1
|
Chitwood DG, Wang Q, Klaubert SR, Green K, Wu CH, Harcum SW, Saski CA. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions. Sci Rep 2023; 13:1200. [PMID: 36681715 PMCID: PMC9862248 DOI: 10.1038/s41598-023-27962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr®250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes.
Collapse
Affiliation(s)
- Dylan G Chitwood
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Qinghua Wang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Kiana Green
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
2
|
Ilić M, Zaalberg IC, Raaijmakers JA, Medema RH. Life of double minutes: generation, maintenance, and elimination. Chromosoma 2022; 131:107-125. [PMID: 35487993 PMCID: PMC9470669 DOI: 10.1007/s00412-022-00773-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
Abstract
Advances in genome sequencing have revealed a type of extrachromosomal DNA, historically named double minutes (also referred to as ecDNA), to be common in a wide range of cancer types, but not in healthy tissues. These cancer-associated circular DNA molecules contain one or a few genes that are amplified when double minutes accumulate. Double minutes harbor oncogenes or drug resistance genes that contribute to tumor aggressiveness through copy number amplification in combination with favorable epigenetic properties. Unequal distribution of double minutes over daughter cells contributes to intratumoral heterogeneity, thereby increasing tumor adaptability. In this review, we discuss various models delineating the mechanism of generation of double minutes. Furthermore, we highlight how double minutes are maintained, how they evolve, and discuss possible mechanisms driving their elimination.
Collapse
Affiliation(s)
- Mila Ilić
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Irene C Zaalberg
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg, 100, 3584, CG Utrecht, The Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Turilova VI, Goryachaya TS, Yakovleva TK. Chinese hamster ovary cell line DXB-11: chromosomal instability and karyotype heterogeneity. Mol Cytogenet 2021; 14:11. [PMID: 33596973 PMCID: PMC7888135 DOI: 10.1186/s13039-021-00528-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chinese hamster ovary cell lines, also known as CHO cells, represent a large family of related, yet quite different, cell lines which are metabolic mutants derived from the original cell line, CHO-ori. Dihydrofolate reductase-deficient DXB-11 cell line, one of the first CHO derivatives, serves as the host cell line for the production of therapeutic proteins. It is generally assumed that DXB-11 is identical to DUKX or CHO-DUK cell lines, but, to our knowledge, DXB-11 karyotype has not been described yet. RESULTS Using differential staining approaches (G-, C-banding and Ag-staining), we presented DXB-11 karyotype and revealed that karyotypes of DXB-11 and CHO-DUK cells have a number of differences. Although the number of chromosomes is equal-20 in each cell line-DXB-11 has normal chromosomes of the 1st and 5th pairs as well as an intact chromosome 8. Besides, in DXB-11 line, chromosome der(Z9) includes the material of chromosomes X and 6, whereas in CHO-DUK it results from the translocation of chromosomes 1 and 6. Ag-positive nucleolar organizer regions were revealed in the long arms of chromosome del(4)(q11q12) and both chromosome 5 homologues, as well as in the short arms of chromosomes 8 and add(8)(q11). Only 19 from 112 (16.96%) DXB-11 cells display identical chromosome complement accepted as the main structural variant of karyotype. The karyotype heterogeneity of all the rest of cells (93, 83.04%) occurs due to clonal and nonclonal additional structural rearrangements of chromosomes. Estimation of the frequency of chromosome involvement in these rearrangements allowed us to reveal that chromosomes 9, der(X)t(X;3;4), del(2)(p21p23), del(2)(q11q22) /Z2, der(4) /Z7, add(6)(p11) /Z8 are the most stable, whereas mar2, probably der(10), is the most unstable chromosome. A comparative analysis of our own and literary data on CHO karyotypes allowed to designate conservative chromosomes, both normal and rearranged, that remain unchanged in different CHO cell lines, as well as variable chromosomes that determine the individuality of karyotypes of CHO derivatives. CONCLUSION DXB-11and CHO-DUK cell lines differ in karyotypes. The revealed differential instability of DXB-11 chromosomes is likely not incidental and results in karyotype heterogeneity of cell population.
Collapse
Affiliation(s)
- Victoria I Turilova
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky ave., 4, St Petersburg, Russia, 194064.
| | - Tatyana S Goryachaya
- Centre of Cell Technologies, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky ave., 4, St Petersburg, Russia, 194064
| | - Tatiana K Yakovleva
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky ave., 4, St Petersburg, Russia, 194064
| |
Collapse
|
4
|
FISH-Based Analysis of Clonally Derived CHO Cell Populations Reveals High Probability for Transgene Integration in a Terminal Region of Chromosome 1 (1q13). PLoS One 2016; 11:e0163893. [PMID: 27684722 PMCID: PMC5042417 DOI: 10.1371/journal.pone.0163893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 09/18/2016] [Indexed: 12/27/2022] Open
Abstract
A basic goal in the development of recombinant proteins is the generation of cell lines that express the desired protein stably over many generations. Here, we constructed engineered Chinese hamster ovary cell lines (CHO-S) with a pCHO-hVR1 vector that carried an extracellular domain of a VEGF receptor (VR) fusion gene. Forty-five clones with high hVR1 expression were selected for karyotype analysis. Using fluorescence in situ hybridization (FISH) and G-banding, we found that pCHO-hVR1 was integrated into three chromosomes, including chromosomes 1, Z3 and Z4. Four clones were selected to evaluate their productivity under non-fed, non-optimized shake flask conditions. The results showed that clones 1 and 2 with integration sites on chromosome 1 revealed high levels of hVR1 products (shake flask of approximately 800 mg/L), whereas clones 3 and 4 with integration sites on chromosomes Z3 or Z4 had lower levels of hVR1 products. Furthermore, clones 1 and 2 maintained their productivity stabilities over a continuous period of 80 generations, and clones 3 and 4 showed significant declines in their productivities in the presence of selection pressure. Finally, pCHO-hVR1 localized to the same region at chromosome 1q13, the telomere region of normal chromosome 1. In this study, these results demonstrate that the integration of exogenous hVR1 gene on chromosome 1, band q13, may create a high protein-producing CHO-S cell line, suggesting that chromosome 1q13 may contain a useful target site for the high expression of exogenous protein. This study shows that the integration into the target site of chromosome 1q13 may avoid the problems of random integration that cause gene silencing or also overcome position effects, facilitating exogenous gene expression in CHO-S cells.
Collapse
|
5
|
Dahodwala H, Nowey M, Mitina T, Sharfstein ST. Effects of clonal variation on growth, metabolism, and productivity in response to trophic factor stimulation: a study of Chinese hamster ovary cells producing a recombinant monoclonal antibody. Cytotechnology 2012; 64:27-41. [PMID: 21822681 PMCID: PMC3261449 DOI: 10.1007/s10616-011-9388-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022] Open
Abstract
The growth, metabolism, and productivity of five Chinese hamster ovary (CHO) clones were explored in response to stimulation with insulin (5 mg/L) and LONG(®)R(3)IGF-I (20 μg/L or 100 μg/L). All five clones were derived from the same parental CHO cell line (DG44) and produced the same recombinant monoclonal antibody, with varying specific productivities. There was no uniform response among the clones to stimulation with the different trophic factors. One of the high productivity clones (clone D) exhibited significantly better growth in response to LONG(®)R(3)IGF-I; whereas the other clones showed equivalent or slightly better growth in the presence of insulin. Three out of the five clones had higher specific productivities in the presence of insulin (although not statistically significant); one was invariant, and the final clone exhibited slightly higher specific productivity in the presence of LONG(®)R(3)IGF-I. Total product titers exhibited moderate variation between culture conditions, again with neither trophic factor being clearly superior. Overall product titers were affected by variations in both integrated viable cell density and specific productivity. Nutrient uptake and metabolite generation patterns varied strongly between clones and much less with culture conditions. These results point to the need for careful clonal analysis when selecting clones, particularly for platform processes where media and culture conditions are predetermined.
Collapse
Affiliation(s)
- Hussain Dahodwala
- Biochemistry and Biophysics Program, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | | | | | | |
Collapse
|
6
|
Yoshikawa T, Nakanishi F, Itami S, Kameoka D, Omasa T, Katakura Y, Kishimoto M, Suga K. Evaluation of stable and highly productive gene amplified CHO cell line based on the location of amplified genes. Cytotechnology 2011; 33:37-46. [PMID: 19002809 DOI: 10.1023/a:1008111328771] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to establish an easy and quick construction method for obtaining a stable and highly productive gene-amplified recombinant Chinese Hamster Ovary (CHO) cell line, variouskinds of stepwise methotrexate (MTX) selection were carriedout. The specific growth and production rates of the cell were compared with each other, and the distribution of the amplified gene location was determined using fluorescence in situ hybridization (FISH). The specific growth andproduction rates of the cell pool reached the highest levels under the selection condition in which the stepwise increase in the MTX concentration was most gradual; about 82% of amplified genes were observed near the telomeric region. During long-term cultivation without MTX, the percentage ofamplified genes near the telomeric region hardly changed, butthat of amplified genes at other regions decreased. Based on these results, stable and highly productive cell pools could be easily and quickly constructed and amplified and gradual stepwise increase of the MTX concentration. In addition, the FISH technique was powerful tool to evaluate highly productiveand stable gene-amplified cells based on the chromosomal location of the amplified gene.
Collapse
Affiliation(s)
- T Yoshikawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee MS, Lee GM. Effect of hypoosmotic pressure on cell growth and antibody production in recombinant Chinese hamster ovary cell culture. Cytotechnology 2011; 36:61-9. [PMID: 19003316 DOI: 10.1023/a:1014032701800] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To determine the response of recombinant Chinese hamster ovary (rCHO) cells subjected to hypoosmotic pressure, rCHO cells (CS13*-1.0) producing a chimeric antibody were cultivated in the hypoosmolar medium resulting from NaCl subtraction. At hypoosmotic pressure, CS13*-1.0 cells displayed decreased specific growth rate (mu) and increased specific antibody productivity (q (Ab)).When the medium osmolality was decreased from 300 mOsm kg(-1)(physiological osmolality) to 150 mOsm kg(-1), mu was decreased by 68% and q (Ab) was increased by 128%. To understand the mechanism of enhanced q (Ab) resulting from hypoosmotic pressure, cellular responses of cells in the exponential phase of growth were observed at the transcription level. Total cytoplasmic RNA content per cell at 150 mOsm kg(-1) was increased by 140%, compared with that at 300 mOsm kg(-1). On a per mug RNA basis, immunoglobulin (Ig) mRNA levels at 150 mOsm kg(-1) were comparable to those at 300 mOsm kg(-1), indicating that hypoosmotic pressure did not lead to the preferential transcription of Ig mRNAs. Taken together, the data obtained here suggest that the increase in total RNA pool is primarily responsible for the enhanced q (Ab) of CS13*-1.0 cells subjected to hypoosmotic pressure.
Collapse
Affiliation(s)
- M S Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong-Gu, Taejon, 305-701, Korea
| | | |
Collapse
|
8
|
Generation and characterization of chimeric antibodies against NS3, NS4, NS5, and core antigens of hepatitis C virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1040-7. [PMID: 20427624 DOI: 10.1128/cvi.00068-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse-human chimeric antibodies (cAbs) against hepatitis C virus (HCV) core, NS3 (nonstructural), NS4, and NS5 antigens were developed as quality control (QC) reagents to replace the use of human sera/plasma for Abbott HCV immunoassays. The cAb retains the mouse monoclonal antibody (MAb) specificity and affinity but still reacts in the existing HCV assay format, which measures human anti-HCV immunoglobulin. Mouse heavy-chain (V(H)) and light-chain (V(L)) variable regions of anti-HCV core, NS3, NS4, and NS5 antigens were PCR amplified from hybridoma lines and then cloned with human IgG1 heavy-chain (C(H)) and light-chain (C(L)) constant regions, respectively. A single mammalian expression plasmid containing both heavy-chain and light-chain immunoglobulin genes was constructed and transfected into dihydrofolate reductase (DHFR)-deficient Chinese hamster ovary (CHO) cells. The transfected CHO cells were selected using hypoxanthine- and thymidine-free medium and screened by an enzyme immunoassay (EIA). The clone secreting the highest level of antibody was isolated from the CHO transfectants and further subcloned. Each cAb-expressing CHO cell line was weaned into serum-free medium, and the cAb was purified by protein A affinity chromatography. The levels of cAb production for the various CHO cell lines varied from 10 to 20 mg/liter. Purified anti-HCV cAbs were tested with Abbott HCV immunoassays and showed reactivity. Moreover, yeast surface display combined with alanine-scanning mutagenesis was used to map the epitope at the individual amino acid level. Our results suggest that these HCV cAbs are ideal controls, calibrators, and/or QC reagents for HCV assay standardization.
Collapse
|
9
|
Lattenmayer C, Loeschel M, Steinfellner W, Trummer E, Mueller D, Schriebl K, Vorauer-Uhl K, Katinger H, Kunert R. Identification of transgene integration loci of different highly expressing recombinant CHO cell lines by FISH. Cytotechnology 2006; 51:171-82. [PMID: 19002887 DOI: 10.1007/s10616-006-9029-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/04/2006] [Indexed: 11/26/2022] Open
Abstract
Recombinant CHO cell lines have integrated the expression vectors in various parts of the genome leading to different levels of gene amplification, productivity and stability of protein expression. Identification of insertion sites where gene amplification is possible and the transcription rate is high may lead to systems of site-directed integration and will significantly reduce the process for the generation of stably and highly expressing recombinant cell lines. We have investigated a broad range of recombinant cell lines by FISH analysis and Giemsa-Trypsin banding and analysed their integration loci with regard to the extent of methotrexate pressure, transfection methods, promoters and protein productivities. To summarise, we found that the majority of our high producing recombinant CHO cell lines had integrated the expression construct on a larger chromosome of the genome. Furthermore, except from two cell lines, the exogene was integrated at a single site. The dhfr selection marker was co-localised to the target gene.
Collapse
Affiliation(s)
- Christine Lattenmayer
- Austrian Center of Biopharmaceutical Technology, Muthgasse 18, 1190, Vienna, Austria,
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Selvarajah S, Yoshimoto M, Park PC, Maire G, Paderova J, Bayani J, Lim G, Al-Romaih K, Squire JA, Zielenska M. The breakage-fusion-bridge (BFB) cycle as a mechanism for generating genetic heterogeneity in osteosarcoma. Chromosoma 2006; 115:459-67. [PMID: 16897100 DOI: 10.1007/s00412-006-0074-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 06/08/2006] [Accepted: 06/09/2006] [Indexed: 01/04/2023]
Abstract
Osteosarcoma (OS) is characterized by chromosomal instability and high copy number gene amplification. The breakage-fusion-bridge (BFB) cycle is a well-established mechanism of genome instability in tumors and in vitro models used to study the origins of complex chromosomal rearrangements and cancer genome amplification. To determine whether the BFB cycle could be increasing the de novo rate of formation of cytogenetic aberrations in OS, the frequency of anaphase bridge configurations and dicentric chromosomes in four OS cell lines was quantified. An increased level of anaphase bridges and dicentrics was observed in all the OS cell lines. There was also a strong association between the frequencies of anaphase bridges, dicentrics, centrosomal anomalies, and multipolar mitotic figures in all the OS cell lines, indicating a possible link in the mechanisms that led to the structural and numerical instabilities observed in OS. In summary, this study has provided strong support for the role of the BFB cycle in generating the extensive structural chromosome aberrations, as well as cell-to-cell cytogenetic variation observed in OS, thus conferring the genetic diversity for OS tumor progression.
Collapse
Affiliation(s)
- Shamini Selvarajah
- Department of Pathology and Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Oh SH, Miyazaki M, Namba M. Development of a serum-free medium for a human immortalized fibroblast cell line (KMST-6/TNF) producing tumor necrosis factor-alpha (TNF-alpha) and growth inhibitory effects of its conditioned medium on malignant cells in culture. In Vitro Cell Dev Biol Anim 2001; 37:169-71. [PMID: 11370808 DOI: 10.1290/1071-2690(2001)037<0169:doasfm>2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Kim EJ, Kim NS, Lee GM. Development of a serum-free medium for dihydrofolate reductase-deficient Chinese hamster ovary cells (DG44) using a statistical design: beneficial effect of weaning of cells. In Vitro Cell Dev Biol Anim 1999; 35:178-82. [PMID: 10478796 DOI: 10.1007/s11626-999-0024-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To develop serum-free (SF) medium for dihydrofolate reductase-deficient Chinese hamster ovary cells (DG44), a statistical optimization approach based on a Plackett-Burman design was adopted. DG44 cells which were normally maintained in 10 serum medium were gradually weaned to 0.5% serum medium to increase the probability of successful growth in SF medium. A basal medium was prepared by supplementing Dulbecco's modified Eagle's medium and Ham's nutrient mixture F12 with hypoxanthine (10 mg/l) and thymidine (10 mg/l). Twenty-eight different supplements were selected as variables on the basis of their growth-promoting abilities. From statistical analysis, leucine, tryptophan, lysine, proline, histidine, hydrocortisone, ethanolamine, and phosphatidylcholine were identified as important components showing positive effects on cell growth. A new SF medium (SF-DG44) was formulated by supplementing the basal medium with these components. When the weaned cells were inoculated at 1.0 x 10(5) cells/ml, a maximum viable cell concentration of 6.4 x 10(3)) cells/ ml was achieved in SF-DG44 medium. In contrast, when the unweaned cells were used, a concentration of only 4.1 x 10(5) cells/ml was reached under the same culture conditions, indicating that weaning of cells improves cell growth in SF medium. In summary, we found that development of a novel SF medium for DG44 cells was facilitated using a Plackett-Burman design technique and weaning of cells.
Collapse
Affiliation(s)
- E J Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon
| | | | | |
Collapse
|
13
|
Kim EJ, Kim NS, Lee GM. Development of a serum-free medium for the production of humanized antibody from Chinese hamster ovary cells using a statistical design. In Vitro Cell Dev Biol Anim 1998; 34:757-61. [PMID: 9870524 DOI: 10.1007/s11626-998-0029-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To develop serum-free (SF) media for the production of humanized antibody from recombinant Chinese hamster ovary (rCHO) cells, a statistical optimization approach based on a Plackett-Burman design was adopted. A basal medium was prepared by supplementing alpha-minimal essential medium (alpha-MEM) with Fe(NO3)3.9H2O, CuCl2, ZnSO4.7H2O, and Na2SeO3 which are generally contained in SF medium formulations. Insulin, transferrin, and ethanolamine were also supplemented to the basal medium to determine their optimal concentrations. From this statistical analysis, serine, phenylalanine, and tyrosine were identified as important determinants for cell growth. Also, putrescine, linoleic acid, and hydrocortisone were shown to be important for both cell growth and antibody production. The SF medium was formulated by supplementing the basal medium with components showing positive effects on cell growth and/or antibody production. Cell growth and antibody production in this SF medium were comparable to those in alpha-MEM supplemented with 5% dialyzed fetal bovine serum. Taken together, the results obtained here show that a Plackett-Burman design facilitates the development of SF media for rCHO cells aimed at producing a humanized antibody.
Collapse
Affiliation(s)
- E J Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon
| | | | | |
Collapse
|
14
|
Brinton BT, Heintz NH. Plasmid amplification-promoting sequences from the origin region of Chinese hamster dihydrofolate reductase gene do not promote position-independent chromosomal gene amplification. Chromosoma 1995; 104:143-51. [PMID: 8585992 DOI: 10.1007/bf00347697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Initiation of DNA synthesis occurs with high frequency at oribeta, a region of DNA from the amplified dihydrofolate reductase (DHFR) domain of Chinese hamster CHOC 400 cells that contains an origin of bidirectional DNA replication (OBR). Recently, sequences from DHFR oribeta/OBR were shown to stimulate amplification of cis-linked plasmid DNA when transfected into murine cells. To test the role of oribeta/OBR in chromosomal gene amplification, linearized plasmids containing these sequences linked to a DHFR expression cassette were introduced into DHFR- CHO DUKX cells. After selection for expression of DHFR, cell lines that contain a single integrated, unrearranged copy of the linearized expression plasmid were identified and exposed to low levels of the folate analog, methotrexate (MTX). Of seven clonal cell lines containing the vector control, three gained resistance to MTX by 5 to 15-fold amplification of the integrated marker gene. Of 16 clonal cell lines that contained oribeta/OBR linked to a DHFR mini-gene, only 6 gained resistance to MTX by gene amplification. Hence, sequences from the DHFR origin region that stimulate plasmid DNA amplification do not promote amplification of an integrated marker gene in all chromosomal contexts. In addition to showing that chromosomal position has a strong influence on the frequency of gene amplification, these studies suggest that the mechanism that mediates the experiment of episomal plasmid DNA does not contribute to the early steps of chromosomal gene amplification.
Collapse
Affiliation(s)
- B T Brinton
- Department of Pathology and Program in Cell and Molecular Biology, University of Vermont College of Medicine, Soule Medical Alumni Building, Burlington, VT 05405, USA
| | | |
Collapse
|
15
|
Chromosome breakage at a major fragile site associated with P-glycoprotein gene amplification in multidrug-resistant CHO cells. Mol Cell Biol 1994. [PMID: 7913517 DOI: 10.1128/mcb.14.8.5202] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies of several drug-resistant Chinese hamster cell lines suggested that a breakage-fusion-bridge mechanism is frequently involved in the amplification of drug resistance genes. These observations underscore the importance of chromosome breakage in the initiation of DNA amplification in mammalian cells. However, the mechanism of this breakage is unknown. Here, we propose that the site of chromosome breakage consistent with the initial event of P-glycoprotein (P-gp) gene amplification via the breakage-fusion-bridge cycle in three independently established multidrug-resistant CHO cells was located at 1q31. This site is a major chromosome fragile site that can be induced by methotrexate and aphidicolin treatments. Pretreatments of CHO cells with methotrexate or aphidicolin enhanced the frequencies of resistance to vinca alkaloid and amplification of the P-gp gene. These observations suggest that chromosome fragile sites play a pivotal role in DNA amplification in mammalian cells. Our data are also consistent with the hypothesis that gene amplification can be initiated by stress-induced chromosome breakage that is independent of modes of action of cytotoxic agents. Drug-resistant variants may arise by their growth advantage due to overproduction of cellular target molecules via gene amplification.
Collapse
|
16
|
Kuo MT, Vyas RC, Jiang LX, Hittelman WN. Chromosome breakage at a major fragile site associated with P-glycoprotein gene amplification in multidrug-resistant CHO cells. Mol Cell Biol 1994; 14:5202-11. [PMID: 7913517 PMCID: PMC359039 DOI: 10.1128/mcb.14.8.5202-5211.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent studies of several drug-resistant Chinese hamster cell lines suggested that a breakage-fusion-bridge mechanism is frequently involved in the amplification of drug resistance genes. These observations underscore the importance of chromosome breakage in the initiation of DNA amplification in mammalian cells. However, the mechanism of this breakage is unknown. Here, we propose that the site of chromosome breakage consistent with the initial event of P-glycoprotein (P-gp) gene amplification via the breakage-fusion-bridge cycle in three independently established multidrug-resistant CHO cells was located at 1q31. This site is a major chromosome fragile site that can be induced by methotrexate and aphidicolin treatments. Pretreatments of CHO cells with methotrexate or aphidicolin enhanced the frequencies of resistance to vinca alkaloid and amplification of the P-gp gene. These observations suggest that chromosome fragile sites play a pivotal role in DNA amplification in mammalian cells. Our data are also consistent with the hypothesis that gene amplification can be initiated by stress-induced chromosome breakage that is independent of modes of action of cytotoxic agents. Drug-resistant variants may arise by their growth advantage due to overproduction of cellular target molecules via gene amplification.
Collapse
Affiliation(s)
- M T Kuo
- Department of Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | |
Collapse
|
17
|
Abstract
DNA damage induced by ionizing radiation can result in gene mutation, gene amplification, chromosome rearrangements, cellular transformation, and cell death. Although many of these changes may be induced directly by the radiation, there is accumulating evidence for delayed genomic instability following X-ray exposure. We have investigated this phenomenon by studying delayed chromosomal instability in a hamster-human hybrid cell line by means of fluorescence in situ hybridization. We examined populations of metaphase cells several generations after expanding single-cell colonies that had survived 5 or 10 Gy of X rays. Delayed chromosomal instability, manifested as multiple rearrangements of human chromosome 4 in a background of hamster chromosomes, was observed in 29% of colonies surviving 5 Gy and in 62% of colonies surviving 10 Gy. A correlation of delayed chromosomal instability with delayed reproductive cell death, manifested as reduced plating efficiency in surviving clones, suggests a role for chromosome rearrangements in cytotoxicity. There were small differences in chromosome destabilization and plating efficiencies between cells irradiated with 5 or 10 Gy of X rays after a previous exposure to 10 Gy and cells irradiated only once. Cell clones showing delayed chromosomal instability had normal frequencies of sister chromatid exchange formation, indicating that at this cytogenetic endpoint the chromosomal instability was not apparent. The types of chromosomal rearrangements observed suggest that chromosome fusion, followed by bridge breakage and refusion, contributes to the observed delayed chromosomal instability.
Collapse
|
18
|
Abstract
DNA damage induced by ionizing radiation can result in gene mutation, gene amplification, chromosome rearrangements, cellular transformation, and cell death. Although many of these changes may be induced directly by the radiation, there is accumulating evidence for delayed genomic instability following X-ray exposure. We have investigated this phenomenon by studying delayed chromosomal instability in a hamster-human hybrid cell line by means of fluorescence in situ hybridization. We examined populations of metaphase cells several generations after expanding single-cell colonies that had survived 5 or 10 Gy of X rays. Delayed chromosomal instability, manifested as multiple rearrangements of human chromosome 4 in a background of hamster chromosomes, was observed in 29% of colonies surviving 5 Gy and in 62% of colonies surviving 10 Gy. A correlation of delayed chromosomal instability with delayed reproductive cell death, manifested as reduced plating efficiency in surviving clones, suggests a role for chromosome rearrangements in cytotoxicity. There were small differences in chromosome destabilization and plating efficiencies between cells irradiated with 5 or 10 Gy of X rays after a previous exposure to 10 Gy and cells irradiated only once. Cell clones showing delayed chromosomal instability had normal frequencies of sister chromatid exchange formation, indicating that at this cytogenetic endpoint the chromosomal instability was not apparent. The types of chromosomal rearrangements observed suggest that chromosome fusion, followed by bridge breakage and refusion, contributes to the observed delayed chromosomal instability.
Collapse
Affiliation(s)
- B A Marder
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143-0750
| | | |
Collapse
|
19
|
Caddle MS, Calos MP. Analysis of the autonomous replication behavior in human cells of the dihydrofolate reductase putative chromosomal origin of replication. Nucleic Acids Res 1992; 20:5971-8. [PMID: 1461730 PMCID: PMC334462 DOI: 10.1093/nar/20.22.5971] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chinese hamster genomic DNA sequences from the region downstream of the dihydrofolate reductase (DHFR) gene reported to contain a chromosomal origin of bidirectional DNA replication (OBR-1) were tested for their ability to support autonomous DNA replication in human cells. A 13.3 kilobase fragment containing OBR-1 and surrounding sequences supported replication in short-term and long-term replication assays, while a 4.5 kb fragment containing OBR-1 did not support substantial replication in either assay. These results are consistent with our previous observations that large fragments of human DNA support replication, while smaller fragments are less efficient. The replication activities of plasmids containing OBR-1 were no greater than those of randomly chosen human fragments of similar size. Furthermore, two-dimensional gel analysis of plasmids containing OBR-1 indicated that initiation does not preferentially occur within the OBR-1 region. These results suggest that in the context of autonomous replication, the DHFR sequences tested do not contain genetic information specifying site-specific replication initiation. Possible implications of these results for chromosomal replication are discussed.
Collapse
Affiliation(s)
- M S Caddle
- Department of Genetics, Stanford University School of Medicine, CA 94305
| | | |
Collapse
|
20
|
Abstract
Acentric extrachromosomal elements, such as submicroscopic autonomously replicating circular molecules (episomes) and double minute chromosomes, are common early, and in some cases initial, intermediates of gene amplification in many drug-resistant and tumor cell lines. In order to gain a more complete understanding of the amplification process, we investigated the molecular mechanisms by which such extrachromosomal elements are generated and we traced the fate of these amplification intermediates over time. The model system consists of a Chinese hamster cell line (L46) created by gene transfer in which the initial amplification product was shown previously to be an unstable extrachromosomal element containing an inverted duplication spanning more than 160 kilobases (J. C. Ruiz and G. M. Wahl, Mol. Cell. Biol. 8:4302-4313, 1988). In this study, we show that these molecules were formed by a process involving chromosomal deletion. Fluorescence in situ hybridization was performed at multiple time points on cells with amplified sequences. These studies reveal that the extrachromosomal molecules rapidly integrate into chromosomes, often near or at telomeres, and once integrated, the amplified sequences are themselves unstable. These data provide a molecular and cytogenetic chronology for gene amplification in this model system; an early event involves deletion to generate extrachromosomal elements, and subsequent integration of these elements precipitates a cascade of chromosome instability.
Collapse
|
21
|
Abstract
Acentric extrachromosomal elements, such as submicroscopic autonomously replicating circular molecules (episomes) and double minute chromosomes, are common early, and in some cases initial, intermediates of gene amplification in many drug-resistant and tumor cell lines. In order to gain a more complete understanding of the amplification process, we investigated the molecular mechanisms by which such extrachromosomal elements are generated and we traced the fate of these amplification intermediates over time. The model system consists of a Chinese hamster cell line (L46) created by gene transfer in which the initial amplification product was shown previously to be an unstable extrachromosomal element containing an inverted duplication spanning more than 160 kilobases (J. C. Ruiz and G. M. Wahl, Mol. Cell. Biol. 8:4302-4313, 1988). In this study, we show that these molecules were formed by a process involving chromosomal deletion. Fluorescence in situ hybridization was performed at multiple time points on cells with amplified sequences. These studies reveal that the extrachromosomal molecules rapidly integrate into chromosomes, often near or at telomeres, and once integrated, the amplified sequences are themselves unstable. These data provide a molecular and cytogenetic chronology for gene amplification in this model system; an early event involves deletion to generate extrachromosomal elements, and subsequent integration of these elements precipitates a cascade of chromosome instability.
Collapse
Affiliation(s)
- J C Ruiz
- Gene Expression Laboratory, Salk Institute, La Jolla, California 92037
| | | |
Collapse
|
22
|
Excision of N-myc from chromosome 2 in human neuroblastoma cells containing amplified N-myc sequences. Mol Cell Biol 1990. [PMID: 2405257 DOI: 10.1128/mcb.10.2.823] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amplification of one of three growth-stimulating myc genes is a common method by which many tumor types gain a proliferative advantage. In metastatic human neuroblastoma, the amplification of the N-myc locus, located on chromosome 2, is a dominant feature of this usually fatal pediatric cancer. Of the many models proposed to explain this amplification, all incorporate as the initial step either disproportionate overreplication of the chromosomal site or recombination across a loop structure. The original locus is retained within the chromosome in the overreplication models but is excised in the recombination models. To test these models, we have used somatic cell hybrids to separate and analyze the chromosomes 2 from a neuroblastoma cell line containing in vivo amplified N-myc. Our results demonstrate that N-myc is excised from one of the chromosomes, suggesting that deletion is a requisite part of gene amplification in a naturally occurring system.
Collapse
|
23
|
Abstract
The chromosomal locations, amounts, and level of expression of transfected, amplified c-myc and dihydrofolate reductase sequences were measured in cells cultured in the presence and absence of methotrexate. These studies show that the location and amount of transfected sequences, as well as the level of expression, were more variable when the cells were cultured in methotrexate.
Collapse
|
24
|
Excision of N-myc from chromosome 2 in human neuroblastoma cells containing amplified N-myc sequences. Mol Cell Biol 1990; 10:823-9. [PMID: 2405257 PMCID: PMC360884 DOI: 10.1128/mcb.10.2.823-829.1990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Amplification of one of three growth-stimulating myc genes is a common method by which many tumor types gain a proliferative advantage. In metastatic human neuroblastoma, the amplification of the N-myc locus, located on chromosome 2, is a dominant feature of this usually fatal pediatric cancer. Of the many models proposed to explain this amplification, all incorporate as the initial step either disproportionate overreplication of the chromosomal site or recombination across a loop structure. The original locus is retained within the chromosome in the overreplication models but is excised in the recombination models. To test these models, we have used somatic cell hybrids to separate and analyze the chromosomes 2 from a neuroblastoma cell line containing in vivo amplified N-myc. Our results demonstrate that N-myc is excised from one of the chromosomes, suggesting that deletion is a requisite part of gene amplification in a naturally occurring system.
Collapse
|
25
|
Abstract
The chromosomal locations, amounts, and level of expression of transfected, amplified c-myc and dihydrofolate reductase sequences were measured in cells cultured in the presence and absence of methotrexate. These studies show that the location and amount of transfected sequences, as well as the level of expression, were more variable when the cells were cultured in methotrexate.
Collapse
|
26
|
Chromosome instability associated with human alphoid DNA transfected into the Chinese hamster genome. Mol Cell Biol 1989. [PMID: 3221860 DOI: 10.1128/mcb.8.9.3611] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive DNA sequences have been implicated in the mediation of DNA rearrangement in mammalian cells. We have tested this hypothesis by using a dihydrofolate reductase (DHFR) expression vector into which candidate sequences were inserted. DHFR- Chinese hamster ovary (CHO) cells were transfected with this vector, the amplification of which was then selected for by methotrexate (MTX) exposure. Cells transfected with the vector alone (and resistant to 0.02 or 1.0 microM MTX) or with a poly(dG-dT) insert (and resistant to 0.05 or 1.0 microM MTX) showed little change in chromosome aberrations or sister chromatid exchange frequencies. In contrast, transfection of DHFR- CHO cells with a vector containing either of two distinct 0.34-kilobase human alphoid DNA segments (and selection to 0.05 to 10.0 microM MTX) showed an approximately 50% increase in chromosome number and marked changes in chromosome structure, including one or two dicentric or ring forms per cell. The sister chromatid exchange frequency also increased, to more than double the frequency of that in cells transfected without insert or those containing poly(dG-dT). In situ hybridization of one 0.34-kilobase insert in some cells suggested clustering of homologous sequences in structurally abnormal recipient CHO cell chromosomes. The approach described provides an introduction to a unique means for a coordinate molecular and cytological study of dynamic changes in chromosome structure.
Collapse
|
27
|
Formation of an inverted duplication can be an initial step in gene amplification. Mol Cell Biol 1988. [PMID: 3185551 DOI: 10.1128/mcb.8.10.4302] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a gene transfer approach to facilitate the identification and isolation of chromosomal regions which are prone to high-frequency gene amplification. Such regions are identified by assaying for transformants which show high-frequency resistance to PALA and/or methotrexate by amplification of a vector containing the genes which encode the enzyme targets of these antiproliferative agents. We identified 2 of 47 transformants which displayed high-frequency amplification of the transfected genes, and in this report we describe the analysis of one of them (L46). Molecular analysis of the integration site in transformant L46 revealed that the donated genes were at the center of an inverted duplication which spanned more than 70 kilobase pairs and consisted largely of host DNA. The data suggest that integration of the transfected sequences generates a submicroscopic molecule containing the inverted duplication and at least 750 kilobases of additional sequences. The donated sequences and the host sequences were readily amplified and lost in exponentially growing cultures in the absence of drug selection, which suggests that the extrachromosomal elements are acentric. In contrast to the instability of this region following gene insertion, the preinsertion site was maintained at single copy level under growth conditions which produced copy number heterogeneity in L46. The implications of our results for mechanisms of genetic instability and mammalian gene amplification are discussed.
Collapse
|
28
|
Abstract
We have developed a gene transfer approach to facilitate the identification and isolation of chromosomal regions which are prone to high-frequency gene amplification. Such regions are identified by assaying for transformants which show high-frequency resistance to PALA and/or methotrexate by amplification of a vector containing the genes which encode the enzyme targets of these antiproliferative agents. We identified 2 of 47 transformants which displayed high-frequency amplification of the transfected genes, and in this report we describe the analysis of one of them (L46). Molecular analysis of the integration site in transformant L46 revealed that the donated genes were at the center of an inverted duplication which spanned more than 70 kilobase pairs and consisted largely of host DNA. The data suggest that integration of the transfected sequences generates a submicroscopic molecule containing the inverted duplication and at least 750 kilobases of additional sequences. The donated sequences and the host sequences were readily amplified and lost in exponentially growing cultures in the absence of drug selection, which suggests that the extrachromosomal elements are acentric. In contrast to the instability of this region following gene insertion, the preinsertion site was maintained at single copy level under growth conditions which produced copy number heterogeneity in L46. The implications of our results for mechanisms of genetic instability and mammalian gene amplification are discussed.
Collapse
Affiliation(s)
- J C Ruiz
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California 92138
| | | |
Collapse
|
29
|
Heartlein MW, Knoll JH, Latt SA. Chromosome instability associated with human alphoid DNA transfected into the Chinese hamster genome. Mol Cell Biol 1988; 8:3611-8. [PMID: 3221860 PMCID: PMC365416 DOI: 10.1128/mcb.8.9.3611-3618.1988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Repetitive DNA sequences have been implicated in the mediation of DNA rearrangement in mammalian cells. We have tested this hypothesis by using a dihydrofolate reductase (DHFR) expression vector into which candidate sequences were inserted. DHFR- Chinese hamster ovary (CHO) cells were transfected with this vector, the amplification of which was then selected for by methotrexate (MTX) exposure. Cells transfected with the vector alone (and resistant to 0.02 or 1.0 microM MTX) or with a poly(dG-dT) insert (and resistant to 0.05 or 1.0 microM MTX) showed little change in chromosome aberrations or sister chromatid exchange frequencies. In contrast, transfection of DHFR- CHO cells with a vector containing either of two distinct 0.34-kilobase human alphoid DNA segments (and selection to 0.05 to 10.0 microM MTX) showed an approximately 50% increase in chromosome number and marked changes in chromosome structure, including one or two dicentric or ring forms per cell. The sister chromatid exchange frequency also increased, to more than double the frequency of that in cells transfected without insert or those containing poly(dG-dT). In situ hybridization of one 0.34-kilobase insert in some cells suggested clustering of homologous sequences in structurally abnormal recipient CHO cell chromosomes. The approach described provides an introduction to a unique means for a coordinate molecular and cytological study of dynamic changes in chromosome structure.
Collapse
Affiliation(s)
- M W Heartlein
- Genetics Division, Children's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
30
|
Walen KH, Arnstein P. Induction of tumorigenesis and chromosomal abnormalities in human amniocytes infected with simian virus 40 and Kirsten sarcoma virus. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1986; 22:57-65. [PMID: 3005226 DOI: 10.1007/bf02623534] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cell cultures of epithelial-like human amniocytes were infected with simian virus 40 (SV40) and Kirsten sarcoma virus (KSV) in various sequential orders, and tested for agar growth, chromosome abnormalities, and tumorigenesis in the nude mouse assay. We observed that regardless of the order in which the viruses were introduced, the doubly infected cells always exhibited the typical SV40 premalignantly transformed phenotype before changing to the malignant phenotype. All doubly transformed cells from different cell donors produced tumors in adult and suckling nude athymic mice, classified as poorly differentiated sarcomas. Infection with SV40 alone conferred extended life span and accelerated growth without the malignant capability of tumor production. Kirsten sarcoma virus alone produced only focal cell alterations with no change in cell longevity or tumorigenesis. Chromosome studies of the premalignant and malignant cells from one cell donor did not reveal any significant clonal development for marker chromosomes in either cell line. Chromosome 12, which carries the homologous cellular oncogene to KSV, had no increase in aberrations in the malignant cells. Chromosome 8 was most often involved in aberrations, and the most frequent aberration for both series was dicentric chromosomes due to telomere fusion. For other translocations the breakpoints were almost exclusively in the centromere regions. The vulnerability of telomere and centromere regions to the free virus present in these precrisis cells is discussed, and similarities in regard to types of aberrations in transfection experiments are noted.
Collapse
|
31
|
Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol Cell Biol 1985. [PMID: 4040603 DOI: 10.1128/mcb.5.7.1750] [Citation(s) in RCA: 173] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of human tissue-type plasminogen activator (t-PA) at high levels has been achieved in Chinese hamster ovary (CHO) cells by cotransfection and subsequent coamplification of the transfected sequences. Expression vectors containing the t-PA cDNA gene and dihydrofolate reductase (DHFR) cDNA gene were cotransfected into CHO DHFR-deficient cells. Transformants expressing DHFR were selected by growth in media lacking nucleosides and contained low numbers of t-PA genes and DHFR genes. Stepwise selection of the DHFR+ transformants in increasing concentrations of methotrexate generated cells which had amplified both DHFR genes and t-PA genes over 100-fold. These cell lines expressed elevated levels of enzymatically active t-PA. To optimize both t-PA sequence amplification and t-PA expression, various modifications of the original procedure were used. These included alterations to the DHFR expression vector, optimization of the molar ratio of t-PA to DHFR sequences in the cotransfection, and modification of the methotrexate resistance selection procedure. The structure of the amplified DNA, its chromosomal location, and its stability during growth in the absence of methotrexate are reported.
Collapse
|
32
|
Kaufman RJ, Wasley LC, Spiliotes AJ, Gossels SD, Latt SA, Larsen GR, Kay RM. Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol Cell Biol 1985; 5:1750-9. [PMID: 4040603 PMCID: PMC367294 DOI: 10.1128/mcb.5.7.1750-1759.1985] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Expression of human tissue-type plasminogen activator (t-PA) at high levels has been achieved in Chinese hamster ovary (CHO) cells by cotransfection and subsequent coamplification of the transfected sequences. Expression vectors containing the t-PA cDNA gene and dihydrofolate reductase (DHFR) cDNA gene were cotransfected into CHO DHFR-deficient cells. Transformants expressing DHFR were selected by growth in media lacking nucleosides and contained low numbers of t-PA genes and DHFR genes. Stepwise selection of the DHFR+ transformants in increasing concentrations of methotrexate generated cells which had amplified both DHFR genes and t-PA genes over 100-fold. These cell lines expressed elevated levels of enzymatically active t-PA. To optimize both t-PA sequence amplification and t-PA expression, various modifications of the original procedure were used. These included alterations to the DHFR expression vector, optimization of the molar ratio of t-PA to DHFR sequences in the cotransfection, and modification of the methotrexate resistance selection procedure. The structure of the amplified DNA, its chromosomal location, and its stability during growth in the absence of methotrexate are reported.
Collapse
|
33
|
Moderate-level gene amplification in methotrexate-resistant Chinese hamster ovary cells is accompanied by chromosomal translocations at or near the site of the amplified DHFR gene. Mol Cell Biol 1984. [PMID: 6700586 DOI: 10.1128/mcb.4.1.69] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies, we have described several classes of methotrexate-resistant Chinese hamster ovary cell lines. Although the RI class is resistant because of an altered target enzyme, dihydrofolate reductase, the RIII class derived from RI cells is somewhat more resistant because of a moderate amplification of the altered dhfr structural gene (Flintoff et al., Mol. Cell. Biol. 2:275-285, 1982). In one RIII line, a translocation between the short arm (p) of chromosome 2 and the long arm (q) of chromosome 5 was observed, and the amplified RIII gene complex was mapped to the p arm of the 2p-marker chromosome derived from the translocation (Worton et al., Mol. Cell. Biol. 1:330-335, 1981). We tested the hypothesis that chromosomal translocation is a general feature of RIII cells and that such translocation involves a site at or near the dhfr structural gene. Thus, we examined four independently derived RIII-type mutants and found that each had a moderate amplification of the dhfr gene sequences, and karyotype analysis revealed that each carried a translocation involving the 2p arm at or near band 2p25. That this chromosomal rearrangement involves a site near the dhfr locus was demonstrated by mapping the altered but unamplified structural gene coding for the RI phenotype to the short arm of an unaltered chromosome 2. This suggests that a highly specific rearrangement involving an exchange at or near the site of the unamplified gene is a necessary prerequisite for the amplification process. A model for gene amplification involving chromosomal rearrangements and sister chromatid exchange is described.
Collapse
|
34
|
Flintoff WF, Livingston E, Duff C, Worton RG. Moderate-level gene amplification in methotrexate-resistant Chinese hamster ovary cells is accompanied by chromosomal translocations at or near the site of the amplified DHFR gene. Mol Cell Biol 1984; 4:69-76. [PMID: 6700586 PMCID: PMC368659 DOI: 10.1128/mcb.4.1.69-76.1984] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In previous studies, we have described several classes of methotrexate-resistant Chinese hamster ovary cell lines. Although the RI class is resistant because of an altered target enzyme, dihydrofolate reductase, the RIII class derived from RI cells is somewhat more resistant because of a moderate amplification of the altered dhfr structural gene (Flintoff et al., Mol. Cell. Biol. 2:275-285, 1982). In one RIII line, a translocation between the short arm (p) of chromosome 2 and the long arm (q) of chromosome 5 was observed, and the amplified RIII gene complex was mapped to the p arm of the 2p-marker chromosome derived from the translocation (Worton et al., Mol. Cell. Biol. 1:330-335, 1981). We tested the hypothesis that chromosomal translocation is a general feature of RIII cells and that such translocation involves a site at or near the dhfr structural gene. Thus, we examined four independently derived RIII-type mutants and found that each had a moderate amplification of the dhfr gene sequences, and karyotype analysis revealed that each carried a translocation involving the 2p arm at or near band 2p25. That this chromosomal rearrangement involves a site near the dhfr locus was demonstrated by mapping the altered but unamplified structural gene coding for the RI phenotype to the short arm of an unaltered chromosome 2. This suggests that a highly specific rearrangement involving an exchange at or near the site of the unamplified gene is a necessary prerequisite for the amplification process. A model for gene amplification involving chromosomal rearrangements and sister chromatid exchange is described.
Collapse
|
35
|
Abstract
Dihydrofolate reductase (DHFR) synthesis is regulated in a growth-dependent fashion. Dividing cells synthesize DHFR at a 10-fold-higher rate than do stationary cells. To study this growth-dependent synthesis. DHFR genes have been constructed from a DHFR cDNA segment, the adenovirus major late promoter, and fragments of simian virus 40 (SV40) which provide signals for polyadenylation. These genes have been introduced into Chinese hamster ovary cells. The DHFR mRNAs produced in different transformants are identical at their 5' ends, but differ in sequences in their 3' ends as different sites are utilized for polyadenylation. Three transformants that utilize either DHFR polyadenylation signals or the SV40 late polyadenylation signal exhibit growth-dependent DHFR synthesis. The level of DHFR mRNA in growing cells is approximately 10 times that in stationary cells for these transformants. This growth-dependent DHFR mRNA production probably results from posttranscriptional events. In contrast, three transformants that utilize the SV40 early polyadenylation signal and another transformant that utilizes a cellular polyadenylation signal do not exhibit growth-dependent DHFR synthesis. In these three cell lines, the fraction of mRNAs polyadenylated at different sites in a tandem array shifts between growing and stationary cells. These results suggest that the metabolic state of the cell is important in determining either the efficiency of polyadenylation at various sites or the stability of mRNA polyadenylated at various sites.
Collapse
|
36
|
Kaufman RJ, Sharp PA. Growth-dependent expression of dihydrofolate reductase mRNA from modular cDNA genes. Mol Cell Biol 1983; 3:1598-608. [PMID: 6138708 PMCID: PMC370013 DOI: 10.1128/mcb.3.9.1598-1608.1983] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dihydrofolate reductase (DHFR) synthesis is regulated in a growth-dependent fashion. Dividing cells synthesize DHFR at a 10-fold-higher rate than do stationary cells. To study this growth-dependent synthesis. DHFR genes have been constructed from a DHFR cDNA segment, the adenovirus major late promoter, and fragments of simian virus 40 (SV40) which provide signals for polyadenylation. These genes have been introduced into Chinese hamster ovary cells. The DHFR mRNAs produced in different transformants are identical at their 5' ends, but differ in sequences in their 3' ends as different sites are utilized for polyadenylation. Three transformants that utilize either DHFR polyadenylation signals or the SV40 late polyadenylation signal exhibit growth-dependent DHFR synthesis. The level of DHFR mRNA in growing cells is approximately 10 times that in stationary cells for these transformants. This growth-dependent DHFR mRNA production probably results from posttranscriptional events. In contrast, three transformants that utilize the SV40 early polyadenylation signal and another transformant that utilizes a cellular polyadenylation signal do not exhibit growth-dependent DHFR synthesis. In these three cell lines, the fraction of mRNAs polyadenylated at different sites in a tandem array shifts between growing and stationary cells. These results suggest that the metabolic state of the cell is important in determining either the efficiency of polyadenylation at various sites or the stability of mRNA polyadenylated at various sites.
Collapse
|