1
|
Gutiérrez G, Millán-Zambrano G, Medina DA, Jordán-Pla A, Pérez-Ortín JE, Peñate X, Chávez S. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning. Epigenetics Chromatin 2017; 10:58. [PMID: 29212533 PMCID: PMC5719526 DOI: 10.1186/s13072-017-0165-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND TFIIS stimulates RNA cleavage by RNA polymerase II and promotes the resolution of backtracking events. TFIIS acts in the chromatin context, but its contribution to the chromatin landscape has not yet been investigated. Co-transcriptional chromatin alterations include subtle changes in nucleosome positioning, like those expected to be elicited by TFIIS, which are elusive to detect. The most popular method to map nucleosomes involves intensive chromatin digestion by micrococcal nuclease (MNase). Maps based on these exhaustively digested samples miss any MNase-sensitive nucleosomes caused by transcription. In contrast, partial digestion approaches preserve such nucleosomes, but introduce noise due to MNase sequence preferences. A systematic way of correcting this bias for massively parallel sequencing experiments is still missing. RESULTS To investigate the contribution of TFIIS to the chromatin landscape, we developed a refined nucleosome-mapping method in Saccharomyces cerevisiae. Based on partial MNase digestion and a sequence-bias correction derived from naked DNA cleavage, the refined method efficiently mapped nucleosomes in promoter regions rich in MNase-sensitive structures. The naked DNA correction was also important for mapping gene body nucleosomes, particularly in those genes whose core promoters contain a canonical TATA element. With this improved method, we analyzed the global nucleosomal changes caused by lack of TFIIS. We detected a general increase in nucleosomal fuzziness and more restricted changes in nucleosome occupancy, which concentrated in some gene categories. The TATA-containing genes were preferentially associated with decreased occupancy in gene bodies, whereas the TATA-like genes did so with increased fuzziness. The detected chromatin alterations correlated with functional defects in nascent transcription, as revealed by genomic run-on experiments. CONCLUSIONS The combination of partial MNase digestion and naked DNA correction of the sequence bias is a precise nucleosomal mapping method that does not exclude MNase-sensitive nucleosomes. This method is useful for detecting subtle alterations in nucleosome positioning produced by lack of TFIIS. Their analysis revealed that TFIIS generally contributed to nucleosome positioning in both gene promoters and bodies. The independent effect of lack of TFIIS on nucleosome occupancy and fuzziness supports the existence of alternative chromatin dynamics during transcription elongation.
Collapse
Affiliation(s)
| | - Gonzalo Millán-Zambrano
- Departamento de Genética, Universidad de Sevilla, Seville, Spain.,Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain.,The Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Daniel A Medina
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain.,Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio Jordán-Pla
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Xenia Peñate
- Departamento de Genética, Universidad de Sevilla, Seville, Spain. .,Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain.
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain. .,Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain.
| |
Collapse
|
2
|
Castillo-Hair SM, Igoshin OA, Tabor JJ. How to train your microbe: methods for dynamically characterizing gene networks. Curr Opin Microbiol 2015; 24:113-23. [PMID: 25677419 DOI: 10.1016/j.mib.2015.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 12/31/2022]
Abstract
Gene networks regulate biological processes dynamically. However, researchers have largely relied upon static perturbations, such as growth media variations and gene knockouts, to elucidate gene network structure and function. Thus, much of the regulation on the path from DNA to phenotype remains poorly understood. Recent studies have utilized improved genetic tools, hardware, and computational control strategies to generate precise temporal perturbations outside and inside of live cells. These experiments have, in turn, provided new insights into the organizing principles of biology. Here, we introduce the major classes of dynamical perturbations that can be used to study gene networks, and discuss technologies available for creating them in a wide range of microbial pathways.
Collapse
Affiliation(s)
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, United States; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, United States; Center for Theoretical Biophysics, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, United States; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, United States.
| |
Collapse
|
3
|
Weicksel SE, Xu J, Sagerström CG. Dynamic nucleosome organization at hox promoters during zebrafish embryogenesis. PLoS One 2013; 8:e63175. [PMID: 23671670 PMCID: PMC3650070 DOI: 10.1371/journal.pone.0063175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/28/2013] [Indexed: 02/06/2023] Open
Abstract
Nucleosome organization at promoter regions plays an important role in regulating gene activity. Genome-wide studies in yeast, flies, worms, mammalian embryonic stem cells and transformed cell lines have found well-positioned nucleosomes flanking a nucleosome depleted region (NDR) at transcription start sites. This nucleosome arrangement depends on DNA sequence (cis-elements) as well as DNA binding factors and ATP-dependent chromatin modifiers (trans-factors). However, little is understood about how the nascent embryonic genome positions nucleosomes during development. This is particularly intriguing since the embryonic genome must undergo a broad reprogramming event upon fusion of sperm and oocyte. Using four stages of early embryonic zebrafish development, we map nucleosome positions at the promoter region of 37 zebrafish hox genes. We find that nucleosome arrangement at the hox promoters is a progressive process that takes place over several stages. At stages immediately after fertilization, nucleosomes appear to be largely disordered at hox promoter regions. At stages after activation of the embryonic genome, nucleosomes are detectable at hox promoters, with positions becoming more uniform and more highly occupied. Since the genomic sequence is invariant during embryogenesis, this progressive change in nucleosome arrangement suggests that trans-factors play an important role in organizing nucleosomes during embryogenesis. Separating hox genes into expressed and non-expressed groups shows that expressed promoters have better positioned and occupied nucleosomes, as well as distinct NDRs, than non-expressed promoters. Finally, by blocking the retinoic acid-signaling pathway, we disrupt early hox gene transcription, but observe no effect on nucleosome positions, suggesting that active hox transcription is not a driving force behind the arrangement of nucleosomes at the promoters of hox genes during early development.
Collapse
Affiliation(s)
- Steven E. Weicksel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jia Xu
- Bioinformatics Core, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Charles G. Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
Chung HR, Dunkel I, Heise F, Linke C, Krobitsch S, Ehrenhofer-Murray AE, Sperling SR, Vingron M. The effect of micrococcal nuclease digestion on nucleosome positioning data. PLoS One 2010; 5:e15754. [PMID: 21206756 PMCID: PMC3012088 DOI: 10.1371/journal.pone.0015754] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/22/2010] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a widely researched area. A common experimental procedure to determine nucleosome positions involves the use of micrococcal nuclease (MNase). Here, we show that the cutting preference of MNase in combination with size selection generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and especially sequence-dependent models for nucleosome positioning. As a consequence we see a need to re-evaluate whether the DNA sequence is a major determinant of nucleosome positioning in vivo. More generally, our results show that data generated after MNase digestion of chromatin requires a matched control experiment in order to determine nucleosome positions.
Collapse
Affiliation(s)
- Ho-Ryun Chung
- Department of Computational Molecular Biology, MPI für Molekulare Genetik, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Floer M, Wang X, Prabhu V, Berrozpe G, Narayan S, Spagna D, Alvarez D, Kendall J, Krasnitz A, Stepansky A, Hicks J, Bryant GO, Ptashne M. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 2010; 141:407-18. [PMID: 20434983 PMCID: PMC3032599 DOI: 10.1016/j.cell.2010.03.048] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/23/2009] [Accepted: 02/16/2010] [Indexed: 11/19/2022]
Abstract
How is chromatin architecture established and what role does it play in transcription? We show that the yeast regulatory locus UASg bears, in addition to binding sites for the activator Gal4, sites bound by the RSC complex. RSC positions a nucleosome, evidently partially unwound, in a structure that facilitates Gal4 binding to its sites. The complex comprises a barrier that imposes characteristic features of chromatin architecture. In the absence of RSC, ordinary nucleosomes encroach over the UASg and compete with Gal4 for binding. Taken with our previous work, the results show that both prior to and following induction, specific DNA-binding proteins are the predominant determinants of chromatin architecture at the GAL1/10 genes. RSC/nucleosome complexes are also found scattered around the yeast genome. Higher eukaryotic RSC lacks the specific DNA-binding determinants found on yeast RSC, and evidently Gal4 works in those organisms despite whatever obstacle broadly positioned nucleosomes present.
Collapse
Affiliation(s)
- Monique Floer
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Xin Wang
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Vidya Prabhu
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Georgina Berrozpe
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Santosh Narayan
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Dan Spagna
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - David Alvarez
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Jude Kendall
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724
| | - Alexander Krasnitz
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724
| | - Asya Stepansky
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724
| | - James Hicks
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724
| | - Gene O. Bryant
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Mark Ptashne
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| |
Collapse
|
6
|
Suzuki S, Matsuzawa T, Nukigi Y, Takegawa K, Tanaka N. Characterization of two different types of UDP-glucose/-galactose 4-epimerase involved in galactosylation in fission yeast. MICROBIOLOGY-SGM 2009; 156:708-718. [PMID: 19942659 DOI: 10.1099/mic.0.035279-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Schizosaccharomyces species are currently the only known organisms with two types of genes encoding UDP-glucose/-galactose 4-epimerase, uge1(+) and gal10(+). A strain deleted for uge1(+) exhibited a severe galactosylation defect and a decrease in activity and in UDP-galactose content when grown in glucose-rich medium (2 % glucose), indicating that Uge1p is a major UDP-glucose/-galactose 4-epimerase under these growth conditions. In contrast, gal10(+) was efficiently expressed and involved in galactosylation of cell-surface proteins in low-glucose medium (0.1 % glucose and 2 % glycerol), but not in galactose-containing medium. In a uge1Deltagal10Delta strain, the galactosylation defect was suppressed and UDP-galactose content restored to wild-type levels in galactose-containing medium. Disruption of gal7(+), encoding galactose-1-phosphate uridylyltransferase, in the uge1Deltagal10Delta strain reversed suppression of the galactosylation defect and reduced levels of UDP-galactose, indicating that galactose is transported from the medium to the cytosol and is converted into UDP-galactose via galactose 1-phosphate by Gal7p in Sch. pombe.
Collapse
Affiliation(s)
- Shotaro Suzuki
- Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Tomohiko Matsuzawa
- Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Yayoi Nukigi
- Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Naotaka Tanaka
- Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| |
Collapse
|
7
|
Zawadzki KA, Morozov AV, Broach JR. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae. Mol Biol Cell 2009; 20:3503-13. [PMID: 19494041 DOI: 10.1091/mbc.e09-02-0111] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Several well-studied promoters in yeast lose nucleosomes upon transcriptional activation and gain them upon repression, an observation that has prompted the model that transcriptional activation and repression requires nucleosome remodeling of regulated promoters. We have examined global nucleosome positioning before and after glucose-induced transcriptional reprogramming, a condition under which more than half of all yeast genes significantly change expression. The majority of induced and repressed genes exhibit no change in promoter nucleosome arrangement, although promoters that do undergo nucleosome remodeling tend to contain a TATA box. Rather, we found multiple examples where the pre-existing accessibility of putative transcription factor binding sites before glucose addition determined whether the corresponding gene would change expression in response to glucose addition. These results suggest that selection of appropriate transcription factor binding sites may be dictated to a large extent by nucleosome prepositioning but that regulation of expression through these sites is dictated not by nucleosome repositioning but by changes in transcription factor activity.
Collapse
Affiliation(s)
- Karl A Zawadzki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
8
|
Vanti M, Gallastegui E, Respaldiza I, Rodríguez-Gil A, Gómez-Herreros F, Jimeno-González S, Jordan A, Chávez S. Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription. PLoS Genet 2009; 5:e1000339. [PMID: 19148280 PMCID: PMC2613532 DOI: 10.1371/journal.pgen.1000339] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 12/12/2008] [Indexed: 12/22/2022] Open
Abstract
Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5' end of HIV-1 transcribed region (5'HIV-TR), which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5'HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5'HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5'HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.
Collapse
Affiliation(s)
- Manuela Vanti
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Edurne Gallastegui
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona, Spain
| | - Iñaki Respaldiza
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | | | | | | | - Albert Jordan
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- * E-mail:
| |
Collapse
|
9
|
Hogan GJ, Lee CK, Lieb JD. Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet 2006; 2:e158. [PMID: 17002501 PMCID: PMC1570381 DOI: 10.1371/journal.pgen.0020158] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 08/08/2006] [Indexed: 01/10/2023] Open
Abstract
The packaging of DNA into nucleosomes influences the accessibility of underlying regulatory information. Nucleosome occupancy and positioning are best characterized in the budding yeast Saccharomyces cerevisiae, albeit in asynchronous cell populations or on individual promoters such as PHO5 and GAL1-10. Using FAIRE (formaldehyde-assisted isolation of regulatory elements) and whole-genome microarrays, we examined changes in nucleosome occupancy throughout the mitotic cell cycle in synchronized populations of S. cerevisiae. Perhaps surprisingly, nucleosome occupancy did not exhibit large, global variation between cell cycle phases. However, nucleosome occupancy at the promoters of cell cycle-regulated genes was reduced specifically at the cell cycle phase in which that gene exhibited peak expression, with the notable exception of S-phase genes. We present data that establish FAIRE as a high-throughput method for assaying nucleosome occupancy. For the first time in any system, nucleosome occupancy was mapped genome-wide throughout the cell cycle. Fluctuation of nucleosome occupancy at promoters of most cell cycle-regulated genes provides independent evidence that periodic expression of these genes is controlled mainly at the level of transcription. The promoters of G2/M genes are distinguished from other cell cycle promoters by an unusually low baseline nucleosome occupancy throughout the cell cycle. This observation, coupled with the maintenance throughout the cell cycle of the stereotypic nucleosome occupancy states between coding and non-coding loci, suggests that the largest component of variation in nucleosome occupancy is "hard wired," perhaps at the level of DNA sequence.
Collapse
Affiliation(s)
- Gregory J Hogan
- Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cheol-Koo Lee
- Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason D Lieb
- Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
10
|
Guillemette B, Bataille AR, Gévry N, Adam M, Blanchette M, Robert F, Gaudreau L. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 2005; 3:e384. [PMID: 16248679 PMCID: PMC1275524 DOI: 10.1371/journal.pbio.0030384] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/12/2005] [Indexed: 11/18/2022] Open
Abstract
H2A.Z is an evolutionary conserved histone variant involved in transcriptional regulation, antisilencing, silencing, and genome stability. The mechanism(s) by which H2A.Z regulates these various biological functions remains poorly defined, in part due to the lack of knowledge regarding its physical location along chromosomes and the bearing it has in regulating chromatin structure. Here we mapped H2A.Z across the yeast genome at an approximately 300-bp resolution, using chromatin immunoprecipitation combined with tiling microarrays. We have identified 4,862 small regions--typically one or two nucleosomes wide--decorated with H2A.Z. Those "Z loci" are predominantly found within specific nucleosomes in the promoter of inactive genes all across the genome. Furthermore, we have shown that H2A.Z can regulate nucleosome positioning at the GAL1 promoter. Within HZAD domains, the regions where H2A.Z shows an antisilencing function, H2A.Z is localized in a wider pattern, suggesting that the variant histone regulates a silencing and transcriptional activation via different mechanisms. Our data suggest that the incorporation of H2A.Z into specific promoter-bound nucleosomes configures chromatin structure to poise genes for transcriptional activation. The relevance of these findings to higher eukaryotes is discussed.
Collapse
Affiliation(s)
- Benoît Guillemette
- 1 Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alain R Bataille
- 2 Laboratoire de Chromatine et Expression du Génome, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Nicolas Gévry
- 1 Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Maryse Adam
- 1 Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mathieu Blanchette
- 3 McGill Center for Bioinformatics, Lyman Duff Medical Building, Montréal, Québec, Canada
| | - François Robert
- 2 Laboratoire de Chromatine et Expression du Génome, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Luc Gaudreau
- 1 Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
11
|
Hanlon SE, Lieb JD. Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Curr Opin Genet Dev 2005; 14:697-705. [PMID: 15531167 DOI: 10.1016/j.gde.2004.09.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ChIP-chip, or chromatin immunoprecipitation followed by DNA microarray analysis, has proven to be an efficient means of mapping protein-genome interactions. Recent experiments using this tool are beginning to reveal the complex dynamics of transcription factor binding and chromatin organization, and how these processes interact with each other to generate a cellular response to environmental and developmental cues. Data derived from this approach, particularly data involving chromatin components and histone modifications, might be affected by assumptions underlying the procedure, and the data might be made more useful by adoption of standardized whole-genome microarray platforms.
Collapse
Affiliation(s)
- Sean E Hanlon
- Department of Biology and Carolina Center for the Genome Sciences, CB #3280, 202 Fordham Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
12
|
Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 2004; 36:900-5. [PMID: 15247917 DOI: 10.1038/ng1400] [Citation(s) in RCA: 561] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 06/21/2004] [Indexed: 11/09/2022]
Abstract
The identification of nuclease-hypersensitive sites in an active globin gene and in the 5' regions of fruit fly heat shock genes first suggested that chromatin changes accompany gene regulation in vivo. Here we present evidence that the basic repeating units of eukaryotic chromatin, nucleosomes, are depleted from active regulatory elements throughout the Saccharomyces cerevisiae genome in vivo. We found that during rapid mitotic growth, the level of nucleosome occupancy is inversely proportional to the transcriptional initiation rate at the promoter. We also observed a partial loss of histone H3 and H4 tetramers from the coding regions of the most heavily transcribed genes. Alterations in the global transcriptional program caused by heat shock or a change in carbon source resulted in an increased nucleosome occupancy at repressed promoters, and a decreased nucleosome occupancy at promoters that became active. Nuclease-hypersensitive sites occur in species from yeast to humans and result from chromatin perturbation. Given the conservation of sequence and function among components of both chromatin and the transcriptional machinery, nucleosome depletion at promoters may be a fundamental feature of eukaryotic transcriptional regulation.
Collapse
Affiliation(s)
- Cheol-Koo Lee
- Department of Biology, CB #3280, 202 Fordham Hall, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | | | |
Collapse
|
13
|
Li S, Smerdon MJ. Nucleosome structure and repair of N-methylpurines in the GAL1-10 genes of Saccharomyces cerevisiae. J Biol Chem 2002; 277:44651-9. [PMID: 12244104 DOI: 10.1074/jbc.m206623200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleosome structure and repair of N-methylpurines were analyzed at nucleotide resolution in the divergent GAL1-10 genes of intact yeast cells, encompassing their common upstream-activating sequence. In glucose cultures where genes are repressed, nucleosomes with fixed positions exist in regions adjacent to the upstream-activating sequence, and the variability of nucleosome positioning sharply increases with increasing distance from this sequence. Galactose induction causes nucleosome disruption throughout the region analyzed, with those nucleosomes close to the upstream-activating sequence being most striking. In glucose cultures, a strong correlation between N-methylpurine repair and nucleosome positioning was seen in nucleosomes with fixed positions, where slow and fast repair occurred in nucleosome core and linker DNA, respectively. Galactose induction enhanced N-methylpurine repair in both strands of nucleosome core DNA, being most dramatic in the clearly disrupted, fixed nucleosomes. Furthermore, N-methylpurines are repaired primarily by the Mag1-initiated base excision repair pathway, and nucleotide excision repair contributes little to repair of these lesions. Finally, N-methylpurine repair is significantly affected by nearest-neighbor nucleotides, where fast and slow repair occurred in sites between pyrimidines and purines, respectively. These results indicate that nucleosome positioning and DNA sequence significantly modulate Mag1-initiated base excision repair in intact yeast cells.
Collapse
Affiliation(s)
- Shisheng Li
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | |
Collapse
|
14
|
Abstract
Saccharomyces cerevisiae CYC1 gene expression has been studied in great detail with regard to the response to oxygen availability and carbon source. In the absence of oxygen and the presence of glucose, the CYC1 gene is completely repressed. Chromatin structure is thought to play an important role in CYC1 gene regulation, as nucleosome depletion results in 94-fold derepression. In addition, the CYC1 core promoter has been used extensively in hybrid constructs to study activation by heterologous transcription factors. Therefore, we set out to map the chromatin structure of the CYC1 promoter and determine its role in CYC1 gene regulation. We report here that the repressed CYC1 promoter contains no positioned nucleosomes over the core promoter. However, we did find TFIID and RNA polymerase II bound in a complex on the repressed promoter. These results indicate that recruitment of TFIID and RNA polymerase II are not rate-limiting steps in CYC1 activation.
Collapse
Affiliation(s)
- C Martens
- Department of Biochemistry and Molecular Biology, MRB Building, Room 231, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | |
Collapse
|
15
|
Bash R, Lohr D. Yeast chromatin structure and regulation of GAL gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:197-259. [PMID: 11008489 DOI: 10.1016/s0079-6603(00)65006-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Yeast genomic DNA is covered by nucleosome cores spaced by short, discrete length linkers. The short linkers, reinforced by novel histone properties, create a number of unique and dynamic nucleosome structural features in vivo: permanent unpeeling of DNA from the ends of the core, an inability to bind even full 147 bp core DNA lengths, and facility to undergo a conformational transition that resembles the changes found in active chromatin. These features probably explain how yeast can maintain most of its genome in a transcribable state and avoid large-scale packaging away of inactive genes. The GAL genes provide a closely regulated system in which to study gene-specific chromatin structure. GAL structural genes are inactive without galactose but are highly transcribed in its presence; the expression patterns of the regulatory genes can account for many of the features of GAL structural gene control. In the inactive state, GAL genes demonstrate a characteristic promoter chromosomal organization; the major upstream activation sequence (UASG) elements lie in open, hypersensitive regions, whereas the TATA and transcription start sites are in nucleosomes. This organization helps implement gene regulation in this state and may benefit the organism. Induction of GAL expression triggers Gal4p-dependent upstream nucleosome disruption. Disruption is transient and can readily be reversed by a Gal80p-dependent nucleosome deposition process. Both are sensitive to the metabolic state of the cell. Induction triggers different kinds of nucleosome changes on the coding sequences, perhaps reflecting the differing roles of nucleosomes on coding versus promoter regions. GAL gene activation is a complex process involving multiple Gal4p activities, numerous positive and negative cofactors, and the histone tails. DNA bending and chromosomal architecture of the promoter regions may also play a role in GAL regulation. Regulator-mediated competition between nucleosomes and the TATA binding protein complex for the TATA region is probably a central aspect of GAL regulation and a focal point for the numerous factors and processes that contribute to it.
Collapse
Affiliation(s)
- R Bash
- Department of Chemistry and Biochemistry, Arizona State University, Tempe 85287, USA
| | | |
Collapse
|
16
|
Di Mauro E, Kendrew SG, Caserta M. Two distinct nucleosome alterations characterize chromatin remodeling at the Saccharomyces cerevisiae ADH2 promoter. J Biol Chem 2000; 275:7612-8. [PMID: 10713069 DOI: 10.1074/jbc.275.11.7612] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose depletion derepresses the Saccharomyces cerevisiae ADH2 gene; this metabolic change is accompanied by chromatin structural modifications in the promoter region. We show that the ADR6/SWI1 gene is not necessary for derepression of the wild type chromosomal ADH2, whereas the transcription factor Adr1p, which regulates several S. cerevisiae functions, plays a major role in driving nucleosome reconfiguration and ADH2 expression. When we tested the effect of individual domains of the regulatory protein Adr1p on the chromatin structure of ADH2, a remodeling consisting of at least two steps was observed. Adr1p derivatives were analyzed in derepressing conditions, showing that the Adr1p DNA binding domain alone causes an alteration in chromatin organization in the absence of transcription. This alteration differs from the remodeling observed in the presence of the Adr1p activation domain when the promoter is transcriptionally active.
Collapse
Affiliation(s)
- E Di Mauro
- Centro di Studio per gli Acidi Nucleici, Consiglio Nazionale delle Ricerche, Università "La Sapienza," P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | |
Collapse
|
17
|
Li S, Livingstone-Zatchej M, Gupta R, Meijer M, Thoma F, Smerdon MJ. Nucleotide excision repair in a constitutive and inducible gene of a yeast minichromosome in intact cells. Nucleic Acids Res 1999; 27:3610-20. [PMID: 10446254 PMCID: PMC148608 DOI: 10.1093/nar/27.17.3610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repair of UV-induced cyclobutane pyrimidine dimers (CPDs) was measured in a yeast minichromosome, having a galactose-inducible GAL1:URA3 fusion gene, a constitutively expressed HIS3 gene and varied regions of chromatin structure. Transcription of GAL1:URA3 increased >150-fold, while HIS3 expression decreased <2-fold when cells were switched from glucose to galactose medium. Following galactose induction, four nucleosomes were displaced or rearranged in the GAL3-GAL10 region. However, no change in nucleosome arrangement was observed in other regions of the minichromosome following induction, indicating that only a few plasmid molecules actively transcribe at any one time. Repair at 269 cis-syn CPD sites revealed moderate preferential repair of the transcribed strand of GAL1:URA3 in galactose, consistent with transcription-coupled repair in a fraction of these genes. Many sites upstream of the transcription start site in the transcribed strand were also repaired faster upon induction. There is remarkable repair heterogeneity in the HIS3 gene and preferential repair is seen only in a short sequence immediately downstream of the transcription start site. Finally, a mild correlation of repair heterogeneity with nucleosome positions was observed in the transcribed strand of the inactive GAL1:URA3 gene and this correlation was abolished upon galactose induction.
Collapse
MESH Headings
- Chromatin/metabolism
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/metabolism
- Chromosomes, Fungal/radiation effects
- DNA Repair
- DNA, Fungal/analysis
- DNA, Fungal/radiation effects
- Genes, Reporter/genetics
- Models, Genetic
- Plasmids
- Pyrimidine Dimers/metabolism
- RNA, Fungal/analysis
- RNA, Fungal/radiation effects
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Time Factors
- Transcription, Genetic
- Ultraviolet Rays
Collapse
Affiliation(s)
- S Li
- Department of Biochemistry and Biophysics, Washington State University, Pullman, WA 99164-4660, USA
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- P D Gregory
- Institut für Physiologische Chemie der Universität München, Germany
| | | |
Collapse
|
19
|
Affiliation(s)
- D Lohr
- Department of Chemistry/Biochemistry and Molecular/Cellular Biology Program, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
20
|
Abstract
The question of how sequence-specific transcription factors access their cognate sites in nucleosomally organized DNA is discussed on the basis of genomic footprinting data and chromatin reconstitution experiments. A classification of factors into two categories is proposed: (i) initiator factors which are able to bind their target sequences within regular nucleosomes and initiate events leading to chromatin remodelling and transactivation; (ii) effector factors which are unable to bind regular nucleosomes and depend on initiator factors or on a pre-set nucleosomal structure for accessing their target sequences in chromatin. Studies with the MMTV promoter suggest that the extent and number of protein-DNA contacts determine whether a factor belongs to one or the other category. Initiator factors have only a few DNA contacts clustered on one side of the double helix, whereas effector factors have extensive contacts distributed throughout the whole circumference of the DNA helix. Thus, the nature of DNA recognition confers to sequence-specific factors their specific place in the sequential hierarchy of gene regulatory events.
Collapse
Affiliation(s)
- M Beato
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität, E.-Mannkopff-Strasse 2, 35037 Marburg, Germany.
| | | |
Collapse
|
21
|
Pazin MJ, Bhargava P, Geiduschek EP, Kadonaga JT. Nucleosome mobility and the maintenance of nucleosome positioning. Science 1997; 276:809-12. [PMID: 9115208 DOI: 10.1126/science.276.5313.809] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To study nucleosome mobility and positioning, the R3 lac repressor was used with an adenosine triphosphate (ATP)-dependent chromatin assembly system to establish the positioning of five nucleosomes, with one nucleosome located between two R3 lac operators. When R3 protein was dissociated from DNA with isopropyl beta-D-thiogalactopyranoside, the R3-induced nucleosome positions remained unchanged for at least 60 minutes in the absence of ATP but rearranged within 15 minutes in the presence of ATP. These results suggest that nucleosomes are dynamic and mobile rather than static and that a DNA binding factor is continuously required for the maintenance of nucleosome positioning.
Collapse
Affiliation(s)
- M J Pazin
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
22
|
Stafford GA, Morse RH. Chromatin remodeling by transcriptional activation domains in a yeast episome. J Biol Chem 1997; 272:11526-34. [PMID: 9111067 DOI: 10.1074/jbc.272.17.11526] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We examine the generality of transcription factor-mediated chromatin remodeling by monitoring changes in chromatin structure in a yeast (Saccharomyces cerevisiae) episome outside of the context of a natural promoter. The episome has a well defined chromatin structure and a binding site for the transcription factor GAL4 but lacks a nearby functional TATA element or transcription start site, so that changes in chromatin structure are unlikely to be caused by transcription. To separate changes caused by binding and by activation domains, we use both GAL4 and a chimeric, hormone-dependent activator consisting of the GAL4 DNA-binding domain, an estrogen receptor (ER) hormone-binding domain, and a VP16 activation domain (Louvion, J.-F., Havaux-Copf, B. and Picard, D. (1993) Gene (Amst.) 131, 129-134). Both GAL4 and GAL4.ER.VP16 show very little perturbation of chromatin structure in their nonactivating configurations. Substantial additional perturbation occurs upon activation. This additional perturbation is marked by changes in micrococcal nuclease cleavage patterns, restriction endonuclease accessibility, and DNA topology and is not seen with the nonactivating derivative GAL4.ER. Remodeling by GAL4.ER.VP16 is detectable within 15 min following hormone addition and is complete within 45 min, suggesting that replication is not required. We conclude that activation domains can exert a major influence on chromatin remodeling by increasing binding affinity and/or by recruitment of other chromatin remodeling activities and that this remodeling can occur outside the context of a bona fide promoter.
Collapse
Affiliation(s)
- G A Stafford
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health and State University of New York School of Public Health, Albany, New York 12201-2002, USA
| | | |
Collapse
|
23
|
Abstract
Substantial evidence exists that nucleosomes affect transcription and that additional factors modify nucleosome function. Recent work has demonstrated that different types of histone mutants can be classified by their distinct effects on transcription in vivo. Additionally, the identification of proteins that interact with histones and, notably, of histone acetylases and deacetylases demonstrates that many factors are involved in controlling the role of histones in transcription in vivo.
Collapse
Affiliation(s)
- G A Hartzog
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts, 2115, USA.
| | | |
Collapse
|
24
|
Burns LG, Peterson CL. Protein complexes for remodeling chromatin. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1350:159-68. [PMID: 9048886 DOI: 10.1016/s0167-4781(96)00162-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- L G Burns
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605, USA
| | | |
Collapse
|
25
|
Lenfant F, Mann RK, Thomsen B, Ling X, Grunstein M. All four core histone N-termini contain sequences required for the repression of basal transcription in yeast. EMBO J 1996; 15:3974-85. [PMID: 8670902 PMCID: PMC452117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nucleosomes prevent the recognition of TATA promoter elements by the basal transcriptional machinery in the absence of induction. However, while Saccharomyces cerevisiae histones H3 and H4 contain N-terminal regions involved in the activation and repression of GAL1 and in the expression of heterochromatin-like regions, the sequences involved in repressing basal transcription have not yet been identified. Here, we describe the mapping of new N-terminal domains, in all four core histones (H2A, H2B, H3 and H4), required for the repression of basal, uninduced transcription. Basal transcription was monitored by the use of a GAL1 promoter-URA3 reporter construct whose uninduced activity can be detected through cellular sensitivity to the drug, 5-fluoroorotic acid. We have found for each histone that the N-terminal sequences repressing basal activity are in a short region adjacent to the structured alpha-helical core. Analysis of minichromosome DNA topology demonstrates that the basal domains are required for the proper folding of DNA around the chromosomal particle. Deletion of the basal domain at each histone significantly decreases plasmid superhelical density, which probably reflects a release of DNA from the constraints of the nucleosome into the linker region. This provides a means by which basal factors may recognize otherwise repressed regulatory elements.
Collapse
Affiliation(s)
- F Lenfant
- Department of Biological Chemistry, UCLA School of Medicine and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
26
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
27
|
Lohr D, Lopez J. GAL4/GAL80-dependent nucleosome disruption/deposition on the upstream regions of the yeast GAL1-10 and GAL80 genes. J Biol Chem 1995; 270:27671-8. [PMID: 7499233 DOI: 10.1074/jbc.270.46.27671] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Metabolic reactivation (incubating spheroplasts with galactose and casamino acids) causes disruption of nucleosomes from the upstream regions of the yeast GAL1, GAL10, and GAL80 genes. The disruption is specific. It depends on the transcription activator Gal4; it only occurs in galactose-reactivated chromatin from galactose-grown cells; it only affects upstream region, gene-proximal nucleosomes. Due to this specificity and because some of the same regions have shown induction-dependent changes by in vivo analyses, we suggest that the nucleosome-disrupted structure produced by reactivation is the authentic chromatin structure for these regions under conditions of galactose-induced GAL1-10 and GAL80 expression. It is necessary to carry out a spheroplast reactivation treatment in order to observe this disrupted structure in nuclear chromatin because nucleosomes are redeposited onto these regions during the preliminary steps of nuclear isolation (cell harvest/spheroplast preparation) probably in response to the nonphysiological conditions associated with these steps. However, during the same isolation procedures in cells lacking Gal80 protein, there is no nucleosome deposition on these regions, and the in vivo disrupted structure remains present in the nuclear chromatin. Therefore, the nucleosome deposition process that operates in wild-type cells is dependent on Gal80 protein, defining another activity of this negative regulator.
Collapse
Affiliation(s)
- D Lohr
- Department of Chemistry and Biochemistry, Arizona State University, Tempe 85287-1604, USA
| | | |
Collapse
|
28
|
Svaren J, Venter U, Hörz W. [8] In Vivo Analysis of nucleosome structure and transcription factor binding in Saccharomyces cerevisiae. MICROBIAL GENE TECHNIQUES 1995. [DOI: 10.1016/s1067-2389(06)80011-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Abstract
The organization of eukaryotic genomes as chromatin provides the framework within which regulated transcription occurs in the nucleus. The association of DNA with chromatin proteins required to package the genome into the nucleus is, in general, inhibitory to transcription, and therefore provides opportunities for regulated transcriptional activation. Granting access to the cis-acting elements in DNA, a prerequisite for any further action of the trans-acting factors involved, requires the establishment of local heterogeneity of chromatin and, in some cases, extensive remodeling of nucleosomal structures. Challenging problems relate to the establishment of this heterogeneity at the level of the single nucleosome and to the mechanisms that operate when nucleosomal arrays are reorganized. Recent developments indicate that chromatin reconstitution in cell-free systems allows the biochemical analysis of the interplay between transcription factors and chromatin components that brings about regulated transcription.
Collapse
Affiliation(s)
- P B Becker
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
30
|
Fukuma M, Hiraoka Y, Sakurai H, Fukasawa T. Purification of yeast histones competent for nucleosome assembly in vitro. Yeast 1994; 10:319-31. [PMID: 8017102 DOI: 10.1002/yea.320100305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have developed a procedure to purify nucleosomal assembly-competent histones as a mixture of H2A, H2B, H3 and H4 from isolated nuclei of the yeast Saccharomyces cerevisiae with a purity of 70-80%. The mixture contained each of the histone subunits approximately at the equi-molar ratio. Plasmid pBR322 DNA was assembled into nucleosomes with the purified yeast histones in the presence of nucleoplasmin from unfertilized eggs of the frog Xenopus laevis. The efficiency of assembly of yeast histones was comparable to that of core histones purified from HeLa cells. The length of DNA fragment wrapping around a core histone particle and the molar ratio of histone components in an assembled nucleosome particle were estimated to be 150 +/- 10 bp long and H2A:H2B:H3:H4 = 1.0:0.9:0:9:1.0, respectively.
Collapse
Affiliation(s)
- M Fukuma
- Division of Chemotherapy, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
31
|
Abstract
It is becoming increasingly clear that nucleosome structure is integrally involved in gene regulation. In particular, the study of inducible genes has shown that nucleosomes not only contribute to a repressed basal state, but can also be rearranged in response to induction. The mechanism of this process is just beginning to be elucidated, and genetic studies have implicated several proteins in the modulation of nucleosome structure.
Collapse
Affiliation(s)
- J Svaren
- Institut für Physiologische Chemie, Universität München, Germany
| | | |
Collapse
|
32
|
Affiliation(s)
- M J Fedor
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester 01655
| |
Collapse
|
33
|
Affiliation(s)
- F Thoma
- Institut für Zellbiologie, Eidgenössiche Technische Hochschule, ETH-Hönggerberg, Zürich, Switzerland
| |
Collapse
|
34
|
Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes. Cell 1991; 64:533-44. [PMID: 1991320 DOI: 10.1016/0092-8674(91)90237-s] [Citation(s) in RCA: 210] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
GAL4 derivatives containing an activation domain alleviated repression of a promoter during nucleosome assembly. A GAL4 derivative lacking an activation domain stably bound the promoter during nucleosome assembly but was not sufficient to preserve promoter function. The activation domain of GAL4 derivatives was essential for preserving promoter function, and thus the transcriptional stimulatory activity attributable to these activation domains increased dramatically during nucleosome assembly. Furthermore, promoter-bound activation domains allowed the formation of preinitiation complexes after nucleosome assembly. Finally, GAL4 derivatives containing activation domains significantly stimulated transcription through bacterially produced yeast TFIID only from nucleosome-assembled templates. These data indicate that acidic activation domains stimulate transcription by enhancing the ability of basal transcription factors to compete with nucleosomes for occupancy of the promoter.
Collapse
|
35
|
Simpson RT. Nucleosome positioning: occurrence, mechanisms, and functional consequences. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 40:143-84. [PMID: 2031082 DOI: 10.1016/s0079-6603(08)60841-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R T Simpson
- Laboratory of Cellular and Development Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|