1
|
Hoang TV, Horowitz ER, Chaffee BR, Qi P, Flake RE, Bruney DG, Rasor BJ, Rosalez SE, Wagner BD, Robinson ML. Lens development requires DNMT1 but takes place normally in the absence of both DNMT3A and DNMT3B activity. Epigenetics 2017; 12:27-40. [PMID: 27824296 PMCID: PMC5270636 DOI: 10.1080/15592294.2016.1253651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022] Open
Abstract
Despite the wealth of knowledge of transcription factors involved in lens development, little information exists about the role of DNA methylation in this process. Here, we investigated the role of DNA methylation in lens development and fiber cell differentiation using mice conditionally lacking maintenance or de novo methyltransferases in the lens lineage. We found that while Dnmt1 inactivation at the lens placode stage (via the Le-Cre transgene) led to lens DNA hypomethylation and severe lens epithelial apoptosis, lens fiber cell differentiation remained largely unaffected. The simultaneous deletion of phosphatase and tensin homolog (Pten) elevated the level of phosphorylated AKT and rescued many of the morphological defects and cell death in DNMT1-deficient lenses. With a different Cre driver (MLR10) we demonstrated that a small number of lens epithelial cells escaped Dnmt1-deletion and over-proliferated to compensate for the loss of Dnmt1-deleted cells, suggesting that lens epithelium possess a substantial capacity for self-renewal. Unlike lenses deficient for Dnmt1, inactivation of both Dnmt3a and Dnmt3b by either the Le-Cre or MLR10-Cre transgene did not result in any obvious lens phenotype prior to 10 months of age. Taken together, while lens epithelial cell survival requires DNMT1, morphologically normal lenses develop in the absence of both DNMT3A and DNMT3B.
Collapse
Affiliation(s)
- Thanh V. Hoang
- Department of Biology, Miami University, Oxford, OH, USA
| | | | | | - Peipei Qi
- Department of Biology, Miami University, Oxford, OH, USA
| | | | | | - Blake J. Rasor
- Department of Biology, Miami University, Oxford, OH, USA
| | | | - Brad D. Wagner
- Department of Biology, Miami University, Oxford, OH, USA
| | | |
Collapse
|
2
|
Seritrakul P, Gross JM. Expression of the de novo DNA methyltransferases (dnmt3 - dnmt8) during zebrafish lens development. Dev Dyn 2013; 243:350-6. [PMID: 24123478 DOI: 10.1002/dvdy.24077] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/10/2013] [Accepted: 10/03/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND De novo DNA methylation is thought to be critical for cellular reprogramming during tissue differentiation and development. Little is known about the roles of de novo DNA methylation during eye development, and particularly during lens development. The lens is composed of lens epithelial (LE) and lens fiber (LF) cells, with proliferative LE cells giving rise to differentiated LFs at the "transition zone." Given the unique architecture and developmental program of the lens, and the involvement of de novo DNA methylation during differentiation events in other tissues, we sought to identify de novo DNA methyltransferases expressed in the zebrafish lens. RESULTS Zebrafish possess six de novo DNA methyltransferase genes, dnmt3 - dnmt8. At 24 hr postfertilization (hpf), all six are expressed ubiquitously throughout the eye. By 72 hpf, dnmt3 and dnmt5 become restricted to cells of the retinal ciliary marginal zone (CMZ), dnmt4 and dnmt7 to cells of the CMZ and LE, and dnmt6 and dnmt8 to ganglion cells and cells of the inner nuclear layer of the retina. CONCLUSIONS These data identify regions of the eye where de novo methyltransferases could mediate DNA methylation events during development. Overlapping expression domains also suggest functional redundancy within this gene family in the eye.
Collapse
Affiliation(s)
- Pawat Seritrakul
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
3
|
Latham T, Gilbert N, Ramsahoye B. DNA methylation in mouse embryonic stem cells and development. Cell Tissue Res 2007; 331:31-55. [PMID: 18060563 DOI: 10.1007/s00441-007-0537-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/17/2007] [Indexed: 01/01/2023]
Abstract
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.
Collapse
Affiliation(s)
- Tom Latham
- Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
4
|
Cvekl A, Duncan MK. Genetic and epigenetic mechanisms of gene regulation during lens development. Prog Retin Eye Res 2007; 26:555-97. [PMID: 17905638 PMCID: PMC2136409 DOI: 10.1016/j.preteyeres.2007.07.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
5
|
|
6
|
|
7
|
Abstract
The modification of DNA by cytosine methylation is crucial for normal development. DNA methylation patterns are distinctive between tissues and are maintained with high fidelity during cell division. DNA methylation probably exerts its effects through alterations in chromatin structure, with a resultant effect on genetic transcription. 5-methylcytosine is also prone to spontaneous hydrolytic deamination to thymine. Whilst most G:T mismatches so produced are repaired, failure of mismatch repair leads to established mutation. Indeed, mutations that are the result of 5-methylcytosine transitions account for a disproportionate number of genetic mutations described in malignant and non-malignant disease. There is also evidence for substantial deregulation of DNA methylation in malignancy. Whether this deregulation is crucial for the transformation process, or simply an epiphenomenon associated with it, is still not established.
Collapse
Affiliation(s)
- B H Ramsahoye
- Department of Haematology, University of Wales College of Medicine, Health Park, Cardiff, UK
| | | | | |
Collapse
|
8
|
Goodhardt M, Cavelier P, Doyen N, Kallenbach S, Babinet C, Rougeon F. Methylation status of immunoglobulin kappa gene segments correlates with their recombination potential. Eur J Immunol 1993; 23:1789-95. [PMID: 8344341 DOI: 10.1002/eji.1830230809] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have previously shown that unlike endogenous chi genes, unrearranged chi transgenes undergo V chi-J chi recombination in Tas well as B cells of transgenic mice. To determine whether the difference in recombination specificity of the transgenic and endogenous chi genes is associated with differences in DNA structure, the methylation status of the endogenous genes and three unrearranged chi transgenes was compared. The J chi-C chi locus of the transgenes was found to be hypomethylated in all tissues of the transgenic mice. In contrast, methylation of the endogenous chi genes was tissue and developmentally regulated. Hypomethylation of the endogenous J chi-C chi region occurs only in cells of the B lineage undergoing, or having completed chi gene recombination. Transfection of fibroblasts from transgenic and control mice with the recombination activating genes, Rag1 and Rag2, led to a high level of rearrangement of the hypomethylated transgenic, but not the endogenous chi genes. These results suggest that hypomethylation defines an accessible state of the chi locus and that methylation/demethylation could be involved in the control of chi gene rearrangement during lymphocyte differentiation.
Collapse
Affiliation(s)
- M Goodhardt
- Unité de Génetique et Biochimie du Dévelopement, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
9
|
Ehrlich M, Ehrlich KC. Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA. EXS 1993; 64:145-68. [PMID: 8418948 DOI: 10.1007/978-3-0348-9118-9_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- M Ehrlich
- Department of Biochemistry, Tulane Medical School, New Orleans, LA 70112
| | | |
Collapse
|
10
|
Affiliation(s)
- A Yeivin
- Department of Cellular Biochemistry, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
11
|
Affiliation(s)
- A Bird
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland
| |
Collapse
|
12
|
Cooper GE, Khattar NH, Bishop PL, Turker MS. At least two distinct epigenetic mechanisms are correlated with high-frequency "switching" for APRT phenotypic expression in mouse embryonal carcinoma stem cells. SOMATIC CELL AND MOLECULAR GENETICS 1992; 18:215-25. [PMID: 1496418 DOI: 10.1007/bf01233858] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of clones displaying high frequency "switching" phenotypes for expression of the adenine phosphoribosyltransferase (aprt) gene were previously isolated from the P19 mouse embryonal carcinoma stem cell line. Most clones contained only one aprt allele. We report here the characterization of each of these clones with regards to enzymatic activity, mRNA steady state levels, DNA methylation, and chromatin conformation. When clones were selected for resistance to the purine analog 2,6-diaminopurine, which requires markedly reduced levels of APRT enzymatic activity, two distinct classes were observed. The first class was associated with reduced or undetectable levels of aprt mRNA, hypermethylation of the 5' CpG island, and a closed chromatin conformation within this region. When clones of this class were selected for reacquisition of APRT enzymatic activity they were found to have increased mRNA levels, a hypomethylated CpG island, and an open chromatin conformation. In contrast, the second class of clones displayed wild-type levels of mRNA, CpG island hypomethylation, and an open chromatin conformation regardless of whether they were selected for the presence or absence of APRT enzymatic activity. The implications of these results for general mechanisms of epigenetic change in somatic cells and the possibility that expression of the mouse aprt gene may be developmentally regulated are discussed.
Collapse
Affiliation(s)
- G E Cooper
- Department of Microbiology & Immunology, University of Kentucky College of Medicine, Lexington 40536
| | | | | | | |
Collapse
|
13
|
Wadhwa R, Ikawa Y, Sugimoto Y. Natural and conditional ageing of mouse fibroblasts: genetic vs. epigenetic control. Biochem Biophys Res Commun 1991; 178:269-75. [PMID: 2069567 DOI: 10.1016/0006-291x(91)91809-q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mouse embryonic fibroblasts were fused with a spontaneously immortalized mouse fibroblast cell line and a large number of heterogeneous hybrid populations were obtained. These showed variations with respect to their chromosomal number as well as in vitro life span but none acquired immortal phenotype. Apart from demonstrating the dominant nature of senescence over immortalization in mouse system, we also provide the first report on the analysis of genomic DNA methylation during in vitro passaging of parental and hybrid cell populations representing the normal and conditional ageing, respectively. Since no random decline in DNA methylation could be detected in any of the cases, our results suggest that it is unlikely that mortality of cells in culture is the outcome of random loss of epigenetic control imposed by 5-methyldeoxycytidine at CpG sites in the genome.
Collapse
Affiliation(s)
- R Wadhwa
- Tsukuba Life Science Center, Institute of Physical and Chemical Research, Ibaraki, Japan
| | | | | |
Collapse
|
14
|
Sullivan CH, O'Farrell S, Grainger RM. Delta-crystallin gene expression and patterns of hypomethylation demonstrate two levels of regulation for the delta-crystallin genes in embryonic chick tissues. Dev Biol 1991; 145:40-50. [PMID: 2019324 DOI: 10.1016/0012-1606(91)90211-k] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study we address two questions regarding the control of delta-crystallin gene expression in chick embryos. First we have determined whether delta-crystallin mRNA is found outside of the developing lens, in which it is the predominant mRNA. We find that this mRNA can be detected, although at relatively low levels, in all embryonic tissues we have examined (from the definitive streak stage onward). This low level of transcription may be related to a second function for one or both of the delta-crystallin genes: both genes have a high degree of sequence identity to the enzyme argininosuccinate lyase. This result led us to a second set of experiments in which we reevaluated the possible role of hypomethylation in the expression of the delta-crystallin genes. Previous work showed that particular HhaI and HpaII sites in the crystallin genes undergo hypomethylation early in the process of lens differentiation when there is a burst of delta-crystallin mRNA accumulation. We not find that these sites remain methylated in nonlens tissues, implying that they cannot be required for the delta-crystallin gene activity found in these tissues. Other sites are constitutively hypomethylated, however, and may be functionally linked to this low level of gene activity. From an analysis of the kinetics of the developmentally regulated hypomethylation of HhaI and HpaII sites we also find that complete hypomethylation of these sites is not required for activating high levels of delta-crystallin transcription during lens differentiation. We do find, however, that these sites approach a fully hypomethylated state later in the lens differentiation process. Our analyses of mRNA levels and hypomethylation together lead us to propose that the delta-crystallin genes are regulated by two different mechanisms, one that leads to high levels of expression in the lens and the other which is responsible for low level expression in all other tissues in the chick embryo.
Collapse
Affiliation(s)
- C H Sullivan
- Department of Biology, University of Virginia, Charlottesville 22901
| | | | | |
Collapse
|
15
|
Antequera F, Boyes J, Bird A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 1990; 62:503-14. [PMID: 1974172 DOI: 10.1016/0092-8674(90)90015-7] [Citation(s) in RCA: 531] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CpG islands are normally methylation free in cells of the animal, even when the associated gene is transcriptionally silent. In mouse NIH 3T3 and L cells, however, over half of the islands are heavily methylated. Near identity of the methylated subset in the two cell lines suggested that methylation is confined to genes that are nonessential in culture. In agreement with this, islands at several tissue-specific genes, but not at housekeeping genes, have become methylated in many human and mouse cell lines. At the chromatin level, methylated islands are Mspl resistant compared with their nonmethylated counterparts. We suggest that mutation-like gene inactivation due to CpG island methylation is widespread in many cell lines and could explain the loss of cell type-specific functions in culture.
Collapse
Affiliation(s)
- F Antequera
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | |
Collapse
|