1
|
Krappmann S, Gabl E, Pazen T, Heizmann A, Pöggeler S, Krüger T, Kniemeyer O, Einsiedel J, Gmeiner P, Yu Y, Dyer PS, Baker SE, Nowrousian M. Identification of an a-factor-like pheromone secreted by the heterothallic ascomycete Aspergillus fumigatus. Curr Biol 2025; 35:2414-2423.e5. [PMID: 40262616 DOI: 10.1016/j.cub.2025.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Members of the fungal kingdom serve as models for numerous cellular processes, among them sexuality.1 In heterothallic ascomycetes, mating-type systems ensure that only compatible isolates fuse to enter the sexual phase.2,3,4,5,6 This includes reciprocal secretion and recognition of pheromones, commonly termed α-factor and a-factor, which are processed from peptide precursors.7,8,9,10 Identification of fungal mating pheromones and their cognate receptors has been achieved by homology searches11,12,13,14,15,16,17; however, this approach had failed to detect a-factor-like pheromones from Eurotiomycetes,5,18,19,20,21 a fungal group including medically and economically important species.22 Sexuality of the opportunistic pathogen Aspergillus fumigatus23,24,25 is genetically determined by a bipolar mating-type system encoding MAT1-1-1 and MAT1-2-1 regulators.16,26,27,28,29,30 By analyzing transcriptome data from strains overexpressing the corresponding MAT genes,31 we identified a candidate pheromone precursor gene B (ppgB) to encode the elusive Eurotiomycete a-factor pheromone. Its deduced peptide is 24 aa in length and features a canonical CaaX farnesylation motif. Further analyses provided supporting evidence that PpgB is a prototype for the a-factor-like pheromone of the aspergilli, including expression of ppgB in a MAT1-2-1-dependent manner, and that an A. fumigatus ppgBΔ deletion strain was unable to mate and form fruiting bodies with a compatible partner. Inspection of Aspergillus genomes from members of the section Fumigati revealed high conservation of PpgB sequence as well as of the α-factor-like PpgA, indicating that incompatibility factors other than solely pheromone discrimination are responsible for speciation. The identification of the A. fumigatusa-factor-like pheromone closes a substantial knowledge gap with respect to cellular recognition and sexual propagation of Eurotiomycete fungi.
Collapse
Affiliation(s)
- Sven Krappmann
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany; FAU Profile Center Immunomedicine (I-MED), FAU Erlangen-Nürnberg, Freyeslebenstraße 1, 91058 Erlangen, Germany.
| | - Elisabeth Gabl
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Tobias Pazen
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Anna Heizmann
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August University (GAU) Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, FAU Erlangen-Nürnberg, Nikolaus-Fiebinger-Straße 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, FAU Erlangen-Nürnberg, Nikolaus-Fiebinger-Straße 10, 91058 Erlangen, Germany
| | - Yidong Yu
- Institute of Medical Mycology, Teikyō University, 359 Otsuka, 192-0395 Hachioji-shi, Tokyo, Japan
| | - Paul S Dyer
- School of Life Sciences, University of Nottingham, B85 Laboratory Life Science Building, University Park, Nottingham NG7 2RD, UK
| | - Scott E Baker
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, 3335 Innovation Boulevard, Richland, WA 99354, USA; DOE Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum (RUB), ND 7/130 Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
2
|
Ramírez-Sotelo U, Gómez-Gaviria M, Mora-Montes HM. Signaling Pathways Regulating Dimorphism in Medically Relevant Fungal Species. Pathogens 2025; 14:350. [PMID: 40333127 PMCID: PMC12030348 DOI: 10.3390/pathogens14040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Pathogenic fungi that exhibit the ability to alternate between hyphal and yeast morphology in response to environmental stimuli are considered dimorphic. Under saprobic conditions, some fungi exist as filamentous hyphae, producing conidia. When conidia are inhaled by mammals or traumatically inoculated, body temperature (37 °C) triggers dimorphism into yeast cells. This shift promotes fungal dissemination and immune evasion. Some fungal pathogens undergo dimorphism in the contrary way, forming pseudohyphae and hyphae within the host. While temperature is a major driver of dimorphism, other factors, including CO2 concentration, pH, nitrogen sources, and quorum-sensing molecules, also contribute to morphological shifts. This morphological transition is associated with increased expression of virulence factors that aid in adhesion, colonization, and immune evasion. Candida albicans is a fungus that is commonly found as a commensal on human mucous membranes but has the potential to be an opportunistic fungal pathogen of immunocompromised patients. C. albicans exhibits a dimorphic change from the yeast form to the hyphal form when it becomes established as a pathogen. In contrast, Histoplasma capsulatum is an environmental dimorphic fungus where human infection begins when conidia or hyphal fragments of the fungus are inhaled into the alveoli, where the dimorphic change to yeast occurs, this being the morphology associated with its pathogenic phase. This review examines the main signaling pathways that have been mostly related to fungal dimorphism, using as a basis the information available in the literature on H. capsulatum and C. albicans because these fungi have been widely studied for the morphological transition from hypha to yeast and from yeast to hypha, respectively. In addition, we have included the reported findings of these signaling pathways associated with the dimorphism of other pathogenic fungi, such as Paracoccidioides brasiliensis, Sporothrix schenckii, Cryptococcus neoformans, and Blastomyces dermatitis. Understanding these pathways is essential for advancing therapeutic approaches against systemic fungal infections.
Collapse
Affiliation(s)
| | | | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato C.P. 36050, Mexico; (U.R.-S.); (M.G.-G.)
| |
Collapse
|
3
|
Liu D, Sun X, Qi X, Liang C. Sexual spores in mushrooms: bioactive compounds, factors and molecular mechanisms of spore formation. Arch Microbiol 2025; 207:38. [PMID: 39836288 DOI: 10.1007/s00203-024-04220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Throughout the life cycle of mushrooms, countless spores are released from the fruiting bodies. The spores have significant implications in the food and medicine industries due to pharmacological effects attributed to their bioactive ingredients. Moreover, high concentration of mushroom spores can induce extrinsic allergic reactions in mushroom cultivation workers. Therefore, it is important to study the bioactive ingredients of medicinal mushroom spores and molecular mechanisms of spore formation to develop healthcare products utilizing medicinal mushroom spores and breed sporeless/low- or high-spore-producing strains. This review summarizes the bioactive compounds of mushroom spores, the influence factors and molecular mechanisms of spore formation. Many bioactive compounds extracted from mushroom spores have a wide range of pharmacological activities. Several exogenous factors such as temperature, humidity, light, nutrients, and culture matrix, and endogenous factors such as metabolism-related enzymes activities and expression levels of genes related to sporulation individually or in combination affect the formation, size, and discharge of spores. The future research directions are also discussed for supplying references to analyze the bioactive compounds of spores and the molecular mechanisms of spore formation in mushrooms.
Collapse
Affiliation(s)
- Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xueyan Sun
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
4
|
Galappaththi MCA, Dunstan WA, Hardy GESJ, McComb J, McHenry MP, Zambonelli A, Burgess TI. Advances in molecular genetics have increased knowledge of Tuber species' life cycle and population genetic structure, indicating ways to improve yield. MYCORRHIZA 2024; 35:2. [PMID: 39671091 DOI: 10.1007/s00572-024-01177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/17/2024] [Indexed: 12/14/2024]
Abstract
Truffles are possibly the only high-value cultivated organisms for which some aspects of the habit and life cycle have only recently been elucidated or remain unknown. Molecular techniques have helped explain the biological basis for some traditional empirical management techniques, such as inoculating soil with ascospores to improve yield, and have enhanced the detection of competitive or pathogenic soil microorganisms. Improved precision of assessment of the quality of inoculated seedlings is now possible. New knowledge of the genetic structure of populations has indicated that as trees age, the genotypes of mycorrhizae on inoculated trees change, and that there are large differences in the number of female and male genotypes participating in ascocarp formation. The plasticity of Tuber species has also been revealed, with maternal genotypes growing as an ectomycorrhiza in host tree roots and as surface mycelium or an endophyte in roots of adjacent non-mycorrhizal species. Refinement of management techniques has resulted from applying the new information, and the tools are now available to resolve the many outstanding gaps in our knowledge of Tuber biology.
Collapse
Affiliation(s)
- Mahesh C A Galappaththi
- School of Environmental and Conservation Sciences, Murdoch University, Perth, WA, 6150, Australia.
- Harry Butler Institute, Murdoch University, Perth, WA, 6150, Australia.
| | - William A Dunstan
- Harry Butler Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Giles E St J Hardy
- Harry Butler Institute, Murdoch University, Perth, WA, 6150, Australia
- ArborCarbon Pty Ltd ROTA Trans 1, Murdoch University, Murdoch, WA, 6150, Australia
| | - Jen McComb
- Harry Butler Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Mark P McHenry
- Harry Butler Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40126, Bologna, Italy
| | - Treena I Burgess
- Harry Butler Institute, Murdoch University, Perth, WA, 6150, Australia
| |
Collapse
|
5
|
LeBlanc C, Stefani J, Soriano M, Lam A, Zintel MA, Kotha SR, Chase E, Pimentel-Solorio G, Vunnum A, Flug K, Fultineer A, Hummel N, Staller MV. Conservation of function without conservation of amino acid sequence in intrinsically disordered transcriptional activation domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626510. [PMID: 39677729 PMCID: PMC11642888 DOI: 10.1101/2024.12.03.626510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Protein function is canonically believed to be more conserved than amino acid sequence, but this idea is only well supported in folded domains, where highly diverged sequences can fold into equivalent 3D structures. In contrast, intrinsically disordered protein regions (IDRs) do not fold into a stable 3D structure, thus it remains unknown when and how function is conserved for IDRs that experience rapid amino acid sequence divergence. As a model system for studying the evolution of IDRs, we examined transcriptional activation domains, the regions of transcription factors that bind to coactivator complexes. We systematically identified activation domains on 502 orthologs of the transcriptional activator Gcn4 spanning 600 MY of fungal evolution. We find that the central activation domain shows strong conservation of function without conservation of sequence. This conservation of function without conservation of sequence is facilitated by evolutionary turnover (gain and loss) of key acidic and aromatic residues, the positions most important for function. This high sequence flexibility of functional orthologs mirrors the physical flexibility of the activation domain coactivator interaction interface, suggesting that physical flexibility enables evolutionary plasticity. We propose that turnover of short functional elements, sometimes individual amino acids, is a general mechanism for conservation of function without conservation of sequence during IDR evolution.
Collapse
Affiliation(s)
- Claire LeBlanc
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720
- Center for Computational Biology, University of California Berkeley, Berkeley, 94720
| | - Jordan Stefani
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720
- Center for Computational Biology, University of California Berkeley, Berkeley, 94720
| | - Melvin Soriano
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720
- Center for Computational Biology, University of California Berkeley, Berkeley, 94720
| | - Angelica Lam
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720
- Center for Computational Biology, University of California Berkeley, Berkeley, 94720
| | - Marissa A. Zintel
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720
| | - Sanjana R. Kotha
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720
- Center for Computational Biology, University of California Berkeley, Berkeley, 94720
| | - Emily Chase
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720
- Center for Computational Biology, University of California Berkeley, Berkeley, 94720
| | - Giovani Pimentel-Solorio
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720
- Center for Computational Biology, University of California Berkeley, Berkeley, 94720
| | - Aditya Vunnum
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720
| | - Katherine Flug
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720
| | - Aaron Fultineer
- Department of Physics, University of California Berkeley, Berkeley, 94720
| | - Niklas Hummel
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Max V. Staller
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720
- Center for Computational Biology, University of California Berkeley, Berkeley, 94720
- Chan Zuckerberg Biohub–San Francisco, San Francisco, CA 94158
| |
Collapse
|
6
|
Yang F, Pu X, Matthew C, Nan Z, Li X. Exploring phyllosphere fungal communities of 29 alpine meadow plant species: composition, structure, function, and implications for plant fungal diseases. Front Microbiol 2024; 15:1451531. [PMID: 39568999 PMCID: PMC11576429 DOI: 10.3389/fmicb.2024.1451531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
The phyllosphere of plants hosts diverse fungal microbial communities. Despite the significant impact of plant fungal diseases on productivity and community ecology, the relationship between phyllosphere fungal communities and plant health in natural environments remains poorly understood. This study utilized high-throughput sequencing and field investigations to explore the composition, dynamics, and incidence of fungal diseases across 29 plant species from four functional groups (forbs, grasses, legumes, and sedges) in alpine meadow plant communities of the Qinghai-Tibetan Plateau. We identified Ascomycetes and Basidiomycetes as the predominant phyllosphere fungi. Significant differences were observed in the Shannon diversity index, β-diversity, indicator fungi, and hub fungi among the functional groups. With the exception of the sedge group, the incidence of fungal diseases in other groups was positively correlated with the proportion of pathogens in the phyllosphere fungal community. Predictive analyses revealed that Ascochyta was strongly associated with high disease incidence in grasses, Cercospora in forbs, and Podosphaera in legumes, while Calophoma was associated with low disease incidence in sedges. These findings enhance our understanding of how plant phyllosphere fungal communities assemble in natural environments and improve our ability to predict and manage foliar fungal diseases in alpine meadows.
Collapse
Affiliation(s)
- Fengzhen Yang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaojian Pu
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai, China
| | - Cory Matthew
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
7
|
Richter S, Kind S, Oberhänsli T, Schneider M, Nenasheva N, Hoff K, Keilwagen J, Yeon IK, Philion V, Moriya S, Flachowsky H, Patocchi A, Wöhner TW. Genome sequence of a European Diplocarpon coronariae strain and in silico structure of the mating-type locus. FRONTIERS IN PLANT SCIENCE 2024; 15:1437132. [PMID: 39494053 PMCID: PMC11527701 DOI: 10.3389/fpls.2024.1437132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Diplocarpon coronariae is a fungal pathogen that is prevalent in low-input apple production. Over the past 15 years, it has become increasingly distributed in Europe. However, comprehensive insights into its biology and pathogenicity remain limited. One particular aspect is the rarity of the sexual morph of this pathogen, a phenomenon hitherto unobserved in Europe. Diplocarpon coronariae reproduces through a heterothallic mating system requiring at least two different mating types for sexual reproduction. Genes determining the mating types are located on the mating-type locus. In this study, D. coronariae strain DC1_JKI from Dresden, Germany, was sequenced and used to unravel the structure of the mating type locus. Using short-read and long-read sequencing methods, the first gapless and near-complete telomere-to-telomere genome assembly of D. coronariae was achieved. The assembled genome spans 51.2 Mbp and comprises 21 chromosome-scale contigs of high completeness. The generated genome sequence was used to in silico elucidate the structure of the mating-type locus, identified as MAT1-2. Furthermore, an examination of MAT1-1 and MAT1-2 frequency across a diverse set of samples sourced from Europe and Asia revealed the exclusive presence of MAT1-2 in European samples, whereas both MAT loci were present in Asian counterparts. Our findings suggest an explanation for the absence of the sexual morph, potentially linked to the absence of the second mating idiomorph of D. coronariae in European apple orchards.
Collapse
Affiliation(s)
- Sophie Richter
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Germany
- Institute for Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Sabine Kind
- Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn Institute (JKI) Federal Research Centre for Cultivated Plants, Dossenheim, Germany
| | - Thomas Oberhänsli
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Michael Schneider
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Natalia Nenasheva
- Institute of Mathematics and Computer Science and Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Katharina Hoff
- Institute of Mathematics and Computer Science and Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institute (JKI) – Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Il-Kweon Yeon
- Gyeongsangbuk-do Agricultural Research and Extension Services (GBARES), Daegu, Republic of Korea
| | - Vincent Philion
- Research and Development Institute for the Agri-Environment (IRDA), Québec, QC, Canada
| | - Shigeki Moriya
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Morioka, Japan
| | - Henryk Flachowsky
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Germany
| | - Andrea Patocchi
- Research Division Plant Breeding, Agroscope, Waedenswil, Switzerland
| | - Thomas Wolfgang Wöhner
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Germany
| |
Collapse
|
8
|
Cea-Sánchez S, Martín-Villanueva S, Gutiérrez G, Cánovas D, Corrochano LM. VE-1 regulation of MAPK signaling controls sexual development in Neurospora crassa. mBio 2024; 15:e0226424. [PMID: 39283084 PMCID: PMC11481897 DOI: 10.1128/mbio.02264-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 10/19/2024] Open
Abstract
Sexual reproduction in fungi allows genetic recombination and increases genetic diversity, allowing adaptation and survival. The velvet complex is a fungal-specific protein assembly that regulates development, pathogenesis, and secondary metabolism in response to environmental cues, such as light. In Neurospora crassa, this complex comprises VE-1, VE-2, and LAE-1. Deletion of ve-1 or ve-2, but not lae-1, leads to increased conidiation (asexual spore formation) and reduced sexual development. Mutants lacking ve-1 and/or ve-2 are female sterile and male fertile, indicating that a VE-1/VE-2 complex regulates the development of female structures. During sexual development, we observed differential regulation of 2,117 genes in dark and 4,364 genes in light between the wild type and the ∆ve-1 strain. The pheromone response and cell wall integrity pathways were downregulated in the ∆ve-1 mutant, especially in light. Additionally, we found reduced levels of both total and phosphorylated MAK-1 and MAK-2 kinases. In vitro experiments demonstrated the binding of VE-1 and VE-2 to the promoters of mak-1 and mak-2, suggesting a direct regulatory role of VE-1/VE-2 in the transcriptional control of MAPK genes to regulate sexual development. Deletion of the photosensor gene white-collar 1 prevented the light-dependent inhibition of sexual development in the ∆ve-1 mutant by increasing transcription of the pheromone response and cell wall integrity pathway genes to the levels in the dark. Our results support the proposal that the regulation of the MAP kinase pathways by the VE-1/VE-2 complex is a key element in transcriptional regulation that occurs during sexual development. IMPORTANCE Sexual reproduction generates new gene combinations and novel phenotypic traits and facilitates evolution. Induction of sexual development in fungi is often regulated by environmental conditions, such as the presence of light and nutrients. The velvet protein complex coordinates internal cues and environmental signals to regulate development. We have found that VE-1, a component of the velvet complex, regulates transcription during sexual development in the fungus Neurospora crassa. VE-1 regulates the transcription of many genes, including those involved in mitogen-activated protein kinase (MAPK) signaling pathways that are essential in the regulation of sexual development, and regulates the activity of the MAPK pathway. Our findings provide valuable insights into how fungi respond to environmental signals and integrate them into their reproductive processes.
Collapse
Affiliation(s)
- Sara Cea-Sánchez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
9
|
Sousa GSM, De Oliveira RS, Souza AB, Monteiro RC, Santo EPTE, Franco Filho LC, Moraes DLO, De Sá SR, Da Silva SHM. Development of PCR-Multiplex Assays for Identification of the Herpotrichiellaceae Family and Agents Causing Chromoblastomycosis. J Fungi (Basel) 2024; 10:548. [PMID: 39194874 DOI: 10.3390/jof10080548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The Herpotrichiellaceae family is an important group of dematiaceous filamentous fungi, associated with a variety of pathogenic fungal species causing chromoblastomycosis (CBM) and phaeohyphomycosis (PHM), both with polymorphic clinical manifestations and worldwide incidence. Currently, the identification of this family and determination of the causative agent is challenging due to the subjectivity of morphological identification methods, necessitating the use of molecular techniques to complement diagnosis. In this context, genetic sequencing of the Internal Transcribed Spacer (ITS) has become the norm due to a lack of alternative molecular tools for identifying these agents. Therefore, this study aimed to develop PCR-Multiplex methodologies to address this gap. Sequences from the ITS and Large Subunit (LSU) of ribosomal DNA were used, and after manual curation and in vitro analyses, primers were synthesized for the identification of the targets. The primers were optimized and validated in vitro, resulting in two PCR-Multiplex methodologies: one for identifying the Herpotrichiellaceae family and the bantiana clade, and another for determining the species Fonsecaea pedrosoi and Fonsecaea monophora. Ultimately, the assays developed in this study aim to complement other identification approaches for these agents, reducing the need for sequencing, improving the management of these infections, and enhancing the accuracy of epidemiological information.
Collapse
Affiliation(s)
- Gabriel S M Sousa
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Rodrigo S De Oliveira
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Alex B Souza
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Ruan C Monteiro
- Laboratory of Emerging Fungal Pathogens, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Elaine P T E Santo
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Luciano C Franco Filho
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Denison L O Moraes
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Sarah R De Sá
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Silvia H M Da Silva
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| |
Collapse
|
10
|
Pedrazzini C, Rehner SA, Strasser H, Zemp N, Holderegger R, Widmer F, Enkerli J. Clonal genomic population structure of Beauveria brongniartii and Beauveria pseudobassiana: Pathogens of the common European cockchafer (Melolontha melolontha L.). Environ Microbiol 2024; 26:e16612. [PMID: 38622804 DOI: 10.1111/1462-2920.16612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
Beauveria brongniartii is a fungal pathogen that infects the beetle Melolontha melolontha, a significant agricultural pest in Europe. While research has primarily focused on the use of B. brongniartii for controlling M. melolontha, the genomic structure of the B. brongniartii population remains unknown. This includes whether its structure is influenced by its interaction with M. melolontha, the timing of beetle-swarming flights, geographical factors, or reproductive mode. To address this, we analysed genome-wide SNPs to infer the population genomics of Beauveria spp., which were isolated from infected M. melolontha adults in an Alpine region. Surprisingly, only one-third of the isolates were identified as B. brongniartii, while two-thirds were distributed among cryptic taxa within B. pseudobassiana, a fungal species not previously recognized as a pathogen of M. melolontha. Given the prevalence of B. pseudobassiana, we conducted analyses on both species. We found no spatial or temporal genomic patterns within either species and no correlation with the population structure of M. melolontha, suggesting that the dispersal of the fungi is independent of the beetle. Both species exhibited clonal population structures, with B. brongniartii fixed for one mating type and B. pseudobassiana displaying both mating types. This implies that factors other than mating compatibility limit sexual reproduction. We conclude that the population genomic structure of Beauveria spp. is primarily influenced by predominant asexual reproduction and dispersal.
Collapse
Affiliation(s)
- Chiara Pedrazzini
- Molecular Ecology, Agroscope, Zürich, Switzerland
- Institute of Environmental Systems Science, ETH, Zürich, Switzerland
| | - Stephen A Rehner
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture USDA, Beltsville, Maryland, USA
| | - Hermann Strasser
- Institute of Microbiology, Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | - Niklaus Zemp
- Genetic Diversity Centre (GDC), ETH, Zürich, Switzerland
| | - Rolf Holderegger
- Institute of Environmental Systems Science, ETH, Zürich, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Jürg Enkerli
- Molecular Ecology, Agroscope, Zürich, Switzerland
| |
Collapse
|
11
|
Chen M, Ding Z, Zhou M, Shang Y, Li C, Li Q, Bu T, Tang Z, Chen H. The diversity of endophytic fungi in Tartary buckwheat ( Fagopyrum tataricum) and its correlation with flavonoids and phenotypic traits. Front Microbiol 2024; 15:1360988. [PMID: 38559356 PMCID: PMC10979544 DOI: 10.3389/fmicb.2024.1360988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum) is a significant medicinal crop, with flavonoids serving as a crucial measure of its quality. Presently, the artificial cultivation of Tartary buckwheat yields low results, and the quality varies across different origins. Therefore, it is imperative to identify an effective method to enhance the yield and quality of buckwheat. Endophytic fungi reside within plants and form a mutually beneficial symbiotic relationship, aiding plants in nutrient absorption, promoting host growth, and improving secondary metabolites akin to the host. In this study, high-throughput sequencing technology was employed to assess the diversity of endophytic fungi in Tartary buckwheat. Subsequently, a correlation analysis was performed between fungi and metabolites, revealing potential increases in flavonoid content due to endophytic fungi such as Bipolaris, Hymenula, and Colletotrichum. Additionally, a correlation analysis between fungi and phenotypic traits unveiled the potential influence of endophytic fungi such as Bipolaris, Buckleyzyma, and Trichosporon on the phenotypic traits of Tartary buckwheat. Notably, the endophytic fungi of the Bipolaris genus exhibited the potential to elevate the content of Tartary buckwheat metabolites and enhance crop growth. Consequently, this study successfully identified the resources of endophytic fungi in Tartary buckwheat, explored potential functional endophytic fungi, and laid a scientific foundation for future implementation of biological fertilizers in improving the quality and growth of Tartary buckwheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
12
|
Lachance MA, Burke C, Nygard K, Courchesne M, Timoshenko AV. Yeast sexes: mating types do not determine the sexes in Metschnikowia species. FEMS Yeast Res 2024; 24:foae014. [PMID: 38632043 PMCID: PMC11078162 DOI: 10.1093/femsyr/foae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024] Open
Abstract
Although filamentous Ascomycetes may produce structures that are interpreted as male and female gametangia, ascomycetous yeasts are generally not considered to possess male and female sexes. In haplontic yeasts of the genus Metschnikowia, the sexual cycle begins with the fusion of two morphologically identical cells of complementary mating types. Soon after conjugation, a protuberance emerges from one of the conjugants, eventually maturing into an ascus. The originating cell can be regarded as an ascus mother cell, hence as female. We tested the hypothesis that the sexes, female or male, are determined by the mating types. There were good reasons to hypothesize further that mating type α cells are male. In a conceptually simple experiment, we observed the early stages of the mating reaction of mating types differentially labeled with fluorescent concanavalin A conjugates. Three large-spored Metschnikowia species, M. amazonensis, M. continentalis, and M. matae, were examined. In all three, the sexes were found to be independent of mating type, cautioning that the two terms should not be used interchangeably.
Collapse
Affiliation(s)
- Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Christopher Burke
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
- Okanagan Spirits Craft Distillery, 5204 24th St, Vernon, BC V1T 8×2, Canada
| | - Karen Nygard
- Biotron Experimental Climate Change Research Centre, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Marc Courchesne
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
- Biotron Experimental Climate Change Research Centre, University of Western Ontario, London, ON N6A 5B7, Canada
| | | |
Collapse
|
13
|
Ding M, Cao S, Xu D, Xia A, Wang Z, Wang W, Duan K, Wu C, Wang Q, Liang J, Wang D, Liu H, Xu JR, Jiang C. A non-pheromone GPCR is essential for meiosis and ascosporogenesis in the wheat scab fungus. Proc Natl Acad Sci U S A 2023; 120:e2313034120. [PMID: 37812726 PMCID: PMC10589705 DOI: 10.1073/pnas.2313034120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
Meiosis is essential for generating genetic diversity and sexual spores, but the regulation of meiosis and ascosporogenesis is not clear in filamentous fungi, in which dikaryotic and diploid cells formed inside fruiting bodies are not free living and independent of pheromones or pheromone receptors. In this study, Gia1, a non-pheromone GPCR (G protein-coupled receptor) with sexual-specific expression in Fusarium graminearum, is found to be essential for ascosporogenesis. The gia1 mutant was normal in perithecium development, crozier formation, and karyogamy but failed to undergo meiosis, which could be partially rescued by a dominant active mutation in GPA1 and activation of the Gpmk1 pathway. GIA1 orthologs have conserved functions in regulating meiosis and ascosporogenesis in Sordariomycetes. GIA1 has a paralog, GIP1, in F. graminearum and other Hypocreales species which is essential for perithecium formation. GIP1 differed from GIA1 in expression profiles and downstream signaling during sexual reproduction. Whereas the C-terminal tail and IR3 were important for intracellular signaling, the N-terminal region and EL3 of Gia1 were responsible for recognizing its ligand, which is likely a protein enriched in developing perithecia, particularly in the gia1 mutant. Taken together, these results showed that GIA1 encodes a non-pheromone GPCR that regulates the entry into meiosis and ascosporogenesis via the downstream Gpmk1 MAP kinase pathway in F. graminearum and other filamentous ascomycetes.
Collapse
Affiliation(s)
- Mingyu Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu210014, China
| | - Daiying Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Aliang Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Wanshan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Kaili Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Chenyu Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Jie Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Diwen Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| |
Collapse
|
14
|
Srikant S, Gaudet R, Murray AW. Extending the reach of homology by using successive computational filters to find yeast pheromone genes. Curr Biol 2023; 33:4098-4110.e3. [PMID: 37699395 PMCID: PMC10592104 DOI: 10.1016/j.cub.2023.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/04/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
The mating of fungi depends on pheromones that mediate communication between two mating types. Most species use short peptides as pheromones, which are either unmodified (e.g., α-factor in Saccharomyces cerevisiae) or C-terminally farnesylated (e.g., a-factor in S. cerevisiae). Peptide pheromones have been found by genetics or biochemistry in a small number of fungi, but their short sequences and modest conservation make it impossible to detect homologous sequences in most species. To overcome this problem, we used a four-step computational pipeline to identify candidate a-factor genes in sequenced genomes of the Saccharomycotina, the fungal clade that contains most of the yeasts: we require that candidate genes have a C-terminal prenylation motif, are shorter than 100 amino acids long, and contain a proteolytic-processing motif upstream of the potential mature pheromone sequence and that closely related species contain highly conserved homologs of the potential mature pheromone sequence. Additional manual curation exploits the observation that many species carry more than one a-factor gene, encoding identical or nearly identical pheromones. From 332 Saccharomycotina genomes, we identified strong candidate pheromone genes in 241 genomes, covering 13 clades that are each separated from each other by at least 100 million years, the time required for evolution to remove detectable sequence homology among small pheromone genes. For one small clade, the Yarrowia, we demonstrated that our algorithm found the a-factor genes: deleting all four related genes in the a-mating type of Yarrowia lipolytica prevents mating.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
15
|
Yao L, Kong Y, Yang W, Tian H, Meng X, Zhao X, Zhang R, Sun G, Rollins JA, Liang X. Two Putative Pheromone Receptors, but Not Their Cognate Pheromones, Regulate Female Fertility in the Atypical Mating Fungus Colletotrichum fructicola. PHYTOPATHOLOGY 2023; 113:1934-1945. [PMID: 37141175 DOI: 10.1094/phyto-11-22-0436-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Colletotrichum fungi are a group of damaging phytopathogens with atypical mating type loci (harboring only MAT1-2-1 but not MAT1-1-1) and complex sexual behaviors. Sex pheromones and their cognate G-protein-coupled receptors are conserved regulators of fungal mating. These genes, however, lose function frequently among Colletotrichum species, indicating a possibility that pheromone signaling is dispensable for Colletotrichum sexual reproduction. We have identified two putative pheromone-receptor pairs (PPG1:PRE2, PPG2:PRE1) in C. fructicola, a species that exhibits plus-to-minus mating type switching and plus-minus-mediated mating line development. Here, we report the generation and characterization of gene-deletion mutants for all four genes in both plus and minus strain backgrounds. Single-gene deletion of pre1 or pre2 had no effect on sexual development, whereas their double deletion caused self-sterility in both the plus and minus strains. Moreover, double deletion of pre1 and pre2 caused female sterility in plus-minus outcrossing. Double deletion of pre1 and pre2, however, did not inhibit perithecial differentiation or plus-minus-mediated enhancement of perithecial differentiation. Contrary to the results with pre1 and pre2, double deletion of ppg1 and ppg2 had no effect on sexual compatibility, development, or fecundity. We concluded that pre1 and pre2 coordinately regulate C. fructicola mating by recognizing novel signal molecule(s) distinct from canonical Ascomycota pheromones. The contrasting importance between pheromone receptors and their cognate pheromones highlights the complicated nature of sex regulation in Colletotrichum fungi.
Collapse
Affiliation(s)
- Liqiang Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuanyuan Kong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Wenrui Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Huanhuan Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xiangchen Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xuemei Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
16
|
Uchida M, Konishi T, Fujigasaki A, Kita K, Arie T, Teraoka T, Kanda Y, Mori M, Arazoe T, Kamakura T. Dysfunctional Pro1 leads to female sterility in rice blast fungi. iScience 2023; 26:107020. [PMID: 37416480 PMCID: PMC10320130 DOI: 10.1016/j.isci.2023.107020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Although sexual reproduction is widespread in eukaryotes, some fungal species can only reproduce asexually. In the rice blast fungus Pyricularia (Magnaporthe) oryzae, several isolates from the region of origin retain mating ability, but most isolates are female sterile. Therefore, female fertility may have been lost during its spread from the origin. Here, we show that functional mutations of Pro1, a global transcriptional regulator of mating-related genes in filamentous fungi, is one cause of loss of female fertility in this fungus. We identified the mutation of Pro1 by backcrossing analysis between female-fertile and female-sterile isolates. The dysfunctional Pro1 did not affect the infection processes but conidial release was increased. Furthermore, various mutations in Pro1 were detected in geographically distant P. oryzae, including pandemic isolates of wheat blast fungus. These results provide the first evidence that loss of female fertility may be advantageous to the life cycle of some plant pathogenic fungi.
Collapse
Affiliation(s)
- Momotaka Uchida
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takahiro Konishi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ayaka Fujigasaki
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kohtetsu Kita
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tsutomu Arie
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-0054, Japan
| | - Tohru Teraoka
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-0054, Japan
| | - Yasukazu Kanda
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO (NIAS), 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Masaki Mori
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO (NIAS), 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Takayuki Arazoe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takashi Kamakura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
17
|
Regulatory basis for reproductive flexibility in a meningitis-causing fungal pathogen. Nat Commun 2022; 13:7938. [PMID: 36566249 PMCID: PMC9790007 DOI: 10.1038/s41467-022-35549-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.
Collapse
|
18
|
Nowrousian M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiol Mol Biol Rev 2022; 86:e0010422. [PMID: 36409109 PMCID: PMC9769939 DOI: 10.1128/mmbr.00104-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.
Collapse
Affiliation(s)
- Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
19
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Jiang H, Zhang Y, Wang W, Cao X, Xu H, Liu H, Qi J, Jiang C, Wang C. FgCsn12 Is Involved in the Regulation of Ascosporogenesis in the Wheat Scab Fungus Fusarium graminearum. Int J Mol Sci 2022; 23:10445. [PMID: 36142356 PMCID: PMC9499528 DOI: 10.3390/ijms231810445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Fusarium head blight (FHB), caused by the fungal pathogen Fusarium graminearum, is a destructive disease worldwide. Ascospores are the primary inoculum of F. graminearum, and sexual reproduction is a critical step in its infection cycle. In this study, we characterized the functions of FgCsn12. Although the ortholog of FgCsn12 in budding yeast was reported to have a direct interaction with Csn5, which served as the core subunit of the COP9 signalosome, the interaction between FgCsn12 and FgCsn5 was not detected through the yeast two-hybrid assay. The deletion of FgCSN12 resulted in slight defects in the growth rate, conidial morphology, and pathogenicity. Instead of forming four-celled, uninucleate ascospores, the Fgcsn12 deletion mutant produced oval ascospores with only one or two cells and was significantly defective in ascospore discharge. The 3'UTR of FgCsn12 was dispensable for vegetative growth but essential for sexual reproductive functions. Compared with those of the wild type, 1204 genes and 2240 genes were up- and downregulated over twofold, respectively, in the Fgcsn12 mutant. Taken together, FgCsn12 demonstrated an important function in the regulation of ascosporogenesis in F. graminearum.
Collapse
Affiliation(s)
- Hang Jiang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Wanshan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Xinyu Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Huaijian Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Junshan Qi
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
21
|
Passer AR, Clancey SA, Shea T, David-Palma M, Averette AF, Boekhout T, Porcel BM, Nowrousian M, Cuomo CA, Sun S, Heitman J, Coelho MA. Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex. eLife 2022; 11:e79114. [PMID: 35713948 PMCID: PMC9296135 DOI: 10.7554/elife.79114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Fungi are enigmatic organisms that flourish in soil, on decaying plants, or during infection of animals or plants. Growing in myriad forms, from single-celled yeast to multicellular molds and mushrooms, fungi have also evolved a variety of strategies to reproduce. Normally, fungi reproduce in one of two ways: either they reproduce asexually, with one individual producing a new individual identical to itself, or they reproduce sexually, with two individuals of different 'mating types' contributing to produce a new individual. However, individuals of some species exhibit 'homothallism' or self-fertility: these individuals can produce reproductive cells that are universally compatible, and therefore can reproduce sexually with themselves or with any other cell in the population. Homothallism has evolved multiple times throughout the fungal kingdom, suggesting it confers advantage when population numbers are low or mates are hard to find. Yet some homothallic fungi been overlooked compared to heterothallic species, whose mating types have been well characterised. Understanding the genetic basis of homothallism and how it evolved in different species can provide insights into pathogenic species that cause fungal disease. With that in mind, Passer, Clancey et al. explored the genetic basis of homothallism in Cryptococcus depauperatus, a close relative of C. neoformans, a species that causes fungal infections in humans. A combination of genetic sequencing techniques and experiments were applied to analyse, compare, and manipulate C. depauperatus' genome to see how this species evolved self-fertility. Passer, Clancey et al. showed that C. depauperatus evolved the ability to reproduce sexually by itself via a unique evolutionary pathway. The result is a form of homothallism never reported in fungi before. C. depauperatus lost some of the genes that control mating in other species of fungi, and acquired genes from the opposing mating types of a heterothallic ancestor to become self-fertile. Passer, Clancey et al. also found that, unlike other Cryptococcus species that switch between asexual and sexual reproduction, C. depauperatus grows only as long, branching filaments called hyphae, a sexual form. The species reproduces sexually with itself throughout its life cycle and is unable to produce a yeast (asexual) form, in contrast to other closely related species. This work offers new insights into how different modes of sexual reproduction have evolved in fungi. It also provides another interesting case of how genome plasticity and evolutionary pressures can produce similar outcomes, homothallism, via different evolutionary paths. Lastly, assembling the complete genome of C. depauperatus will foster comparative studies between pathogenic and non-pathogenic Cryptococcus species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Terrance Shea
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity InstituteUtrechtNetherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of AmsterdamAmsterdamNetherlands
| | - Betina M Porcel
- Génomique Métabolique, CNRS, University Evry, Université Paris-SaclayEvryFrance
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität BochumBochumGermany
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
22
|
Mating-Type Switching in Budding Yeasts, from Flip/Flop Inversion to Cassette Mechanisms. Microbiol Mol Biol Rev 2022; 86:e0000721. [PMID: 35195440 PMCID: PMC8941940 DOI: 10.1128/mmbr.00007-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mating-type switching is a natural but unusual genetic control process that regulates cell identity in ascomycete yeasts. It involves physically replacing one small piece of genomic DNA by another, resulting in replacement of the master regulatory genes in the mating pathway and hence a switch of cell type and mating behavior. In this review, we concentrate on recent progress that has been made on understanding the origins and evolution of mating-type switching systems in budding yeasts (subphylum Saccharomycotina). Because of the unusual nature and the complexity of the mechanism in Saccharomyces cerevisiae, mating-type switching was assumed until recently to have originated only once or twice during yeast evolution. However, comparative genomics analysis now shows that switching mechanisms arose many times independently-at least 11 times in budding yeasts and once in fission yeasts-a dramatic example of convergent evolution. Most of these lineages switch mating types by a flip/flop mechanism that inverts a section of a chromosome and is simpler than the well-characterized 3-locus cassette mechanism (MAT/HML/HMR) used by S. cerevisiae. Mating-type switching (secondary homothallism) is one of the two possible mechanisms by which a yeast species can become self-fertile. The other mechanism (primary homothallism) has also emerged independently in multiple evolutionary lineages of budding yeasts, indicating that homothallism has been favored strongly by natural selection. Recent work shows that HO endonuclease, which makes the double-strand DNA break that initiates switching at the S. cerevisiae MAT locus, evolved from an unusual mobile genetic element that originally targeted a glycolytic gene, FBA1.
Collapse
|
23
|
Abstract
Fungi exhibit an enormous variety of morphologies, including yeast colonies, hyphal mycelia, and elaborate fruiting bodies. This diversity arises through a combination of polar growth, cell division, and cell fusion. Because fungal cells are nonmotile and surrounded by a protective cell wall that is essential for cell integrity, potential fusion partners must grow toward each other until they touch and then degrade the intervening cell walls without impacting cell integrity. Here, we review recent progress on understanding how fungi overcome these challenges. Extracellular chemoattractants, including small peptide pheromones, mediate communication between potential fusion partners, promoting the local activation of core cell polarity regulators to orient polar growth and cell wall degradation. However, in crowded environments, pheromone gradients can be complex and potentially confusing, raising the question of how cells can effectively find their partners. Recent findings suggest that the cell polarity circuit exhibits searching behavior that can respond to pheromone cues through a remarkably flexible and effective strategy called exploratory polarization.
Collapse
|
24
|
Wilson AM, Wilken PM, Wingfield MJ, Wingfield BD. Genetic Networks That Govern Sexual Reproduction in the Pezizomycotina. Microbiol Mol Biol Rev 2021; 85:e0002021. [PMID: 34585983 PMCID: PMC8485983 DOI: 10.1128/mmbr.00020-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sexual development in filamentous fungi is a complex process that relies on the precise control of and interaction between a variety of genetic networks and pathways. The mating-type (MAT) genes are the master regulators of this process and typically act as transcription factors, which control the expression of genes involved at all stages of the sexual cycle. In many fungi, the sexual cycle typically begins when the mating pheromones of one mating type are recognized by a compatible partner, followed by physical interaction and fertilization. Subsequently, highly specialized sexual structures are formed, within which the sexual spores develop after rounds of meiosis and mitosis. These spores are then released and germinate, forming new individuals that initiate new cycles of growth. This review provides an overview of the known genetic networks and pathways that are involved in each major stage of the sexual cycle in filamentous ascomycete fungi.
Collapse
Affiliation(s)
- Andi M. Wilson
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - P. Markus Wilken
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Michael J. Wingfield
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Brenda D. Wingfield
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
25
|
Daignan-Fornier B, Laporte D, Sagot I. Quiescence Through the Prism of Evolution. Front Cell Dev Biol 2021; 9:745069. [PMID: 34778256 PMCID: PMC8586652 DOI: 10.3389/fcell.2021.745069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
Being able to reproduce and survive is fundamental to all forms of life. In primitive unicellular organisms, the emergence of quiescence as a reversible proliferation arrest has most likely improved cell survival under unfavorable environmental conditions. During evolution, with the repeated appearances of multicellularity, several aspects of unicellular quiescence were conserved while new quiescent cell intrinsic abilities arose. We propose that the formation of a microenvironment by neighboring cells has allowed disconnecting quiescence from nutritional cues. In this new context, non-proliferative cells can stay metabolically active, potentially authorizing the emergence of new quiescent cell properties, and thereby favoring cell specialization. Through its co-evolution with cell specialization, quiescence may have been a key motor of the fascinating diversity of multicellular complexity.
Collapse
|
26
|
Poli A, Prigione V, Bovio E, Perugini I, Varese GC. Insights on Lulworthiales Inhabiting the Mediterranean Sea and Description of Three Novel Species of the Genus Paralulworthia. J Fungi (Basel) 2021; 7:940. [PMID: 34829227 PMCID: PMC8623521 DOI: 10.3390/jof7110940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
The order Lulworthiales, with its sole family Lulworthiaceae, consists of strictly marine genera found on a wide range of substrates such as seagrasses, seaweeds, and seafoam. Twenty-one unidentified Lulworthiales were isolated in previous surveys aimed at broadening our understanding of the biodiversity hosted in the Mediterranean Sea. Here, these organisms, mostly found in association with Posidonia oceanica and with submerged woods, were examined using thorough multi-locus phylogenetic analyses and morphological observations. Maximum-likelihood and Bayesian phylogeny based on nrITS, nrSSU, nrLSU, and four protein-coding genes led to the introduction of three novel species of the genus Paralulworthia: P. candida, P. elbensis, and P. mediterranea. Once again, the marine environment is a confirmed huge reservoir of novel fungal lineages with an under-investigated biotechnological potential waiting to be explored.
Collapse
Affiliation(s)
| | - Valeria Prigione
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy; (A.P.); (E.B.); (I.P.); (G.C.V.)
| | | | | | | |
Collapse
|
27
|
Brun S, Kuo HC, Jeffree CE, Thomson DD, Read N. Courtship Ritual of Male and Female Nuclei during Fertilization in Neurospora crassa. Microbiol Spectr 2021; 9:e0033521. [PMID: 34612669 PMCID: PMC8509652 DOI: 10.1128/spectrum.00335-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022] Open
Abstract
Sexual reproduction is a key process influencing the evolution and adaptation of animals, plants, and many eukaryotic microorganisms, such as fungi. However, the sequential cell biology of fertilization and the associated nuclear dynamics after plasmogamy are poorly understood in filamentous fungi. Using histone-fluorescent parental isolates, we tracked male and female nuclei during fertilization in the model ascomycete Neurospora crassa using live-cell imaging. This study unravels the behavior of trichogyne resident female nuclei and the extraordinary manner in which male nuclei migrate up the trichogyne to the protoperithecium. Our observations raise new fundamental questions about the modus operandi of nucleus movements during sexual reproduction, male and female nuclear identity, guidance of nuclei within the trichogyne and, unexpectedly, the avoidance of "polyspermy" in fungi. The spatiotemporal dynamics of male nuclei within the trichogyne following plasmogamy are also described, where the speed and the deformation of male nuclei are of the most dramatic observed to date in a living organism. IMPORTANCE Using live-cell fluorescence imaging, for the first time we have observed live male and female nuclei during sexual reproduction in the model fungus Neurospora crassa. This study reveals the specific behavior of resident female nuclei within the trichogyne (the female organ) after fertilization and the extraordinary manner in which male nuclei migrate across the trichogyne toward their final destination, the protoperithecium, where karyogamy takes place. Importantly, the speed and deformation of male nuclei were found to be among the most dramatic ever observed in a living organism. Furthermore, we observed that entry of male nuclei into protoperithecia may block the entry of other male nuclei, suggesting that a process analogous to polyspermy avoidance could exist in fungi. Our live-cell imaging approach opens new opportunities for novel research on cell-signaling during sexual reproduction in fungi and, on a broader scale, nuclear dynamics in eukaryotes.
Collapse
Affiliation(s)
- Sylvain Brun
- Laboratoire Interdisciplinaire des Energies de Demain, CNRS UMR 8236, Université de Paris, Paris, France
| | - Hsiao-Che Kuo
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Chris E. Jeffree
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Darren D. Thomson
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Nick Read
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Liang X, Yao L, Hao X, Li B, Kong Y, Lin Y, Cao M, Dong Q, Zhang R, Rollins JA, Sun G. Molecular Dissection of Perithecial Mating Line Development in Colletotrichum fructicola, a Species with a Nontypical Mating System Featuring Plus-to-Minus Switch and Plus-Minus-Mediated Sexual Enhancement. Appl Environ Microbiol 2021; 87:e0047421. [PMID: 33863706 PMCID: PMC8284469 DOI: 10.1128/aem.00474-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 01/27/2023] Open
Abstract
The genetic regulation of Colletotrichum (Glomerella) sexual reproduction does not strictly adhere to the Ascomycota paradigm and remains poorly understood. Morphologically different but sexually compatible strain types, termed plus and minus, have been recognized, but the biological and molecular distinctions between these strain types remain elusive. In this study, we characterized the sexual behaviors of a pair of plus and minus strains of C. fructicola with the aid of live-cell nucleus-localized fluorescent protein labeling, gene expression, and gene mutation analyses. We confirmed a genetically stable plus-to-minus switching phenomenon and demonstrated the presence of both cross-fertilized and self-fertilized perithecia within the mating line (perithecia cluster at the line of colony contact) between plus and minus strains. We demonstrated that pheromone signaling genes (a-factor-like and α-factor-like pheromones and their corresponding GPCR receptors) were differently expressed between vegetative hyphae of the two strains. Moreover, deletion of pmk1 (a FUS/KSS1 mitogen-activate protein kinase) in the minus strain severely limited mating line formation, whereas deletion of a GPCR (FGSG_05239 homolog) and two histone modification factors (hos2, snt2) in the minus strain did not affect mating line development but altered the ratio between cross-fertilization and self-fertilization within the mating line. We propose a model in which mating line formation in C. fructicola involves enhanced protoperithecium differentiation and enhanced perithecium maturation of the minus strain mediated by both cross-fertilization and diffusive effectors. This study provides insights into mechanisms underlying the mysterious phenomenon of plus-minus-mediated sexual enhancement being unique to Colletotrichum fungi. IMPORTANCE Plus-minus regulation of Colletotrichum sexual differentiation was reported in the early 1900s. Both plus and minus strains produce fertile perithecia in a homothallic but inefficient manner. However, when the two strain types encounter each other, efficient differentiation of fertile perithecia is triggered. The plus strain, by itself, can also generate minus ascospore progeny at high frequency. This nontypical mating system facilitates sexual reproduction and is Colletotrichum specific; the underlying molecular mechanisms, however, remain elusive. The current study revisits this longstanding mystery using C. fructicola as an experimental system. The presence of both cross-fertilized and self-fertilized perithecia within the mating line was directly evidenced by live-cell imaging with fluorescent markers. Based on further gene expression and gene mutation analysis, a model explaining mating line development (plus-minus-mediated sexual enhancement) is proposed. Data reported here have the potential to allow us to better understand Colletotrichum mating and filamentous ascomycete sexual regulation.
Collapse
Affiliation(s)
- Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Liqiang Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xiaojuan Hao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Bingxuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuanyuan Kong
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuyi Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Mengyu Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Qiuyue Dong
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Jeffrey A. Rollins
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
29
|
Cai M, Liang X, Liu Y, Hu H, Xie Y, Chen S, Gao X, Li X, Xiao C, Chen D, Wu Q. Transcriptional Dynamics of Genes Purportedly Involved in the Control of Meiosis, Carbohydrate, and Secondary Metabolism during Sporulation in Ganoderma lucidum. Genes (Basel) 2021; 12:genes12040504. [PMID: 33805512 PMCID: PMC8066989 DOI: 10.3390/genes12040504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Ganoderma lucidum spores (GLS), the mature germ cells ejected from the abaxial side of the pileus, have diverse pharmacological effects. However, the genetic regulation of sporulation in this fungus remains unknown. Here, samples corresponding to the abaxial side of the pileus were collected from strain YW-1 at three sequential developmental stages and were then subjected to a transcriptome assay. We identified 1598 differentially expressed genes (DEGs) and found that the genes related to carbohydrate metabolism were strongly expressed during spore morphogenesis. In particular, genes involved in trehalose and malate synthesis were upregulated, implying the accumulation of specific carbohydrates in mature G. lucidum spores. Furthermore, the expression of genes involved in triterpenoid and ergosterol biosynthesis was high in the young fruiting body but gradually decreased with sporulation. Finally, spore development-related regulatory pathways were explored by analyzing the DNA binding motifs of 24 transcription factors that are considered to participate in the control of sporulation. Our results provide a dataset of dynamic gene expression during sporulation in G. lucidum. They also shed light on genes potentially involved in transcriptional regulation of the meiotic process, metabolism pathways in energy provision, and ganoderic acids and ergosterol biosynthesis.
Collapse
Affiliation(s)
- Manjun Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Xiaowei Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Yuanchao Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Shaodan Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Xiong Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Xiangmin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Diling Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Correspondence:
| |
Collapse
|
30
|
Min K, Neiman AM, Konopka JB. Fungal Pathogens: Shape-Shifting Invaders. Trends Microbiol 2020; 28:922-933. [PMID: 32474010 DOI: 10.1016/j.tim.2020.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022]
Abstract
Fungal infections are on the rise due to new medical procedures that have increased the number of immune compromised patients, antibacterial antibiotics that disrupt the microbiome, and increased use of indwelling medical devices that provide sites for biofilm formation. Key to understanding the mechanisms of pathogenesis is to determine how fungal morphology impacts virulence strategies. For example, small budding cells use very different strategies to disseminate compared with long hyphal filaments. Furthermore, cell morphology must be monitored in the host, as many fungal pathogens change their shape to disseminate into new areas, acquire nutrients, and avoid attack by the immune system. This review describes the shape-shifting alterations in morphogenesis of human fungal pathogens and how they influence virulence strategies.
Collapse
Affiliation(s)
- Kyunghun Min
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - James B Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
31
|
Xu R, Liu X, Peng B, Liu P, Li Z, Dai Y, Xiao S. Genomic Features of Cladobotryum dendroides, Which Causes Cobweb Disease in Edible Mushrooms, and Identification of Genes Related to Pathogenicity and Mycoparasitism. Pathogens 2020; 9:pathogens9030232. [PMID: 32245129 PMCID: PMC7157644 DOI: 10.3390/pathogens9030232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cladobotryum dendroides, which causes cobweb disease in edible mushrooms, is one of the major fungal pathogens. Our previous studies focused on the genetic and morphological characterization of this fungus, as well as its pathogenicity and the identification of appropriate fungicides. However, little is known about the genome characters, pathogenic genes, and molecular pathogenic mechanisms of C. dendroides. Herein, we reported a high-quality de novo genomic sequence of C. dendroides and compared it with closely-related fungi. The assembled C. dendroides genome was 36.69 Mb, consisting of eight contigs, with an N50 of 4.76 Mb. This genome was similar in size to that of C. protrusum, and shared highly conserved syntenic blocks and a few inversions with C. protrusum. Phylogenetic analysis revealed that, within the Hypocreaceae, Cladobotryum was closer to Mycogone than to Trichoderma, which is consistent with phenotypic evidence. A significant number of the predicted expanded gene families were strongly associated with pathogenicity, virulence, and adaptation. Our findings will be instrumental for the understanding of fungi-fungi interactions, and for exploring efficient management strategies to control cobweb disease.
Collapse
Affiliation(s)
- Rong Xu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xiaochen Liu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Bing Peng
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Peibin Liu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Zhuang Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China;
| | - Yueting Dai
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- Correspondence: (Y.D.); (S.X.); Tel.: +86-431-8453-2989 (Y.D. & S.X.)
| | - Shijun Xiao
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- Correspondence: (Y.D.); (S.X.); Tel.: +86-431-8453-2989 (Y.D. & S.X.)
| |
Collapse
|
32
|
Lütkenhaus R, Traeger S, Breuer J, Carreté L, Kuo A, Lipzen A, Pangilinan J, Dilworth D, Sandor L, Pöggeler S, Gabaldón T, Barry K, Grigoriev IV, Nowrousian M. Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes. Genetics 2019; 213:1545-1563. [PMID: 31604798 PMCID: PMC6893386 DOI: 10.1534/genetics.119.302749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Many filamentous ascomycetes develop three-dimensional fruiting bodies for production and dispersal of sexual spores. Fruiting bodies are among the most complex structures differentiated by ascomycetes; however, the molecular mechanisms underlying this process are insufficiently understood. Previous comparative transcriptomics analyses of fruiting body development in different ascomycetes suggested that there might be a core set of genes that are transcriptionally regulated in a similar manner across species. Conserved patterns of gene expression can be indicative of functional relevance, and therefore such a set of genes might constitute promising candidates for functional analyses. In this study, we have sequenced the genome of the Pezizomycete Ascodesmis nigricans, and performed comparative transcriptomics of developing fruiting bodies of this fungus, the Pezizomycete Pyronema confluens, and the Sordariomycete Sordaria macrospora With only 27 Mb, the A. nigricans genome is the smallest Pezizomycete genome sequenced to date. Comparative transcriptomics indicated that gene expression patterns in developing fruiting bodies of the three species are more similar to each other than to nonsexual hyphae of the same species. An analysis of 83 genes that are upregulated only during fruiting body development in all three species revealed 23 genes encoding proteins with predicted roles in vesicle transport, the endomembrane system, or transport across membranes, and 13 genes encoding proteins with predicted roles in chromatin organization or the regulation of gene expression. Among four genes chosen for functional analysis by deletion in S. macrospora, three were shown to be involved in fruiting body formation, including two predicted chromatin modifier genes.
Collapse
Affiliation(s)
- Ramona Lütkenhaus
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Stefanie Traeger
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Laia Carreté
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - David Dilworth
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, 37077 Göttingen, Germany
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Kerrie Barry
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
- Department of Plant and Microbial Biology, University of California Berkeley, California 94720
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
33
|
Metin B, Heitman J. She Loves Me, She Loves Me Not: On the Dualistic Asexual/Sexual Nature of Dermatophyte Fungi. Mycopathologia 2019; 185:87-101. [PMID: 31578669 DOI: 10.1007/s11046-019-00390-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
Dermatophytes are ascomycetous fungi whose sexuality is greatly influenced by their ecology. Sexual reproduction is ubiquitous among soil-related geophiles and some animal-associated zoophiles. In contrast, anthropophiles are generally present as a single mating type in the population and appear to reproduce asexually. In this article, the current knowledge on the sexuality of dermatophytes including reproduction modes, mating conditions, mating type distributions and the mating type (MAT) locus is presented in the context of revised taxonomy and discussed from an evolutionary perspective.
Collapse
Affiliation(s)
- Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkali Cad, No: 2, Halkali, Kucukcekmece, 34303, Istanbul, Turkey.
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
34
|
Passer AR, Coelho MA, Billmyre RB, Nowrousian M, Mittelbach M, Yurkov AM, Averette AF, Cuomo CA, Sun S, Heitman J. Genetic and Genomic Analyses Reveal Boundaries between Species Closely Related to Cryptococcus Pathogens. mBio 2019; 10:e00764-19. [PMID: 31186317 PMCID: PMC6561019 DOI: 10.1128/mbio.00764-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Speciation is a central mechanism of biological diversification. While speciation is well studied in plants and animals, in comparison, relatively little is known about speciation in fungi. One fungal model is the Cryptococcus genus, which is best known for the pathogenic Cryptococcus neoformans/Cryptococcus gattii species complex that causes >200,000 new human infections annually. Elucidation of how these species evolved into important human-pathogenic species remains challenging and can be advanced by studying the most closely related nonpathogenic species, Cryptococcus amylolentus and Tsuchiyaea wingfieldii However, these species have only four known isolates, and available data were insufficient to determine species boundaries within this group. By analyzing full-length chromosome assemblies, we reappraised the phylogenetic relationships of the four available strains, confirmed the genetic separation of C. amylolentus and T. wingfieldii (now Cryptococcus wingfieldii), and revealed an additional cryptic species, for which the name Cryptococcus floricola is proposed. The genomes of the three species are ∼6% divergent and exhibit significant chromosomal rearrangements, including inversions and a reciprocal translocation that involved intercentromeric ectopic recombination, which together likely impose significant barriers to genetic exchange. Using genetic crosses, we show that while C. wingfieldii cannot interbreed with any of the other strains, C. floricola can still undergo sexual reproduction with C. amylolentus However, most of the resulting spores were inviable or sterile or showed reduced recombination during meiosis, indicating that intrinsic postzygotic barriers had been established. Our study and genomic data will foster additional studies addressing fungal speciation and transitions between nonpathogenic and pathogenic Cryptococcus lineages.IMPORTANCE The evolutionary drivers of speciation are critical to our understanding of how new pathogens arise from nonpathogenic lineages and adapt to new environments. Here we focus on the Cryptococcus amylolentus species complex, a nonpathogenic fungal lineage closely related to the human-pathogenic Cryptococcus neoformans/Cryptococcus gattii complex. Using genetic and genomic analyses, we reexamined the species boundaries of four available isolates within the C. amylolentus complex and revealed three genetically isolated species. Their genomes are ∼6% divergent and exhibit chromosome rearrangements, including translocations and small-scale inversions. Although two of the species (C. amylolentus and newly described C. floricola) were still able to interbreed, the resulting hybrid progeny were usually inviable or sterile, indicating that barriers to reproduction had already been established. These results advance our understanding of speciation in fungi and highlight the power of genomics in assisting our ability to correctly identify and discriminate fungal species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Moritz Mittelbach
- Geobotany, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andrey M Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
35
|
Abstract
MAP kinases and their regulators are critical components of eukaryotic signaling pathways implicated in normal cell behavior as well as abnormal behaviors linked to diseases such as cancer. The mating pathway of the yeast Saccharomyces cerevisiae was central in establishing the MAP kinase paradigm. Here we investigate the mating pathway in a different ascomycete, the fungal pathogen C. albicans. In this dimorphic fungus MAP kinases are also implicated in the mating response, with two MAP kinases apparently playing redundant roles in the mating process. This work establishes that while some level of mating can occur in the presence of a single kinase, the Cek1 kinase is most important for mating, while the Cek2 kinase is involved in adaptation to signaling. While both kinases appear to be themselves regulated by dephosphorylation through the action of the Cpp1 phosphatase, this process appears important for mating only in the case of Cek1. We investigated the relationships of the Cek1 and Cek2 mitogen-activated protein (MAP) kinases and the putative MAP kinase phosphatase Cpp1 in the mating process of Candida albicans. Mutants of the CPP1 gene are hyperresponsive to pheromone, generating large halos, high levels of projections, and an increase in pheromone-responsive gene expression. Mating-type-homozygous opaque cells that lack both kinases are sterile, consistent with previous observations, although several lines of evidence show that the two kinases do not simply provide redundant functions in the mating process. Loss of CEK1 reduces mating significantly, to about 0.3% of wild-type strains, and also reduces projection formation and pheromone-mediated gene expression. In contrast, loss of CEK2 has less of an effect, reducing mating to approximately one-third that of the wild-type strain and moderately reducing projection formation but having little influence on the induction of gene expression. However, loss of Cek2 function reduces adaptation to pheromone-mediated arrest. The mutation enhances pheromone response halos to a level similar to that of cpp1 mutants, although the cpp1 mutants are considerably more mating defective than the cek2 mutant. The double cek2 cpp1 mutant shows enhanced responsiveness relative to either single mutant in terms of gene expression and halo formation, suggesting the kinase and phosphatase roles in the adaptation process are independent. Analysis of protein phosphorylation shows that Cek1 undergoes pheromone-mediated phosphorylation of the activation loop, and this phosphorylation is enhanced in cells lacking either the Cpp1 phosphatase or the Cek2 kinase. In addition, Cek1-GFP shows enhanced nuclear localization in response to pheromone treatment. In contrast, Cek2 shows no evidence for pheromone-mediated phosphorylation or pheromone-mediated nuclear localization. Intriguingly, however, deletion of CPP1 enhances both the phosphorylation state and the nuclear localization of Cek2-GFP. Overall, these results identify a complex interaction among the MAP kinases and MAP kinase phosphatase that function in the C. albicans mating pathway. IMPORTANCE MAP kinases and their regulators are critical components of eukaryotic signaling pathways implicated in normal cell behavior as well as abnormal behaviors linked to diseases such as cancer. The mating pathway of the yeast Saccharomyces cerevisiae was central in establishing the MAP kinase paradigm. Here we investigate the mating pathway in a different ascomycete, the fungal pathogen C. albicans. In this dimorphic fungus MAP kinases are also implicated in the mating response, with two MAP kinases apparently playing redundant roles in the mating process. This work establishes that while some level of mating can occur in the presence of a single kinase, the Cek1 kinase is most important for mating, while the Cek2 kinase is involved in adaptation to signaling. While both kinases appear to be themselves regulated by dephosphorylation through the action of the Cpp1 phosphatase, this process appears important for mating only in the case of Cek1.
Collapse
|
36
|
Genome Sequencing of Cladobotryum protrusum Provides Insights into the Evolution and Pathogenic Mechanisms of the Cobweb Disease Pathogen on Cultivated Mushroom. Genes (Basel) 2019; 10:genes10020124. [PMID: 30744046 PMCID: PMC6409746 DOI: 10.3390/genes10020124] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Cladobotryum protrusum is one of the mycoparasites that cause cobweb disease on cultivated edible mushrooms. However, the molecular mechanisms of evolution and pathogenesis of C. protrusum on mushrooms are largely unknown. Here, we report a high-quality genome sequence of C. protrusum using the single-molecule, real-time sequencing platform of PacBio and perform a comparative analysis with closely related fungi in the family Hypocreaceae. The C. protrusum genome, the first complete genome to be sequenced in the genus Cladobotryum, is 39.09 Mb long, with an N50 of 4.97 Mb, encoding 11,003 proteins. The phylogenomic analysis confirmed its inclusion in Hypocreaceae, with its evolutionary divergence time estimated to be ~170.1 million years ago. The genome encodes a large and diverse set of genes involved in secreted peptidases, carbohydrate-active enzymes, cytochrome P450 enzymes, pathogen⁻host interactions, mycotoxins, and pigments. Moreover, C. protrusum harbors arrays of genes with the potential to produce bioactive secondary metabolites and stress response-related proteins that are significant for adaptation to hostile environments. Knowledge of the genome will foster a better understanding of the biology of C. protrusum and mycoparasitism in general, as well as help with the development of effective disease control strategies to minimize economic losses from cobweb disease in cultivated edible mushrooms.
Collapse
|
37
|
Le Marquer M, San Clemente H, Roux C, Savelli B, Frei Dit Frey N. Identification of new signalling peptides through a genome-wide survey of 250 fungal secretomes. BMC Genomics 2019; 20:64. [PMID: 30658568 PMCID: PMC6339444 DOI: 10.1186/s12864-018-5414-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022] Open
Abstract
Background Many small peptides regulate eukaryotic cell biology. In fungi, some of these peptides are produced after KEX2 protease activity on proteins displaying repetitions of identical or nearly identical motifs. Following this endoprotease activity, peptides are released in the extracellular space. This type of protein maturation is involved in the production of the α-type sexual pheromone in Ascomycota. In other cases, this processing allows the production of secreted peptides regulating fungal cell wall structure or acting as mycotoxins. In this work, we report for the first time a genome-wide search of KEX2-processed repeat proteins that we call KEPs. We screened the secreted proteins of 250 fungal species to compare their KEP repertoires with regard to their lifestyle, morphology or lineage. Results Our analysis points out that nearly all fungi display putative KEPs, suggesting an ancestral origin common to all opisthokonts. As expected, our pipeline identifies mycotoxins but also α-type sexual pheromones in Ascomycota that have not been explored so far, and unravels KEP-derived secreted peptides of unknown functions. Some species display an expansion of this class of proteins. Interestingly, we identified conserved KEPs in pathogenic fungi, suggesting a role in virulence. We also identified KEPs in Basidiomycota with striking similarities to Ascomycota α-type sexual pheromones, suggesting they may also play alternative roles in unknown signalling processes. Conclusions We identified putative, new, unexpected secreted peptides that fall into different functional categories: mycotoxins, hormones, sexual pheromones, or effectors that promote colonization during host-microbe interactions. This wide survey will open new avenues in the field of small-secreted peptides in fungi that are critical regulators of their intimate biology and modulators of their interaction with the environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-5414-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Morgane Le Marquer
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Bruno Savelli
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France.
| |
Collapse
|
38
|
Metin B, Döğen A, Yıldırım E, de Hoog GS, Heitman J, Ilkit M. Mating type (MAT) locus and possible sexuality of the opportunistic pathogen Exophiala dermatitidis. Fungal Genet Biol 2019; 124:29-38. [PMID: 30611834 DOI: 10.1016/j.fgb.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 11/27/2022]
Abstract
Sexual reproduction among the black yeasts is generally limited to environmental saprobic species and is rarely observed among opportunists in humans. To date, a complete sexual cycle has not been observed in Exophiala dermatitidis. In this study, we aimed to gain insight into the reproductive mode of E. dermatitidis by characterizing its mating type (MAT) locus, conducting MAT screening of environmental and clinical isolates, examining the expression of the MAT genes and analyzing the virulence of the isolates of different mating types. Similar to other members of the Pezizomycotina, the E. dermatitidis genome harbors a high mobility group (HMG) domain gene (MAT1-2-1) in the vicinity of the SLA2 and APN2 genes. The MAT loci of 74 E. dermatitidis isolates (11 clinical and 63 environmental) were screened by PCR, and the surrounding region was amplified using long-range PCR. Sequencing of the ∼ 12-kb PCR product of a MAT1-1 isolate revealed an α-box gene (MAT1-1-1). The MAT1-1 idiomorph was 3544-bp long and harbored the MAT1-1-1 and MAT1-1-4 genes. The MAT1-2 idiomorph was longer, 3771-bp, and harbored only the MAT1-2-1 gene. This structure suggests a heterothallic reproduction mode. The distribution of MAT among 74 isolates was ∼ 1:1 with a MAT1-1:MAT1-2 ratio of 35:39. RT-PCR analysis indicated that the MAT genes are transcribed. No significant difference was detected in the virulence of isolates representing different mating types using a Galleria mellonella model (P > 0.05). Collectively, E. dermatitidis is the first opportunistic black yeast in which both MAT idiomorphs have been characterized. The occurrence of isolates bearing both idiomorphs, their approximately equal distribution, and the expression of the MAT genes suggest that E. dermatitidis might reproduce sexually.
Collapse
Affiliation(s)
- Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Esra Yıldırım
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - G Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; Center of Expertise in Mycology of Radboudumc/CWZ, Nijmegen, the Netherlands.
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey.
| |
Collapse
|
39
|
Chen D, Wu C, Hao C, Huang P, Liu H, Bian Z, Xu JR. Sexual specific functions of Tub1 beta-tubulins require stage-specific RNA processing and expression in Fusarium graminearum. Environ Microbiol 2018; 20:4009-4021. [PMID: 30307105 DOI: 10.1111/1462-2920.14441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 11/27/2022]
Abstract
The wheat head blight fungus Fusarium graminearum has two highly similar beta-tubulin genes with overlapping functions during vegetative growth but only TUB1 is important for sexual reproduction. To better understand their functional divergence during ascosporogenesis, in this study we characterized the sequence elements important for stage-specific functions of TUB1. Deletion of TUB1 blocked the late but not initial stages of perithecium formation. Perithecia formed by tub1 mutant had limited ascogenous hyphae and failed to develop asci. Silencing of TUB1 by MSUD also resulted in defects in ascospore formation. Interestingly, the 3'-UTR of TUB1 was dispensable for growth but essential for its function during sexual reproduction. RIP mutations that specifically affected Tub1 functions during sexual reproduction also were identified in two ascospore progeny. Furthermore, site-directed mutagenesis showed that whereas the non-editable mutations at three A-to-I RNA editing sites had no effects, the N347D (not T362D or I368V) edited mutation affected ascospore development. In addition, the F167Y, but not E198K or F200Y, mutation in TUB1 conferred tolerance to carbendazim and caused a minor defect in sexual reproduction. Taken together, our data indicate TUB1 plays an essential role in ascosporogenesis and sexual-specific functions of TUB1 require stage-specific RNA processing and Tub1 expression.
Collapse
Affiliation(s)
- Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunlan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
40
|
Corvilain E, Casanova JL, Puel A. Inherited CARD9 Deficiency: Invasive Disease Caused by Ascomycete Fungi in Previously Healthy Children and Adults. J Clin Immunol 2018; 38:656-693. [PMID: 30136218 PMCID: PMC6157734 DOI: 10.1007/s10875-018-0539-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
Autosomal recessive CARD9 deficiency underlies life-threatening, invasive fungal infections in otherwise healthy individuals normally resistant to other infectious agents. In less than 10 years, 58 patients from 39 kindreds have been reported in 14 countries from four continents. The patients are homozygous (n = 49; 31 kindreds) or compound heterozygous (n = 9; 8 kindreds) for 22 different CARD9 mutations. Six mutations are recurrent, probably due to founder effects. Paradoxically, none of the mutant alleles has been experimentally demonstrated to be loss-of-function. CARD9 is expressed principally in myeloid cells, downstream from C-type lectin receptors that can recognize fungal components. Patients with CARD9 deficiency present impaired cytokine and chemokine production by macrophages, dendritic cells, and peripheral blood mononuclear cells and defective killing of some fungi by neutrophils in vitro. Neutrophil recruitment to sites of infection is impaired in vivo. The proportion of Th17 cells is low in most, but not all, patients tested. Up to 52 patients suffering from invasive fungal diseases (IFD) have been reported, with ages at onset of 3.5 to 52 years. Twenty of these patients also displayed superficial fungal infections. Six patients had only mucocutaneous candidiasis or superficial dermatophytosis at their last follow-up visit, at the age of 19 to 50 years. Remarkably, for 50 of the 52 patients with IFD, a single fungus was involved; only two patients had IFDs due to two different fungi. IFD recurred in 44 of 45 patients who responded to treatment, and a different fungal infection occurred in the remaining patient. Ten patients died from IFD, between the ages of 12 and 39 years, whereas another patient died at the age of 91 years, from an unrelated cause. At the most recent scheduled follow-up visit, 81% of the patients were still alive and aged from 6.5 to 75 years. Strikingly, all the causal fungi belonged to the phylum Ascomycota: commensal Candida and saprophytic Trychophyton, Aspergillus, Phialophora, Exophiala, Corynesprora, Aureobasidium, and Ochroconis. Human CARD9 is essential for protective systemic immunity to a subset of fungi from this phylum but seems to be otherwise redundant. Previously healthy patients with unexplained invasive fungal infection, at any age, should be tested for inherited CARD9 deficiency. KEY POINTS • Inherited CARD9 deficiency (OMIM #212050) is an AR PID due to mutations that may be present in a homozygous or compound heterozygous state. • CARD9 is expressed principally in myeloid cells and transduces signals downstream from CLR activation by fungal ligands. • Endogenous mutant CARD9 levels differ between alleles (from full-length normal protein to an absence of normal protein). • The functional impacts of CARD9 mutations involve impaired cytokine production in response to fungal ligands, impaired neutrophil killing and/or recruitment to infection sites, and defects of Th17 immunity. • The key clinical manifestations in patients are fungal infections, including CMC, invasive (in the CNS in particular) Candida infections, extensive/deep dermatophytosis, subcutaneous and invasive phaeohyphomycosis, and extrapulmonary aspergillosis. • The clinical penetrance of CARD9 deficiency is complete, but penetrance is incomplete for each of the fungi concerned. • Age at onset is highly heterogeneous, ranging from childhood to adulthood for the same fungal disease. • All patients with unexplained IFD should be tested for CARD9 mutations. Familial screening and genetic counseling should be proposed. • The treatment of patients with CARD9 mutations is empirical and based on antifungal therapies and the surgical removal of fungal masses. Patients with persistent/relapsing Candida infections of the CNS could be considered for adjuvant GM-CSF/G-CSF therapy. The potential value of HSCT for CARD9-deficient patients remains unclear.
Collapse
Affiliation(s)
- Emilie Corvilain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015, Paris, France
- Imagine Institute, Paris Descartes University, 75015, Paris, France
- Free University of Brussels, Brussels, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015, Paris, France
- Imagine Institute, Paris Descartes University, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015, Paris, France.
- Imagine Institute, Paris Descartes University, 75015, Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
41
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
42
|
Hennig S, Wenzel M, Haas C, Hoffmann A, Weber J, Rödel G, Ostermann K. New approaches in bioprocess-control: Consortium guidance by synthetic cell-cell communication based on fungal pheromones. Eng Life Sci 2018; 18:387-400. [PMID: 32624919 DOI: 10.1002/elsc.201700181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 01/02/2023] Open
Abstract
Bioconversions in industrial processes are currently dominated by single-strain approaches. With the growing complexity of tasks to be carried out, microbial consortia become increasingly advantageous and eventually may outperform single-strain fermentations. Consortium approaches benefit from the combined metabolic capabilities of highly specialized strains and species, and the inherent division of labor reduces the metabolic burden for each strain while increasing product yields and reaction specificities. However, consortium-based designs still suffer from a lack of available tools to control the behavior and performance of the individual subpopulations and of the entire consortium. Here, we propose to implement novel control elements for microbial consortia based on artificial cell-cell communication via fungal mating pheromones. Coupling to the desired output is mediated by pheromone-responsive gene expression, thereby creating pheromone-dependent communication channels between different subpopulations of the consortia. We highlight the benefits of artificial communication to specifically target individual subpopulations of microbial consortia and to control e.g. their metabolic profile or proliferation rate in a predefined and customized manner. Due to the steadily increasing knowledge of sexual cycles of industrially relevant fungi, a growing number of strains and species can be integrated into pheromone-controlled sensor-actor systems, exploiting their unique metabolic properties for microbial consortia approaches.
Collapse
Affiliation(s)
- Stefan Hennig
- Institute of Genetics Technische Universität Dresden Dresden Germany
| | - Mandy Wenzel
- Institute of Genetics Technische Universität Dresden Dresden Germany
| | - Christiane Haas
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Andreas Hoffmann
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Jost Weber
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany.,Evolva Biotec A/S Lersø Parkallé 42 Copenhagen Denmark
| | - Gerhard Rödel
- Institute of Genetics Technische Universität Dresden Dresden Germany
| | - Kai Ostermann
- Institute of Genetics Technische Universität Dresden Dresden Germany
| |
Collapse
|
43
|
Metschnikowia mating genomics. Antonie van Leeuwenhoek 2018; 111:1935-1953. [DOI: 10.1007/s10482-018-1084-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/05/2018] [Indexed: 01/29/2023]
|
44
|
Benocci T, de Vries RP, Daly P. A senescence-delaying pre-culture medium for transcriptomics of Podospora anserina. J Microbiol Methods 2018; 146:33-36. [DOI: 10.1016/j.mimet.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 01/15/2023]
|
45
|
The Influence of Genetic Stability on Aspergillus fumigatus Virulence and Azole Resistance. G3-GENES GENOMES GENETICS 2018; 8:265-278. [PMID: 29150592 PMCID: PMC5765354 DOI: 10.1534/g3.117.300265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Genetic stability is extremely important for the survival of every living organism, and a very complex set of genes has evolved to cope with DNA repair upon DNA damage. Here, we investigated the Aspergillus fumigatus AtmA (Ataxia-telangiectasia mutated, ATM) and AtrA kinases, and how they impact virulence and the evolution of azole resistance. We demonstrated that A. fumigatus atmA and atrA null mutants are haploid and have a discrete chromosomal polymorphism. The ΔatmA and ΔatrA strains are sensitive to several DNA-damaging agents, but surprisingly both strains were more resistant than the wild-type strain to paraquat, menadione, and hydrogen peroxide. The atmA and atrA genes showed synthetic lethality emphasizing the cooperation between both enzymes and their consequent redundancy. The lack of atmA and atrA does not cause any significant virulence reduction in A. fumigatus in a neutropenic murine model of invasive pulmonary aspergillosis and in the invertebrate alternative model Galleria mellonela. Wild-type, ΔatmA, and ΔatrA populations that were previously transferred 10 times in minimal medium (MM) in the absence of voriconazole have not shown any significant changes in drug resistance acquisition. In contrast, ΔatmA and ΔatrA populations that similarly evolved in the presence of a subinhibitory concentration of voriconazole showed an ∼5–10-fold increase when compared to the original minimal inhibitory concentration (MIC) values. There are discrete alterations in the voriconazole target Cyp51A/Erg11A or cyp51/erg11 and/or Cdr1B efflux transporter overexpression that do not seem to be the main mechanisms to explain voriconazole resistance in these evolved populations. Taken together, these results suggest that genetic instability caused by ΔatmA and ΔatrA mutations can confer an adaptive advantage, mainly in the intensity of voriconazole resistance acquisition.
Collapse
|
46
|
Pheromone-inducible expression vectors for fission yeast Schizosaccharomyces pombe. Plasmid 2017; 95:1-6. [PMID: 29183750 DOI: 10.1016/j.plasmid.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/22/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is an attractive host for heterologous gene expression. However, expression systems for industrially viable large-scale fermentations are scarce. Several inducible expression vectors for S. pombe have been reported, with the strong thiamine-repressible nmt1+ promoter or derivatives thereof most commonly employed. Previously, the promoter regions of the genes sxa2+ and rep1+ were utilized to couple pheromone signaling to the expression of reporter genes for quantitative assessment of the cellular response to mating pheromones. Here, we exploit these promoters to serve as highly effective, plasmid-based inducible expression systems for S. pombe. Simply by adding synthetic P-factor pheromone, both promoters conferred 50-60% higher peak expression levels than the nmt1+ promoter. Full induction was significantly faster than observed for nmt1+-based expression platforms. Furthermore, the sxa2+ promoter showed very low basal activity and an overall 584-fold induction by synthetic P-factor pheromone. The dose-response curves of both promoters were assessed, providing the opportunity for facile tuning of the expression level by modulating P-factor concentration. Since the expression plasmids relying on the sxa2+ and rep1+ promoters require neither medium exchange nor glucose/thiamine starvation, they proved to be very convenient in handling. Hence, these expression vectors will improve the palette of valuable genetic tools for S. pombe, applicable to both basic research and biotechnology.
Collapse
|
47
|
RNA editing of the AMD1 gene is important for ascus maturation and ascospore discharge in Fusarium graminearum. Sci Rep 2017; 7:4617. [PMID: 28676631 PMCID: PMC5496914 DOI: 10.1038/s41598-017-04960-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Ascospores are the primary inoculum in the wheat scab fungus Fusarium graminearum that was recently shown to have sexual stage-specific A-to-I RNA editing. One of the genes with premature-stop-codons requiring A-to-I editing to encode full-length functional proteins is AMD1 that encodes a protein with a major facilitator superfamily (MFS) domain. Here, we characterized the functions of AMD1 and its UAG to UGG editing event. The amd1 deletion mutant was normal in growth and conidiation but defective in ascospore discharge due to the premature breakdown of its ascus wall in older perithecia, which is consistent with the specific expression of AMD1 at later stages of sexual development. Expression of the wild-type or edited allele of AMD1 but not un-editable allele rescued the defects of amd1 in ascospore discharge. Furthermore, Amd1-GFP localized to the ascus membrane and Amd1 orthologs are only present in ascocarp-forming fungi that physically discharge ascospores. Interestingly, deletion of AMD1 results in the up-regulation of a number of genes related to transporter activity and membrane functions. Overall, these results indicated that Amd1 may play a critical role in maintaining ascus wall integrity during ascus maturation, and A-to-I editing of its transcripts is important for ascospore discharge in F. graminearum.
Collapse
|
48
|
Abstract
Approximately 20% of species in the fungal kingdom are only known to reproduce by asexual means despite the many supposed advantages of sexual reproduction. However, in recent years, sexual cycles have been induced in a series of emblematic "asexual" species. We describe how these discoveries were made, building on observations of evidence for sexual potential or "cryptic sexuality" from population genetic analyses; the presence, distribution, and functionality of mating-type genes; genome analyses revealing the presence of genes linked to sexuality; the functionality of sex-related genes; and formation of sex-related developmental structures. We then describe specific studies that led to the discovery of mating and sex in certain Candida, Aspergillus, Penicillium, and Trichoderma species and discuss the implications of sex including the beneficial exploitation of the sexual cycle. We next consider whether there might be any truly asexual fungal species. We suggest that, although rare, imperfect fungi may genuinely be present in nature and that certain human activities, combined with the genetic flexibility that is a hallmark of the fungal kingdom, might favor the evolution of asexuality under certain conditions. Finally, we argue that fungal species should not be thought of as simply asexual or sexual, but rather as being composed of isolates on a continuum of sexual fertility.
Collapse
MESH Headings
- Cell Cycle/genetics
- Evolution, Molecular
- Fungi/classification
- Fungi/genetics
- Genes, Fungal/genetics
- Genes, Mating Type, Fungal/genetics
- Genes, Mating Type, Fungal/physiology
- Genetics, Population
- Genome, Fungal
- Humans
- Recombination, Genetic
- Reproduction
- Reproduction, Asexual
- Sex
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Paul S Dyer
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
49
|
Coelho MA, Bakkeren G, Sun S, Hood ME, Giraud T. Fungal Sex: The Basidiomycota. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0046-2016. [PMID: 28597825 PMCID: PMC5467461 DOI: 10.1128/microbiolspec.funk-0046-2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 12/29/2022] Open
Abstract
Fungi of the Basidiomycota, representing major pathogen lineages and mushroom-forming species, exhibit diverse means to achieve sexual reproduction, with particularly varied mechanisms to determine compatibilities of haploid mating partners. For species that require mating between distinct genotypes, discrimination is usually based on both the reciprocal exchange of diffusible mating pheromones, rather than sexes, and the interactions of homeodomain protein signals after cell fusion. Both compatibility factors must be heterozygous in the product of mating, and genetic linkage relationships of the mating pheromone/receptor and homeodomain genes largely determine the complex patterns of mating-type variation. Independent segregation of the two compatibility factors can create four haploid mating genotypes from meiosis, referred to as tetrapolarity. This condition is thought to be ancestral to the basidiomycetes. Alternatively, cosegregation by linkage of the two mating factors, or in some cases the absence of the pheromone-based discrimination, yields only two mating types from meiosis, referred to as bipolarity. Several species are now known to have large and highly rearranged chromosomal regions linked to mating-type genes. At the population level, polymorphism of the mating-type genes is an exceptional aspect of some basidiomycete fungi, where selection under outcrossing for rare, intercompatible allelic variants is thought to be responsible for numbers of mating types that may reach several thousand. Advances in genome sequencing and assembly are yielding new insights by comparative approaches among and within basidiomycete species, with the promise to resolve the evolutionary origins and dynamics of mating compatibility genetics in this major eukaryotic lineage.
Collapse
Affiliation(s)
- Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, V0H 1Z0, Canada
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA 01002
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|