1
|
STOKES CALEB, J. MELVIN ANN. Viral Infections of the Fetus and Newborn. AVERY'S DISEASES OF THE NEWBORN 2024:450-486.e24. [DOI: 10.1016/b978-0-323-82823-9.00034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Schleiss MR, Marsh KJ. Viral Infections of the Fetus and Newborn. AVERY'S DISEASES OF THE NEWBORN 2018:482-526.e19. [DOI: 10.1016/b978-0-323-40139-5.00037-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Arenavirus Coinfections Are Common in Snakes with Boid Inclusion Body Disease. J Virol 2015; 89:8657-60. [PMID: 26041290 DOI: 10.1128/jvi.01112-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/27/2015] [Indexed: 11/20/2022] Open
Abstract
Recently, novel arenaviruses were found in snakes with boid inclusion body disease (BIBD); these form the new genus Reptarenavirus within the family Arenaviridae. We used next-generation sequencing and de novo sequence assembly to investigate reptarenavirus isolates from our previous study. Four of the six isolates and all of the samples from snakes with BIBD contained at least two reptarenavirus species. The viruses sequenced comprise four novel reptarenavirus species and a representative of a new arenavirus genus.
Collapse
|
4
|
Wilson MR, Peters CJ. Diseases of the central nervous system caused by lymphocytic choriomeningitis virus and other arenaviruses. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:671-81. [PMID: 25015511 DOI: 10.1016/b978-0-444-53488-0.00033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael R Wilson
- Multiple Sclerosis Center, Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Clarence J Peters
- Departments of Microbiology, Immunology and Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
5
|
Misumi I, Alirezaei M, Eam B, Su MA, Whitton JL, Whitmire JK. Differential T cell responses to residual viral antigen prolong CD4+ T cell contraction following the resolution of infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:5655-68. [PMID: 24146043 DOI: 10.4049/jimmunol.1301215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The contraction phase of the T cell response is a poorly understood period after the resolution of infection when virus-specific effector cells decline in number and memory cells emerge with increased frequencies. CD8(+) T cells plummet in number and quickly reach stable levels of memory following acute lymphocytic choriomeningitis virus infection in mice. In contrast, virus-specific CD4(+) T cells gradually decrease in number and reach homeostatic levels only after many weeks. In this study, we provide evidence that MHCII-restricted viral Ag persists during the contraction phase following this prototypical acute virus infection. We evaluated whether the residual Ag affected the cell division and number of virus-specific naive and memory CD4(+) T cells and CD8(+) T cells. We found that naive CD4(+) T cells underwent cell division and accumulated in response to residual viral Ag for >2 mo after the eradication of infectious virus. Surprisingly, memory CD4(+) T cells did not undergo cell division in response to the lingering Ag, despite their heightened capacity to recognize Ag and make cytokine. In contrast to CD4(+) T cells, CD8(+) T cells did not undergo cell division in response to the residual Ag. Thus, CD8(+) T cells ceased division within days after the infection was resolved, indicating that CD8(+) T cell responses are tightly linked to endogenous processing of de novo synthesized virus protein. Our data suggest that residual viral Ag delays the contraction of CD4(+) T cell responses by recruiting new populations of CD4(+) T cells.
Collapse
Affiliation(s)
- Ichiro Misumi
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | | | | | | | | | | |
Collapse
|
6
|
Bodewes R, Kik MJL, Raj VS, Schapendonk CME, Haagmans BL, Smits SL, Osterhaus ADME. Detection of novel divergent arenaviruses in boid snakes with inclusion body disease in The Netherlands. J Gen Virol 2013; 94:1206-1210. [DOI: 10.1099/vir.0.051995-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arenaviruses are bi-segmented negative-stranded RNA viruses, which were until recently only detected in rodents and humans. Now highly divergent arenaviruses have been identified in boid snakes with inclusion body disease (IBD). Here, we describe the identification of a new species and variants of the highly divergent arenaviruses, which were detected in tissues of captive boid snakes with IBD in The Netherlands by next-generation sequencing. Phylogenetic analysis of the complete sequence of the open reading frames of the four predicted proteins of one of the detected viruses revealed that this virus was most closely related to the recently identified Golden Gate virus, while considerable sequence differences were observed between the highly divergent arenaviruses detected in this study. These findings add to the recent identification of the highly divergent arenaviruses in boid snakes with IBD in the United States and indicate that these viruses also circulate among boid snakes in Europe.
Collapse
Affiliation(s)
- R. Bodewes
- Department of Viroscience, Erasmus Medical Centre, Dr. Molewaterplein 50, Rotterdam, The Netherlands
| | - M. J. L. Kik
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - V. Stalin Raj
- Department of Viroscience, Erasmus Medical Centre, Dr. Molewaterplein 50, Rotterdam, The Netherlands
| | - C. M. E. Schapendonk
- Department of Viroscience, Erasmus Medical Centre, Dr. Molewaterplein 50, Rotterdam, The Netherlands
| | - B. L. Haagmans
- Department of Viroscience, Erasmus Medical Centre, Dr. Molewaterplein 50, Rotterdam, The Netherlands
| | - S. L. Smits
- Viroclinics Biosciences B.V., Marconistraat 16, Rotterdam, The Netherlands
- Department of Viroscience, Erasmus Medical Centre, Dr. Molewaterplein 50, Rotterdam, The Netherlands
| | - A. D. M. E. Osterhaus
- Viroclinics Biosciences B.V., Marconistraat 16, Rotterdam, The Netherlands
- Department of Viroscience, Erasmus Medical Centre, Dr. Molewaterplein 50, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Zapata JC, Salvato MS. Arenavirus variations due to host-specific adaptation. Viruses 2013; 5:241-78. [PMID: 23344562 PMCID: PMC3564120 DOI: 10.3390/v5010241] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 01/08/2023] Open
Abstract
Arenavirus particles are enveloped and contain two single-strand RNA genomic segments with ambisense coding. Genetic plasticity of the arenaviruses comes from transcription errors, segment reassortment, and permissive genomic packaging, and results in their remarkable ability, as a group, to infect a wide variety of hosts. In this review, we discuss some in vitro studies of virus genetic and phenotypic variation after exposure to selective pressures such as high viral dose, mutagens and antivirals. Additionally, we discuss the variation in vivo of selected isolates of Old World arenaviruses, particularly after infection of different animal species. We also discuss the recent emergence of new arenaviruses in the context of our observations of sequence variations that appear to be host-specific.
Collapse
Affiliation(s)
- Juan C Zapata
- Institute of Human Virology-School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | |
Collapse
|
8
|
Schleiss MR, Patterson JC. Viral Infections of the Fetus and Newborn and Human Immunodeficiency Virus Infection during Pregnancy. AVERY'S DISEASES OF THE NEWBORN 2012:468-512. [DOI: 10.1016/b978-1-4377-0134-0.10037-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Reikie BA, Smolen KK, Fortuno ES, Loeffler DIM, Cai B, Blimkie D, Kollmann TR. A single immunization near birth elicits immediate and lifelong protective immunity. Vaccine 2010; 29:83-90. [PMID: 21034825 DOI: 10.1016/j.vaccine.2010.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 09/28/2010] [Accepted: 10/05/2010] [Indexed: 02/03/2023]
Abstract
Most existing vaccines do not induce protective immunity immediately following birth, nor do they retain protective efficacy in the latter years of life without booster doses. Using a mouse model, we present evidence that a live-replicating vaccine administered only once shortly after birth was able to induce both immediate and lifelong protection. Newborn mice immunized with a safe, highly attenuated strain of Listeria monocytogenes (Lm) were already protected by day 7 post-vaccination when challenged with a virulent strain of Lm. Furthermore, all mice remained fully protected for 2 years after only a single immunization. Vaccine-specific T cell immune responses were still detectable 2 years later, indicating long-lived immune memory even in neonatal vaccine recipients. Analysis of memory precursor subsets, specific for antigens homologous to Lm or a model vaccine (Ova), demonstrated remarkable similarity between adult and neonatal vaccine recipient effector and central memory CD8 T cell development. The magnitude of expansion of antigen specific memory T cells post-infectious challenge correlated with protection in both groups. This is the first direct evidence that vaccination--even in the absence of a booster dose--is capable of inducing immediate and lifelong protective immune memory regardless of age at the time of initial vaccination.
Collapse
Affiliation(s)
- Brian A Reikie
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 1M9, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Tong JC, Ng LFP. Understanding infectious agents from an in silico perspective. Drug Discov Today 2010; 16:42-9. [PMID: 20974283 PMCID: PMC7185741 DOI: 10.1016/j.drudis.2010.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 10/01/2010] [Accepted: 10/18/2010] [Indexed: 12/31/2022]
Abstract
Knowledge of infectious diseases now emerging from genomic, proteomic, epidemiological and clinical data can provide insights into the mechanisms of immune function, disease pathogenesis and epidemiology. Here, we describe how considerable advances in computational methods of data mining, mathematical modeling in epidemiology and simulation have been used to enhance our understanding of infectious agents and discuss their impact on the discovery of new therapeutics and controlling their spread.
Collapse
Affiliation(s)
- Joo Chuan Tong
- Data Mining Department, Institute for Infocomm Research, 1 Fusionopolis Way, 21-01 Connexis South Tower, Singapore 138632, Singapore.
| | | |
Collapse
|
11
|
A multivalent vaccination strategy for the prevention of Old World arenavirus infection in humans. J Virol 2010; 84:9947-56. [PMID: 20668086 DOI: 10.1128/jvi.00672-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Arenaviruses cause severe human disease ranging from aseptic meningitis following lymphocytic choriomeningitis virus (LCMV) infection to hemorrhagic fever syndromes following infection with Guanarito virus (GTOV), Junin virus (JUNV), Lassa virus (LASV), Machupo virus (MACV), Sabia virus (SABV), or Whitewater Arroyo virus (WWAV). Cellular immunity, chiefly the CD8(+) T-cell response, plays a critical role in providing protective immunity following infection with the Old World arenaviruses LASV and LCMV. In the current study, we evaluated whether HLA class I-restricted epitopes that are cross-reactive among pathogenic arenaviruses could be identified for the purpose of developing an epitope-based vaccination approach that would cross-protect against multiple arenaviruses. We were able to identify a panel of HLA-A*0201-restricted peptides derived from the same region of the glycoprotein precursor (GPC) of LASV (GPC spanning residues 441 to 449 [GPC(441-449)]), LCMV (GPC(447-455)), JUNV (GPC(429-437)), MACV (GPC(444-452)), GTOV (GPC(427-435)), and WWAV (GPC(428-436)) that displayed high-affinity binding to HLA-A*0201 and were recognized by CD8(+) T cells in a cross-reactive manner following LCMV infection or peptide immunization of HLA-A*0201 transgenic mice. Immunization of HLA-A*0201 mice with the Old World peptide LASV GPC(441-449) or LCMV GPC(447-455) induced high-avidity CD8(+) T-cell responses that were able to kill syngeneic target cells pulsed with either LASV GPC(441-449) or LCMV GPC(447-455) in vivo and provided significant protection against viral challenge with LCMV. Through this study, we have demonstrated that HLA class I-restricted, cross-reactive epitopes exist among diverse arenaviruses and that individual epitopes can be utilized as effective vaccine determinants for multiple pathogenic arenaviruses.
Collapse
|