1
|
Zeng S, Ju Y, Alam MS, Lu Z, Hameed HMA, Li L, Tian X, Fang C, Fang X, Ding J, Wang X, Hu J, Wang S, Zhang T. A CRISPR-nonhomologous end-joining-based strategy for rapid and efficient gene disruption in Mycobacterium abscessus. MLIFE 2025; 4:169-180. [PMID: 40313975 PMCID: PMC12042118 DOI: 10.1002/mlf2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 05/03/2025]
Abstract
Mycobacterium abscessus, a fast-growing, non-tuberculous mycobacterium resistant to most antimicrobial drugs, causes a wide range of serious infections in humans, posing a significant public health challenge. The development of effective genetic manipulation tools for M. abscessus is still in progress, limiting both research and therapeutic advancements. However, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) systems have emerged as promising tools for generating highly specific double-strand breaks (DSBs) in its genome. One of the mechanisms that repair these DSBs is the error-prone nonhomologous end-joining (NHEJ) pathway, which facilitates targeted gene editing. In this study, we introduced a novel application of the CRISPR-NHEJ approach in M. abscessus. We demonstrated that NrgA from M. marinum plays a crucial role in repairing DSBs induced by the CRISPR-Cas system in M. abscessus. Contrary to previous findings, our study also revealed that inhibiting or overexpressing components of homologous recombination/single-strand annealing significantly reduces the efficiency of NHEJ repair in M. abscessus. This discovery challenges current perspectives and suggests that NHEJ repair in M. abscessus may involve components from both homologous recombination and single-strand annealing pathways, highlighting the complex interactions among the three DSB repair mechanisms in M. abscessus.
Collapse
Affiliation(s)
- Sanshan Zeng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanan Ju
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- School of Basic Medical Sciences, Division of Life Science and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Md Shah Alam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ziwen Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Lijie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- School of Basic Medical Sciences, Division of Life Science and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Chest HospitalGuangzhouChina
| | - Xiange Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | - Xinyue Wang
- State Key Laboratory of Respiratory DiseaseGuangzhou Chest HospitalGuangzhouChina
- Guangzhou National LaboratoryGuangzhouChina
| | - Jinxing Hu
- State Key Laboratory of Respiratory DiseaseGuangzhou Chest HospitalGuangzhouChina
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Chest HospitalGuangzhouChina
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- School of Basic Medical Sciences, Division of Life Science and MedicineUniversity of Science and Technology of ChinaHefeiChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Chest HospitalGuangzhouChina
- Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
- Guangzhou National LaboratoryGuangzhouChina
| |
Collapse
|
2
|
Islam T, Josephs EA. Genome editing outcomes reveal mycobacterial NucS participates in a short-patch repair of DNA mismatches. Nucleic Acids Res 2024; 52:12295-12307. [PMID: 38747340 PMCID: PMC11551744 DOI: 10.1093/nar/gkae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024] Open
Abstract
In the canonical DNA mismatch repair (MMR) mechanism in bacteria, if a nucleotide is incorrectly mis-paired with the template strand during replication, the resulting repair of this mis-pair can result in the degradation and re-synthesis of hundreds or thousands of nucleotides on the newly-replicated strand (long-patch repair). While mycobacteria, which include important pathogens such as Mycobacterium tuberculosis, lack the otherwise highly-conserved enzymes required for the canonical MMR reaction, it was found that disruption of a mycobacterial mismatch-sensitive endonuclease NucS results in a hyper-mutative phenotype, leading to the idea that NucS might be involved in a cryptic, independently-evolved DNA MMR mechanism, perhaps mediated by homologous recombination (HR) with a sister chromatid. Using oligonucleotide recombination, which allows us to introduce mismatches specifically into the genomes of a model for M. tuberculosis, Mycobacterium smegmatis, we find that NucS participates in a direct repair of DNA mismatches where the patch of excised nucleotides is largely confined to within ∼5-6 bp of the mis-paired nucleotides, which is inconsistent with mechanistic models of canonical mycobacterial HR or other double-strand break (DSB) repair reactions. The results presented provide evidence of a novel NucS-associated mycobacterial MMR mechanism occurring in vivo to regulate genetic mutations in mycobacteria.
Collapse
Affiliation(s)
- Tanjina Islam
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Eric A Josephs
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
3
|
Dagva O, Thibessard A, Lorenzi JN, Labat V, Piotrowski E, Rouhier N, Myllykallio H, Leblond P, Bertrand C. Correction of non-random mutational biases along a linear bacterial chromosome by the mismatch repair endonuclease NucS. Nucleic Acids Res 2024; 52:5033-5047. [PMID: 38444149 PMCID: PMC11109965 DOI: 10.1093/nar/gkae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
The linear chromosome of Streptomyces exhibits a highly compartmentalized structure with a conserved central region flanked by variable arms. As double strand break (DSB) repair mechanisms play a crucial role in shaping the genome plasticity of Streptomyces, we investigated the role of EndoMS/NucS, a recently characterized endonuclease involved in a non-canonical mismatch repair (MMR) mechanism in archaea and actinobacteria, that singularly corrects mismatches by creating a DSB. We showed that Streptomyces mutants lacking NucS display a marked colonial phenotype and a drastic increase in spontaneous mutation rate. In vitro biochemical assays revealed that NucS cooperates with the replication clamp to efficiently cleave G/T, G/G and T/T mismatched DNA by producing DSBs. These findings are consistent with the transition-shifted mutational spectrum observed in the mutant strains and reveal that NucS-dependent MMR specific task is to eliminate G/T mismatches generated by the DNA polymerase during replication. Interestingly, our data unveil a crescent-shaped distribution of the transition frequency from the replication origin towards the chromosomal ends, shedding light on a possible link between NucS-mediated DSBs and Streptomyces genome evolution.
Collapse
Affiliation(s)
- Oyut Dagva
- Université de Lorraine, INRAE, UMR 1128 DynAMic, 54000 Nancy, France
| | | | | | - Victor Labat
- Université de Lorraine, INRAE, UMR 1128 DynAMic, 54000 Nancy, France
| | - Emilie Piotrowski
- Université de Lorraine, INRAE, UMR 1128 DynAMic, 54000 Nancy, France
| | - Nicolas Rouhier
- Université de Lorraine, INRAE, UMR 1136 IAM, 54000 Nancy, France
| | - Hannu Myllykallio
- Ecole Polytechnique, INSERM U696-CNRS UMR 7645 LOB, 91128 Palaiseau, France
| | - Pierre Leblond
- Université de Lorraine, INRAE, UMR 1128 DynAMic, 54000 Nancy, France
| | - Claire Bertrand
- Université de Lorraine, INRAE, UMR 1128 DynAMic, 54000 Nancy, France
| |
Collapse
|
4
|
Chadda A, Kozlov AG, Nguyen B, Lohman TM, Galburt EA. Mycobacterium tuberculosis Ku Stimulates Multi-round DNA Unwinding by UvrD1 Monomers. J Mol Biol 2024; 436:168367. [PMID: 37972687 PMCID: PMC10836237 DOI: 10.1016/j.jmb.2023.168367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of Tuberculosis. During the host response to infection, the bacterium is exposed to both reactive oxygen species and nitrogen intermediates that can cause DNA damage. It is becoming clear that the DNA damage response in Mtb and related actinobacteria function via distinct pathways as compared to well-studied model bacteria. For example, we have previously shown that the DNA repair helicase UvrD1 is activated for processive unwinding via redox-dependent dimerization. In addition, mycobacteria contain a homo-dimeric Ku protein, homologous to the eukaryotic Ku70/Ku80 dimer, that plays roles in double-stranded break repair via non-homologous end-joining. Kuhas been shown to stimulate the helicase activity of UvrD1, but the molecular mechanism, as well as which redox form of UvrD1 is activated, is unknown. We show here that Ku specifically stimulates multi-round unwinding by UvrD1 monomers which are able to slowly unwind DNA, but at rates 100-fold slower than the dimer. We also demonstrate that the UvrD1 C-terminal Tudor domain is required for the formation of a Ku-UvrD1 protein complex and activation. We show that Mtb Ku dimers bind with high nearest neighbor cooperativity to duplex DNA and that UvrD1 activation is observed when the DNA substrate is bound with two or three Ku dimers. Our observations reveal aspects of the interactions between DNA, Mtb Ku, and UvrD1 and highlight the potential role of UvrD1 in multiple DNA repair pathways through different mechanisms of activation.
Collapse
Affiliation(s)
- Ankita Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Harnessing CRISRP-Cas9 as an anti-mycobacterial system. Microbiol Res 2023; 270:127319. [PMID: 36780784 DOI: 10.1016/j.micres.2023.127319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/31/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Rapid emergence of drug resistance has posed new challenges to the treatment of mycobacterial infections. As the pace of development of new drugs is slow, alternate treatment approaches are required. Recently, CRISPR-Cas systems have emerged as potential antimicrobials. These sequence-specific nucleases introduce double strand cuts in the target DNA, which if left unrepaired, prove fatal to the host. For most bacteria, homologous recombination repair (HRR) is the only pathway for repair and survival. Mycobacteria is one of the few bacteria which possesses the non-homologous end joining (NHEJ) system in addition to HRR for double strand break repair. To assess the antimicrobial potential of CRISPR-system, Cas9-induced breaks were introduced in the genome of Mycobacterium smegmatis and the survival was studied. While the single strand breaks were efficiently repaired, the organism was unable to repair the double strand breaks efficiently. In a mixed population of antibiotic-resistant and sensitive mycobacterial cells, selectively targeting a factor that confers hygromycin resistance, turned the entire population sensitive to the drug. Further, we demonstrate that the sequence-specific targeting could also be used for curing plasmids from mycobacterium cells. Considering the growing interest in nucleic acid-based therapy to curtail infections and combat antimicrobial resistance, our data shows that CRISPR-systems hold promise for future use as an antimicrobial against drug-resistant mycobacterial infections.
Collapse
|
6
|
Abstract
In mammalian cells, DNA double-strand breaks (DSBs) are mainly repaired by nonhomologous end joining (NHEJ) pathway. Ku (a heterodimer formed by Ku70 and Ku80 proteins) and DNA ligase IV are the core NHEJ factors. Ku could also be involved in other cellular processes, including telomere length regulation, DNA replication, transcription, and translation control. Leishmania, an early branching eukaryote and the causative agent of leishmaniasis, has no functional NHEJ pathway due to its lack of DNA ligase IV and other NHEJ factors but retains Ku70 and Ku80 proteins. In this study, we generated Leishmania donovani Ku70 disruption mutants and Ku70 and Ku80 double gene (Ku70/80) disruption mutants. We found that Leishmania Ku is still involved in DSB repair, possibly through its binding to DNA ends to block and slowdown 5′ end resections and Ku-Ku or other protein interactions. Depending on location of a DSB between the direct repeat genomic sequences, Leishmania Ku could have an inhibiting effect, no effect or a promoting effect on the DSB repair mediated by single strand annealing (SSA), the most frequently used DSB repair pathway in Leishmania. Ku70/80 proteins are also required for the healthy proliferation of Leishmania cells. Interestingly, unlike in Trypanosoma brucei and L. mexicana, Ku70/80 proteins are dispensable for maintaining the normal lengths of telomeres in L. donovani. We also show it is possible to reconstitute the two components (Ku and Ligase D) NHEJ pathway derived from Mycobacterium marinum in Leishmania. This improved DSB repair fidelity and efficiency in Leishmania and sets up an example that the bacterial NHEJ pathway can be successfully reconstructed in an NHEJ-deficient eukaryotic parasite. IMPORTANCE Nonhomologous end joining (NHEJ) is the most efficient double-stranded DNA break (DSB) repair pathway in mammalian cells. In contrast, the protozoan parasite Leishmania has no functional NHEJ pathway but retains the core NHEJ factors of Ku70 and Ku80 proteins. In this study, we found that Leishmania Ku heterodimers are still participating in DSB repair possibly through blocking 5′ end resections and Ku-Ku protein interactions. Depending on the DSB location, Ku could have an inhibiting or promoting effect on DSB repair mediated by the single-strand annealing repair pathway. Ku is also required for the normal growth of the parasite but surprisingly dispensable for maintaining the telomere lengths. Further, we show it is possible to introduce Mycobacterium marinum NHEJ pathway into Leishmania. Understanding DSB repair mechanisms of Leishmania may improve the CRISPR gene targeting specificity and efficiency and help identify new drug targets for this important human parasite.
Collapse
|
7
|
ATP-Dependent Ligases and AEP Primases Affect the Profile and Frequency of Mutations in Mycobacteria under Oxidative Stress. Genes (Basel) 2021; 12:genes12040547. [PMID: 33918798 PMCID: PMC8068969 DOI: 10.3390/genes12040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
The mycobacterial nonhomologous end-joining pathway (NHEJ) involved in double-strand break (DSB) repair consists of the multifunctional ATP-dependent ligase LigD and the DNA bridging protein Ku. The other ATP-dependent ligases LigC and AEP-primase PrimC are considered as backup in this process. The engagement of LigD, LigC, and PrimC in the base excision repair (BER) process in mycobacteria has also been postulated. Here, we evaluated the sensitivity of Mycolicibacterium smegmatis mutants defective in the synthesis of Ku, Ku-LigD, and LigC1-LigC2-PrimC, as well as mutants deprived of all these proteins to oxidative and nitrosative stresses, with the most prominent effect observed in mutants defective in the synthesis of Ku protein. Mutants defective in the synthesis of LigD or PrimC/LigC presented a lower frequency of spontaneous mutations than the wild-type strain or the strain defective in the synthesis of Ku protein. As identified by whole-genome sequencing, the most frequent substitutions in all investigated strains were T→G and A→C. Double substitutions, as well as insertions of T or CG, were exclusively identified in the strains carrying functional Ku and LigD proteins. On the other hand, the inactivation of Ku/LigD increased the efficiency of the deletion of G in the mutant strain.
Collapse
|
8
|
Thermotogales origin scenario of eukaryogenesis. J Theor Biol 2020; 492:110192. [PMID: 32044287 DOI: 10.1016/j.jtbi.2020.110192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
How eukaryotes were generated is an enigma of evolutionary biology. Widely accepted archaeal-origin eukaryogenesis scenarios, based on similarities of genes and related characteristics between archaea and eukaryotes, cannot explain several eukaryote-specific features of the last eukaryotic common ancestor, such as glycerol-3-phosphate-type membrane lipids, large cells and genomes, and endomembrane formation. Thermotogales spheroids, having multicopy-integrated large nucleoids and producing progeny in periplasm, may explain all of these features as well as endoplasmic reticulum-type signal cleavage sites, although they cannot divide. We hypothesize that the progeny chromosome is formed by random joining small DNAs in immature progeny, followed by reorganization by mechanisms including homologous recombination enabled with multicopy-integrated large genome (MILG). We propose that Thermotogales ancestor spheroids came to divide owing to the archaeal cell division genes horizontally transferred via virus-related particles, forming the first eukaryotic common ancestor (FECA). Referring to the hypothesis, the archaeal information-processing system would have been established in FECA by random joining DNAs excised from the MILG, which contained horizontally transferred archaeal and bacterial DNAs, followed by reorganization by the MILG-enabled homologous recombination. Thus, the large genome may have been a prerequisite, but not a consequence, of eukaryogenesis. The random joining of DNAs likely provided the basic mechanisms for eukaryotic evolution: producing the diversity by the formations of supergroups, novel genes, and introns that are involved in exon shuffling.
Collapse
|
9
|
Prasad D, Arora D, Nandicoori VK, Muniyappa K. Elucidating the functional role of Mycobacterium smegmatis recX in stress response. Sci Rep 2019; 9:10912. [PMID: 31358794 PMCID: PMC6662834 DOI: 10.1038/s41598-019-47312-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The RecX protein has attracted considerable interest because the recX mutants exhibit multiple phenotypes associated with RecA functions. To further our understanding of the functional relationship between recA and recX, the effect of different stress treatments on their expression profiles, cell yield and viability were investigated. A significant correlation was found between the expression of Mycobacterium smegmatis recA and recX genes at different stages of growth, and in response to different stress treatments albeit recX exhibiting lower transcript and protein abundance at the mid-log and stationary phases of the bacterial growth cycle. To ascertain their roles in vivo, a targeted deletion of the recX and recArecX was performed in M. smegmatis. The growth kinetics of these mutant strains and their sensitivity patterns to different stress treatments were assessed relative to the wild-type strain. The deletion of recA affected normal cell growth and survival, while recX deletion showed no significant effect. Interestingly, deletion of both recX and recA genes results in a phenotype that is intermediate between the phenotypes of the ΔrecA mutant and the wild-type strain. Collectively, these results reveal a previously unrecognized role for M. smegmatis recX and support the notion that it may regulate a subset of the yet unknown genes involved in normal cell growth and DNA-damage repair.
Collapse
Affiliation(s)
- Deepika Prasad
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Divya Arora
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
10
|
Minias A, Brzostek A, Dziadek J. Targeting DNA Repair Systems in Antitubercular Drug Development. Curr Med Chem 2019; 26:1494-1505. [DOI: 10.2174/0929867325666180129093546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
Abstract
Infections with Mycobacterium tuberculosis, the causative agent of tuberculosis, are difficult to treat using currently available chemotherapeutics. Clinicians agree on the urgent need for novel drugs to treat tuberculosis. In this mini review, we summarize data that prompts the consideration of DNA repair-associated proteins as targets for the development of new antitubercular compounds. We discuss data, including gene expression data, that highlight the importance of DNA repair genes during the pathogenic cycle as well as after exposure to antimicrobials currently in use. Specifically, we report experiments on determining the essentiality of DNA repair-related genes. We report the availability of protein crystal structures and summarize discovered protein inhibitors. Further, we describe phenotypes of available gene mutants of M. tuberculosis and model organisms Mycobacterium bovis and Mycobacterium smegmatis. We summarize experiments regarding the role of DNA repair-related proteins in pathogenesis and virulence performed both in vitro and in vivo during the infection of macrophages and animals. We detail the role of DNA repair genes in acquiring mutations, which influence the rate of drug resistance acquisition.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Brzostek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
11
|
Plugged into the Ku-DNA hub: The NHEJ network. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:62-76. [PMID: 30851288 DOI: 10.1016/j.pbiomolbio.2019.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Abstract
In vertebrates, double-strand breaks in DNA are primarily repaired by Non-Homologous End-Joining (NHEJ). The ring-shaped Ku heterodimer rapidly senses and threads onto broken DNA ends forming a recruiting hub. Through protein-protein contacts eventually reinforced by protein-DNA interactions, the Ku-DNA hub attracts a series of specialized proteins with scaffolding and/or enzymatic properties. To shed light on these dynamic interplays, we review here current knowledge on proteins directly interacting with Ku and on the contact points involved, with a particular accent on the different classes of Ku-binding motifs identified in several Ku partners. An integrated structural model of the core NHEJ network at the synapsis step is proposed.
Collapse
|
12
|
Genome plasticity is governed by double strand break DNA repair in Streptomyces. Sci Rep 2018; 8:5272. [PMID: 29588483 PMCID: PMC5869714 DOI: 10.1038/s41598-018-23622-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
The linear chromosome of the bacterium Streptomyces exhibits a remarkable genetic organization with grossly a central conserved region flanked by variable chromosomal arms. The terminal diversity co-locates with an intense DNA plasticity including the occurrence of large deletions associated to circularization and chromosomal arm exchange. These observations prompted us to assess the role of double strand break (DSB) repair in chromosome plasticity following. For that purpose, DSBs were induced along the chromosome using the meganuclease I-SceI. DSB repair in the central region of the chromosome was mutagenic at the healing site but kept intact the whole genome structure. In contrast, DSB repair in the chromosomal arms was mostly associated to the loss of the targeted chromosomal arm and extensive deletions beyond the cleavage sites. While homologous recombination occurring between copies of DNA sequences accounted for the most part of the chromosome rescue events, Non Homologous End Joining was involved in mutagenic repair as well as in huge genome rearrangements (i.e. circularization). Further, NHEJ repair was concomitant with the integration of genetic material at the healing site. We postulate that DSB repair drives genome plasticity and evolution in Streptomyces and that NHEJ may foster horizontal transfer in the environment.
Collapse
|
13
|
Singh A. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2017; 163:1740-1758. [PMID: 29171825 DOI: 10.1099/mic.0.000578] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic integrity of Mycobacterium tuberculosis is continuously threatened by the harsh survival conditions inside host macrophages, due to immune and antibiotic stresses. Faithful genome maintenance and repair must be accomplished under stress for the bacillus to survive in the host, necessitating a robust DNA repair system. The importance of DNA repair systems in pathogenesis is well established. Previous examination of the M. tuberculosis genome revealed homologues of almost all the major DNA repair systems, i.e. nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent developments in the field have pointed to the presence of novel proteins and pathways in mycobacteria. Homologues of archeal mismatch repair proteins were recently reported in mycobacteria, a pathway previously thought to be absent. RecBCD, the major nuclease-helicase enzymes involved in HR in E. coli, were implicated in the single-strand annealing (SSA) pathway. Novel roles of archeo-eukaryotic primase (AEP) polymerases, previously thought to be exclusive to NHEJ, have been reported in BER. Many new proteins with a probable role in DNA repair have also been discovered. It is now realized that the DNA repair systems in M. tuberculosis are highly evolved and have redundant backup mechanisms to mend the damage. This review is an attempt to summarize our current understanding of the DNA repair systems in M. tuberculosis.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
14
|
Antimicrobial Activity of Quinazolin Derivatives of 1,2-Di(quinazolin-4-yl)diselane against Mycobacteria. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5791781. [PMID: 28612027 PMCID: PMC5458374 DOI: 10.1155/2017/5791781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/12/2017] [Accepted: 04/03/2017] [Indexed: 11/17/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is one of the leading causes of morbidity and mortality. Currently, the emergence of drug resistance has an urgent need for new drugs. In previous study, we found that 1,2-di(quinazolin-4-yl)diselane (DQYD), a quinazoline derivative, has anticancer activities against many cancers. However, whether DQYD has the activity of antimycobacterium is still little known. Here our results show that DQYD has a similar value of the minimum inhibitory concentration with clinical drugs against mycobacteria and also has the ability of bacteriostatic activity with dose-dependent and time-dependent manner. Furthermore, the activities of DQYD against M. tuberculosis are associated with intracellular ATP homeostasis. Meanwhile, mycobacterium DNA damage level was increased after DQYD treatment. But there was no correlation between survival of mycobacteria in the presence of DQYD and intercellular reactive oxygen species. This study enlightens the possible benefits of quinazoline derivatives as potential antimycobacterium compounds and furtherly suggests a new strategy to develop new methods for searching antituberculosis drugs.
Collapse
|
15
|
Wright DG, Castore R, Shi R, Mallick A, Ennis DG, Harrison L. Mycobacterium tuberculosis and Mycobacterium marinum non-homologous end-joining proteins can function together to join DNA ends in Escherichia coli. Mutagenesis 2017; 32:245-256. [PMID: 27613236 PMCID: PMC5989629 DOI: 10.1093/mutage/gew042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis and Mycobacterium smegmatis express a Ku protein and a DNA ligase D and are able to repair DNA double strand breaks (DSBs) by non-homologous end-joining (NHEJ). This pathway protects against DNA damage when bacteria are in stationary phase. Mycobacterium marinum is a member of this mycobacterium family and like M. tuberculosis is pathogenic. M. marinum lives in water, forms biofilms and infects fish and frogs. M. marinum is a biosafety level 2 (BSL2) organism as it can infect humans, although infections are limited to the skin. M. marinum is accepted as a model to study mycobacterial pathogenesis, as M. marinum and M. tuberculosis are genetically closely related and have similar mechanisms of survival and persistence inside macrophage. The aim of this study was to determine whether M. marinum could be used as a model to understand M. tuberculosis NHEJ repair. We identified and cloned the M. marinum genes encoding NHEJ proteins and generated E. coli strains that express the M. marinum Ku (Mm-Ku) and ligase D (Mm-Lig) individually or together (LHmKumLig strain) from expression vectors integrated at phage attachment sites in the genome. We demonstrated that Mm-Ku and Mm-Lig are both required to re-circularize Cla I-linearized plasmid DNA in E. coli. We compared repair of strain LHmKumLig with that of an E. coli strain (BWKuLig#2) expressing the M. tuberculosis Ku (Mt-Ku) and ligase D (Mt-Lig), and found that LHmKumLig performed 3.5 times more repair and repair was more accurate than BWKuLig#2. By expressing the Mm-Ku with the Mt-Lig, or the Mt-Ku with the Mm-Lig in E. coli, we have shown that the NHEJ proteins from M. marinum and M. tuberculosis can function together to join DNA DSBs. NHEJ repair is therefore conserved between the two species. Consequently, M. marinum is a good model to study NHEJ repair during mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Douglas G Wright
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Reneau Castore
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Runhua Shi
- Department of Medicine and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Amrita Mallick
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Don G Ennis
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Lynn Harrison
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
16
|
Hoff G, Bertrand C, Zhang L, Piotrowski E, Chipot L, Bontemps C, Confalonieri F, McGovern S, Lecointe F, Thibessard A, Leblond P. Multiple and Variable NHEJ-Like Genes Are Involved in Resistance to DNA Damage in Streptomyces ambofaciens. Front Microbiol 2016; 7:1901. [PMID: 27965636 PMCID: PMC5124664 DOI: 10.3389/fmicb.2016.01901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/14/2016] [Indexed: 11/26/2022] Open
Abstract
Non-homologous end-joining (NHEJ) is a double strand break (DSB) repair pathway which does not require any homologous template and can ligate two DNA ends together. The basic bacterial NHEJ machinery involves two partners: the Ku protein, a DNA end binding protein for DSB recognition and the multifunctional LigD protein composed a ligase, a nuclease and a polymerase domain, for end processing and ligation of the broken ends. In silico analyses performed in the 38 sequenced genomes of Streptomyces species revealed the existence of a large panel of NHEJ-like genes. Indeed, ku genes or ligD domain homologues are scattered throughout the genome in multiple copies and can be distinguished in two categories: the “core” NHEJ gene set constituted of conserved loci and the “variable” NHEJ gene set constituted of NHEJ-like genes present in only a part of the species. In Streptomyces ambofaciens ATCC23877, not only the deletion of “core” genes but also that of “variable” genes led to an increased sensitivity to DNA damage induced by electron beam irradiation. Multiple mutants of ku, ligase or polymerase encoding genes showed an aggravated phenotype compared to single mutants. Biochemical assays revealed the ability of Ku-like proteins to protect and to stimulate ligation of DNA ends. RT-qPCR and GFP fusion experiments suggested that ku-like genes show a growth phase dependent expression profile consistent with their involvement in DNA repair during spores formation and/or germination.
Collapse
Affiliation(s)
- Grégory Hoff
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Claire Bertrand
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Lingli Zhang
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Emilie Piotrowski
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Ludovic Chipot
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Cyril Bontemps
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Fabrice Confalonieri
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud Orsay, France
| | - Stephen McGovern
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - François Lecointe
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Annabelle Thibessard
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Pierre Leblond
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| |
Collapse
|