1
|
Naren G, Li D, Xing D, Liu Y, Wang L, Fan N, Li H, Bai X, Zeng X, Wang J, Li X, Bao S, Nashun B. Smug1 alleviates the reproductive toxicity of 5-FU through functioning in rRNA quality control. Sci Rep 2025; 15:5728. [PMID: 39962164 PMCID: PMC11833072 DOI: 10.1038/s41598-025-90330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
5-Fluorouracil (5-FU) is a widely used chemotherapeutic agent whose incorporation into nucleic acid plays an essential role in its therapeutic efficacy. 5-FU induces severe reproductive toxicity, which has been shown to be reversible. However, the underlying mechanisms have not been fully elucidated. Since single-strand-selective monofunctional uracil-DNA glycosylase 1 (Smug1) is a key enzyme in the excision of 5-FU, we investigated its potential role in the reversible reproductive toxicity of 5-FU by integrating knockdown, overexpression and LC‒MS/MS approaches. 5-FU treatment increased Smug1 and Dkc1 expression but blocked rRNA maturation in preimplantation embryos. Smug1 knockdown inhibited Dkc1 expression and impaired rRNA maturation, leading to reduced preimplantation embryo development. In contrast, Smug1 overexpression alleviated the inhibitory effects of 5-FU on rRNA and oocyte maturation and partially rescued 5-FU-induced developmental defects in preimplantation embryos. LC‒MS/MS analysis further revealed that overexpression of Smug1 reduced the levels of RNA incorporated 5-FUrd, the metabolite of 5-FU, indicating that Smug1 potentially alleviates reproductive toxicity by excising 5-FU from RNA. Our findings revealed the active involvement of Smug1 in counteracting 5-FU-induced reproductive toxicity and provide valuable references for the development of new strategies to reduce the adverse effects of 5-FU.
Collapse
Affiliation(s)
- Gerile Naren
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Debang Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Danni Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Yu Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Lu Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Na Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Haoran Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Xue Bai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Xiejun Zeng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Jin Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Xihe Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, 011517, China
| | - Siqin Bao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China.
| | - Buhe Nashun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China.
| |
Collapse
|
2
|
Verma AK, Roy B, Dwivedi Y. Decoding the molecular script of 2'-O-ribomethylation: Implications across CNS disorders. Heliyon 2024; 10:e39036. [PMID: 39524798 PMCID: PMC11550049 DOI: 10.1016/j.heliyon.2024.e39036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence underscores the critical role of impaired mRNA translation in various neurobiological conditions. Ribosomal RNA (rRNA), essential for protein synthesis, undergoes crucial post-transcriptional modifications such as 2'-O-ribose methylation, pseudouridylation, and base modifications. These modifications, particularly 2'-O-ribose methylation is vital for stabilizing rRNA structures and optimizing translation efficiency by regulating RNA integrity and its interactions with proteins. Concentrated in key regions like decoding sites and the peptidyl transferase center, dysregulation of these modifications can disrupt ribosomal function, contributing to the pathogenesis of diverse neurological conditions, including mental health disorders, developmental abnormalities, and neurodegenerative diseases. Mechanistically, 2'-O-ribose methylation involves interactions between small nucleolar RNAs (snoRNAs), snoRNPs, and fibrillarin, forming a complex regulatory network crucial for maintaining ribosomal integrity and function. Recent research highlights the association of defective ribosome biogenesis with a spectrum of CNS disorders, emphasizing the importance of understanding rRNA mechanisms in disease pathology. This review focuses on the pivotal role of 2'-O-ribose methylation in shaping ribosomal function and its potential implications for unraveling the pathophysiology of CNS disorders. Insights gained from studying these RNA modifications could pave the way for new therapeutic strategies targeting ribosomal dysfunction and associated neuropathological conditions, advancing precision medicine and therapeutic interventions.
Collapse
Affiliation(s)
- Anuj K. Verma
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Narunsky A, Higgs GA, Torres BM, Yu D, de Andrade GB, Kavita K, Breaker RR. The discovery of novel noncoding RNAs in 50 bacterial genomes. Nucleic Acids Res 2024; 52:5152-5165. [PMID: 38647067 PMCID: PMC11109978 DOI: 10.1093/nar/gkae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Structured noncoding RNAs (ncRNAs) contribute to many important cellular processes involving chemical catalysis, molecular recognition and gene regulation. Few ncRNA classes are broadly distributed among organisms from all three domains of life, but the list of rarer classes that exhibit surprisingly diverse functions is growing. We previously developed a computational pipeline that enables the near-comprehensive identification of structured ncRNAs expressed from individual bacterial genomes. The regions between protein coding genes are first sorted based on length and the fraction of guanosine and cytidine nucleotides. Long, GC-rich intergenic regions are then examined for sequence and structural similarity to other bacterial genomes. Herein, we describe the implementation of this pipeline on 50 bacterial genomes from varied phyla. More than 4700 candidate intergenic regions with the desired characteristics were identified, which yielded 44 novel riboswitch candidates and numerous other putative ncRNA motifs. Although experimental validation studies have yet to be conducted, this rate of riboswitch candidate discovery is consistent with predictions that many hundreds of novel riboswitch classes remain to be discovered among the bacterial species whose genomes have already been sequenced. Thus, many thousands of additional novel ncRNA classes likely remain to be discovered in the bacterial domain of life.
Collapse
Affiliation(s)
- Aya Narunsky
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Gadareth A Higgs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Blake M Torres
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Diane Yu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Gabriel Belem de Andrade
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
4
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
5
|
Dolcemascolo R, Heras-Hernández M, Goiriz L, Montagud-Martínez R, Requena-Menéndez A, Ruiz R, Pérez-Ràfols A, Higuera-Rodríguez RA, Pérez-Ropero G, Vranken WF, Martelli T, Kaiser W, Buijs J, Rodrigo G. Repurposing the mammalian RNA-binding protein Musashi-1 as an allosteric translation repressor in bacteria. eLife 2024; 12:RP91777. [PMID: 38363283 PMCID: PMC10942595 DOI: 10.7554/elife.91777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The RNA recognition motif (RRM) is the most common RNA-binding protein domain identified in nature. However, RRM-containing proteins are only prevalent in eukaryotic phyla, in which they play central regulatory roles. Here, we engineered an orthogonal post-transcriptional control system of gene expression in the bacterium Escherichia coli with the mammalian RNA-binding protein Musashi-1, which is a stem cell marker with neurodevelopmental role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated transcriptionally and works as an allosteric translation repressor thanks to a specific interaction with the N-terminal coding region of a messenger RNA and its structural plasticity to respond to fatty acids. We fully characterized the genetic system at the population and single-cell levels showing a significant fold change in reporter expression, and the underlying molecular mechanism by assessing the in vitro binding kinetics and in vivo functionality of a series of RNA mutants. The dynamic response of the system was well recapitulated by a bottom-up mathematical model. Moreover, we applied the post-transcriptional mechanism engineered with Musashi-1 to specifically regulate a gene within an operon, implement combinatorial regulation, and reduce protein expression noise. This work illustrates how RRM-based regulation can be adapted to simple organisms, thereby adding a new regulatory layer in prokaryotes for translation control.
Collapse
Affiliation(s)
- Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | - María Heras-Hernández
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Lucas Goiriz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Applied Mathematics, Polytechnic University of ValenciaValenciaSpain
| | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | | | - Raúl Ruiz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Anna Pérez-Ràfols
- Giotto Biotech SRLSesto FiorentinoItaly
- Magnetic Resonance Center (CERM), Department of Chemistry Ugo Schiff, Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), University of FlorenceSesto FiorentinoItaly
| | - R Anahí Higuera-Rodríguez
- Dynamic Biosensors GmbHPlaneggGermany
- Department of Physics, Technical University of MunichGarchingGermany
| | - Guillermo Pérez-Ropero
- Ridgeview Instruments ABUppsalaSweden
- Department of Chemistry – BMC, Uppsala UniversityUppsalaSweden
| | - Wim F Vranken
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles – Vrije Universiteit BrusselBrusselsBelgium
| | | | | | - Jos Buijs
- Ridgeview Instruments ABUppsalaSweden
- Department of Immunology, Genetics, and Pathology, Uppsala UniversityUppsalaSweden
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| |
Collapse
|
6
|
Abstract
The mechanism and the evolution of DNA replication and transcription, the key elements of the central dogma of biology, are fundamentally well explained by the physicochemical complementarity between strands of nucleic acids. However, the determinants that have shaped the third part of the dogma-the process of biological translation and the universal genetic code-remain unclear. We review and seek parallels between different proposals that view the evolution of translation through the prism of weak, noncovalent interactions between biological macromolecules. In particular, we focus on a recent proposal that there exists a hitherto unrecognized complementarity at the heart of biology, that between messenger RNA coding regions and the proteins that they encode, especially if the two are unstructured. Reflecting the idea that the genetic code evolved from intrinsic binding propensities between nucleotides and amino acids, this proposal promises to forge a link between the distant past and the present of biological systems.
Collapse
Affiliation(s)
- Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
| | - Marlene Adlhart
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
| | - Thomas H Kapral
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Rasmussen RA, Wang S, Camarillo JM, Sosnowski V, Cho BK, Goo Y, Lucks J, O’Halloran T. Zur and zinc increase expression of E. coli ribosomal protein L31 through RNA-mediated repression of the repressor L31p. Nucleic Acids Res 2022; 50:12739-12753. [PMID: 36533433 PMCID: PMC9825181 DOI: 10.1093/nar/gkac1086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria can adapt in response to numerous stress conditions. One such stress condition is zinc depletion. The zinc-sensing transcription factor Zur regulates the way numerous bacterial species respond to severe changes in zinc availability. Under zinc sufficient conditions, Zn-loaded Zur (Zn2-Zur) is well-known to repress transcription of genes encoding zinc uptake transporters and paralogues of a few ribosomal proteins. Here, we report the discovery and mechanistic basis for the ability of Zur to up-regulate expression of the ribosomal protein L31 in response to zinc in E. coli. Through genetic mutations and reporter gene assays, we find that Zur achieves the up-regulation of L31 through a double repression cascade by which Zur first represses the transcription of L31p, a zinc-lacking paralogue of L31, which in turn represses the translation of L31. Mutational analyses show that translational repression by L31p requires an RNA hairpin structure within the l31 mRNA and involves the N-terminus of the L31p protein. This work uncovers a new genetic network that allows bacteria to respond to host-induced nutrient limiting conditions through a sophisticated ribosomal protein switching mechanism.
Collapse
Affiliation(s)
- Rebecca A Rasmussen
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Process Institute, Northwestern University, Evanston, IL 60208, USA
| | - Suning Wang
- Chemistry of Life Process Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Jeannie M Camarillo
- Northwestern Proteomics Core, Northwestern University, Evanston, IL 60208, USA
| | - Victoria Sosnowski
- Northwestern Proteomics Core, Northwestern University, Evanston, IL 60208, USA
| | - Byoung-Kyu Cho
- Northwestern Proteomics Core, Northwestern University, Evanston, IL 60208, USA
- Mass Spectrometry Technology Access Center, Washington University in St Louis, School of Medicine, USA
| | - Young Ah Goo
- Northwestern Proteomics Core, Northwestern University, Evanston, IL 60208, USA
- Mass Spectrometry Technology Access Center, Washington University in St Louis, School of Medicine, USA
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Process Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Thomas V O’Halloran
- Chemistry of Life Process Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Kapral TH, Farnhammer F, Zhao W, Lu ZJ, Zagrovic B. Widespread autogenous mRNA-protein interactions detected by CLIP-seq. Nucleic Acids Res 2022; 50:9984-9999. [PMID: 36107779 PMCID: PMC9508846 DOI: 10.1093/nar/gkac756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 02/02/2023] Open
Abstract
Autogenous interactions between mRNAs and the proteins they encode are implicated in cellular feedback-loop regulation, but their extent and mechanistic foundation are unclear. It was recently hypothesized that such interactions may be common, reflecting the role of intrinsic nucleobase-amino acid affinities in shaping the genetic code's structure. Here we analyze a comprehensive set of CLIP-seq experiments involving multiple protocols and report on widespread autogenous interactions across different organisms. Specifically, 230 of 341 (67%) studied RNA-binding proteins (RBPs) interact with their own mRNAs, with a heavy enrichment among high-confidence hits and a preference for coding sequence binding. We account for different confounding variables, including physical (overexpression and proximity during translation), methodological (difference in CLIP protocols, peak callers and cell types) and statistical (treatment of null backgrounds). In particular, we demonstrate a high statistical significance of autogenous interactions by sampling null distributions of fixed-margin interaction matrices. Furthermore, we study the dependence of autogenous binding on the presence of RNA-binding motifs and structured domains in RBPs. Finally, we show that intrinsic nucleobase-amino acid affinities favor co-aligned binding between mRNA coding regions and the proteins they encode. Our results suggest a central role for autogenous interactions in RBP regulation and support the possibility of a fundamental connection between coding and binding.
Collapse
Affiliation(s)
- Thomas H Kapral
- Departmet of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, A-1030, Austria,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, A-1030, Austria
| | - Fiona Farnhammer
- Departmet of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, A-1030, Austria,Division of Metabolism, University Children's Hospital Zurich and Children's Research Center, University of Zurich, Zurich, 8032, Switzerland,Division of Oncology, University Children's Hospital Zurich and Children's Research Center, University of Zurich, Zurich, 8032, Switzerland
| | - Weihao Zhao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhi J Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bojan Zagrovic
- To whom correspondence should be addressed. Tel: +43 1 4277 52271; Fax: +43 1 4277 9522;
| |
Collapse
|
9
|
González-Tortuero E, Anthon C, Havgaard JH, Geissler AS, Breüner A, Hjort C, Gorodkin J, Seemann SE. The Bacillaceae-1 RNA motif comprises two distinct classes. Gene 2022; 841:146756. [PMID: 35905857 DOI: 10.1016/j.gene.2022.146756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
Non-coding RNAs are key regulatory players in bacteria. Many computationally predicted non-coding RNAs, however, lack functional associations. An example is the Bacillaceae-1 RNA motif, whose Rfam model consists of two hairpin loops. We find the motif conserved in nine of 13 non-pathogenic strains of the genus Bacillus but only in one pathogenic strain. To elucidate functional characteristics, we studied 118 hits of the Rfam model in 11 Bacillus spp. and found two distinct classes based on the ensemble diversity of their RNA secondary structure and the genomic context concerning the ribosomal RNA (rRNA) cluster. Forty hits are associated with the rRNA cluster, of which all 19 hits upstream flanking of 16S rRNA have a reverse complementary structure of low structural diversity. Fifty-two hits have large ensemble diversity, of which 38 are located between two coding genes. For eight hits in Bacillus subtilis, we investigated public expression data under various conditions and observed either the forward or the reverse complementary motif expressed. Five hits are associated with the rRNA cluster. Four of them are located upstream of the 16S rRNA and are not transcriptionally active, but instead, their reverse complements with low structural diversity are expressed together with the rRNA cluster. The three other hits are located between two coding genes in non-conserved genomic loci. Two of them are independently expressed from their surrounding genes and are structurally diverse. In summary, we found that Bacillaceae-1 RNA motifs upstream flanking of ribosomal RNA clusters tend to have one stable structure with the reverse complementary motif expressed in B. subtilis. In contrast, a subgroup of intergenic motifs has the thermodynamic potential for structural switches.
Collapse
Affiliation(s)
- Enrique González-Tortuero
- Center for non-coding RNA in Technology and Health (RTH), Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health (RTH), Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jakob H Havgaard
- Center for non-coding RNA in Technology and Health (RTH), Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Adrian S Geissler
- Center for non-coding RNA in Technology and Health (RTH), Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health (RTH), Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Stefan E Seemann
- Center for non-coding RNA in Technology and Health (RTH), Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
10
|
Abstract
To exert their functions, RNAs adopt diverse structures, ranging from simple secondary to complex tertiary and quaternary folds. In vivo, RNA folding starts with RNA transcription, and a wide variety of processes are coupled to co-transcriptional RNA folding events, including the regulation of fundamental transcription dynamics, gene regulation by mechanisms like attenuation, RNA processing or ribonucleoprotein particle formation. While co-transcriptional RNA folding and associated co-transcriptional processes are by now well accepted as pervasive regulatory principles in all organisms, investigations into the role of the transcription machinery in co-transcriptional folding processes have so far largely focused on effects of the order in which RNA regions are produced and of transcription kinetics. Recent structural and structure-guided functional analyses of bacterial transcription complexes increasingly point to an additional role of RNA polymerase and associated transcription factors in supporting co-transcriptional RNA folding by fostering or preventing strategic contacts to the nascent transcripts. In general, the results support the view that transcription complexes can act as RNA chaperones, a function that has been suggested over 30 years ago. Here, we discuss transcription complexes as RNA chaperones based on recent examples from bacterial transcription.
Collapse
Affiliation(s)
- Nelly Said
- Freie Universität Berlin, Department Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Department Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin Für Materialien Und Energie, Macromolecular Crystallography, Berlin, Germany
| |
Collapse
|
11
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
12
|
Roy B, Granas D, Bragg F, Cher JAY, White MA, Stormo GD. Autoregulation of yeast ribosomal proteins discovered by efficient search for feedback regulation. Commun Biol 2020; 3:761. [PMID: 33311538 PMCID: PMC7732827 DOI: 10.1038/s42003-020-01494-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/15/2020] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional autoregulation of gene expression is common in bacteria but many fewer examples are known in eukaryotes. We used the yeast collection of genes fused to GFP as a rapid screen for examples of feedback regulation in ribosomal proteins by overexpressing a non-regulatable version of a gene and observing the effects on the expression of the GFP-fused version. We tested 95 ribosomal protein genes and found a wide continuum of effects, with 30% showing at least a 3-fold reduction in expression. Two genes, RPS22B and RPL1B, showed over a 10-fold repression. In both cases the cis-regulatory segment resides in the 5’ UTR of the gene as shown by placing that segment of the mRNA upstream of GFP alone and demonstrating it is sufficient to cause repression of GFP when the protein is over-expressed. Further analyses showed that the intron in the 5’ UTR of RPS22B is required for regulation, presumably because the protein inhibits splicing that is necessary for translation. The 5’ UTR of RPL1B contains a sequence and structure motif that is conserved in the binding sites of Rpl1 orthologs from bacteria to mammals, and mutations within the motif eliminate repression. Here, the authors screen for feedback regulation of ribosomal proteins by overexpressing a non- regulatable version of a gene and observing its effects on the expression of the GFP-fused version. They find that 30% show at least a 3-fold reduction in expression and two genes show a 10-fold reduction with the regulatory site being in the 5’ untranslated region of the gene.
Collapse
Affiliation(s)
- Basab Roy
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - David Granas
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Fredrick Bragg
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Jonathan A Y Cher
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Michael A White
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Gary D Stormo
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Müller-McNicoll M, Rossbach O, Hui J, Medenbach J. Auto-regulatory feedback by RNA-binding proteins. J Mol Cell Biol 2020; 11:930-939. [PMID: 31152582 PMCID: PMC6884704 DOI: 10.1093/jmcb/mjz043] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
RNA-binding proteins (RBPs) are key regulators in post-transcriptional control of gene expression. Mutations that alter their activity or abundance have been implicated in numerous diseases such as neurodegenerative disorders and various types of cancer. This highlights the importance of RBP proteostasis and the necessity to tightly control the expression levels and activities of RBPs. In many cases, RBPs engage in an auto-regulatory feedback by directly binding to and influencing the fate of their own mRNAs, exerting control over their own expression. For this feedback control, RBPs employ a variety of mechanisms operating at all levels of post-transcriptional regulation of gene expression. Here we review RBP-mediated autogenous feedback regulation that either serves to maintain protein abundance within a physiological range (by negative feedback) or generates binary, genetic on/off switches important for e.g. cell fate decisions (by positive feedback).
Collapse
Affiliation(s)
- Michaela Müller-McNicoll
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue-Strasse 13, D-60438 Frankfurt am Main, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jan Medenbach
- Institute of Biochemistry I, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
14
|
Discovery of 20 novel ribosomal leader candidates in bacteria and archaea. BMC Microbiol 2020; 20:130. [PMID: 32448158 PMCID: PMC7247131 DOI: 10.1186/s12866-020-01823-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNAs perform many functions in addition to supplying coding templates, such as binding proteins. RNA-protein interactions are important in multiple processes in all domains of life, and the discovery of additional protein-binding RNAs expands the scope for studying such interactions. To find such RNAs, we exploited a form of ribosomal regulation. Ribosome biosynthesis must be tightly regulated to ensure that concentrations of rRNAs and ribosomal proteins (r-proteins) match. One regulatory mechanism is a ribosomal leader (r-leader), which is a domain in the 5' UTR of an mRNA whose genes encode r-proteins. When the concentration of one of these r-proteins is high, the protein binds the r-leader in its own mRNA, reducing gene expression and thus protein concentrations. To date, 35 types of r-leaders have been validated or predicted. RESULTS By analyzing additional conserved RNA structures on a multi-genome scale, we identified 20 novel r-leader structures. Surprisingly, these included new r-leaders in the highly studied organisms Escherichia coli and Bacillus subtilis. Our results reveal several cases where multiple unrelated RNA structures likely bind the same r-protein ligand, and uncover previously unknown r-protein ligands. Each r-leader consistently occurs upstream of r-protein genes, suggesting a regulatory function. That the predicted r-leaders function as RNAs is supported by evolutionary correlations in the nucleotide sequences that are characteristic of a conserved RNA secondary structure. The r-leader predictions are also consistent with the locations of experimentally determined transcription start sites. CONCLUSIONS This work increases the number of known or predicted r-leader structures by more than 50%, providing additional opportunities to study structural and evolutionary aspects of RNA-protein interactions. These results provide a starting point for detailed experimental studies.
Collapse
|
15
|
Venkata Subbaiah KC, Hedaya O, Wu J, Jiang F, Yao P. Mammalian RNA switches: Molecular rheostats in gene regulation, disease, and medicine. Comput Struct Biotechnol J 2019; 17:1326-1338. [PMID: 31741723 PMCID: PMC6849081 DOI: 10.1016/j.csbj.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023] Open
Abstract
Alteration of RNA structure by environmental signals is a fundamental mechanism of gene regulation. For example, the riboswitch is a noncoding RNA regulatory element that binds a small molecule and causes a structural change in the RNA, thereby regulating transcription, splicing, or translation of an mRNA. The role of riboswitches in metabolite sensing and gene regulation in bacteria and other lower species was reported almost two decades ago, but riboswitches have not yet been discovered in mammals. An analog of the riboswitch, the protein-directed RNA switch (PDRS), has been identified as an important regulatory mechanism of gene expression in mammalian cells. RNA-binding proteins and microRNAs are two major executors of PDRS via their interaction with target transcripts in mammals. These protein-RNA interactions influence cellular functions by integrating environmental signals and intracellular pathways from disparate stimuli to modulate stability or translation of specific mRNAs. The discovery of a riboswitch in eukaryotes that is composed of a single class of thiamine pyrophosphate (TPP) suggests that additional ligand-sensing RNAs may be present to control eukaryotic or mammalian gene expression. In this review, we focus on protein-directed RNA switch mechanisms in mammals. We offer perspectives on the potential discovery of mammalian protein-directed and compound-dependent RNA switches that are related to human disease and medicine.
Collapse
Affiliation(s)
- Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Omar Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| |
Collapse
|
16
|
Abstract
RNA-binding proteins (RBPs) are central to most if not all cellular processes, dictating the fate of virtually all RNA molecules in the cell. Starting with pioneering work on ribosomal proteins, studies of bacterial RBPs have paved the way for molecular studies of RNA-protein interactions. Work over the years has identified major RBPs that act on cellular transcripts at the various stages of bacterial gene expression and that enable their integration into post-transcriptional networks that also comprise small non-coding RNAs. Bacterial RBP research has now entered a new era in which RNA sequencing-based methods permit mapping of RBP activity in a truly global manner in vivo. Moreover, the soaring interest in understudied members of host-associated microbiota and environmental communities is likely to unveil new RBPs and to greatly expand our knowledge of RNA-protein interactions in bacteria.
Collapse
Affiliation(s)
- Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany. .,Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|