1
|
Voziyanova E, Anderson RP, Shah R, Li F, Voziyanov Y. Efficient Genome Manipulation by Variants of Site-Specific Recombinases R and TD. J Mol Biol 2015; 428:990-1003. [PMID: 26555749 DOI: 10.1016/j.jmb.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 10/17/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Genome engineering benefits from the availability of DNA modifying enzymes that have different target specificities and have optimized performance in different cell types. This variety of site-specific enzymes can be used to develop complex genome engineering applications at multiple loci. Although eight yeast site-specific tyrosine recombinases are known, only Flp is actively used in genome engineering. To expand the pool of the yeast site-specific tyrosine recombinases capable of mediating genome manipulations in mammalian cells, we engineered and analyzed variants of two tyrosine recombinases: R and TD. The activity of the evolved variants, unlike the activity of the native R and TD recombinases, is suitable for genome engineering in Escherichia coli and mammalian cells. Unexpectedly, we found that R recombinase benefits from the shortening of its C-terminus. We also found that the activity of wild-type R can be modulated by its non-consensus "head" sequence but this modulation became not apparent in the evolved R variants. The engineered recombinase variants were found to be active in all recombination reactions tested: excision, integration, and dual recombinase-mediated cassette exchange. The analysis of the latter reaction catalyzed by the R/TD recombinase pair shows that the condition supporting the most efficient replacement reaction favors efficient TD-mediated integration reaction while favoring efficient R-mediated integration and deletion reactions.
Collapse
Affiliation(s)
- Eugenia Voziyanova
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Rachelle P Anderson
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Riddhi Shah
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Feng Li
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Yuri Voziyanov
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA.
| |
Collapse
|
2
|
Abstract
Sequence analysis revealed that the integrase of the Bacteroides conjugative transposon CTnDOT (IntDOT) might be a member of the tyrosine recombinase family because IntDOT has five of six highly conserved residues found in the catalytic domains of tyrosine recombinases. Yet, IntDOT catalyses a reaction that appears to differ in some respects from well-studied tyrosine recombinases such as that of phage lambda. To assess the importance of the conserved residues, we changed residues in IntDOT that align with conserved residues in tyrosine recombinases. Some substitutions resulted in a complete loss or significant decrease of integration activity in vivo. The ability of the mutant proteins to cleave and ligate CTnDOT attachment site (attDOT) DNA in vitro in general paralleled the in vivo results, but the H345A mutant, which had a wild-type level of integration in vivo, exhibited a slightly lower level of cleavage and ligation in vitro. Our results confirm the hypothesis that IntDOT belongs to the tyrosine recombinase family, but the catalytic core of the protein seems to have somewhat different organization. Previous DNA sequence analyses showed that CTnDOT att sites contain 5 bp non-homologous coupling sequences which were assumed to define the putative staggered sites of cleavage. However, cleavage assays showed that one of the cleavage sites is 2 bp away from the junction of CTnDOT and coupling sequence DNA. The site is in a region of homology that is conserved in CTnDOT att sites.
Collapse
|
3
|
Mumm JP, Landy A, Gelles J. Viewing single lambda site-specific recombination events from start to finish. EMBO J 2006; 25:4586-95. [PMID: 16977316 PMCID: PMC1590000 DOI: 10.1038/sj.emboj.7601325] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 08/10/2006] [Indexed: 11/09/2022] Open
Abstract
The site-specific recombination pathway by which the bacteriophage lambda chromosome is excised from its Escherichia coli host chromosome is a tightly regulated, highly directional, multistep reaction that is executed by a series of multiprotein complexes. Until now, it has been difficult to study the individual steps of such reactions in the context of the entire pathway. Using single-molecule light microscopy, we have examined this process from start to finish. Stable bent-DNA complexes containing integrase and the accessory proteins IHF (integration host factor) and Xis form rapidly on attL and attR recombination partners, and synapsis of partner complexes follows rapidly after their formation. Integrase-mediated DNA cleavage before or immediately after synapsis is required to stabilize the synaptic assemblies. Those complexes that synapsed (approximately 50% of the total) yield recombinant product with a remarkable approximately 100% efficiency. The rate-limiting step of excision occurs after synapsis, but closely precedes or is concomitant with the appearance of a stable Holliday junction. Our kinetic analysis shows that directionality of this recombination reaction is conferred by the irreversibility of multiple reaction steps.
Collapse
Affiliation(s)
- Jeffrey P Mumm
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, J Walter Wilson Laboratories, Providence, RI, USA
| | - Arthur Landy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, J Walter Wilson Laboratories, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, J Walter Wilson Laboratories, room 360, 69 Brown Street, Providence, RI 02912, USA. Tel.: +1 401 863 2566; Fax: +1 401 863 1348; E-mail:
| | - Jeff Gelles
- Department of Biochemistry, MS 009 Brandeis University, Waltham, MA, USA
| |
Collapse
|
4
|
Abstract
The Flp recognition target site contains two inverted 13-base pair (bp) Flp binding sequences that surround an 8-bp core region. Flp recombinase has been shown to carry out strand ligation independently of its ability to execute strand cleavage. Using a synthetic activated DNA substrate bearing a 3'-phosphotyrosine group, we have developed an assay to measure strand exchange by Flp proteins. We have shown that wild-type Flp protein was able to catalyze strand exchange using DNA substrates containing 8-bp duplex core sequences. Mutant Flp proteins that are defective in either DNA bending or DNA cleavage were also impaired in their abilities to carry out strand exchange. The inability of these mutant proteins to execute strand exchange could be overcome by providing a DNA substrate containing a single-stranded core sequence. This single-stranded core sequence could be as small as 3 nucleotides. Full activity of mutant Flp proteins in strand exchange was observed when both partner DNAs contained an 8-nucleotide single-stranded core region. Using suicide substrates, we showed that single-stranded DNA is also important for strand exchange reactions where Flp-mediated strand cleavage is required. These results suggest that the ability of Flp to induce DNA bending and strand cleavage may be crucial for strand exchange. We propose that both DNA bending and strand cleavage may be required to separate the strands of the core region and that single-stranded DNA in the core region might be an intermediate in Flp-mediated DNA recombination.
Collapse
Affiliation(s)
- X D Zhu
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
5
|
Nunes-Düby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 1998; 26:391-406. [PMID: 9421491 PMCID: PMC147275 DOI: 10.1093/nar/26.2.391] [Citation(s) in RCA: 351] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alignments of 105 site-specific recombinases belonging to the Int family of proteins identified extended areas of similarity and three types of structural differences. In addition to the previously recognized conservation of the tetrad R-H-R-Y, located in boxes I and II, several newly identified sequence patches include charged amino acids that are highly conserved and a specific pattern of buried residues contributing to the overall protein fold. With some notable exceptions, unconserved regions correspond to loops in the crystal structures of the catalytic domains of lambda Int (Int c170) and HP1 Int (HPC) and of the recombinases XerD and Cre. Two structured regions also harbor some pronounced differences. The first comprises beta-sheets 4 and 5, alpha-helix D and the adjacent loop connecting it to alpha-helix E: two Ints of phages infecting thermophilic bacteria are missing this region altogether; the crystal structures of HPC, XerD and Cre reveal a lack of beta-sheets 4 and 5; Cre displays two additional beta-sheets following alpha-helix D; five recombinases carry large insertions. The second involves the catalytic tyrosine and is seen in a comparison of the four crystal structures. The yeast recombinases can theoretically be fitted to the Int fold, but the overall differences, involving changes in spacing as well as in motif structure, are more substantial than seen in most other proteins. The phenotypes of mutations compiled from several proteins are correlated with the available structural information and structure-function relationships are discussed. In addition, a few prokaryotic and eukaryotic enzymes with partial homology with the Int family of recombinases may be distantly related, either through divergent or convergent evolution. These include a restriction enzyme and a subgroup of eukaryotic RNA helicases (D-E-A-D proteins).
Collapse
Affiliation(s)
- S E Nunes-Düby
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|
6
|
Saxena P, Whang I, Voziyanov Y, Harkey C, Argos P, Jayaram M, Dandekar T. Probing Flp: a new approach to analyze the structure of a DNA recognizing protein by combining the genetic algorithm, mutagenesis and non-canonical DNA target sites. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1340:187-204. [PMID: 9252106 DOI: 10.1016/s0167-4838(97)00017-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A topological and functional overview of a DNA recognition protein with unknown structure can be achieved by combining three different, but complementary approaches: modeling by the genetic algorithm, functional analysis of mutated variants, and testing the target DNA using non-canonical oligonucleotides. As an example we choose the Flp protein, a site-specific recombinase from Saccharomyces cerevisiae. We derive the topological outline including the DNA binding cleft, examine DNA binding regions by deletional and mutational analysis, and analyze the DNA binding site using 7-deazaadenine, 7-deazaguanine, inosine and 4-O-methylthymine as probes. The combined data offer a comprehensive sketch of a plausible protein architecture for Flp. The structure is detailed enough to verify the prediction accuracy for different peptide regions from pre-existing data and by new experimental design.
Collapse
Affiliation(s)
- P Saxena
- Department of Microbiology, University of Texas at Austin, 78712, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Sadowski PD. The Flp Recombinase of th 2-μm Plasmid of Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995. [DOI: 10.1016/s0079-6603(08)60876-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Xie Y, Pelcher LE, Rank GH. Chimeric evolution of the 2-microns genome in Saccharomyces cerevisiae. J Mol Evol 1994; 38:363-8. [PMID: 8007004 DOI: 10.1007/bf00163153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We compared the nucleotide substitution pattern over the entire genome of two unique variants of the 6,300-bp selfish DNA (2 microns) plasmid in Saccharomyces cerevisiae. The DNA sequence of the left-unique region is identical among 2-microns variants, while the right-unique region shows substantial divergence. This chimeric pattern cannot be explained by neutral or Darwinian selection models. We propose that horizontal transmission of the 2-microns plasmid coupled with a directed, polarized gene conversion maintains the DNA sequence of the left-unique region, whereas the right-unique region is subject to random drift and Darwinian selection.
Collapse
Affiliation(s)
- Y Xie
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
9
|
Friesen H, Sadowski PD. Mutagenesis of a conserved region of the gene encoding the FLP recombinase of Saccharomyces cerevisiae. A role for arginine 191 in binding and ligation. J Mol Biol 1992; 225:313-26. [PMID: 1593623 DOI: 10.1016/0022-2836(92)90924-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The FLP recombinase from the 2 microns plasmid of Saccharomyces cerevisiae contains a region from amino acid 185 to 203 that is conserved among several FLP-like proteins from different yeasts. Using site-directed mutagenesis, we have made mutations in this region of the FLP gene. Five of twelve mutations in the region yielded proteins that were unable to bind to the FLP recombination target (FRT) site. A change of arginine at position 191 to lysine resulted in a protein (FLP-R191K) that could bind to the FRT site but could not catalyze recombination. This mutant protein accumulated as a stable protein-DNA complex in which one of the two bound FLP proteins was covalently attached to the DNA. FLP-R191K was defective in strand exchange and ligation and was unable to promote protein-protein interaction with half-FRT sites. The conservation of three residues in all members of the integrase family of site-specific recombinases (His305, Arg308, Tyr343 in FLP) implies a common mechanism of recombination. The conservation of arginine 191 and the properties of the FLP-R191K mutant protein suggest that this arginine also plays an important role in the mechanism of FLP-mediated site-specific recombination.
Collapse
Affiliation(s)
- H Friesen
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Pan H, Clary D, Sadowski P. Identification of the DNA-binding domain of the FLP recombinase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99169-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Schwartz CJ, Sadowski PD. FLP protein of 2 mu circle plasmid of yeast induces multiple bends in the FLP recognition target site. J Mol Biol 1990; 216:289-98. [PMID: 2254930 DOI: 10.1016/s0022-2836(05)80320-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The FLP recombinase of the 2 mu plasmid of Saccharomyces cerevisiae binds to a target containing three 13 base-pair symmetry elements called a, b and c. The symmetry elements b and c are in direct orientation while the a element is in inverted orientation with respect to b and c on the opposite side of an eight base-pair core region. Each symmetry element acts as a binding site for the FLP protein. The FLP protein can form three different complexes with the FLP recognition target (FRT site) according to the number of elements within the site that are occupied by the FLP protein. Binding of FLP to the FRT site induces DNA bending. We have measured the angles of bends caused by the binding of the FLP protein to full and partial FRT sites. We find that FLP induces three types of bend in the FRT-containing DNA. The type I bend is approximately 60 degrees and results from a molecule of FLP bound to one symmetry element. The type II bend is greater than 144 degrees and results from FLP molecules bound to symmetry elements a and b. The type III bend is approximately 65 degrees and results from FLP proteins bound to symmetry elements b and c. Certain FLP proteins that are defective in recombination can generate the type I and type III bends but are impaired in their ability to induce the type II bend. We discuss the role of bending in FLP-mediated recombination.
Collapse
Affiliation(s)
- C J Schwartz
- Department of Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|