1
|
Semper C, Watanabe N, Karimullina E, Patel DT, Di Leo R, Castellanos M, Patel DH, Chaconas G, Savchenko A. Structure analysis of the telomere resolvase from the Lyme disease spirochete Borrelia garinii reveals functional divergence of its C-terminal domain. Nucleic Acids Res 2024; 52:8431-8442. [PMID: 38979576 DOI: 10.1093/nar/gkae580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
Borrelia spirochetes are the causative agents of Lyme disease and relapsing fever, two of the most common tick-borne illnesses. A characteristic feature of these spirochetes is their highly segmented genomes which consists of a linear chromosome and a mixture of up to approximately 24 linear and circular extrachromosomal plasmids. The complexity of this genomic arrangement requires multiple strategies for efficient replication and partitioning during cell division, including the generation of hairpin ends found on linear replicons mediated by the essential enzyme ResT, a telomere resolvase. Using an integrative structural biology approach employing advanced modelling, circular dichroism, X-ray crystallography and small-angle X-ray scattering, we have generated high resolution structural data on ResT from B. garinii. Our data provides the first high-resolution structures of ResT from Borrelia spirochetes and revealed active site positioning in the catalytic domain. We also demonstrate that the C-terminal domain of ResT is required for both transesterification steps of telomere resolution, and is a requirement for DNA binding, distinguishing ResT from other telomere resolvases from phage and bacteria. These results advance our understanding of the molecular function of this essential enzyme involved in genome maintenance in Borrelia pathogens.
Collapse
Affiliation(s)
- Cameron Semper
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Nobuhiko Watanabe
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Elina Karimullina
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Deepak T Patel
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario M5G 1L6, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Dhruvin H Patel
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - George Chaconas
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario M5G 1L6, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
2
|
Faith DR, Kinnersley M, Brooks DM, Drecktrah D, Hall LS, Luo E, Santiago-Frangos A, Wachter J, Samuels DS, Secor PR. Characterization and genomic analysis of the Lyme disease spirochete bacteriophage ϕBB-1. PLoS Pathog 2024; 20:e1012122. [PMID: 38558079 PMCID: PMC11008901 DOI: 10.1371/journal.ppat.1012122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferential packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.
Collapse
Affiliation(s)
- Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Margie Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Eric Luo
- Vaccine and Infectious Disease Organization, Saskatoon, Canada
| | - Andrew Santiago-Frangos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenny Wachter
- Vaccine and Infectious Disease Organization, Saskatoon, Canada
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
3
|
Faith DR, Kinnersley M, Brooks DM, Drecktrah D, Hall LS, Luo E, Santiago-Frangos A, Wachter J, Samuels DS, Secor PR. Characterization and genomic analysis of the Lyme disease spirochete bacteriophage ϕBB-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574763. [PMID: 38260690 PMCID: PMC10802411 DOI: 10.1101/2024.01.08.574763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferentially packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.
Collapse
Affiliation(s)
- Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Margie Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Eric Luo
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | | | - Jenny Wachter
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
4
|
Balouchi M, Huang SH, McGrath SL, Kobryn K. The telomere resolvase, TelA, utilizes an underwound pre-cleavage intermediate to promote hairpin telomere formation. PLoS One 2023; 18:e0294732. [PMID: 38019799 PMCID: PMC10686437 DOI: 10.1371/journal.pone.0294732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
The telomere resolvase, TelA, forms the hairpin telomeres of the linear chromosome of Agrobacterium tumefaciens in a process referred to as telomere resolution. Telomere resolution is a unique DNA cleavage and rejoining reaction that resolves replicated telomere junctions into a pair of hairpin telomeres. Telomere resolvases utilize a reaction mechanism with similarities to that of topoisomerase-IB enzymes and tyrosine recombinases. The reaction proceeds without the need for high-energy cofactors due to the use of a covalent, enzyme-cleaved DNA intermediate that stores the bond energy of the cleaved bonds in 3'-phosphotyrosyl linkages. The cleaved DNA strands are then refolded into a hairpin conformation and the 5'-OH ends of the refolded strands attack the 3'-phosphotyrosine linkages in order to rejoin the DNA strands into hairpin telomeres. Because this kind of reaction mechanism is, in principle, reversible it is unclear how TelA controls the direction of the reaction and propels the reaction to completion. We present evidence that TelA forms and/or stabilizes a pre-cleavage intermediate that features breakage of the four central basepairs between the scissile phosphates prior to DNA cleavage to help propel the reaction forwards, thus preventing abortive cleavage and rejoining cycles that regenerate the substrate DNA. We identify eight TelA sidechains, located in the hairpin-binding module and catalytic domains of TelA, implicated in this process. These mutants were deficient for telomere resolution on parental replicated telomere junctions but were rescued by introduction of substrate modifications that mimic unwinding of the DNA between the scissile phosphates.
Collapse
Affiliation(s)
- Mahrokh Balouchi
- Dept. of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shu Hui Huang
- Dept. of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Siobhan L. McGrath
- The Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerri Kobryn
- Dept. of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
McGrath SL, Huang SH, Kobryn K. The N-terminal domain of the Agrobacterium tumefaciens telomere resolvase, TelA, regulates its DNA cleavage and rejoining activities. J Biol Chem 2022; 298:101951. [PMID: 35447111 PMCID: PMC9111995 DOI: 10.1016/j.jbc.2022.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
Linear replicons can be found in a minority of prokaryotic organisms, including Borrelia species and Agrobacterium tumefaciens. The problem with replicating the lagging strand end of linear DNAs is circumvented in these organisms by the presence of covalently closed DNA hairpin telomeres at the DNA termini. Telomere resolvases are enzymes responsible for generating these hairpin telomeres from a dimeric replication intermediate through a two-step DNA cleavage and rejoining reaction referred to as telomere resolution. It was previously shown that the agrobacterial telomere resolvase, TelA, possesses ssDNA annealing activity in addition to telomere resolution activity. The annealing activity derives, chiefly, from the N-terminal domain. This domain is dispensable for telomere resolution. In this study, we used activity analyses of an N-terminal domain deletion mutant, domain add back experiments, and protein–protein interaction studies and we report that the N-terminal domain of TelA is involved in inhibitory interactions with the remainder of TelA that are relieved by the binding of divalent metal ions. We also found that the regulation of telomere resolution by the N-terminal domain of TelA extends to suppression of inappropriate enzymatic activity, including hairpin telomere fusion (reaction reversal) and recombination between replicated telomeres to form a Holliday junction.
Collapse
Affiliation(s)
- Siobhan L McGrath
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, Saskatoon, Saskatchewan, Canada
| | - Shu Hui Huang
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, Saskatoon, Saskatchewan, Canada
| | - Kerri Kobryn
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
6
|
Benler S, Koonin EV. Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Front Mol Biosci 2022; 9:821197. [PMID: 35402511 PMCID: PMC8987985 DOI: 10.3389/fmolb.2022.821197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a continuum of replication autonomy. On numerous occasions during microbial evolution, diverse MGE lose their autonomy altogether but, rather than being quickly purged from the host genome, assume a new function that benefits the host, rendering the immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This mini-review highlights the diversity of the repurposed (exapted) MGE as well as the plethora of cellular functions that they perform. The principal contribution of the exaptation of MGE and their components is to the prokaryotic functional systems involved in biological conflicts, and in particular, defense against viruses and other MGE. This evolutionary entanglement between MGE and defense systems appears to stem both from mechanistic similarities and from similar evolutionary predicaments whereby both MGEs and defense systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for survival including horizontal mobility, causing host addiction, and exaptation for functions beneficial to the host. The examples discussed demonstrate that the identity of an MGE, overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or parasitic) are all factors that affect exaptation.
Collapse
Affiliation(s)
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
McGrath SL, Huang SH, Kobryn K. Single stranded DNA annealing is a conserved activity of telomere resolvases. PLoS One 2021; 16:e0246212. [PMID: 33539370 PMCID: PMC7861564 DOI: 10.1371/journal.pone.0246212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial species of the genera Agrobacterium and Borrelia possess chromosomes terminated by hairpin telomeres. Replication produces dimeric replication intermediates fused via replicated telomere junctions. A specialized class of enzymes, referred to as telomere resolvases, promotes the resolution of the replicated intermediate into linear monomers terminated by hairpin telomeres. Telomere resolution is catalyzed via DNA cleavage and rejoining events mechanistically similar to those promoted by topoisomerase-IB and tyrosine recombinase enzymes. Examination of the borrelial telomere resolvase, ResT, revealed unanticipated multifunctionality; aside from its expected telomere resolution activity ResT possessed a singled-stranded DNA (ssDNA) annealing activity that extended to both naked ssDNA and ssDNA complexed with its cognate single-stranded DNA binding protein (SSB). At present, the role this DNA annealing activity plays in vivo remains unknown. We have demonstrated here that single-stranded DNA annealing is also a conserved property of the agrobacterial telomere resolvase, TelA. This activity in TelA similarly extends to both naked ssDNA and ssDNA bound by its cognate SSB. TelA's annealing activity was shown to stem from the N-terminal domain; removal of this domain abolished annealing without affecting telomere resolution. Further, independent expression of the N-terminal domain of TelA produced a functional annealing protein. We suggest that the apparent conservation of annealing activity in two telomere resolvases, from distantly related bacterial species, implies a role for this activity in hairpin telomere metabolism. Our demonstration of the separation of the telomere resolution and annealing activities of TelA provides a platform for future experiments aimed at identifying the role DNA annealing performs in vivo.
Collapse
Affiliation(s)
- Siobhan L. McGrath
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shu Hui Huang
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerri Kobryn
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
8
|
Chaconas G, Castellanos M, Verhey TB. Changing of the guard: How the Lyme disease spirochete subverts the host immune response. J Biol Chem 2020; 295:301-313. [PMID: 31753921 PMCID: PMC6956529 DOI: 10.1074/jbc.rev119.008583] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
9
|
Hickman AB, Voth AR, Ewis H, Li X, Craig NL, Dyda F. Structural insights into the mechanism of double strand break formation by Hermes, a hAT family eukaryotic DNA transposase. Nucleic Acids Res 2019; 46:10286-10301. [PMID: 30239795 PMCID: PMC6212770 DOI: 10.1093/nar/gky838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Some DNA transposons relocate from one genomic location to another using a mechanism that involves generating double-strand breaks at their transposon ends by forming hairpins on flanking DNA. The same double-strand break mode is employed by the V(D)J recombinase at signal-end/coding-end junctions during the generation of antibody diversity. How flanking hairpins are formed during DNA transposition has remained elusive. Here, we describe several co-crystal structures of the Hermes transposase bound to DNA that mimics the reaction step immediately prior to hairpin formation. Our results reveal a large DNA conformational change between the initial cleavage step and subsequent hairpin formation that changes which strand is acted upon by a single active site. We observed that two factors affect the conformational change: the complement of divalent metal ions bound by the catalytically essential DDE residues, and the identity of the –2 flanking base pair. Our data also provides a mechanistic link between the efficiency of hairpin formation (an A:T basepair is favored at the –2 position) and Hermes' strong target site preference. Furthermore, we have established that the histidine residue within a conserved C/DxxH motif present in many transposase families interacts directly with the scissile phosphate, suggesting a crucial role in catalysis.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Regier Voth
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hosam Ewis
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xianghong Li
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nancy L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Di Domenico EG, Cavallo I, Bordignon V, D'Agosto G, Pontone M, Trento E, Gallo MT, Prignano G, Pimpinelli F, Toma L, Ensoli F. The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis. Front Neurol 2018; 9:1048. [PMID: 30559713 PMCID: PMC6287027 DOI: 10.3389/fneur.2018.01048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023] Open
Abstract
Lyme borreliosis (LB) is the most common tick-borne disease caused by the spirochete Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe and Asia, respectively. The infection affects multiple organ systems, including the skin, joints, and the nervous system. Lyme neuroborreliosis (LNB) is the most dangerous manifestation of Lyme disease, occurring in 10-15% of infected individuals. During the course of the infection, bacteria migrate through the host tissues altering the coagulation and fibrinolysis pathways and the immune response, reaching the central nervous system (CNS) within 2 weeks after the bite of an infected tick. The early treatment with oral antimicrobials is effective in the majority of patients with LNB. Nevertheless, persistent forms of LNB are relatively common, despite targeted antibiotic therapy. It has been observed that the antibiotic resistance and the reoccurrence of Lyme disease are associated with biofilm-like aggregates in B. burgdorferi, B. afzelii, and B. garinii, both in vitro and in vivo, allowing Borrelia spp. to resist to adverse environmental conditions. Indeed, the increased tolerance to antibiotics described in the persisting forms of Borrelia spp., is strongly reminiscent of biofilm growing bacteria, suggesting a possible role of biofilm aggregates in the development of the different manifestations of Lyme disease including LNB.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Martina Pontone
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Elisabetta Trento
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Maria Teresa Gallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
11
|
Rubio-Cosials A, Schulz EC, Lambertsen L, Smyshlyaev G, Rojas-Cordova C, Forslund K, Karaca E, Bebel A, Bork P, Barabas O. Transposase-DNA Complex Structures Reveal Mechanisms for Conjugative Transposition of Antibiotic Resistance. Cell 2018; 173:208-220.e20. [PMID: 29551265 PMCID: PMC5871717 DOI: 10.1016/j.cell.2018.02.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
Abstract
Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes. Antibiotic resistance-carrying conjugative transposon integrase structure revealed DNA distortion and special cleavage site allow insertion into diverse genomic sites Key structural features are conserved among numerous conjugative transposons Structures uncover auto-inhibition, allowing transposition antagonist design
Collapse
Affiliation(s)
- Anna Rubio-Cosials
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Eike C Schulz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Hamburg Outstation, European Molecular Biology Laboratory, 22603 Hamburg, Germany
| | - Lotte Lambertsen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Georgy Smyshlyaev
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton CB10 1SD, UK
| | - Carlos Rojas-Cordova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Kristoffer Forslund
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Ezgi Karaca
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey
| | - Aleksandra Bebel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| |
Collapse
|
12
|
Huang SH, Cozart MR, Hart MA, Kobryn K. The Borrelia burgdorferi telomere resolvase, ResT, possesses ATP-dependent DNA unwinding activity. Nucleic Acids Res 2017; 45:1319-1329. [PMID: 28180323 PMCID: PMC5388405 DOI: 10.1093/nar/gkw1243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 11/14/2022] Open
Abstract
Spirochetes of the genus Borrelia possess unusual genomes harboring multiple linear and circular replicons. The linear replicons are terminated by covalently closed hairpin (hp) telomeres. Hairpin telomeres are formed from replicated intermediates by the telomere resolvase, ResT, in a phosphoryl transfer reaction with mechanistic similarities to those promoted by type 1B topoisomerases and tyrosine recombinases. There is growing evidence that ResT is multifunctional. Upon ResT depletion DNA replication unexpectedly ceases. Additionally, ResT possesses RecO-like biochemical activities being able to promote single-strand annealing on both free ssDNA and ssDNA complexed with cognate single-stranded DNA binding protein. We report here that ResT possesses DNA-dependent ATPase activity that promotes DNA unwinding with a 3΄-5΄ polarity. ResT can unwind a variety of substrates including synthetic replication forks and D-loops. We demonstrate that ResT's twin activities of DNA unwinding and annealing can drive regression of a model replication fork. These properties are similar to those of the RecQ helicase of the RecF pathway involved in DNA gap repair. We propose that ResT's combination of activities implicates it in replication and recombination processes operating on the linear chromosome and plasmids of Borrelia burgdorferi.
Collapse
Affiliation(s)
- Shu Hui Huang
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| | - McKayla R Cozart
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| | - Madison A Hart
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| | - Kerri Kobryn
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
14
|
Huang SH, Kobryn K. The Borrelia burgdorferi telomere resolvase, ResT, anneals ssDNA complexed with its cognate ssDNA-binding protein. Nucleic Acids Res 2016; 44:5288-98. [PMID: 27131360 PMCID: PMC4914115 DOI: 10.1093/nar/gkw344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/18/2016] [Indexed: 11/12/2022] Open
Abstract
Spirochetes of the genus Borrelia possess unusual genomes that consist in a linear chromosome and multiple linear and circular plasmids. The linear replicons are terminated by covalently closed hairpin ends, referred to as hairpin telomeres. The hairpin telomeres represent a simple solution to the end-replication problem. Deoxyribonucleic acid replication initiates internally and proceeds bidirectionally toward the hairpin telomeres. The telomere resolvase, ResT, forms the hairpin telomeres from replicated telomere intermediates in a reaction with similarities to those promoted by type IB topoisomerases and tyrosine recombinases. ResT has also been shown to possess DNA single-strand annealing activity. We report here that ResT promotes single-strand annealing of both free DNA strands and ssDNA complexed with single-stranded DNA binding protein (SSB). The annealing of complementary strands bound by SSB requires a ResT-SSB interaction that is mediated by the conserved amphipathic C-terminal tail of SSB. These properties of ResT are similar to those demonstrated for the recombination mediator protein, RecO, of the RecF pathway. Borrelia burgdorferi is unusual in lacking identifiable homologs of the RecFOR proteins. We propose that ResT may provide missing RecFOR functions.
Collapse
Affiliation(s)
- Shu Hui Huang
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Kerri Kobryn
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
15
|
Unmasking the ancestral activity of integron integrases reveals a smooth evolutionary transition during functional innovation. Nat Commun 2016; 7:10937. [PMID: 26961432 PMCID: PMC4792948 DOI: 10.1038/ncomms10937] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/03/2016] [Indexed: 12/28/2022] Open
Abstract
Tyrosine (Y)-recombinases have evolved to deliver mechanistically different reactions on a variety of substrates, but these evolutionary transitions are poorly understood. Among them, integron integrases are hybrid systems recombining single- and double-stranded DNA partners. These reactions are asymmetric and need a replicative resolution pathway, an exception to the canonical second strand exchange model of Y-recombinases. Integron integrases possess a specific domain for this specialized pathway. Here we show that despite this, integrases are still capable of efficiently operating the ancestral second strand exchange in symmetrical reactions between double-stranded substrates. During these reactions, both strands are reactive and Holliday junction resolution can follow either pathway. A novel deep-sequencing approach allows mapping of the crossover point for the second strand exchange. The persistence of the ancestral activity in integrases illustrates their robustness and shows that innovation towards new recombination substrates and resolution pathways was a smooth evolutionary process. The integron integrases have evolved to perform recombination of single and double stranded DNA. Here the authors show that the ancestral pathway is still functional at double stranded sites, revealing the evolution towards the modern resolution pathway.
Collapse
|
16
|
Barbour AG. Multiple and Diverse vsp and vlp Sequences in Borrelia miyamotoi, a Hard Tick-Borne Zoonotic Pathogen. PLoS One 2016; 11:e0146283. [PMID: 26785134 PMCID: PMC4718594 DOI: 10.1371/journal.pone.0146283] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/15/2015] [Indexed: 12/02/2022] Open
Abstract
Based on chromosome sequences, the human pathogen Borrelia miyamotoi phylogenetically clusters with species that cause relapsing fever. But atypically for relapsing fever agents, B. miyamotoi is transmitted not by soft ticks but by hard ticks, which also are vectors of Lyme disease Borrelia species. To further assess the relationships of B. miyamotoi to species that cause relapsing fever, I investigated extrachromosomal sequences of a North American strain with specific attention on plasmid-borne vsp and vlp genes, which are the underpinnings of antigenic variation during relapsing fever. For a hybrid approach to achieve assemblies that spanned more than one of the paralogous vsp and vlp genes, a database of short-reads from next-generation sequencing was supplemented with long-reads obtained with real-time DNA sequencing from single polymerase molecules. This yielded three contigs of 31, 16, and 11 kb, which each contained multiple and diverse sequences that were homologous to vsp and vlp genes of the relapsing fever agent B. hermsii. Two plasmid fragments had coding sequences for plasmid partition proteins that differed from each other from paralogous proteins for the megaplasmid and a small plasmid of B. miyamotoi. One of 4 vsp genes, vsp1, was present at two loci, one of which was downstream of a candiate prokaryotic promoter. A limited RNA-seq analysis of a population growing in the blood of mice indicated that of the 4 different vsp genes vsp1 was the one that was expressed. The findings indicate that B. miyamotoi has at least four types of plasmids, two or more of which bear vsp and vlp gene sequences that are as numerous and diverse as those of relapsing fever Borrelia. The database and insights from these findings provide a foundation for further investigations of the immune responses to this pathogen and of the capability of B. miyamotoi for antigenic variation.
Collapse
Affiliation(s)
- Alan G. Barbour
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lucyshyn D, Huang SH, Kobryn K. Spring loading a pre-cleavage intermediate for hairpin telomere formation. Nucleic Acids Res 2015; 43:6062-74. [PMID: 26007659 PMCID: PMC4499125 DOI: 10.1093/nar/gkv497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/05/2015] [Indexed: 02/03/2023] Open
Abstract
The Borrelia telomere resolvase, ResT, forms the unusual hairpin telomeres of the linear Borrelia replicons in a process referred to as telomere resolution. Telomere resolution is a DNA cleavage and rejoining reaction that proceeds from a replicated telomere intermediate in a reaction with mechanistic similarities to that catalyzed by type IB topoisomerases. Previous reports have implicated the hairpin-binding module, at the end of the N-terminal domain of ResT, in distorting the DNA between the scissile phosphates so as to promote DNA cleavage and hairpin formation by the catalytic domain. We report that unwinding the DNA between the scissile phosphates, prior to DNA cleavage, is a key cold-sensitive step in telomere resolution. Through the analysis of ResT mutants, rescued by substrate modifications that mimic DNA unwinding between the cleavage sites, we show that formation and/or stabilization of an underwound pre-cleavage intermediate depends upon cooperation of the hairpin-binding module and catalytic domain. The phenotype of the mutants argues that the pre-cleavage intermediate promotes strand ejection to favor the forward reaction and that subsequent hairpin capture is a reversible reaction step. These reaction features are proposed to promote hairpin formation over strand resealing while allowing reversal back to substrate of aborted reactions.
Collapse
Affiliation(s)
- Danica Lucyshyn
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Shu Hui Huang
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Kerri Kobryn
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|