression in colon tumors. Studying the HT-29 colon cancer cell line as a model, we found that Cox-2 mRNA and protein levels were activated over 10-fold by the inflammatory cytokine tumor necrosis factor (TNF)-alpha. Moreover, we found that the histone deacetylase inhibitors butyrate and trichostatin A could block Cox-2 activation in a gene-specific manner. TNF-alpha and butyrate did not significantly affect Cox-2 promoter activity, mRNA stability, or negative regulation by the Cox-2 3'-untranslated RNA region. A nuclear run-on assay showed that TNF-alpha increased Cox-2 transcription, whereas butyrate was suppressive. Because butyrate has been reported to suppress polymerase elongation on the c-myc gene, we employed the chromatin immunoprecipitation assay to determine the influence of butyrate and trichostatin A on polymerase distribution on the Cox-2 gene. These data indicated that butyrate restricted polymerase elongation from exon 1 to 2 on both the c-myc and Cox-2 genes. We propose that histone deacetylases regulate a transcriptional block on the Cox-2 and c-myc genes and that this block may be a potential target for pharmacological intervention.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | | | | | |
Collapse
|