1
|
Martin AJ, Revol-Junelles AM, Petit J, Gaiani C, Leyva Salas M, Nourdin N, Khatbane M, Mafra de Almeida Costa P, Ferrigno S, Ebel B, Schivi M, Elfassy A, Mangavel C, Borges F. Deciphering Rind Color Heterogeneity of Smear-Ripened Munster Cheese and Its Association with Microbiota. Foods 2024; 13:2233. [PMID: 39063317 PMCID: PMC11276107 DOI: 10.3390/foods13142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Color is one of the first criteria to assess the quality of cheese. However, very limited data are available on the color heterogeneity of the rind and its relationship with microbial community structure. In this study, the color of a wide range of smear-ripened Munster cheeses from various origins was monitored during storage by photographic imaging and data analysis in the CIELAB color space using luminance, chroma, and hue angle as descriptors. Different levels of inter- and intra-cheese heterogeneity were observed. The most heterogeneous Munster cheeses were the darkest with orange-red colors. The most homogeneous were the brightest with yellow-orange. K-means clustering revealed three clusters distinguished by their color heterogeneity. Color analysis coupled with metabarcoding showed that rinds with heterogeneous color exhibited higher microbial diversity associated with important changes in their microbial community structure during storage. In addition, intra-cheese community structure fluctuations were associated with heterogeneity in rind color. The species Glutamicibacter arilaitensis and Psychrobacter nivimaris/piscatorii were found to be positively associated with the presence of undesirable brown patches. This study highlights the close relationship between the heterogeneity of the cheese rind and its microbiota.
Collapse
Affiliation(s)
- Amandine J. Martin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Anne-Marie Revol-Junelles
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Jérémy Petit
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Claire Gaiani
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Marcia Leyva Salas
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Nathan Nourdin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Mohammed Khatbane
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | | | - Sandie Ferrigno
- INRIA Nancy—Grand Est, Institut Elie Cartan de Lorraine (IECL), Equipe BIology, Genetics and Statistics (BIGS), Université de Lorraine, F-54000 Nancy, France;
| | - Bruno Ebel
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, F-54518 Vandoeuvre les Nancy, France;
| | - Myriam Schivi
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Annelore Elfassy
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Cécile Mangavel
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| |
Collapse
|
2
|
Ritschard JS, Schuppler M. The Microbial Diversity on the Surface of Smear-Ripened Cheeses and Its Impact on Cheese Quality and Safety. Foods 2024; 13:214. [PMID: 38254515 PMCID: PMC10814198 DOI: 10.3390/foods13020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Smear-ripened cheeses are characterized by a viscous, red-orange surface smear on their rind. It is the complex surface microbiota on the cheese rind that is responsible for the characteristic appearance of this cheese type, but also for the wide range of flavors and textures of the many varieties of smear-ripened cheeses. The surface smear microbiota also represents an important line of defense against the colonization with undesirable microorganisms through various types of interaction, such as competitive exclusion or production of antimicrobial substances. Predominant members of the surface smear microbiota are salt-tolerant yeast and bacteria of the phyla Actinobacteria, Firmicutes, and Proteobacteria. In the past, classical culture-based approaches already shed light on the composition and succession of microorganisms and their individual contribution to the typicity of this cheese type. However, during the last decade, the introduction and application of novel molecular approaches with high-resolution power provided further in-depth analysis and, thus, a much more detailed view of the composition, structure, and diversity of the cheese smear microbiota. This led to abundant novel knowledge, such as the identification of so far unknown community members. Hence, this review is summarizing the current knowledge of the diversity of the surface smear microbiota and its contribution to the quality and safety of smear-ripened cheese. If the succession or composition of the surface-smear microbiota is disturbed, cheese smear defects might occur, which may promote food safety issues. Hence, the discussion of cheese smear defects in the context of an increased understanding of the intricate surface smear ecosystem in this review may not only help in troubleshooting and quality control but also paves the way for innovations that can lead to safer, more consistent, and higher-quality smear-ripened cheeses.
Collapse
Affiliation(s)
| | - Markus Schuppler
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland;
| |
Collapse
|
3
|
Abstract
Chickens are in constant interaction with their environment, e.g., bedding and litter, and their microbiota. However, how litter microbiota develops over time and whether bedding and litter microbiota may affect the cecal microbiota is not clear. We addressed these questions using sequencing of V3/V4 variable region of 16S rRNA genes of cecal, bedding, and litter samples from broiler breeder chicken flocks for 4 months of production. Cecal, bedding, and litter samples were populated by microbiota of distinct composition. The microbiota in the bedding material did not expand in the litter. Similarly, major species from litter microbiota did not expand in the cecum. Only cecal microbiota was found in the litter forming approximately 20% of total litter microbiota. A time-dependent development of litter microbiota was observed. Escherichia coli, Staphylococcus saprophyticus, and Weissella jogaejeotgali were characteristic of fresh litter during the first month of production. Corynebacterium casei, Lactobacillus gasseri, and Lactobacillus salivarius dominated in a 2-month-old litter, Brevibacterium, Brachybacterium, and Sphingobacterium were characteristic for 3-month-old litter, and Salinococcus, Dietzia, Yaniella, and Staphylococcus lentus were common in a 4-month-old litter. Although the development was likely determined by physicochemical conditions in the litter, it might be interesting to test some of these species for active modification of litter to improve the chicken environment and welfare. IMPORTANCE Despite intimate contact, the composition of bedding, litter, and cecal microbiota differs considerably. Species characteristic for litter microbiota at different time points of chicken production were identified thus opening the possibility for active manipulation of litter microbiota.
Collapse
|
4
|
Paillet T, Lossouarn J, Figueroa C, Midoux C, Rué O, Petit MA, Dugat-Bony E. Virulent Phages Isolated from a Smear-Ripened Cheese Are Also Detected in Reservoirs of the Cheese Factory. Viruses 2022; 14:1620. [PMID: 35893685 PMCID: PMC9331655 DOI: 10.3390/v14081620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Smear-ripened cheeses host complex microbial communities that play a crucial role in the ripening process. Although bacteriophages have been frequently isolated from dairy products, their diversity and ecological role in such this type of cheese remain underexplored. In order to fill this gap, the main objective of this study was to isolate and characterize bacteriophages from the rind of a smear-ripened cheese. Thus, viral particles extracted from the cheese rind were tested through a spot assay against a collection of bacteria isolated from the same cheese and identified by sequencing the full-length small subunit ribosomal RNA gene. In total, five virulent bacteriophages infecting Brevibacterium aurantiacum, Glutamicibacter arilaitensis, Leuconostoc falkenbergense and Psychrobacter aquimaris species were obtained. All exhibit a narrow host range, being only able to infect a few cheese-rind isolates within the same species. The complete genome of each phage was sequenced using both Nanopore and Illumina technologies, assembled and annotated. A sequence comparison with known phages revealed that four of them may represent at least new genera. The distribution of the five virulent phages into the dairy-plant environment was also investigated by PCR, and three potential reservoirs were identified. This work provides new knowledge on the cheese rind viral community and an overview of the distribution of phages within a cheese factory.
Collapse
Affiliation(s)
- Thomas Paillet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France; (T.P.); (C.F.)
| | - Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France; (J.L.); (M.-A.P.)
| | - Clarisse Figueroa
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France; (T.P.); (C.F.)
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France; (C.M.); (O.R.)
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, 78350 Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, PROSE, 92761 Antony, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France; (C.M.); (O.R.)
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, 78350 Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France; (J.L.); (M.-A.P.)
| | - Eric Dugat-Bony
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France; (T.P.); (C.F.)
| |
Collapse
|
5
|
Raymond-Fleury A, Lessard MH, Chamberland J, Pouliot Y, Dugat-Bony E, Turgeon SL, St-Gelais D, Labrie S. Analysis of Microbiota Persistence in Quebec's Terroir Cheese Using a Metabarcoding Approach. Microorganisms 2022; 10:microorganisms10071381. [PMID: 35889100 PMCID: PMC9316450 DOI: 10.3390/microorganisms10071381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental short amplicon sequencing, or metabarcoding, is commonly used to characterize the bacterial and fungal microbiota of cheese. Comparisons between different metabarcoding studies are complicated by the use of different gene markers. Here, we systematically compare different metabarcoding molecular targets using V3–V4 and V6–V8 regions of the bacterial 16S rDNA and fungal ITS1 and ITS2 regions. Taxonomic profiles varied depending on the molecular markers used. Based on data quality and detection capacity of the markers toward microorganisms usually associated with the dairy environment, the ribosomal regions V3–V4 and ITS2 were selected and further used to evaluate variability in the microbial ecosystem of terroir cheeses from the province of Quebec in Canada. Both fungal and bacterial ecosystem profiles were described for 32 different ready-to-eat bloomy-, washed- and natural-rind specialty cheese varieties. Among them, 15 were studied over two different production years. Using the Bray–Curtis dissimilarity index as an indicator of microbial shifts, we found that most variations could be explained by either a voluntary change in starter or ripening culture composition, or by changes in the cheesemaking technology. Overall, our results suggest the persistence of the microbiota between the two years studied—these data aid understanding of cheese microbiota composition and persistence during cheese ripening.
Collapse
Affiliation(s)
- Annick Raymond-Fleury
- Department of Food Sciences and Nutrition, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, 2425 rue de l’Agriculture, Quebec City, QC G1V 0A6, Canada; (A.R.-F.); (M.-H.L.); (J.C.); (Y.P.); (S.L.T.); (D.S.-G.)
| | - Marie-Hélène Lessard
- Department of Food Sciences and Nutrition, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, 2425 rue de l’Agriculture, Quebec City, QC G1V 0A6, Canada; (A.R.-F.); (M.-H.L.); (J.C.); (Y.P.); (S.L.T.); (D.S.-G.)
| | - Julien Chamberland
- Department of Food Sciences and Nutrition, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, 2425 rue de l’Agriculture, Quebec City, QC G1V 0A6, Canada; (A.R.-F.); (M.-H.L.); (J.C.); (Y.P.); (S.L.T.); (D.S.-G.)
| | - Yves Pouliot
- Department of Food Sciences and Nutrition, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, 2425 rue de l’Agriculture, Quebec City, QC G1V 0A6, Canada; (A.R.-F.); (M.-H.L.); (J.C.); (Y.P.); (S.L.T.); (D.S.-G.)
| | - Eric Dugat-Bony
- UMR SayFood, INRAE, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France;
| | - Sylvie L. Turgeon
- Department of Food Sciences and Nutrition, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, 2425 rue de l’Agriculture, Quebec City, QC G1V 0A6, Canada; (A.R.-F.); (M.-H.L.); (J.C.); (Y.P.); (S.L.T.); (D.S.-G.)
| | - Daniel St-Gelais
- Department of Food Sciences and Nutrition, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, 2425 rue de l’Agriculture, Quebec City, QC G1V 0A6, Canada; (A.R.-F.); (M.-H.L.); (J.C.); (Y.P.); (S.L.T.); (D.S.-G.)
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Center, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Steve Labrie
- Department of Food Sciences and Nutrition, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, 2425 rue de l’Agriculture, Quebec City, QC G1V 0A6, Canada; (A.R.-F.); (M.-H.L.); (J.C.); (Y.P.); (S.L.T.); (D.S.-G.)
- Correspondence:
| |
Collapse
|
6
|
Li S, Zhang Y, Li X, Yin P, Wang T, Li Y, Zhang K, Sheng H, Lu S, Ji H, Fan Z, Li B. The Effect of the Ratio of Gamma Aminobutyric Acid-Producing Saccharomyces cerevisiae DL6–20 and Kluyveromyces marxianus B13–5 Addition on Cheese Quality. Front Microbiol 2022; 13:900394. [PMID: 35814701 PMCID: PMC9260010 DOI: 10.3389/fmicb.2022.900394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Kazakh cheese is a traditional dairy product in Xinjiang, China. The function and potential probiotic characteristics of Saccharomyces cerevisiae DL6–20 and Kluyveromyces marxianus B13–5 in Kazakh cheese and its contribution to cheese fermentation was studied. In this study, the effect of the addition ratio of gamma aminobutyric acid (GABA)-producing S. cerevisiae DL6–20 and K. marxianus B13–5 on cheese quality was investigated. Cheeses were prepared by fermentations with a total of six treatments: comercial culture alone as control (CS), a combination with one yeast, either; K. marxianus B13–5 (CSM); S. cerevisiae DL6–20 (CSS); and three different proportions of this two yeasts (CSM:CSS 1:1, 1:2, 2:1). We measured the GABA content of cheese, as well as basic physical and chemical indicators, microbial content, free amino acid (FAA) content, texture, and flavor compound content. The total FAA content of mixed bacteria fermentation was higher than that of the single bacteria alone. The GABA content CSM:CSS 1:2 GABA content was 0.114 g/100 g, CSM:CSS 2:1 GABA content was 0.12 g/100 g, CSM:CSS1:1 content of GABA produced in the late ripening period of cheese was the highest, reaching 0.189 g/100 g and the number of LAB and yeasts in CSM:CSS 1:1 was higher than that of other cheeses. The mixed-strain fermentation generally produced cheeses with a higher protein content than that of the single-strain fermentation in the late stage of the maturation process, especially the protein content of CSM:CSS 1:1 during the ripening period, when the protein content was highest at day 50. CSM:CSS 1:1 had a low moisture content, making it easy to store. With the exception of water and protein content, there is no significant difference in other physical and chemical indicators. CSM:CSS 1:1 contributed to the formation of cheese texture. In addition, multivariate statistical analysis indicated that mixed-strain fermentation was beneficial to the production of cheese aroma, with the aroma production performance of CSM:CSS 1:2 and CSM:CSS 2:1 found to be better than that of CSM: CSS 1:1.
Collapse
Affiliation(s)
- Shan Li
- School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
- Henan Shuanghui Investment & Development Co., Ltd., Luohe, China
| | - Yan Zhang
- School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
- Zhoukou Vocational College of Arts and Science, Zhoukou, China
| | - Xu Li
- School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
- Guangdong Yikewei Biotech Co., Ltd., Guangzhou, China
| | - Pingping Yin
- School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Tengbin Wang
- School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
- Xinjiang Uygur Autonomous Region Analysis and Testing Research Institute, Xinjiang, China
| | - Yandie Li
- School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Kaili Zhang
- School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Huayang Sheng
- School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Shiling Lu
- School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Hua Ji
- School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Zhexin Fan
- School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Baokun Li
- School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
- *Correspondence: Baokun Li,
| |
Collapse
|
7
|
Castelo-Branco D, Lockhart SR, Chen YC, Santos DA, Hagen F, Hawkins NJ, Lavergne RA, Meis JF, Le Pape P, Rocha MFG, Sidrim JJC, Arendrup M, Morio F. Collateral consequences of agricultural fungicides on pathogenic yeasts: A One Health perspective to tackle azole resistance. Mycoses 2022; 65:303-311. [PMID: 34821412 PMCID: PMC11268486 DOI: 10.1111/myc.13404] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023]
Abstract
Candida and Cryptococcus affect millions of people yearly, being responsible for a wide array of clinical presentations, including life-threatening diseases. Interestingly, most human pathogenic yeasts are not restricted to the clinical setting, as they are also ubiquitous in the environment. Recent studies raise concern regarding the potential impact of agricultural use of azoles on resistance to medical antifungals in yeasts, as previously outlined with Aspergillus fumigatus. Thus, we undertook a narrative review of the literature and provide lines of evidence suggesting that an alternative, environmental route of azole resistance, may develop in pathogenic yeasts, in addition to patient route. However, it warrants sound evidence to support that pathogenic yeasts cross border between plants, animals and humans and that environmental reservoirs may contribute to azole resistance in Candida or other yeasts for humans. As these possibilities could concern public health, we propose a road map for future studies under the One Health perspective.
Collapse
Affiliation(s)
- Débora Castelo-Branco
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Shawn R Lockhart
- Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta, Georgia, USA
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | | | - Rose-Anne Lavergne
- Nantes University Hospital and EA1155 IICiMed, Nantes University, Nantes, France
| | - Jacques F Meis
- Center of Expertise in Mycology, Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Patrice Le Pape
- Nantes University Hospital and EA1155 IICiMed, Nantes University, Nantes, France
| | - Marcos Fabio Gadelha Rocha
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - José Julio Costa Sidrim
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Maiken Arendrup
- Copenhagen University Hospital, and Statens Serum Institut, Copenhagen, Denmark
| | - Florent Morio
- Nantes University Hospital and EA1155 IICiMed, Nantes University, Nantes, France
| |
Collapse
|
8
|
Merchán AV, Ruiz-Moyano S, Vázquez Hernández M, Benito MJ, Aranda E, Rodríguez A, Martín A. Characterization of autochthonal yeasts isolated from Spanish soft raw ewe milk protected designation of origin cheeses for technological application. J Dairy Sci 2022; 105:2931-2947. [DOI: 10.3168/jds.2021-21368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
|
9
|
Abstract
Yeasts constitute an important part of cheeses, and especially the artisanal ones. The current study reviews the occurrence of yeasts in different cheese varieties and the role of yeasts in cheesemaking process. The use of molecular methods for identification and strain typing has extended the knowledge for yeast diversity in cheeses. For the study of the occurrence of yeasts in different cheese types, seven categories are used, that is: 1) hard, 2) semi-hard, 3) soft, which includes soft pasta-filata and whey cheeses, 4) white brined cheeses, 5) mould surface ripened, 6) bacterial surface ripened cheeses, and 7) blue cheeses. For some cheese types, yeasts are the main microbial group, at least for some part of their ripening process, while for some other types, yeasts are absent. Differences between industrially manufactured cheeses and artisanal cheeses have specified. Artisanal cheeses possess a diverse assortment of yeast species, mainly belonging to the genera Candida, Clavisporalus, Cryptococcus, Debaryomyces, Geotrichum, Issatchenkia, Kazachstania, Kluyveromyces, Kodemaea, Pichia, Rhodotorula, Saccharomyces, Saturnispora, Torulaspora, Trichosporon, Yarrowia and ZygoSaccharomyces. The role of the yeasts for selected cheeses from the seven cheese categories is discussed.
Collapse
Affiliation(s)
- Thomas Bintsis
- Collaborating Teaching Staff at Hellenic Open University, Greece
| |
Collapse
|
10
|
Abreu ACDS, Carazzolle MF, Crippa BL, Barboza GR, Mores Rall VL, de Oliveira Rocha L, Silva NCC. Bacterial diversity in organic and conventional Minas Frescal cheese production using targeted 16S rRNA sequencing. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Sun L, D’Amico DJ. Composition, Succession, and Source Tracking of Microbial Communities throughout the Traditional Production of a Farmstead Cheese. mSystems 2021; 6:e0083021. [PMID: 34581601 PMCID: PMC8547439 DOI: 10.1128/msystems.00830-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
Prior to the advent of milk pasteurization and the use of defined-strain starter cultures, the production and ripening of cheese relied on the introduction and growth of adventitious microbes from the environment. This study characterized microbial community structures throughout a traditional farmstead cheese production continuum and evaluated the role of the environment in microbial transfer. In total, 118 samples (e.g., raw milk, cheese, and environmental surfaces) were collected from milk harvesting through cheese ripening. Microbial communities were characterized based on amplicon sequencing of bacterial 16S rRNA and fungal internal transcribed spacer genes using the Illumina MiSeq platform. Results indicated that the environment in each processing room harbored unique microbial ecosystems and consistently contributed microbes to milk, curd, and cheese. The diverse microbial composition of milk was initially attributed to milker hands and cow teats and then changed substantially following overnight ripening in a wooden vat to one dominated by lactic acid bacteria, including Lactococcus lactis, Lactobacillus, and Leuconostoc, as well as fungi such as Exophiala, Kluyveromyces, and Candida. Additional microbial contributions were attributed to processing tools, but the composition of the cheese paste remained relatively stable over 60 days of ripening. In contrast, rind communities that were largely influenced by direct contact with bamboo aging mats showed a distinct succession pattern compared to the interior sections. Overall, these findings highlight the critical role of traditional tools and practices in shaping the microbial composition of cheese and broaden our understanding of processing environments as important sources of microbes in food. IMPORTANCE Throughout the 20th century, especially in the United States, sanitation practices, pasteurization of milk, and the use of commercial defined-strain starter cultures have enhanced the safety and consistency of cheese. However, these practices can reduce cheese microbial diversity. The rapid growth of the artisanal cheese industry in the United States has renewed interest in recapturing the diversity of dairy products and the microbes involved in their production. Here, we demonstrate the essential role of the environment, including the use of wooden tools and cheesemaking equipment, as sources of dominant microbes that shape the fermentation and ripening processes of a traditional farmstead cheese produced without the addition of starter cultures or direct inoculation of any other bacteria or fungi. These data enrich our understanding of the microbial interactions between products and the environment and identify taxa that contribute to the microbial diversity of cheese and cheese production.
Collapse
Affiliation(s)
- Lang Sun
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Dennis J. D’Amico
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
12
|
Mayo B, Rodríguez J, Vázquez L, Flórez AB. Microbial Interactions within the Cheese Ecosystem and Their Application to Improve Quality and Safety. Foods 2021; 10:602. [PMID: 33809159 PMCID: PMC8000492 DOI: 10.3390/foods10030602] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
The cheese microbiota comprises a consortium of prokaryotic, eukaryotic and viral populations, among which lactic acid bacteria (LAB) are majority components with a prominent role during manufacturing and ripening. The assortment, numbers and proportions of LAB and other microbial biotypes making up the microbiota of cheese are affected by a range of biotic and abiotic factors. Cooperative and competitive interactions between distinct members of the microbiota may occur, with rheological, organoleptic and safety implications for ripened cheese. However, the mechanistic details of these interactions, and their functional consequences, are largely unknown. Acquiring such knowledge is important if we are to predict when fermentations will be successful and understand the causes of technological failures. The experimental use of "synthetic" microbial communities might help throw light on the dynamics of different cheese microbiota components and the interplay between them. Although synthetic communities cannot reproduce entirely the natural microbial diversity in cheese, they could help reveal basic principles governing the interactions between microbial types and perhaps allow multi-species microbial communities to be developed as functional starters. By occupying the whole ecosystem taxonomically and functionally, microbiota-based cultures might be expected to be more resilient and efficient than conventional starters in the development of unique sensorial properties.
Collapse
Affiliation(s)
- Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (J.R.); (L.V.); (A.B.F.)
| | | | | | | |
Collapse
|
13
|
Koňuchová M, Valík Ľ. Modelling the Radial Growth of Geotrichum candidum: Effects of Temperature and Water Activity. Microorganisms 2021; 9:532. [PMID: 33807629 PMCID: PMC7999232 DOI: 10.3390/microorganisms9030532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Modelling the growth of microorganisms in relation to environmental factors provides quantitative knowledge that can be used to predict their behaviour in foods. For this reason, the effects of temperature and water activity (aw) adjusted with NaCl on the surface growth of two isolates and one culture strain of Geotrichum candidum were studied. A dataset of growth parameters obtained from almost 600 growth curves was employed for secondary modelling with cardinal models (CMs). The theoretical minimal temperature resulting from the modelling of the mycelium proliferation rate ranged from -5.2 to -0.4 °C. Optimal and maximal temperatures were calculated and found to have narrow ranges of 25.4 to 28.0 °C and 34.2 to 37.6 °C, respectively. Cardinal aw values associated with radial growth (awmin from 0.948-0.960 and awopt from 0.992-0.993) confirmed the salt sensitivity of the species. Model goodness-of-fit was evaluated by the coefficient of determination R2, which ranged from 0.954 to 0.985, and RMSE, which ranged from 0.28 to 0.42. Substantially higher variability accompanied the lag time for growth modelling than the radial growth rate modelling despite the square root transformation of the reciprocal lag phase data (R2 = 0.685 to 0.808). Nevertheless, the findings demonstrate that the outputs of growth modelling can be applied to the quantitative evaluation of the roles of G. candidum in fresh cheese spoilage as well as the ripening of Camembert-type cheeses or various artisanal cheeses. Along with validation, the interactions with lactic acid bacteria can be included to improve the predictions of G. candidum in the future.
Collapse
Affiliation(s)
- Martina Koňuchová
- Department of Nutrition and Food Quality Assessment, Institute of Food Science and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-812 37 Bratislava, Slovakia;
| | | |
Collapse
|
14
|
Austrian Raw-Milk Hard-Cheese Ripening Involves Successional Dynamics of Non-Inoculated Bacteria and Fungi. Foods 2020; 9:foods9121851. [PMID: 33322552 PMCID: PMC7763656 DOI: 10.3390/foods9121851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Cheese ripening involves successional changes of the rind microbial composition that harbors a key role on the quality and safety of the final products. In this study, we analyzed the evolution of the rind microbiota (bacteria and fungi) throughout the ripening of Austrian Vorarlberger Bergkäse (VB), an artisanal surface-ripened cheese, by using quantitative and qualitative approaches. The real-time quantitative PCR results revealed that bacteria were more abundant than fungi in VB rinds throughout ripening, although both kingdoms were abundant along the process. The qualitative investigation was performed by high-throughput gene-targeted (amplicon) sequencing. The results showed dynamic changes of the rind microbiota throughout ripening. In the fresh products, VB rinds were dominated by Staphylococcus equorum and Candida. At early ripening times (14–30 days) Psychrobacter and Debaryomyces flourished, although their high abundance was limited to these time points. At the latest ripening times (90–160 days), VB rinds were dominated by S. equorum, Brevibacterium, Corynebacterium, and Scopulariopsis. Strong correlations were shown for specific bacteria and fungi linked to specific ripening periods. This study deepens our understanding of VB ripening and highlights different bacteria and fungi associated to specific ripening periods which may influence the organoleptic properties of the final products.
Collapse
|
15
|
Pham NP, Landaud S, Lieben P, Bonnarme P, Monnet C. Transcription Profiling Reveals Cooperative Metabolic Interactions in a Microbial Cheese-Ripening Community Composed of Debaryomyces hansenii, Brevibacterium aurantiacum, and Hafnia alvei. Front Microbiol 2019; 10:1901. [PMID: 31474970 PMCID: PMC6706770 DOI: 10.3389/fmicb.2019.01901] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Ripening cultures containing fungi and bacteria are widely used in smear-ripened cheese production processes, but little is known about the biotic interactions of typical ripening microorganisms at the surface of cheese. We developed a lab-scale mini-cheese model to investigate the biotic interactions of a synthetic community that was composed of Debaryomyces hansenii, Brevibacterium aurantiacum, and Hafnia alvei, three species that are commonly used for smear-ripened cheese production. Transcriptomic analyses of cheese samples produced with different combinations of these three species revealed potential mechanisms of biotic interactions concerning iron acquisition, proteolysis, lipolysis, sulfur metabolism, and D-galactonate catabolism. A strong mutualistic interaction was observed between H. alvei and B. aurantiacum. We propose an explanation of this positive interaction in which B. aurantiacum would benefit from siderophore production by H. alvei, and the latter would be stimulated by the energy compounds liberated from caseins and triglycerides through the action of the proteases and lipases secreted by B. aurantiacum. In the future, it would be interesting to take the iron acquisition systems of cheese-associated strains into account for the purpose of improving the selection of the ripening culture components and their association in mixed cultures.
Collapse
Affiliation(s)
- Nguyen-Phuong Pham
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Sophie Landaud
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Pascale Lieben
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Pascal Bonnarme
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Christophe Monnet
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|
16
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Suarez JE, Sundh I, Vlak J, Barizzone F, Correia S, Herman L. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 10: Suitability of taxonomic units notified to EFSA until March 2019. EFSA J 2019; 17:e05753. [PMID: 32626372 PMCID: PMC7009089 DOI: 10.2903/j.efsa.2019.5753] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The qualified presumption of safety (QPS) procedure was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance were assessed. Safety concerns identified for a taxonomic unit (TU) are, where possible and reasonable in number, reflected by 'qualifications' which should be assessed at the strain level by the EFSA's Scientific Panels. During the current assessment, no new information was found that would change the previously recommended QPS TUs and their qualifications. The list of microorganisms notified to EFSA from applications for market authorisation was updated with 47 biological agents, received between October 2018 and March 2019. Of these, 19 already had QPS status, 20 were excluded from the QPS exercise by the previous QPS mandate (11 filamentous fungi) or from further evaluations within the current mandate (9 notifications of Escherichia coli). Sphingomonas elodea, Gluconobacter frateurii, Corynebacterium ammoniagenes, Corynebacterium casei, Burkholderia ubonensis, Phaeodactylum tricornutum, Microbacterium foliorum and Euglena gracilis were evaluated for the first time. Sphingomonas elodea cannot be assessed for a possible QPS recommendation because it is not a valid species. Corynebacterium ammoniagenes and Euglena gracilis can be recommended for the QPS list with the qualification 'for production purposes only'. The following TUs cannot be recommended for the QPS list: Burkholderia ubonensis, due to its potential and confirmed ability to generate biologically active compounds and limited of body of knowledge; Corynebacterium casei, Gluconobacter frateurii and Microbacterium foliorum, due to lack of body of knowledge; Phaeodactylum tricornutum, based on the lack of a safe history of use in the food chain and limited knowledge on its potential production of bioactive compounds with possible toxic effects.
Collapse
|
17
|
Kačániová M, Kunova S, Horská E, Nagyová Ľ, Puchalski C, Haščík P, Terentjeva M. Diversity of microorganisms in the traditional Slovak cheese. POTRAVINARSTVO 2019. [DOI: 10.5219/1061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to describe the microbial groups of the traditional Slovak cheese Parenica during rippening. The microbial group included the total bacterial count, coliform bacteria, enterococci, lactic acid bacteria, and microscopic filamentous fungi, which may affect the organoleptic characteristics of this product. A total of 42 cheese samples were collected from four different farms during three months. The total bacterial counts were cultivated on Plate count agar at 30 °C, lactic acid bacteria (LAB) on MRS, APT and MSE at 37 °C, coliform bacteria on VRBL at 37 °C. Gram-positive and Gram-negative isolates were identified by MALDI-TOF MS profiling. Bacillus sp. and Enterococcus faecium were the most frequently identified species of bacteria. Candida kefyr was the most distributed yeast according to microbiological methods. Lactic acid bacteria group was represented by Lactobacillus helveticus, L. jensenii, L. alimentarius, L. crispatus, L. curvatus, L. fermentum, L. suebicus, L. delbrueckii ssp. lactis, L. paracasei ssp. paracasei, Lactococcus lactis ssp. lactis, Leuconostoc lactis and Le. mesenteroides ssp. mesenteroides . This report describing the indigenous microbiota of the traditional raw milk cheeses from Slovakia. Our results provide useful information on occurrence of valuable microbial strain for the industrialization of producing of the traditional dairy products in Slovakia.
Collapse
|
18
|
Levesque S, de Melo AG, Labrie SJ, Moineau S. Mobilome of Brevibacterium aurantiacum Sheds Light on Its Genetic Diversity and Its Adaptation to Smear-Ripened Cheeses. Front Microbiol 2019; 10:1270. [PMID: 31244798 PMCID: PMC6579920 DOI: 10.3389/fmicb.2019.01270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/22/2019] [Indexed: 11/13/2022] Open
Abstract
Brevibacterium aurantiacum is an actinobacterium that confers key organoleptic properties to washed-rind cheeses during the ripening process. Although this industrially relevant species has been gaining an increasing attention in the past years, its genome plasticity is still understudied due to the unavailability of complete genomic sequences. To add insights on the mobilome of this group, we sequenced the complete genomes of five dairy Brevibacterium strains and one non-dairy strain using PacBio RSII. We performed phylogenetic and pan-genome analyses, including comparisons with other publicly available Brevibacterium genomic sequences. Our phylogenetic analysis revealed that these five dairy strains, previously identified as Brevibacterium linens, belong instead to the B. aurantiacum species. A high number of transposases and integrases were observed in the Brevibacterium spp. strains. In addition, we identified 14 and 12 new insertion sequences (IS) in B. aurantiacum and B. linens genomes, respectively. Several stretches of homologous DNA sequences were also found between B. aurantiacum and other cheese rind actinobacteria, suggesting horizontal gene transfer (HGT). A HGT region from an iRon Uptake/Siderophore Transport Island (RUSTI) and an iron uptake composite transposon were found in five B. aurantiacum genomes. These findings suggest that low iron availability in milk is a driving force in the adaptation of this bacterial species to this niche. Moreover, the exchange of iron uptake systems suggests cooperative evolution between cheese rind actinobacteria. We also demonstrated that the integrative and conjugative element BreLI (Brevibacterium Lanthipeptide Island) can excise from B. aurantiacum SMQ-1417 chromosome. Our comparative genomic analysis suggests that mobile genetic elements played an important role into the adaptation of B. aurantiacum to cheese ecosystems.
Collapse
Affiliation(s)
- Sébastien Levesque
- Département de Biochimie, de microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Alessandra G de Melo
- Département de Biochimie, de microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | | | - Sylvain Moineau
- Département de Biochimie, de microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada.,Centre de Référence pour Virus Bactériens Félix d'Hérelle, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
19
|
JASTER H, JUDACEWSKI P, RIBEIRO JCB, ZIELINSKI AAF, DEMIATE IM, LOS PR, ALBERTI A, NOGUEIRA A. Quality assessment of the manufacture of new ripened soft cheese by Geotrichum candidum: physico-chemical and technological properties. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.25717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | - Ivo Mottin DEMIATE
- Universidade Estadual de Ponta Grossa, Brasil; Universidade Estadual de Ponta Grossa, Brasil
| | | | - Aline ALBERTI
- Universidade Estadual de Ponta Grossa, Brasil; Universidade Estadual de Ponta Grossa, Brasil
| | - Alessandro NOGUEIRA
- Universidade Estadual de Ponta Grossa, Brasil; Universidade Estadual de Ponta Grossa, Brasil
| |
Collapse
|
20
|
Fröhlich-Wyder MT, Arias-Roth E, Jakob E. Cheese yeasts. Yeast 2019; 36:129-141. [PMID: 30512214 DOI: 10.1002/yea.3368] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023] Open
Abstract
Numerous traditionally aged cheeses are surface ripened and develop a biofilm, known as the cheese rind, on their surfaces. The rind of such cheeses comprises a complex community of bacterial and fungal species that are jointly responsible for the typical characteristics of the various cheese varieties. Surface ripening starts directly after brining with the rapid colonization of the cheese surface by yeasts. The initially dominant yeasts are acid and salt-tolerant and are capable of metabolizing the lactate produced by the starter lactic acid bacteria and of producing NH3 from amino acids. Both processes cause the pH of the cheese surface to rise dramatically. This so-called deacidification process enables the establishment of a salt-tolerant, Gram-positive bacterial community that is less acid-tolerant. Over the past decade, knowledge of yeast diversity in cheeses has increased considerably. The yeast species with the highest prevalence on surface-ripened cheeses are Debaryomyces hansenii and Geotrichum candidum, but up to 30 species can be found. In the cheese core, only lactose-fermenting yeasts, such as Kluyveromyces marxianus, are expected to grow. Yeasts are recognized as having an indispensable impact on the development of cheese flavour and texture because of their deacidifying, proteolytic, and/or lipolytic activity. Yeasts are used not only in the production of surface-ripened cheeses but also as adjunct cultures in the vat milk in order to modify ripening behaviour and flavour of the cheese. However, yeasts may also be responsible for spoilage of cheese, causing early blowing, off-flavour, brown discolouration, and other visible alterations of cheese.
Collapse
|
21
|
Cordovez V, Schop S, Hordijk K, Dupré de Boulois H, Coppens F, Hanssen I, Raaijmakers JM, Carrión VJ. Priming of Plant Growth Promotion by Volatiles of Root-Associated Microbacterium spp. Appl Environ Microbiol 2018; 84:e01865-18. [PMID: 30194105 PMCID: PMC6210106 DOI: 10.1128/aem.01865-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/04/2018] [Indexed: 12/23/2022] Open
Abstract
Volatile compounds produced by plant-associated microorganisms represent a diverse resource to promote plant growth and health. Here, we investigated the effect of volatiles from root-associated Microbacterium species on plant growth and development. Volatiles of eight strains induced significant increases in shoot and root biomass of Arabidopsis but differed in their effects on root architecture. Microbacterium strain EC8 also enhanced root and shoot biomass of lettuce and tomato. Biomass increases were also observed for plants exposed only briefly to volatiles from EC8 prior to transplantation of the seedlings to soil. These results indicate that volatiles from EC8 can prime plants for growth promotion without direct and prolonged contact. We further showed that the induction of plant growth promotion is tissue specific; that is, exposure of roots to volatiles from EC8 led to an increase in plant biomass, whereas shoot exposure resulted in no or less growth promotion. Gas chromatography-quadrupole time of flight mass spectometry (GC-QTOF-MS) analysis revealed that EC8 produces a wide array of sulfur-containing compounds, as well as ketones. Bioassays with synthetic sulfur volatile compounds revealed that the plant growth response to dimethyl trisulfide was concentration-dependent, with a significant increase in shoot weight at 1 μM and negative effects on plant biomass at concentrations higher than 1 mM. Genome-wide transcriptome analysis of volatile-exposed Arabidopsis seedlings showed upregulation of genes involved in assimilation and transport of sulfate and nitrate. Collectively, these results show that root-associated Microbacterium primes plants, via the roots, for growth promotion, most likely via modulation of sulfur and nitrogen metabolism.IMPORTANCE In the past decade, various studies have described the effects of microbial volatiles on other (micro)organisms in vitro, but their broad-spectrum activity in vivo and the mechanisms underlying volatile-mediated plant growth promotion have not been addressed in detail. Here, we revealed that volatiles from root-associated bacteria of the genus Microbacterium can enhance the growth of different plant species and can prime plants for growth promotion without direct and prolonged contact between the bacterium and the plant. Collectively, these results provide new opportunities for sustainable agriculture and horticulture by exposing roots of plants only briefly to a specific blend of microbial volatile compounds prior to transplantation of the seedlings to the greenhouse or field. This strategy has no need for large-scale introduction or root colonization and survival of the microbial inoculant.
Collapse
Affiliation(s)
- Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Sharella Schop
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Kees Hordijk
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Hervé Dupré de Boulois
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
- R&D Department, DCM nv, Grobbendonk, Belgium
| | - Filip Coppens
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Inge Hanssen
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
- R&D Department, DCM nv, Grobbendonk, Belgium
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| |
Collapse
|
22
|
Haastrup MK, Johansen P, Malskær AH, Castro-Mejía JL, Kot W, Krych L, Arneborg N, Jespersen L. Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts. Int J Food Microbiol 2018; 285:173-187. [PMID: 30176565 DOI: 10.1016/j.ijfoodmicro.2018.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/06/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022]
Abstract
The Danish Danbo cheese is a surface ripened semi-hard cheese, which before ripening is submerged in brine for up to 24 h. The brining is required in order to obtain the structural and organoleptic properties of the cheeses. Likewise, the content of NaCl in the cheese will influence especially the surface microbiota being of significant importance for flavour development and prevention of microbial spoilage. Even though the microbiota on cheese surfaces have been studied extensively, limited knowledge is available on the occurrence of microorganisms in cheese brine. The aim of the present study was to investigate by both culture-dependent and -independent techniques the brine microbiota in four Danish dairies producing Danbo cheese. The pH of the brines varied from 5.1 to 5.6 with a dry matter content from 20 to 27% (w/w). The content of lactate varied from 4.1 to 10.8 g/L and free amino acids from 65 to 224 mg/L. Bacteria were isolated on five different media with NaCl contents of 0.85-23.0% (w/v) NaCl. The highest count of 6.3 log CFU/mL was obtained on TSA added 4% (w/v) NaCl. For yeasts, the highest count was 3.7 log CFU/mL on MYGP added 8% (w/v) NaCl. A total of 31 bacterial and eight eukaryotic species were isolated including several halotolerant and/or halophilic species. Among bacteria, counts of ≥6.0 log CFU/mL were obtained for Tetragenococcus muriaticus and Psychrobacter celer, while counts between ≥4.5 and < 6.0 log CFU/mL were obtained for Lactococcus lactis, Staphylococcus equorum, Staphylococcus hominis, Chromohalobacter beijerinckii, Chromohalobacter japonicus and Microbacterium maritypicum. Among yeasts, counts of ≥3.5 log CFU/mL were only obtained for Debaryomyces hansenii. By amplicon-based high-throughput sequencing of 16S rRNA gene and ITS2 regions for bacteria and eukaryotes respectively, brines from the same dairy clustered together indicating the uniqueness of the dairy brine microbiota. To a great extent the results obtained by amplicon sequencing fitted with the culture-dependent technique though each of the two methodologies identified unique genera/species. Dairy brine handling procedures as e.g. microfiltration were found to influence the brine microbiota. The current study proves the occurrence of a specific dairy brine microbiota including several halotolerant and/or halophilic species most likely of sea salt origin. The importance of these species during especially the initial stages of cheese ripening and their influence on cheese quality and safety need to be investigated. Likewise, optimised brine handling procedures and microbial cultures are required to ensure an optimal brine microbiota.
Collapse
Affiliation(s)
- Martin Kragelund Haastrup
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Pernille Johansen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Agnete Harboe Malskær
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Josué L Castro-Mejía
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Witold Kot
- Environmental Microbiology and Biotechnology, University of Aarhus, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
23
|
O’Brien CE, McCarthy CGP, Walshe AE, Shaw DR, Sumski DA, Krassowski T, Fitzpatrick DA, Butler G. Genome analysis of the yeast Diutina catenulata, a member of the Debaryomycetaceae/Metschnikowiaceae (CTG-Ser) clade. PLoS One 2018; 13:e0198957. [PMID: 29944657 PMCID: PMC6019693 DOI: 10.1371/journal.pone.0198957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/28/2018] [Indexed: 11/18/2022] Open
Abstract
Diutina catenulata (Candida catenulata) is an ascomycetous yeast that has been isolated from humans, animals and environmental sources. The species is a contaminant of dairy products, and has been linked to superficial and invasive infections in both humans and animals. Previous phylogenetic analyses have assigned the species to the Saccharomycetales, but failed to identify its specific clade. Here, we report the genome sequence of an environmental isolate of D. catenulata. Examination of the tRNA repertoire and coding potential of this species shows that it translates the CUG codon as serine and not leucine. In addition, two phylogenetic analyses using 204 ubiquitous gene family alignments and 3,826 single-copy genes both confirm the placement of the species in the Debaryomycetaceae/Metschnikowiaceae, or CTG-Ser clade. The sequenced isolate contains an MTLα idiomorph. However, unlike most MTL loci in related species, poly (A) polymerase (PAP) is not adjacent to MTLα1.
Collapse
Affiliation(s)
- Caoimhe E. O’Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Charley G. P. McCarthy
- Department of Biology, Genome Evolution Laboratory, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Annie E. Walshe
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Dennis R. Shaw
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Deirdre A. Sumski
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Tadeusz Krassowski
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - David A. Fitzpatrick
- Department of Biology, Genome Evolution Laboratory, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
24
|
Bertuzzi AS, McSweeney PL, Rea MC, Kilcawley KN. Detection of Volatile Compounds of Cheese and Their Contribution to the Flavor Profile of Surface-Ripened Cheese. Compr Rev Food Sci Food Saf 2018; 17:371-390. [DOI: 10.1111/1541-4337.12332] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Andrea S. Bertuzzi
- Teagasc Food Research Centre, Moorepark; Fermoy Co. Cork Ireland P61 C996
- School of Food and Nutritional Science; Univ. College Cork; Ireland T12 R229
| | - Paul L.H. McSweeney
- School of Food and Nutritional Science; Univ. College Cork; Ireland T12 R229
| | - Mary C. Rea
- Teagasc Food Research Centre, Moorepark; Fermoy Co. Cork Ireland P61 C996
- the APC Microbiome Inst; Univ. College Cork; Ireland T12 R229
| | | |
Collapse
|
25
|
Zheng X, Li K, Shi X, Ni Y, Li B, Zhuge B. Potential characterization of yeasts isolated from Kazak artisanal cheese to produce flavoring compounds. Microbiologyopen 2017; 7. [PMID: 29277964 PMCID: PMC5822340 DOI: 10.1002/mbo3.533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/26/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
Cheese is a typical handcrafted fermented food in Kazak minority from the Uighur Autonomy Region in China and Central Asia. Among the microbial community that is responsible for Kazak cheese fermentation, yeasts play important role in flavor formation during ripening. To develop ripening cultures, we isolated 123 yeasts from 25 cheese products in Kazak, and identified 87 isolates by the D1/D2 domain of the large subunit rRNA gene sequence. Pichia kudriavzevii was the dominant yeast in Kazak cheese, followed by Kluyveromyces marxianus and Kluyveromyces lactis. Of these, the ability to exhibit enzyme of dominant isolates and contribution to the typical flavor of cheeses was assessed. Enzyme producing yeast strains were inoculated in Hazak cheese‐like medium and volatile compounds were identified by head space solid phase micro extraction coupled to gas chromatography and mass spectroscopy. Pichia kudriavzevii N‐X displayed the strongest extracellular proteolytic and activity on skim milk agar and produced a range of aroma compounds (ethanol, ethyl acetate, 3‐methylbutanol, and acetic acid) for Kazak cheese flavor, could be explored as ripening cultures in commercial production of Kazak cheeses.
Collapse
Affiliation(s)
- Xiaoji Zheng
- The Key Lab of Industrial Biotechnology of Ministry of Education, Research Centre of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China.,College of Food Sciences, Shihezi University, Shihezi, Xinjiang Uighur Autonomy Region, China
| | - Kaixiong Li
- College of Food Sciences, Shihezi University, Shihezi, Xinjiang Uighur Autonomy Region, China
| | - Xuewei Shi
- College of Food Sciences, Shihezi University, Shihezi, Xinjiang Uighur Autonomy Region, China
| | - Yongqing Ni
- College of Food Sciences, Shihezi University, Shihezi, Xinjiang Uighur Autonomy Region, China
| | - Baokun Li
- College of Food Sciences, Shihezi University, Shihezi, Xinjiang Uighur Autonomy Region, China
| | - Bin Zhuge
- The Key Lab of Industrial Biotechnology of Ministry of Education, Research Centre of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
26
|
Genome Sequence of Staphylococcus saprophyticus DPC5671, a Strain Isolated from Cheddar Cheese. GENOME ANNOUNCEMENTS 2017; 5:5/16/e00193-17. [PMID: 28428298 PMCID: PMC5399257 DOI: 10.1128/genomea.00193-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The draft genome sequence of Staphylococcus saprophyticus DPC5671, isolated from cheddar cheese, was determined. S. saprophyticus is a common Gram-positive bacterium detected on the surface of smear-ripened cheese and other fermented foods.
Collapse
|
27
|
Draft Genome Sequence of Corynebacterium variabile Mu292, Isolated from Munster, a French Smear-Ripened Cheese. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00669-16. [PMID: 27445372 PMCID: PMC4956445 DOI: 10.1128/genomea.00669-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the draft genome sequence of Corynebacterium variabile Mu292, which was originally isolated from the surface of Munster, a French smear-ripened cheese. This genome investigation will improve our knowledge on the molecular determinants potentially involved in the adaptation of this strain during the Munster-type cheese manufacturing process.
Collapse
|
28
|
Monnet C, Dugat-Bony E, Swennen D, Beckerich JM, Irlinger F, Fraud S, Bonnarme P. Investigation of the Activity of the Microorganisms in a Reblochon-Style Cheese by Metatranscriptomic Analysis. Front Microbiol 2016; 7:536. [PMID: 27148224 PMCID: PMC4837152 DOI: 10.3389/fmicb.2016.00536] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/01/2016] [Indexed: 12/11/2022] Open
Abstract
The microbial communities in cheeses are composed of varying bacteria, yeasts, and molds, which contribute to the development of their typical sensory properties. In situ studies are needed to better understand their growth and activity during cheese ripening. Our objective was to investigate the activity of the microorganisms used for manufacturing a surface-ripened cheese by means of metatranscriptomic analysis. The cheeses were produced using two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), one ripening bacterium (Brevibacterium aurantiacum), and two yeasts (Debaryomyces hansenii and Geotrichum candidum). RNA was extracted from the cheese rinds and, after depletion of most ribosomal RNA, sequencing was performed using a short-read sequencing technology that generated ~75 million reads per sample. Except for B. aurantiacum, which failed to grow in the cheeses, a large number of CDS reads were generated for the inoculated species, making it possible to investigate their individual transcriptome over time. From day 5 to 35, G. candidum accounted for the largest proportion of CDS reads, suggesting that this species was the most active. Only minor changes occurred in the transcriptomes of the lactic acid bacteria. For the two yeasts, we compared the expression of genes involved in the catabolism of lactose, galactose, lactate, amino acids, and free fatty acids. During ripening, genes involved in ammonia assimilation and galactose catabolism were down-regulated in the two species. Genes involved in amino acid catabolism were up-regulated in G. candidum from day 14 to day 35, whereas in D. hansenii, they were up-regulated mainly at day 35, suggesting that this species catabolized the cheese amino acids later. In addition, after 35 days of ripening, there was a down-regulation of genes involved in the electron transport chain, suggesting a lower cellular activity. The present study has exemplified how metatranscriptomic analyses provide insight into the activity of cheese microbial communities for which reference genome sequences are available. In the future, such studies will be facilitated by the progress in DNA sequencing technologies and by the greater availability of the genome sequences of cheese microorganisms.
Collapse
Affiliation(s)
- Christophe Monnet
- UMR Génie et Microbiologie des Procédés Alimentaires, AgroParisTech, INRA, Université Paris-Saclay Thiverval-Grignon, France
| | - Eric Dugat-Bony
- UMR Génie et Microbiologie des Procédés Alimentaires, AgroParisTech, INRA, Université Paris-Saclay Thiverval-Grignon, France
| | - Dominique Swennen
- UMR Génie et Microbiologie des Procédés Alimentaires, AgroParisTech, INRA, Université Paris-Saclay Thiverval-Grignon, France
| | - Jean-Marie Beckerich
- UMR Génie et Microbiologie des Procédés Alimentaires, AgroParisTech, INRA, Université Paris-Saclay Thiverval-Grignon, France
| | - Françoise Irlinger
- UMR Génie et Microbiologie des Procédés Alimentaires, AgroParisTech, INRA, Université Paris-Saclay Thiverval-Grignon, France
| | | | - Pascal Bonnarme
- UMR Génie et Microbiologie des Procédés Alimentaires, AgroParisTech, INRA, Université Paris-Saclay Thiverval-Grignon, France
| |
Collapse
|
29
|
|
30
|
Irlinger F, Layec S, Hélinck S, Dugat-Bony E. Cheese rind microbial communities: diversity, composition and origin. FEMS Microbiol Lett 2014; 362:1-11. [DOI: 10.1093/femsle/fnu015] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|