1
|
Vandermeulen MD, Khaiwal S, Rubio G, Liti G, Cullen PJ. Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals. iScience 2024; 27:110860. [PMID: 39381740 PMCID: PMC11460476 DOI: 10.1016/j.isci.2024.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Understanding how phenotypic diversity is generated is an important question in biology. We explored phenotypic diversity among wild yeast isolates (Saccharomyces cerevisiae) and found variation in the activity of MAPK signaling pathways as a contributing mechanism. To uncover the genetic basis of this mechanism, we identified 1957 SNPs in 62 candidate genes encoding signaling proteins from a MAPK signaling module within a large collection of yeast (>1500 individuals). Follow-up testing identified functionally relevant variants in key signaling proteins. Loss-of-function (LOF) alleles in a PAK kinase impacted protein stability and pathway specificity decreasing filamentous growth and mating phenotypes. In contrast, gain-of-function (GOF) alleles in G-proteins that were hyperactivating induced filamentous growth. Similar amino acid substitutions in G-proteins were identified in metazoans that in some cases were fixed in multicellular lineages including humans, suggesting hyperactivating GOF alleles may play roles in generating phenotypic diversity across eukaryotes. A mucin signaler that regulates MAPK activity was also found to contain a prevalance of presumed GOF alleles amoung individuals based on changes in mucin repeat numbers. Thus, genetic variation in signaling pathways may act as a reservoir for generating phenotypic diversity across eukaryotes.
Collapse
Affiliation(s)
| | - Sakshi Khaiwal
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Gabriel Rubio
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
2
|
Heng YC, Kitano S, Susanto AV, Foo JL, Chang MW. Tunable cell differentiation via reprogrammed mating-type switching. Nat Commun 2024; 15:8163. [PMID: 39289346 PMCID: PMC11408693 DOI: 10.1038/s41467-024-52282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
This study introduces a synthetic biology approach that reprograms the yeast mating-type switching mechanism for tunable cell differentiation, facilitating synthetic microbial consortia formation and cooperativity. The underlying mechanism was engineered into a genetic logic gate capable of inducing asymmetric sexual differentiation within a haploid yeast population, resulting in a consortium characterized by mating-type heterogeneity and tunable population composition. The utility of this approach in microbial consortia cooperativity was demonstrated through the sequential conversion of xylan into xylose, employing haploids of opposite mating types each expressing a different enzyme of the xylanolytic pathway. This strategy provides a versatile framework for producing and fine-tuning functionally heterogeneous yet isogenic yeast consortia, furthering the advancement of microbial consortia cooperativity and offering additional avenues for biotechnological applications.
Collapse
Affiliation(s)
- Yu Chyuan Heng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Shohei Kitano
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Adelia Vicanatalita Susanto
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Jee Loon Foo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National Centre for Engineering Biology (NCEB), Singapore, Singapore.
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National Centre for Engineering Biology (NCEB), Singapore, Singapore.
| |
Collapse
|
3
|
Vandermeulen MD, Cullen PJ. New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in Saccharomyces cerevisiae. Genetics 2020; 216:95-116. [PMID: 32665277 PMCID: PMC7463291 DOI: 10.1534/genetics.120.303369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
MAPK pathways are drivers of morphogenesis and stress responses in eukaryotes. A major function of MAPK pathways is the transcriptional induction of target genes, which produce proteins that collectively generate a cellular response. One approach to comprehensively understand how MAPK pathways regulate cellular responses is to characterize the individual functions of their transcriptional targets. Here, by examining uncharacterized targets of the MAPK pathway that positively regulates filamentous growth in Saccharomyces cerevisiae (fMAPK pathway), we identified a new role for the pathway in negatively regulating invasive growth. Specifically, four targets were identified that had an inhibitory role in invasive growth: RPI1, RGD2, TIP1, and NFG1/YLR042cNFG1 was a highly induced unknown open reading frame that negatively regulated the filamentous growth MAPK pathway. We also identified SFG1, which encodes a transcription factor, as a target of the fMAPK pathway. Sfg1p promoted cell adhesion independently from the fMAPK pathway target and major cell adhesion flocculin Flo11p, by repressing genes encoding presumptive cell-wall-degrading enzymes. Sfg1p also contributed to FLO11 expression. Sfg1p and Flo11p regulated different aspects of cell adhesion, and their roles varied based on the environment. Sfg1p also induced an elongated cell morphology, presumably through a cell-cycle delay. Thus, the fMAPK pathway coordinates positive and negative regulatory proteins to fine-tune filamentous growth resulting in a nuanced response. Functional analysis of other pathways' targets may lead to a more comprehensive understanding of how signaling cascades generate biological responses.
Collapse
Affiliation(s)
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, New York 14260-1300
| |
Collapse
|
4
|
Hatch AJ, Odom AR, York JD. Inositol phosphate multikinase dependent transcriptional control. Adv Biol Regul 2017; 64:9-19. [PMID: 28342784 PMCID: PMC6198329 DOI: 10.1016/j.jbior.2017.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
Production of lipid-derived inositol phosphates including IP4 and IP5 is an evolutionarily conserved process essential for cellular adaptive responses that is dependent on both phospholipase C and the inositol phosphate multikinase Ipk2 (also known as Arg82 and IPMK). Studies of Ipk2, along with Arg82 prior to demonstrating its IP kinase activity, have provided an important link between control of gene expression and IP metabolism as both kinase dependent and independent functions are required for proper transcriptional complex function that enables cellular adaptation in response to extracellular queues such as nutrient availability. Here we define a promoter sequence cis-element, 5'-CCCTAAAAGG-3', that mediates both kinase-dependent and independent functions of Ipk2. Using a synthetic biological strategy, we show that proper gene expression in cells lacking Ipk2 may be restored through add-back of two components: IP4/IP5 production and overproduction of the MADS box DNA binding protein, Mcm1. Our results are consistent with a mechanism by which Ipk2 harbors a dual functionality that stabilizes transcription factor levels and enzymatically produces a small molecule code, which together coordinate control of biological processes and gene expression.
Collapse
Affiliation(s)
- Ace J Hatch
- Departments of Pharmacology and Cancer Biology and of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Audrey R Odom
- Departments of Pharmacology and Cancer Biology and of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - John D York
- Departments of Pharmacology and Cancer Biology and of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37232-0146, USA.
| |
Collapse
|
5
|
Whitworth K, Bradford MK, Camara N, Wendland B. Targeted disruption of an EH-domain protein endocytic complex, Pan1-End3. Traffic 2013; 15:43-59. [PMID: 24118836 DOI: 10.1111/tra.12125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 02/04/2023]
Abstract
Pan1 is a multi-domain scaffold that enables dynamic interactions with both structural and regulatory components of the endocytic pathway. Pan1 is composed of Eps15 Homology (EH) domains which interact with adaptor proteins, a central region that is responsible for its oligomerization and C-terminal binding sites for Arp2/3, F-actin, and type-I myosin motors. In this study, we have characterized the binding sites between Pan1 and its constitutive binding partner End3, another EH domain containing endocytic protein. The C-terminal End3 Repeats of End3 associate with the N-terminal part of Pan1's central coiled-coil region. These repeats appear to act independently of one another as tandem, redundant binding sites for Pan1. The end3-1 allele was sequenced, and corresponds to a C-terminal truncation lacking the End3 Repeats. Mutations of the End3 Repeats highlight that those residues which are identical between these repeats serve as contact sites for the interaction with Pan1.
Collapse
Affiliation(s)
- Karen Whitworth
- Department of Biology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | | | | |
Collapse
|
6
|
Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1311-40. [PMID: 17604854 PMCID: PMC2031910 DOI: 10.1016/j.bbamcr.2007.05.003] [Citation(s) in RCA: 470] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells.
Collapse
Affiliation(s)
- Raymond E Chen
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
7
|
Barker SL, Lee L, Pierce BD, Maldonado-Báez L, Drubin DG, Wendland B. Interaction of the endocytic scaffold protein Pan1 with the type I myosins contributes to the late stages of endocytosis. Mol Biol Cell 2007; 18:2893-903. [PMID: 17522383 PMCID: PMC1949359 DOI: 10.1091/mbc.e07-05-0436] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast endocytic scaffold Pan1 contains an uncharacterized proline-rich domain (PRD) at its carboxy (C)-terminus. We report that the pan1-20 temperature-sensitive allele has a disrupted PRD due to a frame-shift mutation in the open reading frame of the domain. To reveal redundantly masked functions of the PRD, synthetic genetic array screens with a pan1DeltaPRD strain found genetic interactions with alleles of ACT1, LAS17 and a deletion of SLA1. Through a yeast two-hybrid screen, the Src homology 3 domains of the type I myosins, Myo3 and Myo5, were identified as binding partners for the C-terminus of Pan1. In vitro and in vivo assays validated this interaction. The relative timing of recruitment of Pan1-green fluorescent protein (GFP) and Myo3/5-red fluorescent protein (RFP) at nascent endocytic sites was revealed by two-color real-time fluorescence microscopy; the type I myosins join Pan1 at cortical patches at a late stage of internalization, preceding the inward movement of Pan1 and its disassembly. In cells lacking the Pan1 PRD, we observed an increased lifetime of Myo5-GFP at the cortex. Finally, Pan1 PRD enhanced the actin polymerization activity of Myo5-Vrp1 complexes in vitro. We propose that Pan1 and the type I myosins interactions promote an actin activity important at a late stage in endocytic internalization.
Collapse
Affiliation(s)
- Sarah L. Barker
- *Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and
| | - Linda Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - B. Daniel Pierce
- *Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and
| | | | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Beverly Wendland
- *Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and
| |
Collapse
|
8
|
Ongay-Larios L, Navarro-Olmos R, Kawasaki L, Velázquez-Zavala N, Sánchez-Paredes E, Torres-Quiroz F, Coello G, Coria R. Kluyveromyces lactis sexual pheromones. Gene structures and cellular responses to alpha-factor. FEMS Yeast Res 2007; 7:740-7. [PMID: 17506833 DOI: 10.1111/j.1567-1364.2007.00249.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The Kluyveromyces lactis genes for sexual pheromones have been analyzed. The alpha-factor gene encodes a predicted polypeptide of 187 amino acid residues containing four tridecapeptide repeats (WSWITLRPGQPIF). A nucleotide blast search of the entire K. lactis genome sequence allowed the identification of the nonannotated putative a-pheromone gene that encodes a predicted protein of 33 residues containing one copy of the dodecapeptide a-factor (WIIPGFVWVPQC). The role of the K. lactis structural genes KlMFalpha1 and KlMFA1 in mating has been investigated by the construction of disruption mutations that totally eliminate gene functions. Mutants of both alleles showed sex-dependent sterility, indicating that these are single-copy genes and essential for mating. MATalpha, Klsst2 mutants, which, by analogy to Saccharomyces cerevisiae, are defective in Galpha-GTPase activity, showed increased sensitivity to synthetic alpha-factor and increased capacity to mate. Additionally, Klbar1 mutants (putatively defective in alpha-pheromone proteolysis) showed delay in mating but sensitivity to alpha-pheromone. From these results, it can be deduced that the K. lactis MATa cell produces the homolog of the S. cerevisiaealpha-pheromone, whereas the MATalpha cell produces the a-pheromone.
Collapse
Affiliation(s)
- Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rivers DM, Sprague GF. Autocrine activation of the pheromone response pathway in matalpha2- cells is attenuated by SST2- and ASG7-dependent mechanisms. Mol Genet Genomics 2003; 270:225-33. [PMID: 13680367 DOI: 10.1007/s00438-003-0914-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 08/01/2003] [Indexed: 11/26/2022]
Abstract
Yeast mat alpha2 mutants express both mating pheromones and both mating pheromone receptors. They show modest signaling in the pheromone response pathway, as revealed by increased levels of FUS1 transcript, yet are resistant to pheromone treatment. Together, these phenotypes suggest that alpha2- cells undergo autocrine activation of the pheromone response pathway, which is subsequently attenuated. We constructed a regulatable version of the alpha2 gene (GALalpha2) and showed that, upon loss of alpha2 activity, cells exhibit an initial robust response to pheromone that is attenuated within 3 h. We reasoned that the viability of alpha2- cells might be due to attenuation, and therefore performed a genome-wide synthetic lethal screen to identify potential adaptation components. We identified two genes, SST2 and ASG7. Loss of either of these attenuation components results in activation of the pheromone pathway in alpha2- cells. Loss of both proteins causes a more severe phenotype. Sst2 functions as a GTPase activating protein (GAP) for the Galpha subunit of the trimeric G protein. Asg7 is an a -cell specific protein that acts in concert with the alpha-cell specific a -factor receptor, Ste3, to inhibit signaling by Gbetagamma. Hence, our results suggest that mat alpha2 mutants mimic the intracellular signaling events that occur in newly fused zygotes.
Collapse
Affiliation(s)
- D M Rivers
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97303-1229, USA
| | | |
Collapse
|
10
|
Ash J, Wu C, Larocque R, Jamal M, Stevens W, Osborne M, Thomas DY, Whiteway M. Genetic analysis of the interface between Cdc42p and the CRIB domain of Ste20p in Saccharomyces cerevisiae. Genetics 2003; 163:9-20. [PMID: 12586692 PMCID: PMC1462410 DOI: 10.1093/genetics/163.1.9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutagenesis was used to probe the interface between the small GTPase Cdc42p and the CRIB domain motif of Ste20p. Members of a cluster of hydrophobic residues of Cdc42p were changed to alanine and/or arginine. The interaction of the wild-type and mutant proteins was measured using the two-hybrid assay; many, but not all, changes reduced interaction between Cdc42p and the target CRIB domain. Mutations in conserved residues in the CRIB domain were also tested for their importance in the association with Cdc42p. Two conserved CRIB domain histidines were changed to aspartic acid. These mutants reduced mating, as well as responsiveness to pheromone-induced gene expression and cell cycle arrest, but did not reduce in vitro the kinase activity of Ste20p. GFP-tagged mutant proteins were unable to localize to sites of polarized growth. In addition, these point mutants were synthetically lethal with disruption of CLA4 and blocked the Ste20p-Cdc42p two-hybrid interaction. Compensatory mutations in Cdc42p that reestablished the two-hybrid association with the mutant Ste20p CRIB domain baits were identified. These mutations improved the pheromone responsiveness of cells containing the CRIB mutations, but did not rescue the lethality associated with the CRIB mutant CLA4 deletion interaction. These results suggest that the Ste20p-Cdc42p interaction plays a direct role in Ste20p kinase function and that this interaction is required for efficient activity of the pheromone response pathway.
Collapse
Affiliation(s)
- Josée Ash
- Genetics, National Research Council, Biotechnology Research Institute, Montreal, Quebec H4P 2R2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ishikawa M, Soyano T, Nishihama R, Machida Y. The NPK1 mitogen-activated protein kinase kinase kinase contains a functional nuclear localization signal at the binding site for the NACK1 kinesin-like protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:789-98. [PMID: 12472693 DOI: 10.1046/j.1365-313x.2002.01469.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The tobacco mitogen-activated protein kinase kinase kinase NPK1 localizes to the equatorial region of phragmoplasts by interacting with kinesin-like protein NACK1. This leads to activation of NPK1 kinase at late M phase, which is necessary for cell plate formation. Until now, its localization during interphase has not been reported. We investigated the subcellular localization of NPK1 in tobacco-cultured BY-2 cells at interphase using indirect immunofluorescence microscopy and fusion to green fluorescent protein (GFP). Fluorescence of anti-NPK1 antibodies and GFP-fused NPK1 were detected only in the nuclei of BY-2 cells at interphase. Examination of the amino acid sequence of NPK1 showed that at the carboxyl-terminal region in the regulatory domain, which contains the binding site of NACK1, NPK1 contained a cluster of basic amino acids that resemble a bipartite nuclear localization signal (NLS). Amino acid substitution mutations in the critical residues in putative NLS caused a marked reduction in nuclear localization of NPK1 in BY-2 cells, indicating that this sequence is functional in tobacco BY-2 cells. We also found that the 64-amino acid sequence at the carboxyl terminus that contains NLS sequence is essential for interaction with NACK1, and that mutations in the NLS sequence prevented NPK1 from interacting with NACK1. Thus, the amino acid sequence at the carboxyl-terminal region of NPK1 has dual functions for nuclear localization during interphase and binding NACK1 in M phase.
Collapse
Affiliation(s)
- Masaki Ishikawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Japan
| | | | | | | |
Collapse
|
12
|
Crosby JA, Konopka JB, Fields S. Constitutive activation of the Saccharomyces cerevisiae transcriptional regulator Ste12p by mutations at the amino-terminus. Yeast 2000; 16:1365-75. [PMID: 11054817 DOI: 10.1002/1097-0061(200011)16:15<1365::aid-yea630>3.0.co;2-s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional activator Ste12p is required for the expression of genes induced by mating pheromone in the yeast Saccharomyces cerevisiae. We identified mutations in the amino-terminal DNA-binding domain of Ste12p that lead to constitutively high-level transcription of pheromone-induced genes. The behaviour of these mutant proteins is consistent with an enhanced DNA-binding ability. Cells carrying these hyperactive proteins retain their sensitivity to pheromone treatment, and their phenotype is largely dependent on the presence of at least one of the MAP kinases (Fus3p or Kss1p) and the scaffold protein Ste5p. Deletion of either FUS3 or KSS1 leads to a marked increase in Ste12p activity, consistent with a negative regulatory role for Fus3p, similar to that described for Kss1p. The properties of the constitutive mutants support the idea that the pheromone response pathway plays a role in basal as well as pheromone-induced transcription.
Collapse
Affiliation(s)
- J A Crosby
- Program in Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, State University of New York at Stony Brook, 11794, USA
| | | | | |
Collapse
|
13
|
Cullen PJ, Schultz J, Horecka J, Stevenson BJ, Jigami Y, Sprague GF. Defects in protein glycosylation cause SHO1-dependent activation of a STE12 signaling pathway in yeast. Genetics 2000; 155:1005-18. [PMID: 10880465 PMCID: PMC1461155 DOI: 10.1093/genetics/155.3.1005] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In haploid Saccharomyces cerevisiae, mating occurs by activation of the pheromone response pathway. A genetic selection for mutants that activate this pathway uncovered a class of mutants defective in cell wall integrity. Partial loss-of-function alleles of PGI1, PMI40, PSA1, DPM1, ALG1, MNN10, SPT14, and OCH1, genes required for mannose utilization and protein glycosylation, activated a pheromone-response-pathway-dependent reporter (FUS1) in cells lacking a basal signal (ste4). Pathway activation was suppressed by the addition of mannose to hexose isomerase mutants pgi1-101 and pmi40-101, which bypassed the requirement for mannose biosynthesis in these mutants. Pathway activation was also suppressed in dpm1-101 mutants by plasmids that contained RER2 or PSA1, which produce the substrates for Dpm1. Activation of FUS1 transcription in the mannose utilization/protein glycosylation mutants required some but not all proteins from three different signaling pathways: the pheromone response, invasive growth, and HOG pathways. We specifically suggest that a Sho1 --> Ste20/Ste50 --> Ste11 --> Ste7 --> Kss1 --> Ste12 pathway is responsible for activation of FUS1 transcription in these mutants. Because loss of pheromone response pathway components leads to a synthetic growth defect in mannose utilization/protein glycosylation mutants, we suggest that the Sho1 --> Ste12 pathway contributes to maintenance of cell wall integrity in vegetative cells.
Collapse
Affiliation(s)
- P J Cullen
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998; 9:3273-97. [PMID: 9843569 PMCID: PMC25624 DOI: 10.1091/mbc.9.12.3273] [Citation(s) in RCA: 2751] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1998] [Accepted: 10/15/1998] [Indexed: 12/13/2022] Open
Abstract
We sought to create a comprehensive catalog of yeast genes whose transcript levels vary periodically within the cell cycle. To this end, we used DNA microarrays and samples from yeast cultures synchronized by three independent methods: alpha factor arrest, elutriation, and arrest of a cdc15 temperature-sensitive mutant. Using periodicity and correlation algorithms, we identified 800 genes that meet an objective minimum criterion for cell cycle regulation. In separate experiments, designed to examine the effects of inducing either the G1 cyclin Cln3p or the B-type cyclin Clb2p, we found that the mRNA levels of more than half of these 800 genes respond to one or both of these cyclins. Furthermore, we analyzed our set of cell cycle-regulated genes for known and new promoter elements and show that several known elements (or variations thereof) contain information predictive of cell cycle regulation. A full description and complete data sets are available at http://cellcycle-www.stanford.edu
Collapse
Affiliation(s)
- P T Spellman
- Department of Genetics, Stanford University Medical Center, Stanford, California 94306-5120, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Horecka J, Sprague GF. Identification and characterization of FAR3, a gene required for pheromone-mediated G1 arrest in Saccharomyces cerevisiae. Genetics 1996; 144:905-21. [PMID: 8913737 PMCID: PMC1207631 DOI: 10.1093/genetics/144.3.905] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In haploid Saccharomyces cerevisiae cells, mating pheromones activate a signal transduction pathway that leads to cell cycle arrest in the G1 phase and to transcription induction of genes that promote conjugation. To identify genes that link the signal transduction pathway and the cell cycle machinery, we developed a selection strategy to isolate yeast mutants specifically defective for G1 arrest. Several of these mutants identified previously known genes, including CLN3, FUS3, and FAR1. In addition, a new gene, FAR3, was identified and characterized. FAR3 encodes a novel protein of 204 amino acid residues that is dispensable for viability. Northern blot experiments indicated that FAR3 expression is constitutive with respect to cell type, pheromone treatment, and cell cycle position. As a first step toward elucidating the mechanism by which Far3 promotes pheromone-mediated G1 arrest, we performed genetic and molecular experiments to test the possibility that Far3 participates in one of the heretofore characterized mechanisms, namely Fus3/Far1-mediated inhibition of Cdc28-Cln kinase activity, G1 cyclin gene repression, and G1 cyclin protein turnover. Our data indicate that Far3 effects G1 arrest by a mechanism distinct from those previously known.
Collapse
Affiliation(s)
- J Horecka
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | |
Collapse
|
16
|
Paravicini G, Friedli L. Protein-protein interactions in the yeast PKC1 pathway: Pkc1p interacts with a component of the MAP kinase cascade. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:682-91. [PMID: 8757399 DOI: 10.1007/bf02174117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The two-hybrid system for the identification of protein-protein interactions was used to screen for proteins that interact in vivo with the Saccharomyces cerevisiae Pkc1 protein, a homolog of mammalian protein kinase C. Four positive clones were isolated that encoded portions of the protein kinase Mkk1, which acts downstream of Pkc1p in the PKC1-mediated signalling pathway. Subsequently, Pkc1p and the other PKC1 pathway components encoding members of a MAP kinase cascade, Bck1p (a MEKK), Mkk1p, Mkk2p (two functionally homologous MEKs), and Mpk1p (a MAP kinase), were tested pairwise for interaction in the two-hybrid assay. Pkc1p interacted specifically with small N-terminal deletions of Mkk1p, and no interaction between Pkc1p and any of the other known pathway components could be detected. Interaction between Pkc1p and Mkk1p, however, was found to be independent of Mkk1p kinase activity. Bck1p was also found to interact with Mkk1p and Mkk2p, and the interaction required only the predicted C-terminal catalytic domain of Mkk1p. Furthermore, we detected protein-protein interactions between two Bck1p molecules via their N-terminal regions. Finally, Mkk2p and Mpk1p also interacted in the two-hybrid assay. These results suggest that the members of the PKC1-mediated MAP kinase cascade form a complex in vivo and that Pkc1p is capable of directly interacting with at least one component of this pathway.
Collapse
Affiliation(s)
- G Paravicini
- GLAXO Institue for Molecular Biology, Geneva, Switzerland
| | | |
Collapse
|
17
|
Yan K, Kalyanaraman V, Gautam N. Differential ability to form the G protein betagamma complex among members of the beta and gamma subunit families. J Biol Chem 1996; 271:7141-6. [PMID: 8636150 DOI: 10.1074/jbc.271.12.7141] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have determined the relative abilities of several members of the G protein beta and gamma subunit families to associate with each other using the yeast two-hybrid system. We show first that the mammalian beta1 and gamma3 fusion proteins form a complex in yeast and that formation of the complex activates the reporter gene for beta-galactosidase. Second, the magnitude of reporter activity stimulated by various combinations of beta and gamma subunit types varies widely. Third, the reporter activity evoked by a particular combination of beta and gamma subunit types is not correlated with the expression levels of these subunit types in the yeast cells. Finally, the reporter activity shows a direct relationship with the amount of hybrid betagamma complex formed in the cell as determined by immunoprecipitation. These results suggest that different beta and gamma subunit types interact with each other with widely varying abilities, and this in combination with the level of expression of a subunit type in a mammalian cell determines which G protein will be active in that cell. The strong preference of all gamma subunit types for the beta1 subunit type explains the preponderence of this subunit type in most G proteins.
Collapse
Affiliation(s)
- K Yan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
18
|
Eki T, Naitou M, Hagiwara H, Ozawa M, Sasanuma SI, Sasanuma M, Tsuchiya Y, Shibata T, Hanaoka F, Murakami Y. Analysis of a 36·2 kb DNA sequence including the right telomere of chromosome VI fromSaccharomyces cerevisiae. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(199602)12:2<149::aid-yea893>3.0.co;2-g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
19
|
Eki T, Naitou M, Hagiwara H, Ozawa M, Sasanuma SI, Sasanuma M, Tsuchiya Y, Shibata T, Hanaoka F, Murakami Y. Analysis of a 36.2 kb DNA sequence including the right telomere of chromosome VI from Saccharomyces cerevisiae. Yeast 1996; 12:149-67. [PMID: 8686379 DOI: 10.1002/(sici)1097-0061(199602)12:2%3c149::aid-yea893%3e3.0.co;2-g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The nucleotide sequence of a 36.2-kb distal region containing the right telomere of chromosome VI was determined. Both strands of DNA cloned into cosmid clone 9965 and plasmid clone pEL174P2 were sequenced with an average redundancy of 7.9 per base pair, by both dye primer and dye terminator cycle sequencing methods. The G+C content of the sequence was found to be 37.9%. Eighteen open reading frames (ORFs) longer than 100 amino acids were detected. Four of these ORFs (9965orfR017, 9965orfF016, 9965orfR009 and 9965orfF003) were found to encode previously identified genes (YMR31, PRE4, NIN1 and HXK1, respectively). Six ORFs (9965orfR013, 9965orfF018, 9965orfF006, 9965orfR014, 9965orfF013 and 9965orfR020) were found to be homologous to hypothetical 121.4-kDa protein in the BCK 5' region, Bacillus subtilis DnaJ protein, hypothetical Trp-Asp repeats containing protein in DBP3-MRPL27, putative mitochondrial carrier YBR291C protein, Salmonella typhimurium nicotinate-nucleotide pyrophosphorylase, and Escherichia coli cystathionine beta-lyase, respectively. The putative proteins encoded by 9965orfF018, 9965orfR014 and 9965orfR020 were found to be, respectively, a new member of the family of DnaJ-like proteins, the mitochondrial carrier protein and cystathionine lyase.
Collapse
Affiliation(s)
- T Eki
- Division of Human Genome Research and Gene Bank, Tsukuba Life Science Center, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Clark KL, Feldmann PJ, Dignard D, Larocque R, Brown AJ, Lee MG, Thomas DY, Whiteway M. Constitutive activation of the Saccharomyces cerevisiae mating response pathway by a MAP kinase kinase from Candida albicans. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:609-21. [PMID: 8544826 DOI: 10.1007/bf00418030] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The HST7 gene of Candida albicans encodes a protein with structural similarity to MAP kinase kinases. Expression of this gene in Saccharomyces cerevisiae complements disruption of the Ste7 MAP kinase kinase required for both mating in haploid cells and pseudohyphal growth in diploids. However, Hst7 expression does not complement loss of either the Pbs2 (Hog4) MAP kinase kinase required for response to high osmolarity, or loss of the Mkk1 and Mkk2 MAP kinase kinases required for proper cell wall biosynthesis. Intriguingly, HST7 acts as a hyperactive allele of STE7; expression of Hst7 activates the mating pathway even in the absence of upstream signaling components including the Ste7 regulator Ste11, elevates the basal level of the pheromone-inducible FUS1 gene, and amplifies the pseudohyphal growth response in diploid cells. Thus Hst7 appears to be at least partially independent of upstream activators or regulators, but selective in its activity on downstream target MAP kinases. Creation of Hst7/Ste7 hybrid proteins revealed that the C-terminal two-thirds of Hst7, which contains the protein kinase domain, is sufficient to confer this partial independence of upstream activators.
Collapse
Affiliation(s)
- K L Clark
- Eukaryotic Genetics Group, Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Carmen AA, Brindle PK, Park CS, Holland MJ. Transcriptional regulation by an upstream repression sequence from the yeast enolase gene ENO1. Yeast 1995; 11:1031-43. [PMID: 7502579 DOI: 10.1002/yea.320111105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The activity of an upstream repression sequence (URS element) that mediates a 20-fold repression of ENO1 expression in cells grown in a medium containing glucose was characterized. Sequences that are sufficient for orientation-dependent ENO1 URS element activity were mapped between positions -241 and -126 relative to the ENO1 transcriptional initiation site. The ENO1 URS element repressed transcription of the yeast CYC1 gene when positioned between the CYC1 upstream activation sequences (UAS elements) and TATAAA boxes. The ENO1 URS element failed to repress transcription of the wild-type yeast enolase gene ENO2; however, expression of an ENO2 gene lacking one of the ENO2 UAS elements was efficiently repressed by the ENO1 URS element, suggesting that the URS element interferes with the transcriptional activation by some, but not all, UAS elements. In contrast to the ENO1 gene, the ENO1 URS element repressed CYC1 and ENO2 expression in cells grown on glucose or glycerol plus lactate. Evidence is presented that the ENO1 URS element also functions during stationary growth phase.
Collapse
Affiliation(s)
- A A Carmen
- Department of Biological Chemistry, School of Medicine, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
22
|
Ahn JH, Park SH, Kang HS. Inactivation of the UAS1 of STA1 by glucose and STA10 and identification of two loci, SNS1 and MSS1, involved in STA10-dependent repression in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:529-37. [PMID: 7700227 DOI: 10.1007/bf00298959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It has been reported that two upstream activation sites, UAS1 and UAS2, exist in the 5' non-coding region of the STA1 gene of Saccharomyces cerevisiae var. diastaticus. Based on studies using a UAS1STA1-CYC1-lacZ fusion, we divided UAS1 into two subsites, UAS1-1 and UAS1-2. The activation of the CYC1 promoter by UAS1STA1 was repressed by glucose in the culture medium and by the STA10 gene. The MATa/MAT alpha mating type configuration did not, however, affect UAS1STA1 activation. The UAS1STA1-CYC1-lacZ expression system was used to study STA10 repression further. A mutant insensitive to STA10-dependent repression was isolated. This sns1 mutation was not linked to STA10 and partially overcame the repressive effect of STA10 at the transcriptional level. From a genomic library constructed in the UAS1STA1-CYC1-lacZ expression vector, the MSS1 locus (multicopy suppressor of sns1) was isolated. This suppression of the sns1 mutation by multiple copies of the MSS1 locus occurred at the transcriptional level. When a gene disruption experiment was performed to examine the effect of a mss1 mutation, the sns1 mss1 double mutants produced 4 times higher levels of STA1 transcripts in the presence of STA10 than did the sns1 strain. Data presented in this paper suggest that both SNS1 and MSS1 loci are involved in STA10-dependent repression.
Collapse
MESH Headings
- Cloning, Molecular/methods
- Cytochrome c Group/genetics
- Cytochromes c
- Down-Regulation
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal/drug effects
- Gene Expression Regulation, Fungal/genetics
- Genes, Fungal/genetics
- Genes, Mating Type, Fungal
- Glucose/pharmacology
- Promoter Regions, Genetic/genetics
- RNA, Fungal/analysis
- RNA, Messenger/analysis
- Regulatory Sequences, Nucleic Acid/genetics
- Repressor Proteins/genetics
- Restriction Mapping
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/physiology
- Saccharomyces cerevisiae Proteins
- Suppression, Genetic
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- J H Ahn
- Department of Microbiology, College of Natural Sciences, Seoul National University, Korea
| | | | | |
Collapse
|
23
|
La Roche SD, Shafer BK, Strathern JN. A ste12 allele having a differential effect on a versus alpha cells. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:80-90. [PMID: 7823915 DOI: 10.1007/bf00290136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transcriptional activator Ste12p is a key component of the yeast pheromone response pathway: phosphorylated as a consequence of signal transduction, it activates transcription of genes that promote mating and the subsequent fusion of the two cell types a and alpha. Activation by Ste12p requires three types of protein-protein interaction between DNA-binding activator proteins: (1) Ste12p by itself can induce non-cell-type-specific genes involved in mating; (2) cooperation of the transactivator Mcm1p with Ste12p induces a-specific genes; and (3) formation of a complex of the activator proteins Mcm1p and alpha 1 (a transcriptional activator of alpha-specific genes) with Ste12p is believed to induce alpha-specific genes. We isolated and characterized a partially functional ste12 allele (ste12-T50), that is defective only in the activation of alpha-specific genes. ste12-T50 was isolated as a second-site mutation conferring the a mating phenotype on mat alpha 2 mutant cells. In mat alpha 2 cells, where due to the lack of repressor, alpha 2, both sets of cell-type-specific genes are expressed, ste12-T50 apparently tips the balance in favor of a-specific gene expression. Thus, mat alpha 2 ste12-T50 cells mate like a cells. Additional ste12 mutants that confer the a mating phenotype on mat alpha 2 cells have also been isolated.
Collapse
Affiliation(s)
- S D La Roche
- Laboratory of Eukaryotic Gene Expression, NCI-Frederick Cancer Research and Development Center, ABL-Basic Research Program, Maryland 21702-1201
| | | | | |
Collapse
|
24
|
Printen JA, Sprague GF. Protein-protein interactions in the yeast pheromone response pathway: Ste5p interacts with all members of the MAP kinase cascade. Genetics 1994; 138:609-19. [PMID: 7851759 PMCID: PMC1206212 DOI: 10.1093/genetics/138.3.609] [Citation(s) in RCA: 252] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have used the two-hybrid system of Fields and Song to identify protein-protein interactions that occur in the pheromone response pathway of the yeast Saccharomyces cerevisiae. Pathway components Ste4p, Ste5p, Ste7p, Ste11p, Ste12p, Ste20p, Fus3p and Kss1p were tested in all pairwise combinations. All of the interactions we detected involved at least one member of the MAP kinase cascade that is a central element of the response pathway. Ste5p, a protein of unknown biochemical function, interacted with protein kinases that operate at each step of the MAP kinase cascade, specifically with Ste11p (an MEKK), Ste7p (an MEK), and Fus3p (a MAP kinase). This finding suggests that one role of Ste5p is to serve as a scaffold to facilitate interactions among members of the kinase cascade. In this role as facilitator, Ste5p may make both signal propagation and signal attenuation more efficient. Ste5p may also help minimize cross-talk with other MAP kinase cascades and thus ensure the integrity of the pheromone response pathway. We also found that both Ste11p and Ste7p interact with Fus3p and Kss1p. Finally, we detected an interaction between one of the MAP kinases, Kss1p, and a presumptive target, the transcription factor Ste12p. We failed to detect interactions of Ste4p or Ste20p with any other component of the response pathway.
Collapse
Affiliation(s)
- J A Printen
- Department of Chemistry, University of Oregon, Eugene 97403-1229
| | | |
Collapse
|
25
|
Bilanchone VW, Claypool JA, Kinsey PT, Sandmeyer SB. Positive and negative regulatory elements control expression of the yeast retrotransposon Ty3. Genetics 1993; 134:685-700. [PMID: 8394262 PMCID: PMC1205508 DOI: 10.1093/genetics/134.3.685] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report the results of an analysis of Ty3 transcription and identification of Ty3 regions that mediate pheromone and mating-type regulation to coordinate its expression with the yeast life cycle. A set of strains was constructed which was isogenic except for the number of Ty3 elements, which varied from zero to three. Analysis of Ty3 expression in these strains showed that each of the three elements was transcribed and that each element was regulated. Dissection of the long terminal repeat regulatory region by Northern blot analysis of deletion mutants and reporter gene analysis showed that the upstream junction of Ty3 with flanking chromosomal sequences contained a negative control region. A 19-bp fragment (positions 56-74) containing one consensus copy and one 7 of 8-bp match to the pheromone response element (PRE) consensus was sufficient to mediate pheromone induction in either haploid cell type. Deletion of this region, however, did not abolish expression, indicating that other sequences also activate transcription. A 24-bp block immediately downstream of the PRE region contained a sequence similar to the a1-alpha 2 consensus that conferred mating-type control. A single base pair mutation in the region separating the PRE and a1-alpha 2 sequences blocked pheromone induction, but not mating-type control. Thus, the long terminal repeat of Ty3 is a compact, highly regulated, mobile promoter which is responsive to cell type and mating.
Collapse
MESH Headings
- Base Sequence
- Cell Cycle/drug effects
- DNA Transposable Elements
- DNA, Fungal
- Gene Expression Regulation, Fungal
- Mating Factor
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Peptides/genetics
- Pheromones/pharmacology
- RNA, Fungal/drug effects
- RNA, Transfer, Cys/metabolism
- Regulatory Sequences, Nucleic Acid
- Repetitive Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
- Sequence Analysis, DNA
- Sequence Deletion
- Transcription, Genetic
Collapse
Affiliation(s)
- V W Bilanchone
- Department of Microbiology and Molecular Genetics, University of California, Irvine 92717
| | | | | | | |
Collapse
|
26
|
Abstract
The mammalian transcription factor SRF (serum-response factor) and the related Saccharomyces cerevisiae transcription factor MCM1 are the prototypes of a new class of dimeric DNA-binding proteins. Their function is regulated in part by the interactions of their DNA-binding domains with accessory proteins. Recent work has advanced the functional characterization of the contributions of SRF and MCM1, and their accessory proteins to transcriptional activation.
Collapse
Affiliation(s)
- R Treisman
- Imperial Cancer Research Fund, London, UK
| | | |
Collapse
|
27
|
Fujita A, Misumi Y, Ikehara Y, Kobayashi H. The yeast SFL2 gene may be necessary for mating-type control. Gene X 1992; 112:85-90. [PMID: 1312982 DOI: 10.1016/0378-1119(92)90306-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We previously reported the isolation of the yeast suppressor gene for flocculation, SFL2 (TUP1). SFL2 gene disruption results in pleiotropic phenotypes; the sfl2 null mutation also causes a morphological change similar to shmoo in both the MAT alpha and MATa/alpha cells. The MAT alpha and MATa/alpha sfl2 null mutant cells incorporate chitin into the new growth zone in the same way as the alpha-factor-treated MATa cells. In order to clarify the molecular basis of this morphological change, we examined the effect of the sfl2 null mutation on the mRNA production of various genes involved in mating-type control. The transcripts of both the STE2 (an a-specific gene) and STE3 (an alpha specific gene) genes are detected in the MAT alpha and MATa/alpha cells carrying the sfl2 null mutation. In addition, mRNA of the GPA1 gene (haploid-cell-specific gene) is also detected in the MATa/alpha sfl2 cells. However, there is no significant difference in the levels of the MAT alpha 2 and MATa1 transcripts. These results suggest that the SFL2 gene product may be necessary for alpha 2 and a1-alpha 2 repression.
Collapse
Affiliation(s)
- A Fujita
- Fermentation Research Institute, Agency of Industrial Science and Technology, MITI, Ibaraki, Japan
| | | | | | | |
Collapse
|
28
|
Bitter GA, Chang KK, Egan KM. A multi-component upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter. MOLECULAR & GENERAL GENETICS : MGG 1991; 231:22-32. [PMID: 1753943 DOI: 10.1007/bf00293817] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The majority of the activation potential of the Saccharomyces cerevisiae TDH3 gene promoter is contained within nucleotides -676 to -381 (relative to the translation initiation codon). An upstream activation sequence (UAS) in this region has been characterized by in vitro and in vivo assays and demonstrated to be composed of two small, adjacent DNA sequence elements. The essential determinant of this upstream UAS is a general regulatory factor 1 (GRF1) binding site at nucleotides -513 to -501. A synthetic DNA element comprising this sequence, or an analogue in which two of the degenerate nucleotides of the GRF1 site consensus sequence were altered, activated 5' deleted TDH3 and CYC1 promoters. The second DNA element of the UAS is a 7 bp sequence which is conserved in the promoters of several yeast genes encoding glycolytic enzymes and occurs at positions -486 to -480 of the TDH3 promoter. This DNA sequence represents a novel promoter element: it contains no UAS activity itself, yet potentiates the activity of a GRF1 UAS. The potentiation of the GRF1 UAS by this element occurs when placed upstream from the TATA box of either the TDH3 or CYC1 promoters. The characteristics of this element (termed GPE for GRF1 site potentiator element) indicate that it represents a binding site for a different yeast protein which increases the promoter activation mediated by the GRF1 protein. Site-specific deletion and promoter reconstruction experiments suggest that the entire activation potential of the -676 to -381 region of the TDH3 gene promoter may be accounted for by a combination of the GRF1 site and the GPE.
Collapse
Affiliation(s)
- G A Bitter
- Department of Molecular Genetics, Amgen Inc., Thousand Oaks, CA 91320
| | | | | |
Collapse
|
29
|
Hwang-Shum JJ, Hagen DC, Jarvis EE, Westby CA, Sprague GF. Relative contributions of MCM1 and STE12 to transcriptional activation of a- and alpha-specific genes from Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1991; 227:197-204. [PMID: 1905781 DOI: 10.1007/bf00259671] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have examined the relative contributions of MCM1 and STE12 to the transcription of the a-specific STE2 gene by using a 367 bp fragment from the STE2 5'-noncoding region to drive expression of a reporter lacZ gene. Mutation of the MCM1 binding site destroyed MCM1.alpha 2-mediated repression in alpha cells and dramatically reduced expression in a cells. The residual expression was highly stimulated by exposure of cells to pheromone. Likewise, the loss of STE12 function reduced lacZ expression driven by the wild-type STE2 fragment. In the absence of both MCM1 and STE12 functions, no residual expression was observed. Thus, the STE2 fragment appears to contain two distinct upstream activation sequences (UASs), one that is responsible for the majority of expression in cells not stimulated by pheromone, and one that is responsible for increased expression upon pheromone stimulation. In further support of this idea, a chemically synthesized version of the STE2 MCM1 binding site had UAS activity, but the activity was neither stimulated by pheromone nor reduced in ste12 mutants. Although transcription of alpha-specific genes also requires both MCM1 and STE12, these genes differ from a-specific genes in that they have a single, MCM1-dependent UAS system. The activity of the minimal 26 bp UAS from the alpha-specific STE3 gene was both stimulated by pheromone and reduced in ste12 mutants. These data suggest that at alpha-specific genes STE12 and MCM1 exert their effects through a single UAS.
Collapse
Affiliation(s)
- J J Hwang-Shum
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- J W Dolan
- Department of Microbiology, State University of New York, Stony Brook 11794
| | | |
Collapse
|
31
|
Dranginis AM. Binding of yeast a1 and alpha 2 as a heterodimer to the operator DNA of a haploid-specific gene. Nature 1990; 347:682-5. [PMID: 1977088 DOI: 10.1038/347682a0] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mating-type locus (MAT) encodes several DNA-binding proteins, which determine the three cell types of Saccharomyces cerevisiae: the a and alpha haploid cell types, and the a/alpha diploid cell type. One of the products of MAT, alpha 2, functions in two cell types. In alpha cells, alpha 2 represses the a-specific genes by binding to the operator as a dimer. In a/alpha diploid cells, alpha 2 acts with a1, a product of the other MAT allele, to repress a different set of genes, the haploid-specific genes. Until now, the nature of the interaction between a1 and alpha 2 was not known, although it had been suggested that alpha 2 may form a heterodimer with a1. I show, by using proteins synthesized in vitro, that a1 and alpha 2 bind the operator of a haploid-specific gene as a heterodimer. The ability of alpha 2 to form both homodimers and heterodimers with a1, each with a different DNA-binding specificity, explains the dual regulatory functions of alpha 2. This is the first example of regulation by heterodimerization among homeobox-containing proteins, a class that includes proteins responsible for the specification of segment identity in Drosophila, mammals and other eukaryotes.
Collapse
Affiliation(s)
- A M Dranginis
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
32
|
Abstract
Our studies using proteases to probe protein structure establish that binding to the upstream activating sequences (UASs) of two different yeast a-specific genes induces a conformational change in the pheromone/receptor transcription factor (PRTF), which is not observed upon binding to the UASs of either of two alpha-specific genes. We propose that this selective structural alteration exposes an activation region of PRTF when it binds a-specific genes, switching these genes on. The transcriptional activator MAT alpha 1 may activate alpha-specific genes by binding to the PRTF-alpha-specific UAS complex and unmasking the otherwise hidden activation surface of PRTF. We also show that the N-terminal third of PRTF is sufficient for specific DNA binding, while the middle third of the protein interacts with MAT alpha 1.
Collapse
Affiliation(s)
- S Tan
- Institut für Molekularbiologie und Biophysik, Eth-Hönggerberg, Zurich, Switzerland
| | | |
Collapse
|
33
|
Affiliation(s)
- J M Verdier
- Département de Biologie (SBCH), Centre d'Etudes Nucléaires de Saclay, Gif-Sur-Yvette, France
| |
Collapse
|
34
|
Sprague GF. Combinatorial associations of regulatory proteins and the control of cell type in yeast. ADVANCES IN GENETICS 1990; 27:33-62. [PMID: 2190447 DOI: 10.1016/s0065-2660(08)60023-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- G F Sprague
- Department of Biology, University of Oregon, Eugene 97403
| |
Collapse
|
35
|
Abstract
The specialized sets of genes that determine different cell types in yeast are controlled by combinations of DNA-binding proteins some of which are present only in certain cell types whereas others are present in all cell types. Final differentiation requires an inductive signal that triggers both gene transcription and cell-cycle arrest. Synthesis of the proteins coded by the 'master regulatory' mating-type locus is regulated so as to generate a heterogeneous mitotic cell population containing a stem-cell lineage.
Collapse
Affiliation(s)
- I Herskowitz
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| |
Collapse
|
36
|
Affiliation(s)
- M Levine
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | |
Collapse
|
37
|
Flessel MC, Brake AJ, Thorner J. The MF alpha 1 gene of Saccharomyces cerevisiae: genetic mapping and mutational analysis of promoter elements. Genetics 1989; 121:223-36. [PMID: 2659433 PMCID: PMC1203612 DOI: 10.1093/genetics/121.2.223] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The activity and cell-type specificity of the promoter of the MF alpha 1 gene of Saccharomyces cerevisiae were examined by measuring expression of an MF alpha 1-SUC2 gene fusion in MATa, MAT alpha, and MATa/MAT alpha cells. A high level of invertase activity was observed only in MAT alpha cells. Weak expression occurred in MATa cells when the hybrid gene was carried on a multicopy plasmid or on a centromere-containing plasmid, but not when the hybrid gene was integrated at the normal MF alpha 1 locus. Analysis of a set of 5'-deletions of the promoter region of the MF alpha 1-SUC2 gene on the multicopy plasmid indicated that sequences from -354 to -274 upstream of the translational start site were required for high level expression in MAT alpha cells. Smaller internal deletions and insertions within the promoter region of the MF alpha 1-SUC2 gene were inserted into the genome at the normal MF alpha 1 locus. These mutations further delineated four promoter domains important for expression: (1) two 26 bp elements (-365 to -340 and -312 to -287) with imperfect dyad symmetry; (2) a 40 bp segment (-264 to -226) that lies about 120 bp upstream of the TATA box; and (3) the TATA box itself (-128 to -122). The transcriptional start sites of the normal MF alpha 1 promoter and of a mutant lacking the TATA box were determined. The MF alpha 1 locus was mapped to the left arm of chromosome XVI, about 22 cM centromere-proximal to the PEP4 gene.
Collapse
Affiliation(s)
- M C Flessel
- Graduate Group in Microbiology, University of California, Berkeley 94720
| | | | | |
Collapse
|
38
|
Abstract
The product of the MAT alpha 2 gene is a DNA-binding protein that acts as a repressor of two different sets of cell type-specific genes. In alpha cells, the alpha 2 protein represses the transcription of several a-specific genes. In a/alpha cells, the alpha 2 protein acts together with the product of the MATa1 gene, the a1 protein, to repress several genes used by haploids in the mating process. In addition to the mat alpha 2 mutations that result in defects in both types of regulation, other mat alpha 2 alleles have been described that result in defects in the repression of a-specific genes but that do not affect the ability of the alpha 2 and a1 proteins to interact to repress the haploid-specific genes. We report here the isolation of a new class of mat alpha 2 mutations that do not affect the ability of the alpha 2 protein to repress a-specific genes, but that interfere with the ability of the alpha 2 protein to interact with the a1 protein to repress the haploid-specific genes and establish the a/alpha cell type. These mutations may help determine the means by which the a1 protein interacts with alpha 2 to expand the set of genes under its control.
Collapse
Affiliation(s)
- J Strathern
- Laboratory of Eukaryotic Gene Expression, National Cancer Institute-Frederick Cancer Research Facility, Maryland 21701
| | | | | | | |
Collapse
|
39
|
Abstract
Transcription of the yeast C upsilon C1 gene (iso-1-cytochrome c) is regulated in part by the upstream activation site UAS2. Activity of UAS2 requires both the HAP2 and HAP3 activators, which bind to UAS2 in an interdependent manner. To distinguish whether these factors bound to UAS2 cooperatively or formed a complex in the absence of DNA, HAP2 and HAP3 were tagged by gene fusion to LexA and beta-galactosidase, respectively, and purified through four chromatographic steps. The copurification of LexA-HAP2, HAP3 beta-galactosidase, and UAS2 binding activity shows that HAP2 and HAP3 associate in the absence of DNA to form a multisubunit activation complex.
Collapse
Affiliation(s)
- S Hahn
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|