1
|
Pan YT, Li L, Yang JY, Li B, Zhang YZ, Wang P, Huang L. Involvement of Protein Kinase CgSat4 in Potassium Uptake, Cation Tolerance, and Full Virulence in Colletotrichum gloeosporioides. FRONTIERS IN PLANT SCIENCE 2022; 13:773898. [PMID: 35463420 PMCID: PMC9021643 DOI: 10.3389/fpls.2022.773898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/17/2022] [Indexed: 05/31/2023]
Abstract
The ascomycete Colletotrichum gloeosporioides is a causal agent of anthracnose on crops and trees and causes enormous economic losses in the world. Protein kinases have been implicated in the regulation of growth and development, and responses to extracellular stimuli. However, the mechanism of the protein kinases regulating phytopathogenic fungal-specific processes is largely unclear. In the study, a serine/threonine CgSat4 was identified in C. gloeosporioides. The CgSat4 was localized in the cytoplasm. Targeted gene deletion showed that CgSat4 was essential for vegetative growth, sporulation, and full virulence. CgSat4 is involved in K+ uptake by regulating the localization and expression of the potassium transporter CgTrk1. CgSat4 is required for the cation stress resistance by altering the phosphorylation of CgHog1. Our study provides insights into potassium acquisition and the pathogenesis of C. gloeosporioides.
Collapse
Affiliation(s)
- Yu-Ting Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ji-Yun Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Bing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yun-Zhao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Zhang YZ, Li B, Pan YT, Fang YL, Li DW, Huang L. Protein Phosphatase CgPpz1 Regulates Potassium Uptake, Stress Responses, and Plant Infection in Colletotrichum gloeosporioides. PHYTOPATHOLOGY 2022; 112:820-829. [PMID: 34689611 DOI: 10.1094/phyto-02-21-0051-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein phosphatases play important roles in the regulation of various cellular processes in eukaryotes. The ascomycete Colletotrichum gloeosporioides is a causal agent of anthracnose disease on some important crops and trees. In this study, CgPPZ1, a protein phosphate gene and a homolog of yeast PPZ1, was identified in C. gloeosporioides. Targeted gene deletion showed that CgPpz1 was important for vegetative growth and asexual development, conidial germination, and plant infection. Cytological examinations revealed that CgPpz1 was localized to the cytoplasm. The ΔCgppz1 mutant was hypersensitive to osmotic stresses, cell wall stressors, and oxidative stressors. Taken together, our results indicated that CgPpz1 plays an important role in the fungal development and virulence of C. gloeosporioides and the multiple stress responses generated.
Collapse
Affiliation(s)
- Yun-Zhao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Bing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu-Ting Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu-Lan Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, U.S.A
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
3
|
Morigasaki S, Chin LC, Hatano T, Emori M, Iwamoto M, Tatebe H, Shiozaki K. Modulation of TOR complex 2 signaling by the stress-activated MAPK pathway in fission yeast. J Cell Sci 2019; 132:jcs.236133. [PMID: 31477575 DOI: 10.1242/jcs.236133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/28/2019] [Indexed: 01/27/2023] Open
Abstract
Sin1 is a substrate-binding subunit of target of rapamycin complex 2 (TORC2), an evolutionarily conserved protein kinase complex. In fission yeast, Sin1 has also been identified as a protein that interacts with Spc1 (also known as Sty1) in the stress-activated protein kinase (SAPK) pathway. Therefore, this study examined the relationship between TORC2 and Spc1 signaling. We found that the common docking (CD) domain of Spc1 interacts with a cluster of basic amino acid residues in Sin1. Although diminished TORC2 activity in the absence of the functional Spc1 cascade suggests positive regulation of TORC2 by Spc1, such regulation appears to be independent of the Sin1-Spc1 interaction. Hyperosmotic stress transiently inhibits TORC2, and its swift recovery is dependent on Spc1, the transcription factor Atf1, and the glycelrol-3-phosphate dehydrogenase Gpd1, whose expression is induced upon osmostress by the Spc1-Atf1 pathway. Thus, cellular adaptation to osmostress seems important for TORC2 reactivation, though Spc1 and Atf1 contribute to TORC2 activation also in the absence of osmostress. These results indicate coordinated actions of the SAPK and TORC2 pathways, both of which are essential for fission yeast cells to survive environmental stress.
Collapse
Affiliation(s)
- Susumu Morigasaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Lit Chein Chin
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tomoyuki Hatano
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Midori Emori
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Mika Iwamoto
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hisashi Tatebe
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan .,Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Yang JY, Fang YL, Wang P, Ye JR, Huang L. Pleiotropic Roles of ChSat4 in Asexual Development, Cell Wall Integrity Maintenance, and Pathogenicity in Colletotrichum higginsianum. Front Microbiol 2018; 9:2311. [PMID: 30405539 PMCID: PMC6208185 DOI: 10.3389/fmicb.2018.02311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/10/2018] [Indexed: 01/31/2023] Open
Abstract
Potassium has an important role to play in multiple cellular processes. In Saccharomyces cerevisiae, the serine/threonine (S/T) kinase Sat4/Hal4 is required for potassium accumulation, and thus, regulates the resistance to sodium salts and helps in the stabilization of other plasma membrane transporters. However, the functions of Sat4 in filamentous phytopathogenic fungi are largely unknown. In this study, ChSat4, the yeast Sat4p homolog in Colletotrichum higginsianum, has been identified. Target deletion of ChSAT4 resulted in defects in mycelial growth and sporulation. Intracellular K+ accumulation was significantly decreased in the ChSAT4 deletion mutant. Additionally, the ΔChsat4 mutant showed defects in cell wall integrity, hyperoxide stress response, and pathogenicity. Localization pattern analysis indicated ChSat4 was localized in the cytoplasm. Furthermore, ChSat4 showed high functional conservation with the homolog FgSat4 in Fusarium graminearum. Taken together, our data indicated that ChSat4 was important for intracellular K+ accumulation and infection morphogenesis in C. higginsianum.
Collapse
Affiliation(s)
- Ji-Yun Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yu-Lan Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
Hibi T, Ohtsuka H, Shimasaki T, Inui S, Shibuya M, Tatsukawa H, Kanie K, Yamamoto Y, Aiba H. Tschimganine and its derivatives extend the chronological life span of yeast via activation of the Sty1 pathway. Genes Cells 2018; 23:620-637. [PMID: 29900664 DOI: 10.1111/gtc.12604] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
Most antiaging factors or life span extenders are associated with calorie restriction (CR). Very few of these factors function independently of, or additively with, CR. In this study, we focused on tschimganine, a compound that was reported to extend chronological life span (CLS). Although tschimganine led to the extension of CLS, it also inhibited yeast cell growth. We acquired a Schizosaccharomyces pombe mutant with a tolerance for tschimganine due to the gene crm1. The resulting Crm1 protein appears to export the stress-activated protein kinase Sty1 from the nucleus to the cytosol even under stressful conditions. Furthermore, we synthesized two derivative compounds of tschimganine, α-hibitakanine and β-hibitakanine; these derivatives did not inhibit cell growth, as seen with tschimganine. α-hibitakanine extended the CLS, not only in S. pombe but also in Saccharomyces cerevisiae, indicating the possibility that life span regulation by tschimganine derivative may be conserved across various yeast species. We found that the longevity induced by tschimganine was dependent on the Sty1 pathway. Based on our results, we propose that tschimganine and its derivatives extend CLS by activating the Sty1 pathway in fission yeast, and CR extends CLS via two distinct pathways, one Sty1-dependent and the other Sty1-independent. These findings provide the potential for creating an additive life span extension effect when combined with CR, as well as a better understanding of the mechanism of CLS.
Collapse
Affiliation(s)
- Takahide Hibi
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Shougo Inui
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Masatoshi Shibuya
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hideki Tatsukawa
- Laboratory of Cellular Biochemistry, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kei Kanie
- Laboratory of Cell and Molecular Bioengineering, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Yoshihiko Yamamoto
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
6
|
Tatebe H, Murayama S, Yonekura T, Hatano T, Richter D, Furuya T, Kataoka S, Furuita K, Kojima C, Shiozaki K. Substrate specificity of TOR complex 2 is determined by a ubiquitin-fold domain of the Sin1 subunit. eLife 2017; 6. [PMID: 28264193 PMCID: PMC5340527 DOI: 10.7554/elife.19594] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/27/2017] [Indexed: 01/20/2023] Open
Abstract
The target of rapamycin (TOR) protein kinase forms multi-subunit TOR complex 1 (TORC1) and TOR complex 2 (TORC2), which exhibit distinct substrate specificities. Sin1 is one of the TORC2-specific subunit essential for phosphorylation and activation of certain AGC-family kinases. Here, we show that Sin1 is dispensable for the catalytic activity of TORC2, but its conserved region in the middle (Sin1CRIM) forms a discrete domain that specifically binds the TORC2 substrate kinases. Sin1CRIM fused to a different TORC2 subunit can recruit the TORC2 substrate Gad8 for phosphorylation even in the sin1 null mutant of fission yeast. The solution structure of Sin1CRIM shows a ubiquitin-like fold with a characteristic acidic loop, which is essential for interaction with the TORC2 substrates. The specific substrate-recognition function is conserved in human Sin1CRIM, which may represent a potential target for novel anticancer drugs that prevent activation of the mTORC2 substrates such as AKT.
Collapse
Affiliation(s)
- Hisashi Tatebe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Shinichi Murayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Toshiya Yonekura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Tomoyuki Hatano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - David Richter
- Department of Microbiology and Molecular Genetics, University of California, California, United States
| | - Tomomi Furuya
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Saori Kataoka
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Osaka, Japan.,Graduate School of Engineering, Yokohama National University, Yokohama, Japan
| | - Kazuhiro Shiozaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.,Department of Microbiology and Molecular Genetics, University of California, California, United States
| |
Collapse
|
7
|
Matsuo Y, Kawamukai M. cAMP-dependent protein kinase involves calcium tolerance through the regulation of Prz1 in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2017; 81:231-241. [DOI: 10.1080/09168451.2016.1246171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, meiosis, and stress responses in Schizosaccharomyces pombe. We demonstrated that Pka1 is responsible for calcium tolerance. Loss of functional components of the PKA pathway such as Git3, Gpa2, Cyr1, and Pka1 yields a CaCl2-sensitive phenotype, while loss of Cgs1, a regulatory subunit of PKA, results in CaCl2 tolerance. Cytoplasmic distribution of Cgs1 and Pka1 is increased by the addition of CaCl2, suggesting that CaCl2 induces dissociation of Cgs1 and Pka1. The expression of Prz1, a transcriptional regulator in calcium homeostasis, is elevated in a pka1∆ strain and in a wild type strain under glucose-limited conditions. Accordingly, higher expression of Prz1 in the wild type strain results in a CaCl2-sensitive phenotype. These findings suggest that Pka1 is essential for tolerance to exogenous CaCl2, probably because the expression level of Prz1 needs to be properly regulated by Pka1.
Collapse
Affiliation(s)
- Yasuhiro Matsuo
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Makoto Kawamukai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| |
Collapse
|
8
|
Vázquez B, Soto T, del Dedo JE, Franco A, Vicente J, Hidalgo E, Gacto M, Cansado J, Madrid M. Distinct biological activity of threonine monophosphorylated MAPK isoforms during the stress response in fission yeast. Cell Signal 2015; 27:2534-42. [PMID: 26432170 DOI: 10.1016/j.cellsig.2015.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 01/27/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) define a specific group of eukaryotic protein kinases which regulate a number of cellular functions by transducing extracellular signals to intracellular responses. Unlike other protein kinases, catalytic activation of MAPKs by MAPKKs depends on dual phosphorylation at two tyrosine and threonine residues within the conserved TXY motif, and this has been proposed to occur in an ordered fashion, where the initial phosphorylation on tyrosine is followed by phosphorylation at the threonine residue. However, monophosphorylated MAPKs also exist in vivo, and although threonine phosphorylated isoforms retain some catalytic activity, their functional significance remains to be further elucidated. In the fission yeast Schizosaccharomyces pombe MAPKs Sty1 and Pmk1 control multiple aspects of fission yeast life cycle, including morphogenesis, cell cycle, and cellular response to a variety of stressful situations. In this work we show that a trapping mechanism increases MAPKK binding and tyrosine phosphorylation of both Sty1 and Pmk1 when subsequent phosphorylation at threonine is hampered, indicating that a sequential and likely processive mechanism might be responsible for MAPK activation in this simple organism. Whereas threonine-monophosphorylated Sty1 showed a limited biological activity particularly at the transcriptional level, threonine-monophosphorylated Pmk1 was able to execute most of the biological functions of the dually phosphorylated kinase. Thus, threonine monophosphorylated MAPKs might display distinct functional relevance among eukaryotes.
Collapse
Affiliation(s)
- Beatriz Vázquez
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - Javier Encinar del Dedo
- Oxidative Stress and Cell Cycle Research Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Alejandro Franco
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - Jero Vicente
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Research Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Mariano Gacto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain.
| | - Marisa Madrid
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain.
| |
Collapse
|
9
|
Alao JP, Weber AM, Shabro A, Sunnerhagen P. Suppression of sensitivity to drugs and antibiotics by high external cation concentrations in fission yeast. PLoS One 2015; 10:e0119297. [PMID: 25793410 PMCID: PMC4368599 DOI: 10.1371/journal.pone.0119297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/12/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Potassium ion homeostasis plays an important role in regulating membrane potential and therefore resistance to cations, antibiotics and chemotherapeutic agents in Schizosaccharomyces pombe and other yeasts. However, the precise relationship between drug resistance in S. pombe and external potassium concentrations (particularly in its natural habitats) remains unclear. S. pombe can tolerate a wide range of external potassium concentrations which in turn affect plasma membrane polarization. We thus hypothesized that high external potassium concentrations suppress the sensitivity of this yeast to various drugs. METHODS We have investigated the effect of external KCl concentrations on the sensitivity of S. pombe cells to a wide range of antibiotics, antimicrobial agents and chemotherapeutic drugs. We employed survival assays, immunoblotting and microscopy for these studies. RESULTS We demonstrate that KCl, and to a lesser extent NaCl and RbCl can suppress the sensitivity of S. pombe to a wide range of antibiotics. Ammonium chloride and potassium hydrogen sulphate also suppressed drug sensitivity. This effect appears to depend in part on changes to membrane polarization and membrane transport proteins. Interestingly, we have found little relationship between the suppressive effect of KCl on sensitivity and the structure, polarity or solubility of the various compounds investigated. CONCLUSIONS High concentrations of external potassium and other cations suppress sensitivity to a wide range of drugs in S. pombe. Potassium-rich environments may thus provide S. pombe a competitive advantage in nature. Modulating potassium ion homeostasis may sensitize pathogenic fungi to antifungal agents.
Collapse
Affiliation(s)
- John P. Alao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30, Göteborg, Sweden
| | - Andrea M. Weber
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30, Göteborg, Sweden
| | - Aidin Shabro
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30, Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30, Göteborg, Sweden
| |
Collapse
|
10
|
Morigasaki S, Ikner A, Tatebe H, Shiozaki K. Response regulator-mediated MAPKKK heteromer promotes stress signaling to the Spc1 MAPK in fission yeast. Mol Biol Cell 2013; 24:1083-92. [PMID: 23389634 PMCID: PMC3608495 DOI: 10.1091/mbc.e12-10-0727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Spc1 mitogen-activated protein kinase (MAPK) cascade in fission yeast is activated by two MAPK kinase kinase (MAPKKK) paralogues, Wis4 and Win1, in response to multiple forms of environmental stress. Previous studies identified Mcs4, a "response regulator" protein that associates with the MAPKKKs and receives peroxide stress signals by phosphorelay from the Mak2/Mak3 sensor histidine kinases. Here we show that Mcs4 has an unexpected, phosphorelay-independent function in promoting heteromer association between the Wis4 and Win1 MAPKKKs. Only one of the MAPKKKs in the heteromer complex needs to be catalytically active, but disturbing the integrity of the complex by mutations to Mcs4, Wis4, or Win1 results in reduced MAPKKK-MAPKK interaction and, consequently, compromised MAPK activation. The physical interaction among Mcs4, Wis4, and Win1 is constitutive and not responsive to stress stimuli. Therefore the Mcs4-MAPKKK heteromer complex might serve as a stable platform/scaffold for signaling proteins that convey input and output of different stress signals. The Wis4-Win1 complex discovered in fission yeast demonstrates that heteromer-mediated mechanisms are not limited to mammalian MAPKKKs.
Collapse
Affiliation(s)
- Susumu Morigasaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | |
Collapse
|
11
|
Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Mol Cell 2008; 30:108-13. [PMID: 18406331 DOI: 10.1016/j.molcel.2008.01.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/28/2007] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
Abstract
Phosphorelay signaling of environmental stimuli by two-component systems is prevailing in bacteria and also utilized by fungi and plants. In the fission yeast Schizosaccharomyces pombe, peroxide stress signals are transmitted from the Mak2/3 sensor kinases to the Mpr1 histidine-containing phosphotransfer (HPt) protein and finally to the Mcs4 response regulator, which activates a MAP kinase cascade. Here we show that, unexpectedly, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) physically associates with the Mcs4 response regulator and stress-responsive MAP kinase kinase kinases (MAPKKKs). In response to H2O2 stress, Cys-152 of the Tdh1 GAPDH is transiently oxidized, which enhances the association of Tdh1 with Mcs4. Furthermore, Tdh1 is essential for the interaction between the Mpr1 HPt protein and the Mcs4 response regulator and thus for phosphorelay signaling. These results demonstrate that the glycolytic enzyme GAPDH plays an essential role in the phosphorelay signaling, where its redox-sensitive cysteine residue may provide additional input signals.
Collapse
|
12
|
Ikeda K, Morigasaki S, Tatebe H, Tamanoi F, Shiozaki K. Fission yeast TOR complex 2 activates the AGC-family Gad8 kinase essential for stress resistance and cell cycle control. Cell Cycle 2007; 7:358-64. [PMID: 18235227 DOI: 10.4161/cc.7.3.5245] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Members of the mitogen-activated protein kinase (MAPK) subfamily responsive to environmental stress stimuli are known as SAPKs (stress-activated protein kinases), which are conserved from yeast to humans. In the fission yeast Schizosaccharomyces pombe, Spc1/Sty1 SAPK is activated by diverse forms of stress, such as osmostress, oxidative stress and heat shock, and induces gene expression through the Atf1 transcription factor. Sin1 (SAPK interacting protein 1) was originally isolated as a protein that interacts with Spc1, and its orthologs were also found in diverse eukaryotes. Here we report that Sin1 is not required for the stress gene expression regulated by Spc1 and Atf1, and that Sin1 is an essential component of TOR (target of rapamycin) complex 2 (TORC2). TORC2 is not essential for cell viability in S. pombe but plays important roles in cellular survival of stress conditions through phosphorylation and activation of an AGC-family protein kinase, Gad8. In addition, inactivation of Gad8 results in a synthetic growth defect with cdc25-22, a temperature-sensitive mutation of the Cdc25 phosphatase that activates Cdc2 kinase at G(2)/M. Gad8 also positively regulates expression of the CDK inhibitor gene rum1+, which is essential for cell cycle arrest in G(1) after nitrogen starvation. These results strongly suggest that the TORC2-Gad8 pathway has multiple physiological functions in cellular stress resistance and cell cycle progression at both G(1)/S and G(2)/M transitions.
Collapse
Affiliation(s)
- Kyoko Ikeda
- Section of Microbiology, College of Biological Sciences, University of California, Davis, California, USA
| | | | | | | | | |
Collapse
|
13
|
Pérez-Valle J, Jenkins H, Merchan S, Montiel V, Ramos J, Sharma S, Serrano R, Yenush L. Key role for intracellular K+ and protein kinases Sat4/Hal4 and Hal5 in the plasma membrane stabilization of yeast nutrient transporters. Mol Cell Biol 2007; 27:5725-36. [PMID: 17548466 PMCID: PMC1952112 DOI: 10.1128/mcb.01375-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
K+ transport in living cells must be tightly controlled because it affects basic physiological parameters such as turgor, membrane potential, ionic strength, and pH. In yeast, the major high-affinity K+ transporter, Trk1, is inhibited by high intracellular K+ levels and positively regulated by two redundant "halotolerance" protein kinases, Sat4/Hal4 and Hal5. Here we show that these kinases are not required for Trk1 activity; rather, they stabilize the transporter at the plasma membrane under low K+ conditions, preventing its endocytosis and vacuolar degradation. High concentrations (0.2 M) of K+, but not Na+ or sorbitol, transported by undefined low-affinity systems, maintain Trk1 at the plasma membrane in the hal4 hal5 mutant. Other nutrient transporters, such as Can1 (arginine permease), Fur4 (uracil permease), and Hxt1 (low-affinity glucose permease), are also destabilized in the hal4 hal5 mutant under low K+ conditions and, in the case of Can1, are stabilized by high K+ concentrations. Other plasma membrane proteins such as Pma1 (H+ -pumping ATPase) and Sur7 (an eisosomal protein) are not regulated by halotolerance kinases or by high K+ levels. This novel regulatory mechanism of nutrient transporters may participate in the quiescence/growth transition and could result from effects of intracellular K+ and halotolerance kinases on membrane trafficking and/or on the transporters themselves.
Collapse
Affiliation(s)
- Jorge Pérez-Valle
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Vivancos AP, Jara M, Zuin A, Sansó M, Hidalgo E. Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Mol Genet Genomics 2006; 276:495-502. [PMID: 17043891 DOI: 10.1007/s00438-006-0175-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 09/20/2006] [Indexed: 01/27/2023]
Abstract
Schizosaccharomyces pombe triggers different signalling pathways depending on the severity of the oxidative stress exerted, the main ones being the Pap1 and the Sty1 pathways. The Pap1 transcription factor is more sensitive to hydrogen peroxide (H(2)O(2)) than the MAP kinase Sty1 pathway, and is designed to induce adaptation, rather than survival, responses. The peroxiredoxin Tpx1 acts as a H(2)O(2) sensor and the upstream activator of the Pap1 pathway. Therefore, sensitivity to H(2)O(2) depends on this thioredoxin peroxidase. In order to achieve maximal activation of the MAP kinase pathway, the concentration of H(2)O(2) needs to be at least fivefold higher than that to fully activate Pap1. Tpx1 is a H(2)O(2) scavenger, thus its peroxidase activity is essential for aerobic growth. As described for other eukaryotic peroxiredoxins, high doses of H(2)O(2) temporarily inactivate Tpx1 and delay Pap1 activation, whereas the Sty1 pathway remains fully functional under these conditions. As part of the Sty1-dependent transcriptional response, the expression of Srx1 is induced and this reductase re-activates the over-oxidised Tpx1. Therefore, the antioxidant pathways of the fission yeast are perfectly designed so that the transcriptional programs triggered by the different signalling pathways never overlap.
Collapse
Affiliation(s)
- Ana P Vivancos
- Cell Signalling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 80, Barcelona, 08003, Spain
| | | | | | | | | |
Collapse
|
15
|
Wang LY, Shiozaki K. The fission yeast stress MAPK cascade regulates the pmp3+ gene that encodes a highly conserved plasma membrane protein. FEBS Lett 2006; 580:2409-13. [PMID: 16603158 DOI: 10.1016/j.febslet.2006.03.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 03/14/2006] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
In eukaryotic organisms, stress-activated mitogen-activated protein kinases (MAPK) play crucial roles in transmitting environmental signals to regulate gene expression for cellular stress adaptation. Here we report that, in the fission yeast Schizosaccharomyces pombe, Spc1/Sty1 MAPK and the Atf1 transcription factor regulate the stress-induced expression of Pmp3, a ubiquitous small membrane protein implicated in the modulation of the plasma membrane potential. The pmp3 null mutant, as well as the spc1 and atf1 mutants, is hypersensitive to the cationic antibiotic hygromycin B. Transcriptional regulation of the Pmp3-like genes by the stress-activated MAPK may also be conserved in other eukaryotes, including plants.
Collapse
Affiliation(s)
- Ling-yu Wang
- Section of Microbiology, College of Biological Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
16
|
Current awareness on yeast. Yeast 2005; 22:1249-56. [PMID: 16320446 DOI: 10.1002/yea.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Thornton G, Wilkinson CRM, Toone WM, Jones N. A novel pathway determining multidrug sensitivity in Schizosaccharomyces pombe. Genes Cells 2005; 10:941-51. [PMID: 16164595 DOI: 10.1111/j.1365-2443.2005.00891.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, we show that a mutation isolated during a screen for determinants of chemosensitivity in S. pombe results in loss of function of a previously uncharacterized protein kinase now named Hal4. Hal4 shares sequence homology to Hal4 and Hal5 in S. cerevisiae, and previous evidence indicates that these kinases positively regulate the major potassium transporter Trk1,2 and thereby maintain the plasma membrane potential. Disruption of this ion homeostasis pathway results in a hyperpolarized membrane and a concomitant increased sensitivity to cations. We demonstrate that a mutation in hal4+ results in hyperpolarization of the plasma membrane. In addition to the original selection agent, the hal4-1 mutant is sensitive to a variety of chemotherapeutic agents and stress-inducing compounds. Furthermore, this wider chemosensitive phenotype is also displayed by corresponding mutants in S. cerevisiae, and in a trk1deltatrk2delta double deletion mutant in S. pombe. We propose that this pathway and its role in regulating the plasma membrane potential may act as a pleiotropic determinant of sensitivity to chemotherapeutic agents.
Collapse
Affiliation(s)
- Gemma Thornton
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | | | | | | |
Collapse
|