1
|
Young-Baird SK, Shin BS, Dever TE. MEHMO syndrome mutation EIF2S3-I259M impairs initiator Met-tRNAiMet binding to eukaryotic translation initiation factor eIF2. Nucleic Acids Res 2019; 47:855-867. [PMID: 30517694 PMCID: PMC6344876 DOI: 10.1093/nar/gky1213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/26/2018] [Indexed: 01/20/2023] Open
Abstract
The heterotrimeric eukaryotic translation initiation factor (eIF) 2 plays critical roles in delivering initiator Met-tRNAiMet to the 40S ribosomal subunit and in selecting the translation initiation site. Genetic analyses of patients with MEHMO syndrome, an X-linked intellectual disability syndrome, have identified several unique mutations in the EIF2S3 gene that encodes the γ subunit of eIF2. To gain insights into the molecular consequences of MEHMO syndrome mutations on eIF2 function, we generated a yeast model of the human eIF2γ-I259M mutant, previously identified in a patient with MEHMO syndrome. The corresponding eIF2γ-I318M mutation impaired yeast cell growth and derepressed GCN4 expression, an indicator of defective eIF2–GTP–Met-tRNAiMet complex formation, and, likewise, overexpression of human eIF2γ-I259M derepressed ATF4 messenger RNA translation in human cells. The yeast eIF2γ-I318M mutation also increased initiation from near-cognate start codons. Biochemical analyses revealed a defect in Met-tRNAiMet binding to the mutant yeast eIF2 complexes in vivo and in vitro. Overexpression of tRNAiMet restored Met-tRNAiMet binding to eIF2 in vivo and rescued the growth defect in the eIF2γ-I318M strain. Based on these findings and the structure of eIF2, we propose that the I259M mutation impairs Met-tRNAiMet binding, causing altered control of protein synthesis that underlies MEHMO syndrome.
Collapse
Affiliation(s)
- Sara K Young-Baird
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Byung-Sik Shin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Start Codon Recognition in Eukaryotic and Archaeal Translation Initiation: A Common Structural Core. Int J Mol Sci 2019; 20:ijms20040939. [PMID: 30795538 PMCID: PMC6412873 DOI: 10.3390/ijms20040939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 01/12/2023] Open
Abstract
Understanding molecular mechanisms of ribosomal translation sheds light on the emergence and evolution of protein synthesis in the three domains of life. Universally, ribosomal translation is described in three steps: initiation, elongation and termination. During initiation, a macromolecular complex assembled around the small ribosomal subunit selects the start codon on the mRNA and defines the open reading frame. In this review, we focus on the comparison of start codon selection mechanisms in eukaryotes and archaea. Eukaryotic translation initiation is a very complicated process, involving many initiation factors. The most widespread mechanism for the discovery of the start codon is the scanning of the mRNA by a pre-initiation complex until the first AUG codon in a correct context is found. In archaea, long-range scanning does not occur because of the presence of Shine-Dalgarno (SD) sequences or of short 5′ untranslated regions. However, archaeal and eukaryotic translation initiations have three initiation factors in common: e/aIF1, e/aIF1A and e/aIF2 are directly involved in the selection of the start codon. Therefore, the idea that these archaeal and eukaryotic factors fulfill similar functions within a common structural ribosomal core complex has emerged. A divergence between eukaryotic and archaeal factors allowed for the adaptation to the long-range scanning process versus the SD mediated prepositioning of the ribosome.
Collapse
|
3
|
Sekine Y, Zyryanova A, Crespillo-Casado A, Amin-Wetzel N, Harding HP, Ron D. Paradoxical Sensitivity to an Integrated Stress Response Blocking Mutation in Vanishing White Matter Cells. PLoS One 2016; 11:e0166278. [PMID: 27812215 PMCID: PMC5094784 DOI: 10.1371/journal.pone.0166278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/25/2016] [Indexed: 01/28/2023] Open
Abstract
The eukaryotic translation initiation factor eIF2B promotes mRNA translation as a guanine nucleotide exchange factor (GEF) for translation initiation factor 2 (eIF2). Endoplasmic reticulum (ER) stress-mediated activation of the kinase PERK and the resultant phosphorylation of eIF2’s alpha subunit (eIF2α) attenuates eIF2B GEF activity thereby inducing an integrated stress response (ISR) that defends against protein misfolding in the ER. Mutations in all five subunits of human eIF2B cause an inherited leukoencephalopathy with vanishing white matter (VWM), but the role of the ISR in its pathogenesis remains unclear. Using CRISPR-Cas9 genome editing we introduced the most severe known VWM mutation, EIF2B4A391D, into CHO cells. Compared to isogenic wildtype cells, GEF activity of cells with the VWM mutation was impaired and the mutant cells experienced modest enhancement of the ISR. However, despite their enhanced ISR, imposed by the intrinsic defect in eIF2B, disrupting the inhibitory effect of phosphorylated eIF2α on GEF by a contravening EIF2S1/eIF2αS51A mutation that functions upstream of eIF2B, selectively enfeebled both EIF2B4A391D and the related severe VWM EIF2B4R483W cells. The basis for paradoxical dependence of cells with the VWM mutations on an intact eIF2α genotype remains unclear, as both translation rates and survival from stressors that normally activate the ISR were not reproducibly affected by the VWM mutations. Nonetheless, our findings support an additional layer of complexity in the development of VWM, beyond a hyperactive ISR.
Collapse
Affiliation(s)
- Yusuke Sekine
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (DR); (YS)
| | - Alisa Zyryanova
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Ana Crespillo-Casado
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Niko Amin-Wetzel
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Heather P. Harding
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (DR); (YS)
| |
Collapse
|
4
|
Abstract
tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are 7 cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, 5 of which require only a single subunit in bacteria, and 2 of which are not found in bacteria. These enzymes include the deaminase Tad2-Tad3, and the methyltransferases Trm6-Trm61, Trm8-Trm82, Trm7-Trm732, and Trm7-Trm734, Trm9-Trm112, and Trm11-Trm112. We describe the occurrence and biological role of each modification, evidence for a required partner protein in S. cerevisiae and other eukaryotes, evidence for a single subunit in bacteria, and evidence for the role of the non-catalytic binding partner. Although it is unclear why these eukaryotic enzymes require partner proteins, studies of some 2-subunit modification enzymes suggest that the partner proteins help expand substrate range or allow integration of cellular activities.
Collapse
Affiliation(s)
- Michael P Guy
- a Department of Biochemistry and Biophysics; Center for RNA Biology ; University of Rochester School of Medicine ; Rochester , NY USA
| | | |
Collapse
|
5
|
Towns WL, Begley TJ. Transfer RNA methytransferases and their corresponding modifications in budding yeast and humans: activities, predications, and potential roles in human health. DNA Cell Biol 2012; 31:434-54. [PMID: 22191691 PMCID: PMC3322404 DOI: 10.1089/dna.2011.1437] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/07/2011] [Accepted: 11/11/2011] [Indexed: 12/13/2022] Open
Abstract
Throughout the kingdoms of life, transfer RNA (tRNA) undergoes over 100 enzyme-catalyzed, methyl-based modifications. Although a majority of the methylations are conserved from bacteria to mammals, the functions of a number of these modifications are unknown. Many of the proteins responsible for tRNA methylation, named tRNA methyltransferases (Trms), have been characterized in Saccharomyces cerevisiae. In contrast, only a few human Trms have been characterized. A BLAST search for human homologs of each S. cerevisiae Trm revealed a total of 34 human proteins matching our search criteria for an S. cerevisiae Trm homolog candidate. We have compiled a database cataloging basic information about each human and yeast Trm. Every S. cerevisiae Trm has at least one human homolog, while several Trms have multiple candidates. A search of cancer cell versus normal cell mRNA expression studies submitted to Oncomine found that 30 of the homolog genes display a significant change in mRNA expression levels in at least one data set. While 6 of the 34 human homolog candidates have confirmed tRNA methylation activity, the other candidates remain uncharacterized. We believe that our database will serve as a resource for investigating the role of human Trms in cellular stress signaling.
Collapse
Affiliation(s)
- William L. Towns
- College of Nanoscale Science and Engineering, University at Albany, Albany, New York
| | - Thomas J. Begley
- College of Nanoscale Science and Engineering, University at Albany, Albany, New York
- RNA Institute, University at Albany, Rensselaer, New York
- Cancer Research Center, University at Albany, Rensselaer, New York
| |
Collapse
|
6
|
Initiation factor eIF2γ promotes eIF2-GTP-Met-tRNAi(Met) ternary complex binding to the 40S ribosome. Nat Struct Mol Biol 2011; 18:1227-34. [PMID: 22002225 PMCID: PMC3210414 DOI: 10.1038/nsmb.2133] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/09/2011] [Indexed: 11/24/2022]
Abstract
In contrast to elongation factor EF-Tu, which delivers aminoacyl-tRNAs to the ribosomal A-site, eukaryotic initiation factor eIF2 binds initiator Met-tRNAiMet to the P-site of the 40S ribosomal subunit. We used directed hydroxyl radical probing experiments to map the binding of Saccharomyces cerevisiae eIF2 on the ribosome and on Met-tRNAiMet. Our results identify a key binding-interface between domain III of eIF2γ and 18S rRNA helix h44 on the 40S subunit. Moreover, we showed that eIF2γ primarily contacts the acceptor stem of Met-tRNAiMet. Whereas the analogous domain III of EF-Tu contacts the T-stem of tRNAs, biochemical analyses demonstrated that eIF2γ domain III is important for ribosome, but not Met-tRNAiMet, binding. Thus despite their structural similarity, eIF2 and EF-Tu bind tRNAs in substantially different manners, and we propose that the tRNA-binding domain III of EF-Tu has acquired a new ribosome-binding function in eIF2γ.
Collapse
|
7
|
Schmitt E, Naveau M, Mechulam Y. Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier. FEBS Lett 2009; 584:405-12. [PMID: 19896944 DOI: 10.1016/j.febslet.2009.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/02/2009] [Indexed: 12/31/2022]
Abstract
Eukaryotic/archaeal translation initiation factor 2 (e/aIF2) is a heterotrimeric GTPase that plays a key role in selection of the correct start codon on messenger RNA. This review integrates structural and functional data to discuss the involvement of the three subunits in initiator tRNA binding. A possible role of the peripheral subunits in modulating the guanine nucleotide cycle on the core subunit is also addressed.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Ecole Polytechnique, Laboratoire de Biochimie, F-91128 Palaiseau Cedex, France.
| | | | | |
Collapse
|
8
|
Dev K, Santangelo TJ, Rothenburg S, Neculai D, Dey M, Sicheri F, Dever TE, Reeve JN, Hinnebusch AG. Archaeal aIF2B interacts with eukaryotic translation initiation factors eIF2alpha and eIF2Balpha: Implications for aIF2B function and eIF2B regulation. J Mol Biol 2009; 392:701-22. [PMID: 19616556 DOI: 10.1016/j.jmb.2009.07.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 06/30/2009] [Accepted: 07/09/2009] [Indexed: 11/28/2022]
Abstract
Translation initiation is down-regulated in eukaryotes by phosphorylation of the alpha-subunit of eIF2 (eukaryotic initiation factor 2), which inhibits its guanine nucleotide exchange factor, eIF2B. The N-terminal S1 domain of phosphorylated eIF2alpha interacts with a subcomplex of eIF2B formed by the three regulatory subunits alpha/GCN3, beta/GCD7, and delta/GCD2, blocking the GDP-GTP exchange activity of the catalytic epsilon-subunit of eIF2B. These regulatory subunits have related sequences and have sequences in common with many archaeal proteins, some of which are involved in methionine salvage and CO(2) fixation. Our sequence analyses however predicted that members of one phylogenetically distinct and coherent group of these archaeal proteins [designated aIF2Bs (archaeal initiation factor 2Bs)] are functional homologs of the alpha, beta, and delta subunits of eIF2B. Three of these proteins, from different archaea, have been shown to bind in vitro to the alpha-subunit of the archaeal aIF2 from the cognate archaeon. In one case, the aIF2B protein was shown further to bind to the S1 domain of the alpha-subunit of yeast eIF2 in vitro and to interact with eIF2Balpha/GCN3 in vivo in yeast. The aIF2B-eIF2alpha interaction was however independent of eIF2alpha phosphorylation. Mass spectrometry has identified several proteins that co-purify with aIF2B from Thermococcus kodakaraensis, and these include aIF2alpha, a sugar-phosphate nucleotidyltransferase with sequence similarity to eIF2Bvarepsilon, and several large-subunit (50S) ribosomal proteins. Based on this evidence that aIF2B has functions in common with eIF2B, the crystal structure established for an aIF2B was used to construct a model of the eIF2B regulatory subcomplex. In this model, the evolutionarily conserved regions and sites of regulatory mutations in the three eIF2B subunits in yeast are juxtaposed in one continuous binding surface for phosphorylated eIF2alpha.
Collapse
Affiliation(s)
- Kamal Dev
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Deplazes A, Möckli N, Luke B, Auerbach D, Peter M. Yeast Uri1p promotes translation initiation and may provide a link to cotranslational quality control. EMBO J 2009; 28:1429-41. [PMID: 19387492 DOI: 10.1038/emboj.2009.98] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 03/20/2009] [Indexed: 11/09/2022] Open
Abstract
Translation initiation in eukaryotes is accomplished by a large set of translation initiation factors, some of which are regulated by signals monitoring intracellular and environmental conditions. Here, we show that Uri1p is required for efficient translation initiation in budding yeast. Indeed, uri1Delta cells are slow growing, sensitive to translation inhibitors and they exhibit an increased 80S peak in polysome profiles. Moreover, GCN4 translation is derepressed in uri1Delta cells, strongly supporting an initiation defect. Genetic and biochemical experiments indicate that Uri1p interacts with the translation initiation factor eIF1A and promotes ternary complex (TC) recruitment to the 40S subunit. Interestingly, we found that Uri1p is also part of a chaperone-network, including the prefoldin Pfd6p and several other proteins involved in cotranslational quality control such as the ribosome-associated Hsp70 chaperone Ssb1p, the Hsp40 Sis1p and the translation elongation factor eEF1A. Together with genetic data, these interactions indicate that Uri1p may coordinate translation initiation and cotranslational quality control.
Collapse
Affiliation(s)
- Anna Deplazes
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland. or
| | | | | | | | | |
Collapse
|
10
|
Ozanick SG, Bujnicki JM, Sem DS, Anderson JT. Conserved amino acids in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding. Nucleic Acids Res 2007; 35:6808-19. [PMID: 17932071 PMCID: PMC2175304 DOI: 10.1093/nar/gkm574] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae, a two-subunit methyltransferase (Mtase) encoded by the essential genes TRM6 and TRM61 is responsible for the formation of 1-methyladenosine, a modified nucleoside found at position 58 in tRNA that is critical for the stability of tRNA(Met)i The crystal structure of the homotetrameric m1A58 tRNA Mtase from Mycobacterium tuberculosis, TrmI, has been solved and was used as a template to build a model of the yeast m1A58 tRNA Mtase heterotetramer. We altered amino acids in TRM6 and TRM61 that were predicted to be important for the stability of the heteroligomer based on this model. Yeast strains expressing trm6 and trm61 mutants exhibited growth phenotypes indicative of reduced m1A formation. In addition, recombinant mutant enzymes had reduced in vitro Mtase activity. We demonstrate that the mutations introduced do not prevent heteroligomer formation and do not disrupt binding of the cofactor S-adenosyl-L-methionine. Instead, amino acid substitutions in either Trm6p or Trm61p destroy the ability of the yeast m1A58 tRNA Mtase to bind tRNA(Met)i, indicating that each subunit contributes to tRNA binding and suggesting a structural alteration of the substrate-binding pocket occurs when these mutations are present.
Collapse
Affiliation(s)
- Sarah G Ozanick
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Cells reprogram gene expression in response to environmental changes by mobilizing transcriptional activators. The activator protein Gcn4 of the yeast Saccharomyces cerevisiae is regulated by an intricate translational control mechanism, which is the primary focus of this review, and also by the modulation of its stability in response to nutrient availability. Translation of GCN4 mRNA is derepressed in amino acid-deprived cells, leading to transcriptional induction of nearly all genes encoding amino acid biosynthetic enzymes. The trans-acting proteins that control GCN4 translation have general functions in the initiation of protein synthesis, or regulate the activities of initiation factors, so that the molecular events that induce GCN4 translation also reduce the rate of general protein synthesis. This dual regulatory response enables cells to limit their consumption of amino acids while diverting resources into amino acid biosynthesis in nutrient-poor environments. Remarkably, mammalian cells use the same strategy to downregulate protein synthesis while inducing transcriptional activators of stress-response genes under various stressful conditions, including amino acid starvation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| |
Collapse
|
12
|
Transfer RNA modifications and modifying enzymes in Saccharomyces cerevisiae. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b105814] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
13
|
Bieganowski P, Shilinski K, Tsichlis PN, Brenner C. Cdc123 and checkpoint forkhead associated with RING proteins control the cell cycle by controlling eIF2gamma abundance. J Biol Chem 2004; 279:44656-66. [PMID: 15319434 DOI: 10.1074/jbc.m406151200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor 2 (eIF2) is a central regulator of translational initiation in times of growth and times of stress. Here we discovered three new conserved regulators of eIF2 in Saccharomyces cerevisiae. cdc123, homolog of mammalian D123, is a new cell division cycle mutant with a G2 delay at permissive temperature and a terminal, mating-proficient G1 arrest point. Cdc123 protein is regulated by nutrient availability. CHF1 and CHF2, homologs of mammalian checkpoint forkhead associated with RING genes, are required for G2 delay and G1 arrest of cdc123-4 and promote G1 delay when over-expressed. Cell cycle delaying activity and the natural instability of Chf1 and Chf2 depend on the integrity of both domains and association with Cdc123. Genetic analysis maps the Chf1 forkhead associated domain-binding site to the conserved Thr-274 of Cdc123, suggesting that mammalian D123 is a key target of Chfr. Gcd11, the gamma subunit of eIF2, is an additional Cdc123-interacting protein that is an essential target of the Cdc123 cell cycle promoting and Chf cell cycle arresting activity whose abundance is regulated by Cdc123, Chf1, and Chf2. Loss of cdc123 activity promotes Chf1 and Chf2 accumulation and Gcd11 depletion, accounting for the essentiality of Cdc123. The data establish the Cdc123-Chf-Gcd11 axis as an essential pathway for nutritional control of START that runs parallel to the Tor-Gcn2-Sui2 system of translational control.
Collapse
Affiliation(s)
- Pawel Bieganowski
- Departments of Genetics and Biochemistry and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | | | |
Collapse
|
14
|
Kimball SR. Regulation of translation initiation by amino acids in eukaryotic cells. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 26:155-84. [PMID: 11575165 DOI: 10.1007/978-3-642-56688-2_6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The translation of mRNA in eukaryotic cells is regulated by amino acids through multiple mechanisms. One such mechanism involves activation of mTOR (Fig. 1). mTOR controls a myriad of downstream effectors, including RNA polymerase I, S6K1, 4E-BP1, and eEF2 kinase. In yeast, and probably in higher eukaryotes, mTOR signals through Tap42p/alpha 4 to regulate protein phosphatases. Through phosphorylation of Tap42p/alpha 4, mTOR abrogates dephosphorylation of the downstream effectors by PP2 A and/or PP6, resulting in their increased phosphorylation. Although at this time still speculative, in vitro results using mTOR immunoprecipitates suggest that mTOR, or an associated kinase, may also be directly involved in phosphorylating some effectors. Enhanced RNA polymerase I activity results in increased transcription of rDNA genes, whereas increased S6K1 activity promotes preferential translation of TOP mRNAs, such as those encoding ribosomal proteins. Together, stimulated RNA polymerase I and S6K1 activities enhance ribosome biogenesis, increasing the translational capacity of the cell. Phosphorylation of 4E-BP1 prohibits its association with eIF4E, allowing eIF4E to bind to eIF4G and form the active eIF4F complex. Increased eIF4F formation preferentially stimulates translation of mRNAs containing long, highly-structured 5' UTRs. Finally, amino acids cause inhibition of the eEF2 kinase, resulting in an increase in the proportion of eEF2 in the active, dephosphorylated form. By inhibiting eEF2 phosphorylation, amino acids may not only stimulate translation elongation, but may also prevent activation of GCN2 by enhancing the rate of removal of deacylated tRNA from the P-site on the ribosome; a potential activator of GCN2. GCN2 may also be regulated directly by the accumulation of deacylated-tRNA caused by treatment with inhibitors of tRNA synthetases or in cells incubated in the absence of essential amino acids. However, because the Km of the tRNA synthetases for amino acids is well above the amino acid concentrations found in plasma of fasted animals, such a mechanism may not be operative in mammals in vivo. Activation of GCN2 results in increased phosphorylation of the alpha-subunit of eIF2, which in turn causes inhibition of eIF2B. Thus, by preventing activation of GCN2, amino acids preserve eIF2B activity, which promotes translation of all mRNAs, i.e., global protein synthesis is enhanced.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acids, Essential/metabolism
- Animals
- Carrier Proteins/metabolism
- Cell Cycle Proteins
- DNA-Binding Proteins
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-2B/metabolism
- Fungal Proteins/genetics
- Humans
- Models, Biological
- Peptide Chain Initiation, Translational/physiology
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/metabolism
- Ribosomal Protein S6 Kinases/metabolism
- Ribosomes/metabolism
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Signal Transduction
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
15
|
Grosshans H, Hurt E, Simos G. An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes Dev 2000; 14:830-40. [PMID: 10766739 PMCID: PMC316491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Yeast Los1p, the homolog of human exportin-t, mediates nuclear export of tRNA. Using fluorescence in situ hybridization, we could show that the export of some intronless tRNA species is not detectably affected by the disruption of LOS1. To find other factors that facilitate tRNA export, we performed a suppressor screen of a synthetically lethal los1 mutant and identified the essential translation elongation factor eEF-1A. Mutations in eEF-1A impaired nuclear export of all tRNAs tested, which included both spliced and intronless species. An even stronger defect in nuclear exit of tRNA was observed under conditions that inhibited tRNA aminoacylation. In all cases, inhibition of tRNA export led to nucleolar accumulation of mature tRNAs. Our data show that tRNA aminoacylation and eEF-1A are required for efficient nuclear tRNA export in yeast and suggest coordination between the protein translation and the nuclear tRNA processing and transport machineries.
Collapse
MESH Headings
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Nucleus/physiology
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genomic Library
- Humans
- Introns
- Mutagenesis
- Nuclear Pore Complex Proteins
- Nuclear Proteins/metabolism
- Nucleic Acid Conformation
- Nucleocytoplasmic Transport Proteins
- Oligonucleotide Probes
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Ile/chemistry
- RNA, Transfer, Ile/genetics
- RNA, Transfer, Leu/chemistry
- RNA, Transfer, Leu/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/physiology
- Saccharomyces cerevisiae Proteins
Collapse
Affiliation(s)
- H Grosshans
- Biochemie-Zentrum Heidelberg (BZH), University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
16
|
Niewmierzycka A, Clarke S. S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 1999; 274:814-24. [PMID: 9873020 DOI: 10.1074/jbc.274.2.814] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used sequence motifs conserved in S-adenosylmethionine-dependent methyltransferases to identify 26 putative methyltransferases from the complete genome of the yeast Saccharomyces cerevisiae. Seven sequences with the best matches to the methyltransferase consensus motifs were selected for further study. We prepared yeast disruption mutants of each of the genes encoding these sequences, and we found that disruption of the YJL125c gene is lethal, whereas disruptions of YCR047c and YDR140w lead to slow growth phenotypes. Normal growth was observed when the YDL201w, YDR465c, YHR209w, and YOR240w genes were disrupted. Initial analysis of protein methylation patterns of all mutants by amino acid analysis revealed that the YDR465c mutant has a defect in the methylation of the delta-nitrogen atom of arginine residues. We propose that YDR465c codes for the methyltransferase responsible for this recently characterized type of protein methylation, and we designate the enzyme as Rmt2 (protein arginine methyltransferase). In addition, we show that the methylation of susceptible residues in Rmt2 substrates is likely to take place on nascent polypeptide chains and that these substrates exist in the cell as fully methylated species. Interestingly, Rmt2 has 27% sequence identity over 138 amino acids to the mammalian guanidinoacetate N-methyltransferase, an enzyme responsible for methylating the delta-nitrogen of the small molecule guanidinoacetate.
Collapse
Affiliation(s)
- A Niewmierzycka
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
17
|
Mueller PP, Grueter P, Hinnebusch AG, Trachsel H. A ribosomal protein is required for translational regulation of GCN4 mRNA. Evidence for involvement of the ribosome in eIF2 recycling. J Biol Chem 1998; 273:32870-7. [PMID: 9830035 DOI: 10.1074/jbc.273.49.32870] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In amino acid-starved yeast cells, inhibition of the guanine nucleotide exchange factor eIF2B by phosphorylated translation initiation factor 2 results in increased translation of GCN4 mRNA. We isolated a suppressor of a mutant eIF2B. The suppressor prevents efficient GCN4 mRNA translation due to inactivation of the small ribosomal subunit protein Rps31 and results in low amounts of mutant 40 S ribosomal subunits. Deletion of one of two genes encoding ribosomal protein Rps17 also reduces the amounts of 40 S subunits but does not suppress eIF2B mutations or prevent efficient GCN4 translation. Our findings show that Rps31-deficient ribosomes are altered in a way that decreases the eIF2B requirement and that the small ribosomal subunit mediates the effects of low eIF2B activity on cell viability and translational regulation in response to eIF2 phosphorylation.
Collapse
Affiliation(s)
- P P Mueller
- Institute of Biochemistry and Molecular Biology, University of Berne, CH-3012 Berne, Switzerland.
| | | | | | | |
Collapse
|
18
|
Cuesta R, Hinnebusch AG, Tamame M. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae. Genetics 1998; 148:1007-20. [PMID: 9539420 PMCID: PMC1460055 DOI: 10.1093/genetics/148.3.1007] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, expression of the transcriptional activator GCN4 increases at the translational level in response to starvation for an amino acid. The products of multiple GCD genes are required for efficient repression of GCN4 mRNA translation under nonstarvation conditions. The majority of the known GCD genes encode subunits of the general translation initiation factor eIF-2 or eIF-2B. To identify additional initiation factors in yeast, we characterized 65 spontaneously arising Gcd- mutants. In addition to the mutations that were complemented by known GCD genes or by GCN3, we isolated mutant alleles of two new genes named GCD14 and GCD15. Recessive mutations in these two genes led to highly unregulated GCN4 expression and to derepressed transcription of genes in the histidine biosynthetic pathway under GCN4 control. The derepression of GCN4 expression in gcd14 and gcd15 mutants occurred with little or no increase in GCN4 mRNA levels, and it was dependent on upstream open reading frames (uORFs) in GCN4 mRNA that regulate its translation. We conclude that GCD14 and GCD15 are required for repression of GCN4 mRNA translation by the uORFs under conditions of amino acid sufficiency. The gcd14 and gcd15 mutations confer a slow-growth phenotype on nutrient-rich medium, and gcd15 mutations are lethal when combined with a mutation in gcd13. Like other known GCD genes, GCD14 and GCD15 are therefore probably required for general translation initiation in addition to their roles in GCN4-specific translational control.
Collapse
MESH Headings
- Alcohol Oxidoreductases
- Aminohydrolases
- Cloning, Molecular
- DNA-Binding Proteins
- Epistasis, Genetic
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-2B
- Fungal Proteins/genetics
- Gene Deletion
- Gene Expression Regulation, Fungal
- Genes, Dominant
- Genes, Fungal
- Genes, Recessive
- Genes, Regulator
- Genetic Complementation Test
- Meiosis
- Mutagenesis
- Phenotype
- Protein Biosynthesis
- Protein Kinases/genetics
- Pyrophosphatases
- RNA, Fungal
- RNA, Messenger
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- R Cuesta
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Spain
| | | | | |
Collapse
|
19
|
Nika J, Erickson FL, Hannig EM. Ribosomal protein L9 is the product of GRC5, a homolog of the putative tumor suppressor QM in S. cerevisiae. Yeast 1997; 13:1155-66. [PMID: 9301022 DOI: 10.1002/(sici)1097-0061(19970930)13:12<1155::aid-yea166>3.0.co;2-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genes encoding members of the highly conserved QM family have been identified in eukaryotic organisms from yeast to man. Results of previous studies have suggested roles for QM in control of cell growth and proliferation, perhaps as a tumor suppressor, and in energy metabolism. We identified recessive lethal alleles of the Saccharomyces cerevisiae QM homolog GRC5 that increased GCN4 expression when present in multiple copies. These alleles encode truncated forms of the yeast QM protein Grc5p. Using a functional epitope-tagged GRC5 allele, we localized Grc5p to a 60S fraction that contained the large ribosomal subunit. Two-dimensional gel analysis of highly purified yeast ribosomes indicated that Grc5p corresponds to 60S ribosomal protein L9. This identification is consistent with the predicted physical characteristics of eukaryotic QM proteins, the highly biased codon usage of GRC5, and the presence of putative Rap1p-binding sites in the 5' sequences of the yeast GRC5 gene.
Collapse
Affiliation(s)
- J Nika
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson 75083-0688, USA
| | | | | |
Collapse
|
20
|
Hinnebusch AG. Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. J Biol Chem 1997; 272:21661-4. [PMID: 9268289 DOI: 10.1074/jbc.272.35.21661] [Citation(s) in RCA: 437] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- A G Hinnebusch
- Laboratory of Eukaryotic Gene Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
21
|
Hannig EM. Protein synthesis in eukaryotic organisms: new insights into the function of translation initiation factor eIF-3. Bioessays 1995; 17:915-9. [PMID: 8526884 DOI: 10.1002/bies.950171103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pathway for initiation of protein synthesis in eukaryotic cells has been defined and refined over the last 25 years using purified components and in vitro reconstituted systems. More recently, powerful genetic analysis in yeast has proved useful in unraveling aspects of translation inherently more difficult to address by strictly biochemical approaches. One area in particular is the functional analysis of multi-subunit protein factors, termed eukaryotic initiation factors (eIFs), that play an essential role in translation initiation. eIF-3, the most structurally complex of the eIFs, has until recently eluded this approach. The identification of the yeast GCD10 gene as the structural gene for the zeta subunit of yeast eIF-3(1) and the analysis of mutant phenotypes has opened the door to the genetic dissection of the eIF-3 protein complex.
Collapse
Affiliation(s)
- E M Hannig
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson 75083-0688, USA
| |
Collapse
|
22
|
Abstract
We have isolated Schizosaccharomyces pombe cDNAs corresponding to the genes his1+ and his5+. The his1 cDNA was isolated by functional complementation of the His- phenotype in a his1-29 gcn3 Saccharomyces cerevisiae strain, while the his5 cDNA was isolated as a suppressor of the 3-amino-1,2, 4-triazole (3-AT) sensitivity in a gcn3 S. cerevisiae strain. his1 and his5 are each present in single copy in haploid S. pombe. As is the case with S. cerevisiae, we have found that the growth of wild-type strains of S. pombe is sensitive to 3-AT, an inhibitor of imidazoleglycerol-phosphate dehydratase. This enzyme is encoded by the HIS3 gene in S. cerevisiae and the his5+ gene in S. pombe. Treatment of S. pombe cells with 3-AT leads to a small increase in the level of the his5 transcript, but no effect is seen on the level of the his1 transcript. This is in contrast to larger increases in transcription of amino acid biosynthetic genes, regulated by the general amino acid control, seen previously in similarly treated cultures of S. cerevisiae. These results suggest that there are likely to be some differences in the regulation of amino acid biosynthesis between these two yeasts.
Collapse
Affiliation(s)
- F L Erickson
- Molecular and Cell Biology Program, University of Texas at Dallas, Richardson 75083-0688, USA
| | | |
Collapse
|
23
|
Gaspar N, Kinzy T, Scherer B, Hümbelin M, Hershey J, Merrick W. Translation initiation factor eIF-2. Cloning and expression of the human cDNA encoding the gamma-subunit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41878-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Erickson JR, Johnston M. Genetic and molecular characterization of GAL83: its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae. Genetics 1993; 135:655-64. [PMID: 8293971 PMCID: PMC1205710 DOI: 10.1093/genetics/135.3.655] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Expression of the GAL genes of Saccharomyces cerevisiae is subject to glucose repression, a global regulatory mechanism that requires several gene products. We have isolated GAL83, one of these genes required for glucose repression. The sequence of the predicted Gal83 protein is homologous to two other yeast proteins, Sip1p and Sip2p, which are known to interact with the SNF1 gene product, a protein kinase required for expression of the GAL genes. High-copy clones of SIP1 and SIP2 cross-complement the GAL83-2000 mutation (as well as GAL82-1, a mutation in another gene involved in glucose repression), suggesting that these four genes may perform similar functions in glucose repression. Consistent with this hypothesis, a gal83 null mutation does not affect glucose repression, and only dominant or partially dominant mutations exist in GAL83 (and GAL82). Two other observations were made that suggests that GAL83 functions interdependently with GAL82 and REG1 (another gene involved in glucose repression) to effect glucose repression: 1) REG1 on a low-copy plasmid cross-complements GAL82-1 and GAL83-2000 mutations, and 2) all pairwise combinations of reg1, GAL82-1 and GAL83-2000 fail to complement one another. Such unlinked noncomplementation suggests that Gal83p, Gal82p and Reg1p may interact with one another. Possible roles for GAL83, GAL82 and REG1 are discussed in relation to SNF1, SIP1 and SIP2.
Collapse
Affiliation(s)
- J R Erickson
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
25
|
Hinnebusch AG. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol Microbiol 1993; 10:215-23. [PMID: 7934812 DOI: 10.1111/j.1365-2958.1993.tb01947.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) is one of the best-characterized mechanisms for down-regulating total protein synthesis in mammalian cells in response to various stress conditions. Recent work indicates that regulation of the GCN4 gene of Saccharomyces cerevisiae by amino acid availability represents a gene-specific case of translational control by phosphorylation of eIF-2 alpha. Four short open reading frames in the leader of GCN4 mRNA (uORFs) restrict the flow of scanning ribosomes from the cap site to the GCN4 initiation codon. When amino acids are abundant, ribosomes translate the first uORF and reinitiate at one of the remaining uORFs in the leader, after which they dissociate from the mRNA. Under conditions of amino acid starvation, many ribosomes which have translated uORF1 fail to reinitiate at uORFs 2-4 and utilize the GCN4 start codon instead. Failure to reinitiate at uORFs 2-4 in starved cells results from a reduction in the GTP-bound form of eIF-2 that delivers charged initiator tRNA(iMet) to the ribosome. When the levels of eIF-2.GTP.Met-tRNA(iMet) ternary complexes are low, many ribosomes will not rebind this critical initiation factor following translation of uORF1 until after scanning past uORF4, but before reaching GCN4. Phosphorylation of eIF-2 by the protein kinase GCN2 decreases the concentration of eIF-2.GTP.Met-tRNA(iMet) complexes by inhibiting the guanine nucleotide exchange factor for eIF-2, which is the same mechanism utilized in mammalian cells to inhibit total protein synthesis by phosphorylation of eIF-2.
Collapse
Affiliation(s)
- A G Hinnebusch
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
26
|
Erickson FL, Hannig EM, Krasinskas A, Kahn RA. Cloning and sequence of ADP-ribosylation factor 1 (ARF1) from Schizosaccharomyces pombe. Yeast 1993; 9:923-7. [PMID: 8212899 DOI: 10.1002/yea.320090812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A gene encoding a homologue of the ADP-ribosylation factor (ARF) family of small GTP binding proteins was cloned from a Schizosaccharomyces pombe cDNA library by a functional screen of suppressors of sensitivity to 3-aminotriazole in a gcn3 null strain of Saccharomyces cerevisiae. Two independent isolates each contained the full coding region of the ARF1 gene. The encoded SpARF1 protein has a predicted molecular weight of 20,618 and is 88% and 79% identical to human and S. cerevisiae ARF1 proteins, respectively. As independent isolates were obtained, this effect of the SpARF1 appears to be a real phenomenon, but cannot currently be easily understood within the context of the evidence for a role(s) for ARF proteins in the protein secretory pathway.
Collapse
Affiliation(s)
- F L Erickson
- Department of Molecular and Cell Biology, University of Texas, Dallas, Richardson 75083-0688
| | | | | | | |
Collapse
|
27
|
Werner-Washburne M, Braun E, Johnston GC, Singer RA. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 1993; 57:383-401. [PMID: 8393130 PMCID: PMC372915 DOI: 10.1128/mr.57.2.383-401.1993] [Citation(s) in RCA: 330] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant cells that are conditionally defective only for the resumption of proliferation from stationary phase provides evidence that stationary phase is a unique developmental state. Strains with mutations affecting entry into and survival during stationary phase have also been isolated, and the mutations have been shown to affect at least seven different cellular processes: (i) signal transduction, (ii) protein synthesis, (iii) protein N-terminal acetylation, (iv) protein turnover, (v) protein secretion, (vi) membrane biosynthesis, and (vii) cell polarity. The exact nature of the relationship between these processes and survival during stationary phase remains to be elucidated. We propose that cell cycle arrest coordinated with the ability to remain viable in the absence of additional nutrients provides a good operational definition of starvation-induced stationary phase.
Collapse
|
28
|
Abstract
Picornaviruses are small naked icosahedral viruses with a single-stranded RNA genome of positive polarity. According to current taxonomy, the family includes four genera: Enterouirus (polioviruses, coxsackieviruses, echoviruses, and other enteroviruses), Rhinovirus, Curdiouirus [encephalomyocarditis virus (EMCV), mengovirus, Theiler's murine encephalomyelitis virus (TMEV)], and Aphthouirus [foot-and-mouth disease viruses (FMDV)]. There are also some, as yet, unclassified picornaviruses [e.g., hepatitis A virus (HAW] that should certainly be assessed as a separate genus. Studies on the molecular biology of picornaviruses might be divided into two periods: those before and after the first sequencing of the poliovirus genome. The 5'-untranslated region (5-UTR) of the viral genome was one of the unexpected problems. This segment proved to be immensely long: about 750 nucleotides or ∼10% of the genome length. There were also other unusual features (e.g., multiple AUG triplets preceding the single open reading frame (ORF) that encodes the viral polyprotein). This chapter shows that the picornaviral 5-UTRs are not only involved in such essential events as the synthesis of viral proteins and RNAs that could be expected to some extent, although some of the underlying mechanisms appeared to be quite a surprise, but also may determine diverse biological phenotypes from the plaque size or thermosensitivity of reproduction to attenuation of neurovirulence. Furthermore, a close inspection of the 5-UTR structure unravels certain hidden facets of the evolution of the picornaviral genome. Finally, the conclusions drawn from the experiments with the picornaviral5-UTRs provide important clues for understanding the functional capabilities of the eukaryotic ribosomes.
Collapse
Affiliation(s)
- V I Agol
- Institute of Poliomyelitis and Viral Encephalitides, U.S.S.R. Academy of Medical Sciences, Moscow
| |
Collapse
|
29
|
Messenguy F, Scherens B. Induction of "General Control" and thermotolerance in cdc mutants of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:257-63. [PMID: 2277643 DOI: 10.1007/bf00271559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Saccharomyces cerevisiae starvation for a single amino acid activates the transcription of a set of genes belonging to different amino acid biosynthetic pathways (General Control, GC). We show that mutants affected in GC regulation are also affected in their response to thermal stress. Moreover, growth conditions that are known to induce heat shock proteins induce the GC response. However, unlike heat shock proteins, the transcriptional activator of GC, GCN4, is not induced after a short exposure to heat, and in gcn mutant strains induction of heat resistance is normal.
Collapse
Affiliation(s)
- F Messenguy
- Institut de Recherches du C.E.R.I.A., Vrije Universiteit Brussel, Belgium
| | | |
Collapse
|
30
|
Hannig EM, Williams NP, Wek RC, Hinnebusch AG. The translational activator GCN3 functions downstream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccharomyces cerevisiae. Genetics 1990; 126:549-62. [PMID: 2249755 PMCID: PMC1204211 DOI: 10.1093/genetics/126.3.549] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The GCN4 protein of S. cerevisiae is a transcriptional activator of amino acid biosynthetic genes which are subject to general amino acid control. GCN3, a positive regulator required for increased GCN4 expression in amino acid-starved cells, is thought to function by antagonism of one or more negative regulators encoded by GCD genes. We isolated gcn3c alleles that lead to constitutively derepressed expression of GCN4 and amino acid biosynthetic genes under its control. These mutations map in the protein-coding sequences and, with only one exception, do not increase the steady-state level of GCN3 protein. All of the gcn3c alleles lead to derepression of genes under the general control in the absence of GCN1 and GCN2, two other positive regulators of GCN4 expression. This finding suggests that GCN3 functions downstream from GCN1 and GCN2 in the general control pathway. In accord with this idea, constitutively derepressing alleles of GCN2 are greatly dependent on GCN3 for their derepressed phenotype. The gcn3c alleles that are least dependent on GCN1 and GCN2 for derepression cause slow-growth under nonstarvation conditions. In addition, all of the gcn3c alleles are less effective than wild-type GCN3 in overcoming the temperature-sensitive lethality associated with certain mutations in the negative regulator GCD2. These results suggest that activation of GCN3 positive regulatory function by the gcn3c mutations involves constitutive antagonism of GCD2 function, leading to reduced growth rates and derepression of GCN4 expression in the absence of amino acid starvation.
Collapse
Affiliation(s)
- E M Hannig
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
31
|
Hinnebusch AG. Transcriptional and translational regulation of gene expression in the general control of amino-acid biosynthesis in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:195-240. [PMID: 2183294 DOI: 10.1016/s0079-6603(08)60712-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A G Hinnebusch
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
32
|
rRNA transcription initiation is decreased by inhibitors of the yeast cell cycle control step “start”. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47145-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Mortimer RK, Schild D, Contopoulou CR, Kans JA. Genetic map of Saccharomyces cerevisiae, edition 10. Yeast 1989; 5:321-403. [PMID: 2678811 DOI: 10.1002/yea.320050503] [Citation(s) in RCA: 250] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- R K Mortimer
- Department of Molecular and Cellular Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
34
|
Paddon CJ, Hinnebusch AG. gcd12 mutations are gcn3-dependent alleles of GCD2, a negative regulator of GCN4 in the general amino acid control of Saccharomyces cerevisiae. Genetics 1989; 122:543-50. [PMID: 2668116 PMCID: PMC1203728 DOI: 10.1093/genetics/122.3.543] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
GCD12 encodes a translational repressor of the GCN4 protein, a transcriptional activator of amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae. gcd12 mutations override the requirement for the GCN2 and GCN3 gene products for derepression of GCN4 expression, suggesting that GCN2 and GCN3 function indirectly as positive regulators by negative regulation of GCD12. In addition to their regulatory phenotype, gcd12 mutants are temperature-sensitive for growth (Tsm-) and, as shown here, deletion of the GCD12 gene is unconditionally lethal. Both the regulatory and the Tsm- phenotypes associated with gcd12 point mutations are completely overcome by wild-type GCN3, implying that GCN3 can promote or partially substitute for the functions of GCD12 in normal growth conditions even though it antagonizes GCD12 regulatory function in starvation conditions. The GCD12 gene has been cloned and mapped to the right arm of chromosome VII, very close to the map position reported for GCD2. We demonstrate that GCD12 and GCD2 are the same genes; however, unlike gcd12 mutations, the growth defect and constitutive derepression phenotypes associated with the gcd2-1 mutation are expressed in the presence of the wild-type GCN3 gene. These findings can be explained by either of two alternative hypotheses: (1) gcd12 mutations affect a domain of the GCD2 protein that directly interacts with GCN3, and complex formation stabilizes mutant gcd12 (but not gcd2-1) gene products; (2) gcd12 mutations selectively impair one function of GCD2 that is replaceable by GCN3, whereas gcd2-1 inactivates a different GCD2 function for which GCN3 cannot substitute. Both models imply a close interaction between these two positive and negative regulators in general amino acid control.
Collapse
Affiliation(s)
- C J Paddon
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | |
Collapse
|
35
|
Rhee SK, Icho T, Wickner RB. Structure and nuclear localization signal of the SKI3 antiviral protein of Saccharomyces cerevisiae. Yeast 1989; 5:149-58. [PMID: 2660461 DOI: 10.1002/yea.320050304] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The yeast chromosomal genes SKI2, SKI3, SKI4, SKI6, SKI7 and SKI8 repress the replication of double-stranded RNA viruses, protecting the host from the otherwise lethal effects of the virus. We cloned and sequenced the SKI3 gene and found that it encodes a 163 kDa protein including a typical nuclear localization signal. Cell fractionation experiments show that the SKI3 gene product is indeed tightly associated with nuclei and that the putative nuclear localization sequence directs beta-galactosidase into the nucleus. However, fusion of a part of the SKI3 protein lacking this signal with beta-galactosidase also directs beta-galactosidase into the nucleus, suggesting the presence of a second nuclear localization signal. The SKI3 gene is only essential in the presence of an M double-stranded RNA virus.
Collapse
Affiliation(s)
- S K Rhee
- Section on Genetics of Simple Eukaryotes, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | | | | |
Collapse
|
36
|
Improvement and application of a promoter-probe vector bearing the PHO5 gene as the indicator marker in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0922-338x(89)90077-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Hinnebusch AG. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 1988; 52:248-73. [PMID: 3045517 PMCID: PMC373138 DOI: 10.1128/mr.52.2.248-273.1988] [Citation(s) in RCA: 301] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Hinnebusch AG. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 1988; 52:248-273. [PMID: 3045517 DOI: 10.1128/mmbr.52.2.248-273.1988] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
39
|
Fujimura T, Wickner RB. Replicase of L-A virus-like particles of Saccharomyces cerevisiae. In vitro conversion of exogenous L-A and M1 single-stranded RNAs to double-stranded form. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57414-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|