1
|
Kong F, Zhao Q, Wen W, He P, Shao L. Allelopathic effects and mechanism of kaempferol on controlling Microcystis aeruginosa blooms. MARINE POLLUTION BULLETIN 2025; 217:118116. [PMID: 40359702 DOI: 10.1016/j.marpolbul.2025.118116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/04/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
Microcystis aeruginosa blooms usually caused serious damage to local ecological environment. Utilization of allelochemicals for mitigating harmful algal blooms (HABs) are regarded as an eco-friendly way. In the previous studies, kaempferol (KAE) has showed allelopathic effect on algae. However, the mechanism of KAE on M. aeruginosa is still largely uncharacterized until now. In the present study, the effects and mechanism of KAE on M. aeruginosa were investigated in terms of growth indicators, cell membrane, photosynthesis, respiration, and enzymic system. The results indicated that KAE can significantly inhibit the growth of M. aeruginosa and the inhibitory effect be concentration-dependent. Besides, a high inhibition rate of 96.69 % was detected while exposure to 20 mg·L-1 KAE for 96 h. Statistical analysis revealed that the EC50 of KAE on M. aeruginosa at 48 and 96 h was 15.83 mg·L-1 and 11.99 mg·L-1, respectively. After exposure to KAE, photosynthetic fluorescence parameters of M. aeruginosa, including the maximum photochemical quantum yield (Fv/Fm), the actual photochemical quantum yield (YII), the maximum relative electron transfer rate (rETRmax), and light use efficiency (α), were all decreased. Additionally, superoxide dismutase (SOD) activities significantly increased as a response to oxidative stress. In comparison, the activities of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPC) and Na+-K+ ATPase decreased significantly. Besides, the nucleic acid and protein content in the solution increased, and the respiration rate of algae decreased significantly. By measuring the concentration of intracellular and extracellular microcystin (MCs), we found that exposure to KAE did not promote the leakage of MCs. Our results revealed that KAE is a promising antialgal natural chemical for HABs controlling.
Collapse
Affiliation(s)
- Fanchao Kong
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qianming Zhao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wenke Wen
- Shanghai Yuetian Biotechnology Co., Ltd., Shanghai 201306, China
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Water Environment & Ecology Engineering Research Center of Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liu Shao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Water Environment & Ecology Engineering Research Center of Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Lipus D, Jia Z, Sondermann M, Bussert R, Bartholomäus A, Yang S, Wagner D, Kallmeyer J. Microbial diversity and biogeochemical interactions in the seismically active and CO 2- rich Eger Rift ecosystem. ENVIRONMENTAL MICROBIOME 2024; 19:113. [PMID: 39722025 DOI: 10.1186/s40793-024-00651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024]
Abstract
The Eger Rift subsurface is characterized by frequent seismic activity and consistently high CO2 concentrations, making it a unique deep biosphere ecosystem and a suitable site to study the interactions between volcanism, tectonics, and microbiological activity. Pulses of geogenic H2 during earthquakes may provide substrates for methanogenic and chemolithoautotrophic processes, but very little is currently known about the role of subsurface microorganisms and their cellular processes in this type of environment. To assess the impact of geologic activity on microbial life, we analyzed the geological, geochemical, and microbiological composition of rock and sediment samples from a 238 m deep drill core, running across six lithostratigraphic zones. We evaluated the diversity and distribution of bacterial and archaeal communities. Our investigation revealed a distinct low-biomass community, with a surprisingly diverse archaeal population, providing strong support that methanogenic archaea reside in the Eger subsurface. Geochemical analysis demonstrated that ion concentrations (mostly sodium and sulfate) were highest in sediments from 50 to 100 m depth and in weathered rock below 200 m, indicating an elevated potential for ion solution in these areas. Microbial communities were dominated by common soil and water bacteria. Together with the occurrence of freshwater cyanobacteria at specific depths, these observations emphasize the heterogenous character of the sediments and are indicators for vertical groundwater movement across the Eger Rift subsurface. Our investigations also found evidence for anaerobic, autotrophic, and acidophilic communities in Eger Rift sediments, as sulfur-cycling taxa like Thiohalophilus and Desulfosporosinus were specifically enriched at depths below 100 m. The detection of methanogenic, halophilic, and ammonia-oxidizing archaeal populations demonstrate that the unique features of the Eger Rift subsurface environment provide the foundation for diverse types of microbial life, including the microbial utilization of geologically derived CO2 and, when available, H2, as a primary energy source.
Collapse
Affiliation(s)
- Daniel Lipus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany.
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Zeyu Jia
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Megan Sondermann
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Robert Bussert
- Section Applied Geochemistry, Institute of Applied Geosciences, Technische Universität Berlin, Berlin, Germany
| | | | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- University of Potsdam, Institute of Geosciences, Potsdam, Germany
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| |
Collapse
|
3
|
Mitchell JH, Freedman AH, Delaney JA, Girguis PR. Co-expression analysis reveals distinct alliances around two carbon fixation pathways in hydrothermal vent symbionts. Nat Microbiol 2024; 9:1526-1539. [PMID: 38839975 PMCID: PMC11636981 DOI: 10.1038/s41564-024-01704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/19/2024] [Indexed: 06/07/2024]
Abstract
Most autotrophic organisms possess a single carbon fixation pathway. The chemoautotrophic symbionts of the hydrothermal vent tubeworm Riftia pachyptila, however, possess two functional pathways: the Calvin-Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. How these two pathways are coordinated is unknown. Here we measured net carbon fixation rates, transcriptional/metabolic responses and transcriptional co-expression patterns of Riftia pachyptila endosymbionts by incubating tubeworms collected from the East Pacific Rise at environmental pressures, temperature and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes; the rTCA is allied to hydrogenases and dissimilatory nitrate reduction, whereas the CBB is allied to sulfide oxidation and assimilatory nitrate reduction, suggesting distinctive yet complementary roles in metabolic function. Furthermore, our network analysis implicates the rTCA and a group 1e hydrogenase as key players in the physiological response to limitation of sulfide and oxygen. Net carbon fixation rates were also exemplary, and accordingly, we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.
Collapse
|
4
|
Sun H, Su X, Jin L, Li C, Kou J, Zhang J, Li X. Response of Carbon-Fixing Bacteria to Patchy Degradation of the Alpine Meadow in the Source Zone of the Yellow River, West China. PLANTS (BASEL, SWITZERLAND) 2024; 13:579. [PMID: 38475426 DOI: 10.3390/plants13050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
This study aims to enlighten our understanding of the distribution of soil carbon-fixing bacteria (cbbL-harboring bacteria) and their community diversity in differently degraded patches at three altitudes. MiSeq high-throughput sequencing technology was used to analyze the soil carbon-fixing bacteria community diversity of degraded patches and healthy meadow at three altitudes. Redundancy analysis (RDA) and structural equation model (SEM) were used to analyze the correlation and influence path between environmental factors and carbon-fixing bacteria. The results showed that degradation reduced the relative abundance of Proteobacteria from 99.67% to 95.57%. Sulfurifustis, Cupriavidus, and Alkalispirillum were the dominant genera at the three altitudes. Hydrogenophaga and Ectothiorhodospira changed significantly with altitude. RDA results confirmed that available phosphorus (AP) was strongly and positively correlated with Proteobacteria. AP and total nitrogen (TN) were strongly and positively correlated with Hydrogenophaga. Grass coverage and sedge aboveground biomass were strongly and positively correlated with Sulfurifustis and Ectothiorhodospira, respectively. Elevation adversely affected the relative abundance of dominant carbon-fixing bacteria and diversity index by reducing the coverage of grass and soil volumetric moisture content (SVMC) indirectly, and also had a direct positive impact on the Chao1 index (path coefficient = 0.800). Therefore, increasing the content of nitrogen, phosphorus and SVMC and vegetation coverage, especially sedge and grass, will be conducive to the recovery of the diversity of soil carbon-fixing bacteria and improve the soil autotrophic microbial carbon sequestration potential in degraded meadows, especially in high-altitude areas.
Collapse
Affiliation(s)
- Huafang Sun
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- College of Eco-Environment and Resources, Qinghai University for Nationalities, Xining 810007, China
| | - Xiaoxue Su
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Liqun Jin
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Chengyi Li
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Jiancun Kou
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jing Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Xilai Li
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
5
|
Zhao Q, Jiang R, Shi Y, Shen A, He P, Shao L. Allelopathic Inhibition and Mechanism of Quercetin on Microcystis aeruginosa. PLANTS (BASEL, SWITZERLAND) 2023; 12:1808. [PMID: 37176865 PMCID: PMC10181490 DOI: 10.3390/plants12091808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
The utilization of allelochemicals to inhibit algal overgrowth is a promising approach for controlling harmful algal blooms (HABs). Quercetin has been found to have an allelopathic effect on algae. However, its responsive mechanism needs to be better understood. In the present study, the inhibitory effects of different quercetin concentrations on M. aeruginosa were evaluated, and the inhibition mechanisms were explored. The results demonstrated that quercetin significantly inhibited M. aeruginosa growth, and the inhibitory effect was concentration-dependent. The inhibition rate of 40 mg L-1 quercetin on algal density reached 90.79% after 96 h treatment. The concentration of chlorophyll-a (chl-a) in treatment groups with quercetin concentrations of 10, 20, and 40 mg L-1 decreased by 59.74%, 74.77%, and 80.66% at 96 h, respectively. Furthermore, quercetin affects photosynthesis and damages the cell membrane, respiratory system, and enzyme system. All photosynthetic fluorescence parameters, including the maximum photochemical quantum yield (Fv/Fm), the actual photochemical quantum yield (YII), the maximum relative electron transfer rate (rETRmax), and light use efficiency (α), exhibited a downtrend after exposure. After treatment with 20 mg L-1 quercetin, the nucleic acid and protein content in the algal solution increased, and the respiration rate of algae decreased significantly. Additionally, superoxide dismutase (SOD) activities significantly increased as a response to oxidative stress. In comparison, the activities of ribulose 1,5-biphosphate carboxylase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) decreased significantly. These results revealed that quercetin could inhibit M. aeruginosa by affecting its photosynthesis, respiration, cell membrane, and enzymic system. These results are promising for controlling M. aeruginosa effectively.
Collapse
Affiliation(s)
- Qianming Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Ruitong Jiang
- Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Yuxin Shi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Anglu Shen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Marine Scientific Research Institute, Shanghai Ocean University, Shanghai 201306, China
- Water Environment & Ecology Engineering Research Center of Shanghai Institution of Higher Education, Shanghai 201306, China
| | - Liu Shao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Marine Scientific Research Institute, Shanghai Ocean University, Shanghai 201306, China
- Water Environment & Ecology Engineering Research Center of Shanghai Institution of Higher Education, Shanghai 201306, China
| |
Collapse
|
6
|
Meloni M, Gurrieri L, Fermani S, Velie L, Sparla F, Crozet P, Henri J, Zaffagnini M. Ribulose-1,5-bisphosphate regeneration in the Calvin-Benson-Bassham cycle: Focus on the last three enzymatic steps that allow the formation of Rubisco substrate. FRONTIERS IN PLANT SCIENCE 2023; 14:1130430. [PMID: 36875598 PMCID: PMC9978339 DOI: 10.3389/fpls.2023.1130430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The Calvin-Benson-Bassham (CBB) cycle comprises the metabolic phase of photosynthesis and is responsible for carbon fixation and the production of sugar phosphates. The first step of the cycle involves the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) which catalyzes the incorporation of inorganic carbon into 3-phosphoglyceric acid (3PGA). The following steps include ten enzymes that catalyze the regeneration of ribulose-1,5-bisphosphate (RuBP), the substrate of Rubisco. While it is well established that Rubisco activity acts as a limiting step of the cycle, recent modeling studies and experimental evidence have shown that the efficiency of the pathway is also impacted by the regeneration of the Rubisco substrate itself. In this work, we review the current understanding of the structural and catalytic features of the photosynthetic enzymes that catalyze the last three steps of the regeneration phase, namely ribose-5-phosphate isomerase (RPI), ribulose-5-phosphate epimerase (RPE), and phosphoribulokinase (PRK). In addition, the redox- and metabolic-based regulatory mechanisms targeting the three enzymes are also discussed. Overall, this review highlights the importance of understudied steps in the CBB cycle and provides direction for future research aimed at improving plant productivity.
Collapse
Affiliation(s)
- Maria Meloni
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Libero Gurrieri
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Simona Fermani
- Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy
- Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, Bologna, Italy
| | - Lauren Velie
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Francesca Sparla
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Pierre Crozet
- Laboratory of Computational and Quantitative Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Paris, France
| | - Julien Henri
- Laboratory of Computational and Quantitative Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Paris, France
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Jahn LJ, Rekdal VM, Sommer MOA. Microbial foods for improving human and planetary health. Cell 2023; 186:469-478. [PMID: 36657442 DOI: 10.1016/j.cell.2022.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 01/19/2023]
Abstract
The current food production system is negatively impacting planetary and human health. A transition to a sustainable and fair food system is urgently needed. Microorganisms are likely enablers of this process, as they can produce delicious and healthy microbial foods with low environmental footprints. We review traditional and current approaches to microbial foods, such as fermented foods, microbial biomass, and food ingredients derived from microbial fermentations. We discuss how future advances in science-driven fermentation, synthetic biology, and sustainable feedstocks enable a new generation of microbial foods, potentially impacting the sustainability, resilience, and health effects of our food system.
Collapse
Affiliation(s)
- Leonie J Jahn
- Novo Nordisk Foundation Center for Biosustainability, DTU Biosustain, Kgs. Lyngby, Denmark
| | - Vayu M Rekdal
- Novo Nordisk Foundation Center for Biosustainability, DTU Biosustain, Kgs. Lyngby, Denmark; Joint BioEnergy Institute, Emeryville, CA 94608, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, DTU Biosustain, Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Continuous-flow membrane bioreactor enhances enrichment and culture of autotrophic nitrifying bacteria by removing extracellular free organic carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42378-42389. [PMID: 36648712 DOI: 10.1007/s11356-023-25253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/07/2023] [Indexed: 01/18/2023]
Abstract
An activated sludge system can be inoculated with enriched nitrifying bacteria to enhance NH4+-N removal, or enriched nitrifying bacteria can be added directly to a river to remove NH4+-N. However, the enrichment culture is still generally inefficient and the technical bottleneck has not been clarified. Previous studies have shown that extracellular free organic carbon (EFOC) inhibits the growth of some autotrophic bacteria, and separating EFOC during culture with a membrane bioreactor (MBR) promotes the continuous growth of autotrophic bacteria and CO2 fixation. However, whether a membrane bioreactor can also be used to enrich and culture autotrophic nitrifying bacteria by separating EFOC has not been verified. In this study, an MBR was constructed to separate EFOC during the culture of nitrifying bacteria in activated sludge to confirm that the MBR better enriches and cultures nitrifying bacteria than a sequencing batch reactor (SBR). Our results showed that after culture for 34 days, the rate of NH4+-N removal and the nitrification rate by nitrifying bacteria in the MBR were 2.20-fold and 1.42-fold higher than in the SBR, respectively. The abundance of Nitrospira in the MBR was also 7.23-fold greater than in the SBR at the end of the experimental period. After 34 days, the average concentration of EFOC and the average EFOC/bacterial organic carbon ratio in the MBR were only 53% and 37% of those in the SBR, respectively. A correlation analysis suggested that the timely removal by the MBR of the EFOC generated during the culture process may be an important factor in promoting the growth of autotrophic nitrifying bacteria. The possible mechanism by which the MBR separates EFOC to the growth of promote autotrophic nitrifying bacteria is discussed from the perspective of the inhibitory effect of EFOC on cbb gene transcription. Our experimental results suggest a new approach to enhancing the enrichment of autotrophic nitrifying bacteria and extending the application of MBRs.
Collapse
|
9
|
Diversity and distribution of CO 2-fixing microbial community along elevation gradients in meadow soils on the Tibetan Plateau. Sci Rep 2022; 12:9621. [PMID: 35688873 PMCID: PMC9187700 DOI: 10.1038/s41598-022-13183-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/20/2022] [Indexed: 11/08/2022] Open
Abstract
Soil CO2-fixing microbes play a significant role in CO2-fixation in the terrestrial ecosystems, particularly in the Tibetan Plateau. To understand carbon sequestration by soil CO2-fixing microbes and the carbon cycling in alpine meadow soils, microbial diversity and their driving environmental factors were explored along an elevation gradient from 3900 to 5100 m, on both east and west slopes of Mila Mountain region on the Tibetan Plateau. The CO2-fixing microbial communities were characterized by high-throughput sequencing targeting the cbbL gene, encoding the large subunit for the CO2-fixing protein ribulose 1, 5-bisphosphate carboxylase/oxygenase. The overall OTU (Operational Taxonomic Unit) abundance is concentrated at an altitude between 4300 and 4900 m. The diversity of CO2-fixing microbes is the highest in the middle altitude area, and on the east slope is higher than those on the west slope. In terms of microbial community composition, Proteobacteria is dominant, and the most abundant genera are Cupriavidus, Rhodobacter, Sulfurifustis and Thiobacillus. Altitude has the greatest influence on the structural characteristics of CO2-fixing microbes, and other environmental factors are significantly correlated with altitude. Therefore, altitude influences the structural characteristics of CO2-fixing microbes by driving environmental factors. Our results are helpful to understand the variation in soil microbial community and its role in soil carbon cycling along elevation gradients.
Collapse
|
10
|
Petushkova E, Mayorova E, Tsygankov A. TCA Cycle Replenishing Pathways in Photosynthetic Purple Non-Sulfur Bacteria Growing with Acetate. Life (Basel) 2021; 11:711. [PMID: 34357087 PMCID: PMC8307300 DOI: 10.3390/life11070711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purple non-sulfur bacteria (PNSB) are anoxygenic photosynthetic bacteria harnessing simple organic acids as electron donors. PNSB produce a-aminolevulinic acid, polyhydroxyalcanoates, bacteriochlorophylls a and b, ubiquinones, and other valuable compounds. They are highly promising producers of molecular hydrogen. PNSB can be cultivated in organic waste waters, such as wastes after fermentation. In most cases, wastes mainly contain acetic acid. Therefore, understanding the anaplerotic pathways in PNSB is crucial for their potential application as producers of biofuels. The present review addresses the recent data on presence and diversity of anaplerotic pathways in PNSB and describes different classifications of these pathways.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| | - Ekaterina Mayorova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
- Pushchino State Institute of Natural Science, The Federal State Budget Educational Institution of Higher Education, 3, Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anatoly Tsygankov
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| |
Collapse
|
11
|
Rahman I, Mujahid A, Palombo EA, Müller M. A functional gene-array analysis of microbial communities settling on microplastics in a peat-draining environment. MARINE POLLUTION BULLETIN 2021; 166:112226. [PMID: 33711605 DOI: 10.1016/j.marpolbul.2021.112226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Concerns about microplastic (MP) pollution arise from the rafting potential of these durable particles which potentially propagate harmful chemicals and bacteria across wide spatial gradients. While many studies have been conducted in the marine environment, knowledge of MPs in coastal and freshwater systems is limited. For this study, we exposed two MPs (polyethylene terephthalate and polylactic acid) to the undisturbed peat-draining Maludam River in Malaysia, for 6 months. The microbial communities on these MPs and the surrounding water were sequenced by MiSeq, while the genetic responses of these communities were assessed by GeoChip 5.0S. Microbial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria. Metabolic processes involved with carbon, nitrogen, sulfur, metal homeostasis, organic remediation and virulence had significantly different gene expression among the communities on MPs and in the surrounding water. Our study is the first to look at changes in gene expression of whole plastisphere communities.
Collapse
Affiliation(s)
- Ishraq Rahman
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, Sarawak Campus, 93350 Kuching, Sarawak, Malaysia; International University of Business, Agriculture and Technology (IUBAT), Uttara, Dhaka 1230, Bangladesh
| | - Aazani Mujahid
- Faculty of Resource Science & Technology, University Malaysia Sarawak, 94300, Sarawak, Malaysia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Moritz Müller
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, Sarawak Campus, 93350 Kuching, Sarawak, Malaysia.
| |
Collapse
|
12
|
Wang B, Huang J, Yang J, Jiang H, Xiao H, Han J, Zhang X. Bicarbonate uptake rates and diversity of RuBisCO genes in saline lake sediments. FEMS Microbiol Ecol 2021; 97:6149456. [PMID: 33629724 DOI: 10.1093/femsec/fiab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/23/2021] [Indexed: 11/12/2022] Open
Abstract
There is limited knowledge of microbial carbon fixation rate, and carbon-fixing microbial abundance and diversity in saline lakes. In this study, the inorganic carbon uptake rates and carbon-fixing microbial populations were investigated in the surface sediments of lakes with a full range of salinity from freshwater to salt saturation. The results showed that in the studied lakes light-dependent bicarbonate uptake contributed substantially (>70%) to total bicarbonate uptake, while the contribution of dark bicarbonate uptake (1.35-25.17%) cannot be ignored. The light-dependent bicarbonate uptake rates were significantly correlated with pH and turbidity, while dark bicarbonate uptake rates were significantly influenced by dissolved inorganic carbon, pH, temperature and salinity. Carbon-fixing microbial populations using the Calvin-Benson-Bassham pathway were widespread in the studied lakes, and they were dominated by the cbbL and cbbM gene types affiliated with Cyanobacteria and Proteobacteria, respectively. The cbbL and cbbM gene abundance and population structures were significantly affected by different environmental variables, with the cbbL and cbbM genes being negatively correlated with salinity and organic carbon concentration, respectively. In summary, this study improves our knowledge of the abundance, diversity and function of carbon-fixing microbial populations in the lakes with a full range of salinity.
Collapse
Affiliation(s)
- Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haiyi Xiao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jibin Han
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 81008, China
| | - Xiying Zhang
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 81008, China
| |
Collapse
|
13
|
Zhang S, Wang L, Fu X, Tsang YF, Maiti K. A continuous flow membrane bio-reactor releases the feedback inhibition of self-generated free organic carbon on cbb gene transcription of a typical chemoautotrophic bacterium to improve its CO 2 fixation efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143186. [PMID: 33131832 DOI: 10.1016/j.scitotenv.2020.143186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Since the free organic carbon (FOC) generated by chemoautotrophic bacterium self has a feedback inhibition effect on its growth and carbon fixation, a continuous flow membrane bio-reactor was designed to remove extracellular FOC (EFOC) and release its inhibition effect. The promotion effect of membrane reactor on growth and carbon fixation of typical chemoautotrophic bacterium and its mechanism were studied. The accumulated apparent carbon fixation yield in membrane reactor was 3.24 times that in the control reactor. The EFOC per unit bacteria and cbb gene transcription level in membrane reactor were about 0.41 times and 11.18 times that in control reactor in late stage, respectively. Membrane reactor separated out EFOC, especially the small molecules, which facilitated the release of intracellular FOC, thereby releasing the inhibition of FOC on cbb gene transcription, thus promoting growth and carbon fixation of the typical chemoautotrophic bacterium. This study lays a foundation for enhancing carbon fixation by chemoautotrophic bacteria and expands the application field of membrane reactor.
Collapse
Affiliation(s)
- Saiwei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China; Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA
| | - Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Xiaohua Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong SAR, China
| | - Kanchan Maiti
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
14
|
Sepehri M, Ghaffari MR, Khayam Nekoui M, Sarhadi E, Moghadam A, Khatabi B, Hosseini Salekdeh G. Root endophytic fungus Serendipita indica modulates barley leaf blade proteome by increasing the abundance of photosynthetic proteins in response to salinity. J Appl Microbiol 2021; 131:1870-1889. [PMID: 33694234 DOI: 10.1111/jam.15063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed at analysing the proteome pattern of the leaf blade of barley (Hordeum vulgare L.) in Serendipita indica-colonised plants to decipher the molecular mechanism of S. indica-mediated salt stress. This work is aligned with our previous research on barley leaf sheath to study proteomic pattern variability in leaf blade and sheath of barley plant in response to salinity and S. indica inoculation. METHODS AND RESULTS The experiment was conducted using a completely randomised factorial design with four replications and two treatments: salinity (0 and 300 mmol l-1 NaCl) and fungus (noninoculated and S. indica-inoculated). The leaf blades of the salt-treated S. indica-colonised and noninoculated plants were harvested after 2 weeks of salt treatment for the physiological and proteomic analyses. After exposure to 300 mmol l-1 NaCl, shoot dry matter production in noninoculated control plants decreased 84% which was about twofold higher than inoculated plants with S. indica. However, the accumulation of sodium in the shoot of S. indica-inoculated plants was significantly lower than the control plants. Analysis of the proteome profile revealed a high number of significantly up-regulated proteins involved in photosynthesis (26 out of 42 identified proteins). CONCLUSIONS The results demonstrated how the enhanced plant growth and salt stress resistance induced by S. indica was positively associated with the up-regulation of several proteins involved in photosynthesis and carbohydrate metabolism. In fact, S. indica improved photosynthesis in order to reach the best possible performance of the host plant under salt stress. SIGNIFICANCE AND IMPACT OF THE STUDY Current research provides new insight into the mechanism applied by S. indica in reducing the negative impacts of salt stress in barley at physiological and molecular levels.
Collapse
Affiliation(s)
- M Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - M R Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - M Khayam Nekoui
- Faculty of Biological Science, Research Center of Biotechnology Development, Tarbiat Modares University, Tehran, Iran
| | - E Sarhadi
- Research Institute of Forests and Rangelands, Tehran, Iran
| | - A Moghadam
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - B Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - G Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
15
|
Zhao Y, Liu P, Rui J, Cheng L, Wang Q, Liu X, Yuan Q. Dark carbon fixation and chemolithotrophic microbial community in surface sediments of the cascade reservoirs, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134316. [PMID: 31783464 DOI: 10.1016/j.scitotenv.2019.134316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Dark carbon fixation (DCF) by chemolithotrophic microbes can make considerable contribution to inorganic carbon fixation in aquatic ecosystems. However, little is known about the importance and diversity of chemolithotrophic microbes in cascade reservoir sediments. In this study, we determined the potential DCF rates of sediments of three cascade reservoirs in Wujiang River basin by carbon isotopic labeling. The results showed that the DCF rates of the surface sediments ranged from 1.5 to 14.7 mmol C m-2 d-1. The ratio of DCF to mineralization rate of sediment organic matter of surface sediment was between 11.6%~60.9%. High-throughput sequencing analysis of cbbL and cbbM genes involved in Calvin Benson Cycle indicated that cbbL-carrying CO2-assimilating bacteria included diverse functional groups, while cbbM type was mostly involved in sulfur oxidation. The sediments of Hongfeng (HF) reservoir, which has much longer hydraulic residence time (HRT) and locates in most upstream of a major tributary of Wujiang River, have substantially higher DCF rates. The cbbL and cbbM communities in HF were dominated by sulfur oxidizing bacteria, and were largely different from that in the other two reservoirs. Our results suggested that chemolithotrophy plays an important role in carbon cycling of sediments in cascade reservoir. Meanwhile, HRT and relative location of cascade reservoirs are the key control factors of both DCF and composition of autotrophic microbial communities in cascade reservoir sediments.
Collapse
Affiliation(s)
- Yuan Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Liu
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Junpeng Rui
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Qian Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
16
|
Gao M, Guo Z, Dong Y, Song Z. Effects of di-n-butyl phthalate on photosynthetic performance and oxidative damage in different growth stages of wheat in cinnamon soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:357-365. [PMID: 31009929 DOI: 10.1016/j.envpol.2019.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Herein, we investigated the effects of di-n-butyl phthalate (DBP) on photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) content, oxidative damage, and biomass accumulation of different tissues in wheat (Triticum aestivum L) planted in cinnamon soils. The photosynthetic or fluorescence parameters (except for the intercellular carbon dioxide concentration), chlorophyll content, RuBisCO content, and biomass of roots, stems, and leaves decreased at the seedling, jointing, and booting stages under the stress of DBP. Compared with the control, the content of superoxide anions and hydrogen peroxide in the roots, stems, and leaves increased with increasing DBP concentrations at the seedling, jointing, and booting stages. The activities of superoxide dismutase (SOD) and catalase (CAT) in the roots, stems, and leaves increased under the 10 and 20 mg kg-1 DBP treatments; however, no significant changes were observed under the 40 mg kg-1 DBP treatment at the seedling stage (except for the SOD activity in roots). The increase in SOD and CAT activities in the roots, stems, and leaves with increasing DBP concentration at the jointing and booting stages suggested that an increase in the activities of these antioxidant enzymes may play an important role in defending against excess reactive oxygen species under DBP stress. The biomass of wheat roots, stems, and leaves decreased with an increase in DBP concentration, which was presumably caused by a decrease in photosynthesis and RuBisCO. The effect of DBP on wheat roots, stems, and leaves decreased with wheat growth.
Collapse
Affiliation(s)
- Minling Gao
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China; Stockbridge School of Agriculture, University of Masschusetts, Amherst, MA, 01003-9286, USA
| | - Zeyang Guo
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Youming Dong
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China
| | - Zhengguo Song
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China.
| |
Collapse
|
17
|
Luedin SM, Storelli N, Danza F, Roman S, Wittwer M, Pothier JF, Tonolla M. Mixotrophic Growth Under Micro-Oxic Conditions in the Purple Sulfur Bacterium " Thiodictyon syntrophicum". Front Microbiol 2019; 10:384. [PMID: 30891015 PMCID: PMC6413534 DOI: 10.3389/fmicb.2019.00384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
The microbial ecosystem of the meromictic Lake Cadagno (Ticino, Swiss Alps) has been studied intensively in order to understand structure and functioning of the anoxygenic phototrophic sulfur bacteria community living in the chemocline. It has been found that the purple sulfur bacterium "Thiodictyon syntrophicum" strain Cad16T, belonging to the Chromatiaceae, fixes around 26% of all bulk inorganic carbon in the chemocline, both during day and night. With this study, we elucidated for the first time the mode of carbon fixation of str. Cad16T under micro-oxic conditions with a combination of long-term monitoring of key physicochemical parameters with CTD, 14C-incorporation experiments and quantitative proteomics using in-situ dialysis bag incubations of str. Cad16T cultures. Regular vertical CTD profiling during the study period in summer 2017 revealed that the chemocline sank from 12 to 14 m which was accompanied by a bloom of cyanobacteria and the subsequent oxygenation of the deeper water column. Sampling was performed both day and night. CO2 assimilation rates were higher during the light period compared to those in the dark, both in the chemocline population and in the incubated cultures. The relative change in the proteome between day and night (663 quantified proteins) comprised only 1% of all proteins encoded in str. Cad16T. Oxidative respiration pathways were upregulated at light, whereas stress-related mechanisms prevailed during the night. These results indicate that low light availability and the co-occurring oxygenation of the chemocline induced mixotrophic growth in str. Cad16T. Our study thereby helps to further understand the consequences micro-oxic conditions for phototrophic sulfur oxidizing bacteria. The complete proteome data have been deposited to the ProteomeXchange database with identifier PXD010641.
Collapse
Affiliation(s)
- Samuel M. Luedin
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Spiez Laboratory, Biology Division, Federal Office for Civil Protection, Spiez, Switzerland
| | - Nicola Storelli
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Francesco Danza
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Matthias Wittwer
- Spiez Laboratory, Biology Division, Federal Office for Civil Protection, Spiez, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and System Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Mauro Tonolla
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| |
Collapse
|
18
|
Petushkova E, Iuzhakov S, Tsygankov A. Differences in possible TCA cycle replenishing pathways in purple non-sulfur bacteria possessing glyoxylate pathway. PHOTOSYNTHESIS RESEARCH 2019; 139:523-537. [PMID: 30219941 DOI: 10.1007/s11120-018-0581-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Pathways replenishing tricarboxylic acid cycle were divided into four major groups based on metabolite serving as source for oxaloacetic acid or other tricarboxylic acid cycle component synthesis. Using this metabolic map, the analysis of genetic potential for functioning of tricarboxylic acid cycle replenishment pathways was carried out for seven strains of purple non-sulfur bacterium Rhodopseudomonas palustris. The results varied from strain to strain. Published microarray data for phototrophic acetate cultures of Rps. palustris CGA009 were analyzed to validate activity of the putative pathways. All the results were compared with the results for another purple non-sulfur bacterium, Rhodobacter capsulatus SB1003 and species-specific differences were clarified.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Institute of Basic Biological Problems, Russian Academy of Sciences, 2, Institutskaya Str, Pushchino, Moscow Region, Russia, 142290
| | - Sergei Iuzhakov
- Faculty of Biotechnology, Lomonosov Moscow State University, Leninskiye Gory 1, bld. 51, Moscow, Russia, 119991
| | - Anatoly Tsygankov
- Institute of Basic Biological Problems, Russian Academy of Sciences, 2, Institutskaya Str, Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
19
|
Thomas PJ, Boller AJ, Satagopan S, Tabita FR, Cavanaugh CM, Scott KM. Isotope discrimination by form IC RubisCO from
Ralstonia eutropha
and
Rhodobacter sphaeroides
, metabolically versatile members of ‘
Proteobacteria
’ from aquatic and soil habitats. Environ Microbiol 2018; 21:72-80. [DOI: 10.1111/1462-2920.14423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/18/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Phaedra J. Thomas
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Amanda J. Boller
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Sriram Satagopan
- Department of Microbiology The Ohio State University Columbus OH USA
| | - F. Robert Tabita
- Department of Microbiology The Ohio State University Columbus OH USA
| | - Colleen M. Cavanaugh
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Kathleen M. Scott
- Department of Integrative Biology University of South Florida Tampa FL USA
| |
Collapse
|
20
|
Xavier JC, Preiner M, Martin WF. Something special about CO-dependent CO 2 fixation. FEBS J 2018; 285:4181-4195. [PMID: 30240136 PMCID: PMC6282760 DOI: 10.1111/febs.14664] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/08/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023]
Abstract
Carbon dioxide enters metabolism via six known CO2 fixation pathways, of which only one is linear, exergonic in the direction of CO2‐assimilation, and present in both bacterial and archaeal anaerobes – the Wood‐Ljungdahl (WL) or reductive acetyl‐CoA pathway. Carbon monoxide (CO) plays a central role in the WL pathway as an energy rich intermediate. Here, we scan the major biochemical reaction databases for reactions involving CO and CO2. We identified 415 reactions corresponding to enzyme commission (EC) numbers involving CO2, which are non‐randomly distributed across different biochemical pathways. Their taxonomic distribution, reversibility under physiological conditions, cofactors and prosthetic groups are summarized. In contrast to CO2, only 15 reaction classes involving CO were detected. Closer inspection reveals that CO interfaces with metabolism and the carbon cycle at only two enzymes: anaerobic carbon monoxide dehydrogenase (CODH), a Ni‐ and Fe‐containing enzyme that generates CO for CO2 fixation in the WL pathway, and aerobic CODH, a Mo‐ and Cu‐containing enzyme that oxidizes environmental CO as an electron source. The CO‐dependent reaction of the WL pathway involves carbonyl insertion into a methyl carbon‐nickel at the Ni‐Fe‐S A‐cluster of acetyl‐CoA synthase (ACS). It appears that no alternative mechanisms to the CO‐dependent reaction of ACS have evolved in nearly 4 billion years, indicating an ancient and mechanistically essential role for CO at the onset of metabolism.
Collapse
Affiliation(s)
- Joana C Xavier
- Institut für Molekulare Evolution, Heinrich Heine Universität Düsseldorf, Germany
| | - Martina Preiner
- Institut für Molekulare Evolution, Heinrich Heine Universität Düsseldorf, Germany
| | - William F Martin
- Institut für Molekulare Evolution, Heinrich Heine Universität Düsseldorf, Germany.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
21
|
Lynn TM, Ge T, Yuan H, Wei X, Wu X, Xiao K, Kumaresan D, Yu SS, Wu J, Whiteley AS. Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecosystems. MICROBIAL ECOLOGY 2017; 73:645-657. [PMID: 27838764 DOI: 10.1007/s00248-016-0890-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/27/2016] [Indexed: 05/03/2023]
Abstract
CO2 assimilation by autotrophic microbes is an important process in soil carbon cycling, and our understanding of the community composition of autotrophs in natural soils and their role in carbon sequestration of these soils is still limited. Here, we investigated the autotrophic C incorporation in soils from three natural ecosystems, i.e., wetland (WL), grassland (GR), and forest (FO) based on the incorporation of labeled C into the microbial biomass. Microbial assimilation of 14C (14C-MBC) differed among the soils from three ecosystems, accounting for 14.2-20.2% of 14C-labeled soil organic carbon (14C-SOC). We observed a positive correlation between the cbbL (ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit gene) abundance, 14C-SOC level, and 14C-MBC concentration confirming the role of autotrophic bacteria in soil carbon sequestration. Distinct cbbL-bearing bacterial communities were present in each soil type; form IA and form IC RubisCO-bearing bacteria were most abundant in WL, followed by GR soils, with sequences from FO soils exclusively derived from the form IC clade. Phylogenetically, the diversity of CO2-fixing autotrophs and CO oxidizers differed significantly with soil type, whereas cbbL-bearing bacterial communities were similar when assessed using coxL. We demonstrate that local edaphic factors such as pH and salinity affect the C-fixation rate as well as cbbL and coxL gene abundance and diversity. Such insights into the effect of soil type on the autotrophic bacterial capacity and subsequent carbon cycling of natural ecosystems will provide information to enhance the sustainable management of these important natural ecosystems.
Collapse
Affiliation(s)
- Tin Mar Lynn
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China
- Biotechnology Research Department, Ministry of Education, Kyaukse, Myanmar
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China.
- UWA-CAS Joint Laboratory in Soil System Science, Changsha, 410125, China.
| | - Hongzhao Yuan
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China
| | - Xiaomeng Wei
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China
| | - Xiaohong Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China
| | - Keqing Xiao
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, NyMunkegade 114, 8000, Aarhus C, Denmark
| | - Deepak Kumaresan
- UWA-CAS Joint Laboratory in Soil System Science, Changsha, 410125, China
- School of Earth and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - San San Yu
- Biotechnology Research Department, Ministry of Education, Kyaukse, Myanmar
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China
- UWA-CAS Joint Laboratory in Soil System Science, Changsha, 410125, China
| | - Andrew S Whiteley
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China
- UWA-CAS Joint Laboratory in Soil System Science, Changsha, 410125, China
- School of Earth and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
22
|
Farmer RM, Tabita FR. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2015; 161:2184-91. [PMID: 26306848 PMCID: PMC4806589 DOI: 10.1099/mic.0.000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In many organisms there is a balance between carbon and nitrogen metabolism. These observations extend to the nitrogen-fixing, nonsulfur purple bacteria, which have the classic family of P(II) regulators that coordinate signals of carbon and nitrogen status to regulate nitrogen metabolism. Curiously, these organisms also possess a reverse mechanism to regulate carbon metabolism based on cellular nitrogen status. In this work, studies in Rhodobacter sphaeroides firmly established that the activity of the enzyme that catalyses nitrogen fixation, nitrogenase, induces a signal that leads to repression of genes encoding enzymes of the Calvin–Benson–Bassham (CBB) CO2 fixation pathway. Additionally, genetic and metabolomic experiments revealed that NADH-activated phosphoribulokinase is an intermediate in the signalling pathway. Thus, nitrogenase activity appears to be linked to cbb gene repression through phosphoribulokinase.
Collapse
Affiliation(s)
- Ryan M Farmer
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| |
Collapse
|
23
|
Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera". Appl Environ Microbiol 2014; 80:2451-60. [PMID: 24509918 DOI: 10.1128/aem.04199-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. "Candidatus Methylomirabilis oxyfera" is a recently described intra-aerobic methanotroph that is assumed to use nitric oxide to generate internal oxygen to oxidize methane via the conventional aerobic pathway, including the monooxygenase reaction. Previous genome analysis has suggested that, like the verrucomicrobial methanotrophs, "Ca. Methylomirabilis oxyfera" encodes and transcribes genes for the Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. Here we provide multiple independent lines of evidence for autotrophic carbon dioxide fixation by "Ca. Methylomirabilis oxyfera" via the CBB cycle. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), a key enzyme of the CBB cycle, in cell extracts from an "Ca. Methylomirabilis oxyfera" enrichment culture was shown to account for up to 10% of the total methane oxidation activity. Labeling studies with whole cells in batch incubations supplied with either (13)CH4 or [(13)C]bicarbonate revealed that "Ca. Methylomirabilis oxyfera" biomass and lipids became significantly more enriched in (13)C after incubation with (13)C-labeled bicarbonate (and unlabeled methane) than after incubation with (13)C-labeled methane (and unlabeled bicarbonate), providing evidence for autotrophic carbon dioxide fixation. Besides this experimental approach, detailed genomic and transcriptomic analysis demonstrated an operational CBB cycle in "Ca. Methylomirabilis oxyfera." Altogether, these results show that the CBB cycle is active and plays a major role in carbon assimilation by "Ca. Methylomirabilis oxyfera" bacteria. Our results suggest that autotrophy might be more widespread among methanotrophs than was previously assumed and implies that a methanotrophic community in the environment is not necessarily revealed by (13)C-depleted lipids.
Collapse
|
24
|
Guo X, Yin H, Cong J, Dai Z, Liang Y, Liu X. RubisCO gene clusters found in a metagenome microarray from acid mine drainage. Appl Environ Microbiol 2013; 79:2019-26. [PMID: 23335778 PMCID: PMC3592212 DOI: 10.1128/aem.03400-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/11/2013] [Indexed: 11/20/2022] Open
Abstract
The enzyme responsible for carbon dioxide fixation in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), is always detected as a phylogenetic marker to analyze the distribution and activity of autotrophic bacteria. However, such an approach provides no indication as to the significance of genomic content and organization. Horizontal transfers of RubisCO genes occurring in eubacteria and plastids may seriously affect the credibility of this approach. Here, we presented a new method to analyze the diversity and genomic content of RubisCO genes in acid mine drainage (AMD). A metagenome microarray containing 7,776 large-insertion fosmids was constructed to quickly screen genome fragments containing RubisCO form I large-subunit genes (cbbL). Forty-six cbbL-containing fosmids were detected, and six fosmids were fully sequenced. To evaluate the reliability of the metagenome microarray and understand the microbial community in AMD, the diversities of cbbL and the 16S rRNA gene were analyzed. Fosmid sequences revealed that the form I RubisCO gene cluster could be subdivided into form IA and IB RubisCO gene clusters in AMD, because of significant divergences in molecular phylogenetics and conservative genomic organization. Interestingly, the form I RubisCO gene cluster coexisted with the form II RubisCO gene cluster in one fosmid genomic fragment. Phylogenetic analyses revealed that horizontal transfers of RubisCO genes may occur widely in AMD, which makes the evolutionary history of RubisCO difficult to reconcile with organismal phylogeny.
Collapse
Affiliation(s)
- Xue Guo
- School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Huaqun Yin
- School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Jing Cong
- School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China
| | - Zhimin Dai
- School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Yili Liang
- School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Xueduan Liu
- School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| |
Collapse
|
25
|
Yousuf B, Sanadhya P, Keshri J, Jha B. Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India. BMC Microbiol 2012; 12:150. [PMID: 22834535 PMCID: PMC3438102 DOI: 10.1186/1471-2180-12-150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/06/2012] [Indexed: 11/10/2022] Open
Abstract
Background Soils harbour high diversity of obligate as well as facultative chemolithoautotrophic bacteria that contribute significantly to CO2 dynamics in soil. In this study, we used culture dependent and independent methods to assess the community structure and diversity of chemolithoautotrophs in agricultural and coastal barren saline soils (low and high salinity). We studied the composition and distribution of chemolithoautotrophs by means of functional marker gene cbbL encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and a phylogenetic marker 16S rRNA gene. The cbbL form IA and IC genes associated with carbon fixation were analyzed to gain insight into metabolic potential of chemolithoautotrophs in three soil types of coastal ecosystems which had a very different salt load and sulphur content. Results In cbbL libraries, the cbbL form IA was retrieved only from high saline soil whereas form IC was found in all three soil types. The form IC cbbL was also amplified from bacterial isolates obtained from all soil types. A number of novel monophyletic lineages affiliated with form IA and IC phylogenetic trees were found. These were distantly related to the known cbbL sequences from agroecosystem, volcanic ashes and marine environments. In 16S rRNA clone libraries, the agricultural soil was dominated by chemolithoautotrophs (Betaproteobacteria) whereas photoautotrophic Chloroflexi and sulphide oxidizers dominated saline ecosystems. Environmental specificity was apparently visible at both higher taxonomic levels (phylum) and lower taxonomic levels (genus and species). The differentiation in community structure and diversity in three soil ecosystems was supported by LIBSHUFF (P = 0.001) and UniFrac. Conclusion This study may provide fundamentally new insights into the role of chemolithoautotrophic and photoautotrophic bacterial diversity in biochemical carbon cycling in barren saline soils. The bacterial communities varied greatly among the three sites, probably because of differences in salinity, carbon and sulphur contents. The cbbL form IA-containing sulphide-oxidizing chemolithotrophs were found only in high saline soil clone library, thus giving the indication of sulphide availability in this soil ecosystem. This is the first comparative study of the community structure and diversity of chemolithoautotrophic bacteria in coastal agricultural and saline barren soils using functional (cbbL) and phylogenetic (16S rDNA) marker genes.
Collapse
Affiliation(s)
- Basit Yousuf
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, GB Marg, Bhavnagar, Gujarat, India
| | | | | | | |
Collapse
|
26
|
Kato S, Nakawake M, Ohkuma M, Yamagishi A. Distribution and phylogenetic diversity of cbbM genes encoding RubisCO form II in a deep-sea hydrothermal field revealed by newly designed PCR primers. Extremophiles 2012; 16:277-83. [PMID: 22212659 DOI: 10.1007/s00792-011-0428-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/13/2011] [Indexed: 12/12/2022]
Abstract
To investigate the phylogenetic diversity of putative chemolithoautotrophs possessing the RubisCO form II gene (cbbM) in various environments, we designed a new PCR primer set targeting this gene. The primer set was designed to cover more diverse and longer sequences of cbbM genes than those reported previously. We analyzed various samples (i.e., benthic sands, basement rocks, sulfide chimneys, vent fluids and overlying bottom seawater) collected in a deep-sea hydrothermal field of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, by PCR-based analysis using the designed primer set. Most of the cbbM phylotypes recovered from the liquid samples were related to those of the SUP05 group that belongs to the Gammaproteobacteria and includes putative sulfide-oxidizing chemolithoautotrophs. In contrast, the cbbM phylotypes recovered from the solid samples were related to environmental clones with low similarity (74-90%) and not closely related to the SUP05 group (69-74%). The cbbM phylotypes recovered from the liquid samples were different from those of the solid samples. Furthermore, the cbbM phylotypes recovered from the solid samples were different from each other. Our results expand knowledge of the phylogenetic diversity and distribution of putative chemolithoautotrophs possessing RubisCO form II cbbM genes in deep-sea hydrothermal fields.
Collapse
Affiliation(s)
- Shingo Kato
- Japan Collection of Microorganisms, RIKEN BioResource Center, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|
27
|
The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphate. J Bacteriol 2011; 193:3293-303. [PMID: 21531802 DOI: 10.1128/jb.00265-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first step of CO(2) fixation in the Calvin-Benson-Bassham (CBB) cycle. Besides its function in fixing CO(2) to support photoautotrophic growth, the CBB cycle is also important under photoheterotrophic growth conditions in purple nonsulfur photosynthetic bacteria. It has been assumed that the poor photoheterotrophic growth of RubisCO-deficient strains was due to the accumulation of excess intracellular reductant, which implied that the CBB cycle is important for maintaining the redox balance under these conditions. However, we present analyses of cbbM mutants in Rhodospirillum rubrum that indicate that toxicity is the result of an elevated intracellular pool of ribulose-1,5-bisphosphate (RuBP). There is a redox effect on growth, but it is apparently an indirect effect on the accumulation of RuBP, perhaps by the regulation of the activities of enzymes involved in RuBP regeneration. Our studies also show that the CBB cycle is not essential for R. rubrum to grow under photoheterotrophic conditions and that its role in controlling the redox balance needs to be further elucidated. Finally, we also show that CbbR is a positive transcriptional regulator of the cbb operon (cbbEFPT) in R. rubrum, as seen with related organisms, and define the transcriptional organization of the cbb genes.
Collapse
|
28
|
Modulation of the major paths of carbon in photorespiratory mutants of synechocystis. PLoS One 2011; 6:e16278. [PMID: 21283704 PMCID: PMC3025020 DOI: 10.1371/journal.pone.0016278] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/09/2010] [Indexed: 11/19/2022] Open
Abstract
Background Recent studies using transcript and metabolite profiles of wild-type and gene deletion mutants revealed that photorespiratory pathways are essential for the growth of Synechocystis sp. PCC 6803 under atmospheric conditions. Pool size changes of primary metabolites, such as glycine and glycolate, indicated a link to photorespiration. Methodology/Principal Findings The 13C labelling kinetics of primary metabolites were analysed in photoautotrophically grown cultures of Synechocystis sp. PCC 6803 by gas chromatography-mass spectrometry (GC-MS) to demonstrate the link with photorespiration. Cells pre-acclimated to high CO2 (5%, HC) or limited CO2 (0.035%, LC) conditions were pulse-labelled under very high (2% w/w) 13C-NaHCO3 (VHC) conditions followed by treatment with ambient 12C at HC and LC conditions, respectively. The 13C enrichment, relative changes in pool size, and 13C flux of selected metabolites were evaluated. We demonstrate two major paths of CO2 assimilation via Rubisco in Synechocystis, i.e., from 3PGA via PEP to aspartate, malate and citrate or, to a lesser extent, from 3PGA via glucose-6-phosphate to sucrose. The results reveal evidence of carbon channelling from 3PGA to the PEP pool. Furthermore, 13C labelling of glycolate was observed under conditions thought to suppress photorespiration. Using the glycolate-accumulating ΔglcD1 mutant, we demonstrate enhanced 13C partitioning into the glycolate pool under conditions favouring photorespiration and enhanced 13C partitioning into the glycine pool of the glycine-accumulating ΔgcvT mutant. Under LC conditions, the photorespiratory mutants ΔglcD1 and ΔgcvT showed enhanced activity of the additional carbon-fixing PEP carboxylase pathway. Conclusions/Significance With our approach of non-steady-state 13C labelling and analysis of metabolite pool sizes with respective 13C enrichments, we identify the use and modulation of major pathways of carbon assimilation in Synechocystis in the presence of high and low inorganic carbon supplies.
Collapse
|
29
|
Esparza M, Cárdenas JP, Bowien B, Jedlicki E, Holmes DS. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, carbon fixation in A. ferrooxidans. BMC Microbiol 2010; 10:229. [PMID: 20799944 PMCID: PMC2942843 DOI: 10.1186/1471-2180-10-229] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/27/2010] [Indexed: 11/10/2022] Open
Abstract
Background Acidithiobacillus ferrooxidans is chemolithoautotrophic γ-proteobacterium that thrives at extremely low pH (pH 1-2). Although a substantial amount of information is available regarding CO2 uptake and fixation in a variety of facultative autotrophs, less is known about the processes in obligate autotrophs, especially those living in extremely acidic conditions, prompting the present study. Results Four gene clusters (termed cbb1-4) in the A. ferrooxidans genome are predicted to encode enzymes and structural proteins involved in carbon assimilation via the Calvin-Benson-Bassham (CBB) cycle including form I of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39) and the CO2-concentrating carboxysomes. RT-PCR experiments demonstrated that each gene cluster is a single transcriptional unit and thus is an operon. Operon cbb1 is divergently transcribed from a gene, cbbR, encoding the LysR-type transcriptional regulator CbbR that has been shown in many organisms to regulate the expression of RubisCO genes. Sigma70-like -10 and -35 promoter boxes and potential CbbR-binding sites (T-N11-A/TNA-N7TNA) were predicted in the upstream regions of the four operons. Electrophoretic mobility shift assays (EMSAs) confirmed that purified CbbR is able to bind to the upstream regions of the cbb1, cbb2 and cbb3 operons, demonstrating that the predicted CbbR-binding sites are functional in vitro. However, CbbR failed to bind the upstream region of the cbb4 operon that contains cbbP, encoding phosphoribulokinase (EC 2.7.1.19). Thus, other factors not present in the assay may be required for binding or the region lacks a functional CbbR-binding site. The cbb3 operon contains genes predicted to encode anthranilate synthase components I and II, catalyzing the formation of anthranilate and pyruvate from chorismate. This suggests a novel regulatory connection between CO2 fixation and tryptophan biosynthesis. The presence of a form II RubisCO could promote the ability of A. ferrooxidans to fix CO2 at different concentrations of CO2. Conclusions A. ferrooxidans has features of cbb gene organization for CO2-assimilating functions that are characteristic of obligate chemolithoautotrophs and distinguish this group from facultative autotrophs. The most conspicuous difference is a separate operon for the cbbP gene. It is hypothesized that this organization may provide greater flexibility in the regulation of expression of genes involved in inorganic carbon assimilation.
Collapse
Affiliation(s)
- Mario Esparza
- Center for Bioinformatics and Genome Biology, MIFAB, Fundación Ciencia para la Vida and Depto. de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | |
Collapse
|
30
|
Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci U S A 2010; 107:11669-75. [PMID: 20558750 DOI: 10.1073/pnas.1006175107] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Calvin-Benson-Bassham cycle (Calvin cycle) catalyzes virtually all primary productivity on Earth and is the major sink for atmospheric CO(2). A less appreciated function of CO(2) fixation is as an electron-accepting process. It is known that anoxygenic phototrophic bacteria require the Calvin cycle to accept electrons when growing with light as their sole energy source and organic substrates as their sole carbon source. However, it was unclear why and to what extent CO(2) fixation is required when the organic substrates are more oxidized than biomass. To address these questions we measured metabolic fluxes in the photosynthetic bacterium Rhodopseudomonas palustris grown with (13)C-labeled acetate. R. palustris metabolized 22% of acetate provided to CO(2) and then fixed 68% of this CO(2) into cell material using the Calvin cycle. This Calvin cycle flux enabled R. palustris to reoxidize nearly half of the reduced cofactors generated during conversion of acetate to biomass, revealing that CO(2) fixation plays a major role in cofactor recycling. When H(2) production via nitrogenase was used as an alternative cofactor recycling mechanism, a similar amount of CO(2) was released from acetate, but only 12% of it was reassimilated by the Calvin cycle. These results underscore that N(2) fixation and CO(2) fixation have electron-accepting roles separate from their better-known roles in ammonia production and biomass generation. Some nonphotosynthetic heterotrophic bacteria have Calvin cycle genes, and their potential to use CO(2) fixation to recycle reduced cofactors deserves closer scrutiny.
Collapse
|
31
|
Differential accumulation of form I RubisCO in Rhodopseudomonas palustris CGA010 under Photoheterotrophic growth conditions with reduced carbon sources. J Bacteriol 2009; 191:4243-50. [PMID: 19376869 DOI: 10.1128/jb.01795-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodopseudomonas palustris is unique among characterized nonsulfur purple bacteria because of its capacity for anaerobic photoheterotrophic growth using aromatic acids. Like growth with other reduced electron donors, this growth typically requires the presence of bicarbonate/CO(2) or some other added electron acceptor in the growth medium. Proteomic studies indicated that there was specific accumulation of form I ribulose 1, 5-bisphosphate carboxylase/oxygenase (RubisCO) subunit proteins (CbbL and CbbS), as well as the CbbX protein, in cells grown on benzoate without added bicarbonate; such cells used the small amounts of dissolved CO(2) in the medium to support growth. These proteins were not observed in extracts from cells grown in the presence of high levels (10 mM) of added bicarbonate. To confirm the results of the proteomics studies, it was shown that the total RubisCO activity levels were significantly higher (five- to sevenfold higher) in wild-type (CGA010) cells grown on benzoate with a low level (0.5 mM) of added bicarbonate. Immunoblots indicated that the increase in RubisCO activity levels was due to a specific increase in the amount of form I RubisCO (CbbLS) and not in the amount of form II RubisCO (CbbM), which was constitutively expressed. Deletion of the main transcriptional regulator gene, cbbR, resulted in impaired growth on benzoate-containing low-bicarbonate media, and it was established that form I RubisCO synthesis was absolutely and specifically dependent on CbbR. To understand the regulatory role of the CbbRRS two-component system, strains with nonpolar deletions of the cbbRRS genes were grown on benzoate. Distinct from the results obtained with photoautotrophic growth conditions, the results of studies with various CbbRRS mutant strains indicated that this two-component system did not affect the observed enhanced synthesis of form I RubisCO under benzoate growth conditions. These studies indicate that diverse growth conditions differentially affect the ability of the CbbRRS two-component system to influence cbb transcription.
Collapse
|
32
|
Karpinets TV, Pelletier DA, Pan C, Uberbacher EC, Melnichenko GV, Hettich RL, Samatova NF. Phenotype fingerprinting suggests the involvement of single-genotype consortia in degradation of aromatic compounds by Rhodopseudomonas palustris. PLoS One 2009; 4:e4615. [PMID: 19242537 PMCID: PMC2643473 DOI: 10.1371/journal.pone.0004615] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/07/2009] [Indexed: 11/18/2022] Open
Abstract
Anaerobic degradation of complex organic compounds by microorganisms is crucial for development of innovative biotechnologies for bioethanol production and for efficient degradation of environmental pollutants. In natural environments, the degradation is usually accomplished by syntrophic consortia comprised of different bacterial species. This strategy allows consortium organisms to reduce efforts required for maintenance of the redox homeostasis at each syntrophic level. Cellular mechanisms that maintain the redox homeostasis during the degradation of aromatic compounds by one organism are not fully understood. Here we present a hypothesis that the metabolically versatile phototrophic bacterium Rhodopseudomonas palustris forms its own syntrophic consortia, when it grows anaerobically on p-coumarate or benzoate as a sole carbon source. We have revealed the consortia from large-scale measurements of mRNA and protein expressions under p-coumarate, benzoate and succinate degrading conditions using a novel computational approach referred as phenotype fingerprinting. In this approach, marker genes for known R. palustris phenotypes are employed to determine the relative expression levels of genes and proteins in aromatics versus non-aromatics degrading condition. Subpopulations of the consortia are inferred from the expression of phenotypes and known metabolic modes of the R. palustris growth. We find that p-coumarate degrading conditions may lead to at least three R. palustris subpopulations utilizing p-coumarate, benzoate, and CO2 and H2. Benzoate degrading conditions may also produce at least three subpopulations utilizing benzoate, CO2 and H2, and N2 and formate. Communication among syntrophs and inter-syntrophic dynamics in each consortium are indicated by up-regulation of transporters and genes involved in the curli formation and chemotaxis. The N2-fixing subpopulation in the benzoate degrading consortium has preferential activation of the vanadium nitrogenase over the molybdenum nitrogenase. This subpopulation in the consortium was confirmed in an independent experiment by consumption of dissolved nitrogen gas under the benzoate degrading conditions.
Collapse
Affiliation(s)
- Tatiana V Karpinets
- Computational Biology Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 2008; 9:597. [PMID: 19077236 PMCID: PMC2621215 DOI: 10.1186/1471-2164-9-597] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 12/11/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic, gamma-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1-2) and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism. RESULTS The genome of the type strain A. ferrooxidans ATCC 23270 was sequenced and annotated to identify general features and provide a framework for in silico metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation), stress responses, DNA repair, and metal and toxic compound fluxes. CONCLUSION Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of A. ferrooxidans in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential.
Collapse
Affiliation(s)
- Jorge Valdés
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para la Vida, Facultad de Ciencias de la Salud, Universidad Andres Bello, Santiago, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Buchanan BB. Thioredoxin: an unexpected meeting place. PHOTOSYNTHESIS RESEARCH 2007; 92:145-8. [PMID: 17638116 DOI: 10.1007/s11120-007-9196-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 05/13/2007] [Indexed: 05/16/2023]
Abstract
For much of the latter part of the 20th century, photosynthesis research at Berkeley was dominated by Daniel Arnon and Melvin Calvin. In this article, I have briefly described how their contributions jointly provided the foundation for our work on thioredoxin and how important Andrew Benson was to this effort.
Collapse
Affiliation(s)
- Bob B Buchanan
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
Markert S, Arndt C, Felbeck H, Becher D, Sievert SM, Hügler M, Albrecht D, Robidart J, Bench S, Feldman RA, Hecker M, Schweder T. Physiological Proteomics of the Uncultured Endosymbiont of Riftia pachyptila. Science 2007; 315:247-50. [PMID: 17218528 DOI: 10.1126/science.1132913] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The bacterial endosymbiont of the deep-sea tube worm Riftia pachyptila has never been successfully cultivated outside its host. In the absence of cultivation data, we have taken a proteomic approach based on the metagenome sequence to study the metabolism of this peculiar microorganism in detail. As one result, we found that three major sulfide oxidation proteins constitute ∼12% of the total cytosolic proteome, which highlights the essential role of these enzymes for the symbiont's energy metabolism. Unexpectedly, the symbiont uses the reductive tricarboxylic acid cycle in addition to the previously identified Calvin cycle for CO2 fixation.
Collapse
Affiliation(s)
- Stephanie Markert
- Institute of Marine Biotechnology, Walther-Rathenau-Strasse 49, D-17489 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Callister SJ, Nicora CD, Zeng X, Roh JH, Dominguez MA, Tavano CL, Monroe ME, Kaplan S, Donohue TJ, Smith RD, Lipton MS. Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes. J Microbiol Methods 2006; 67:424-36. [PMID: 16828186 PMCID: PMC2794424 DOI: 10.1016/j.mimet.2006.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 04/13/2006] [Accepted: 04/13/2006] [Indexed: 11/21/2022]
Abstract
The analysis of proteomes from aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 cell cultures by liquid chromatography-mass spectrometry yielded approximately 6,500 high confidence peptides representing 1,675 gene products (39% of the predicted proteins). The identified proteins corresponded primarily to open reading frames (ORFs) contained within the two chromosomal elements of this bacterium, but a significant number were also observed from ORFs associated with 5 naturally occurring plasmids. Using the accurate mass and time (AMT) tag approach, comparative studies showed that a number of proteins were uniquely detected within the photosynthetic cell culture. The estimated abundances of proteins observed in both aerobic respiratory and photosynthetic grown cultures were compared to provide insights into bioenergetic models for both modes of growth. Additional emphasis was placed on gene products annotated as hypothetical to gain information as to their potential roles within these two growth conditions. Where possible, transcriptome and proteome data for R. sphaeroides obtained under the same culture conditions were also compared.
Collapse
Affiliation(s)
- Stephen J. Callister
- Biological Separations and Mass Spectrometry, Mail Stop: K8-98, Pacific Northwest National Laboratory, Richland WA, 99352, USA
| | - Carrie D. Nicora
- Biological Separations and Mass Spectrometry, Mail Stop: K8-98, Pacific Northwest National Laboratory, Richland WA, 99352, USA
| | - Xiaohua Zeng
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston TX, 77030, USA
| | - Jung Hyeob Roh
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston TX, 77030, USA
| | - Miguel A. Dominguez
- Department of Genetics, University of Wisconsin-Madison, Madison WI, 53706, USA
| | - Christine L. Tavano
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI, 53706, USA
| | - Matthew E. Monroe
- Biological Separations and Mass Spectrometry, Mail Stop: K8-98, Pacific Northwest National Laboratory, Richland WA, 99352, USA
| | - Samuel Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston TX, 77030, USA
| | - Timothy J. Donohue
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI, 53706, USA
| | - Richard D. Smith
- Biological Separations and Mass Spectrometry, Mail Stop: K8-98, Pacific Northwest National Laboratory, Richland WA, 99352, USA
| | - Mary S. Lipton
- Biological Separations and Mass Spectrometry, Mail Stop: K8-98, Pacific Northwest National Laboratory, Richland WA, 99352, USA
| |
Collapse
|
37
|
Blazejak A, Kuever J, Erséus C, Amann R, Dubilier N. Phylogeny of 16S rRNA, ribulose 1,5-bisphosphate carboxylase/oxygenase, and adenosine 5'-phosphosulfate reductase genes from gamma- and alphaproteobacterial symbionts in gutless marine worms (oligochaeta) from Bermuda and the Bahamas. Appl Environ Microbiol 2006; 72:5527-36. [PMID: 16885306 PMCID: PMC1538757 DOI: 10.1128/aem.02441-05] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gutless oligochaetes are small marine worms that live in obligate associations with bacterial endosymbionts. While symbionts from several host species belonging to the genus Olavius have been described, little is known of the symbionts from the host genus Inanidrilus. In this study, the diversity of bacterial endosymbionts in Inanidrilus leukodermatus from Bermuda and Inanidrilus makropetalos from the Bahamas was investigated using comparative sequence analysis of the 16S rRNA gene and fluorescence in situ hybridization. As in all other gutless oligochaetes examined to date, I. leukodermatus and I. makropetalos harbor large, oval bacteria identified as Gamma 1 symbionts. The presence of genes coding for ribulose-1,5-bisphosphate carboxylase/oxygenase form I (cbbL) and adenosine 5'-phosphosulfate reductase (aprA) supports earlier studies indicating that these symbionts are chemoautotrophic sulfur oxidizers. Alphaproteobacteria, previously identified only in the gutless oligochaete Olavius loisae from the southwest Pacific Ocean, coexist with the Gamma 1 symbionts in both I. leukodermatus and I. makropetalos, with the former harboring four and the latter two alphaproteobacterial phylotypes. The presence of these symbionts in hosts from such geographically distant oceans as the Atlantic and Pacific suggests that symbioses with alphaproteobacterial symbionts may be widespread in gutless oligochaetes. The high phylogenetic diversity of bacterial endosymbionts in two species of the genus Inanidrilus, previously known only from members of the genus Olavius, shows that the stable coexistence of multiple symbionts is a common feature in gutless oligochaetes.
Collapse
Affiliation(s)
- Anna Blazejak
- Max Planck Institute of Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany.
| | | | | | | | | |
Collapse
|
38
|
Carré-Mlouka A, Méjean A, Quillardet P, Ashida H, Saito Y, Yokota A, Callebaut I, Sekowska A, Dittmann E, Bouchier C, de Marsac NT. A New Rubisco-like Protein Coexists with a Photosynthetic Rubisco in the Planktonic Cyanobacteria Microcystis. J Biol Chem 2006; 281:24462-71. [PMID: 16737967 DOI: 10.1074/jbc.m602973200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two genes encoding proteins related to large subunits of Rubisco were identified in the genome of the planktonic cyanobacterium Microcystis aeruginosa PCC 7806 that forms water blooms worldwide. The rbcL(I) gene belongs to the form I subfamily typically encountered in cyanobacteria, green algae, and land plants. The second and newly discovered gene is of the form IV subfamily and widespread in the Microcystis genus. In M. aeruginosa PCC 7806 cells, the expression of both rbcL(I) and rbcL(IV) is sulfur-dependent. The purified recombinant RbcL(IV) overexpressed in Escherichia coli cells did not display CO(2) fixation activity but catalyzed enolization of 2,3-diketo-5-methylthiopentyl-1-phosphate, and the rbcL(IV) gene rescued a Bacillus subtilis MtnW-deficient mutant. Therefore, the Microcystis RbcL(IV) protein functions both in vitro and in vivo and might be involved in a methionine salvage pathway. Despite variations in the amino acid sequences, RbcL(IV) shares structural similarities with all members of the Rubisco superfamily. Invariant amino acids within the catalytic site may thus represent the minimal set for enolization, whereas variations, especially located in loop 6, may account for the limitation of the catalytic reaction to enolization. Even at low protein concentrations in vitro, the recombinant RbcL(IV) assembles spontaneously into dimers, the minimal unit required for Rubisco forms I-III activity. The discovery of the coexistence of RbcL(I) and RbcL(IV) in cyanobacteria, the ancestors of chloroplasts, enlightens episodes of the chaotic evolutionary history of the Rubiscos, a protein family of major importance for life on Earth.
Collapse
Affiliation(s)
- Alyssa Carré-Mlouka
- Département de Microbiologie, Unité des Cyanobactéries (CNRS-URA 2172) and Plate-forme Génomique-Pasteur Génopole Ile de France, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Runquist JA, Miziorko HM. Functional contribution of a conserved, mobile loop histidine of phosphoribulokinase. Protein Sci 2006; 15:837-42. [PMID: 16522805 PMCID: PMC2242472 DOI: 10.1110/ps.052015606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the Rhodobacter sphaeroides phosphoribulokinase (PRK) structure, there are several disordered regions, including a loop containing invariant residues Y98 and H100. The functional importance of these residues has been unclear. PRK is inactivated by diethyl pyrocarbonate (DEPC) and protected by the substrates ATP and Ru5P, as well as by the competitive inhibitor, 6-phosphogluconate, suggesting active site histidine residue(s). PRK contains only three invariant histidines: H45, H100, and H134. Previous mutagenesis studies discount significant function for H134, but implicate H45 in Ru5P binding. PRK mutant H45N is inactivated by DEPC, implicating a second active site histidine. To evaluate the function of H100, as well as another invariant loop residue Y98, PRK mutants Y98L, H100A, H100N, and H100Q were characterized. Mutant PRK binding stoichiometries for the fluorescent alternative substrate, trinitrophenyl-ATP, as well as the allosteric activator, NADH, are comparable to wild-type PRK values, suggesting intact effector and substrate binding sites. The K(mRu5P) for the H100 mutants shows modest eight- to 14-fold inflation effects, whereas Y98L exhibits a 40-fold inflation for K(mRu5P). However, Y98L's K(i) for the competitive inhibitor 6-phosphogluconate is close to that of wild-type PRK. These observations suggest that Y98 and H100 are not essential Ru5P binding determinants. The Vm of Y98L is diminished 27-fold compared with wild-type PRK. In contrast, H100A, H100N, and H100Q exhibit significant decreases in Vm of 2600-, 2300-, and 735-fold, respectively. Results suggest that the mobile region containing Y98 and H100 must contribute to PRK's active site. Moreover, H100's imidazole significantly influences catalytic efficiency.
Collapse
Affiliation(s)
- Jennifer A Runquist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | |
Collapse
|
40
|
Tavano CL, Podevels AM, Donohue TJ. Identification of genes required for recycling reducing power during photosynthetic growth. J Bacteriol 2005; 187:5249-58. [PMID: 16030219 PMCID: PMC1196016 DOI: 10.1128/jb.187.15.5249-5258.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photosynthetic organisms have the unique ability to transform light energy into reducing power. We study the requirements for photosynthesis in the alpha-proteobacterium Rhodobacter sphaeroides. Global gene expression analysis found that approximately 50 uncharacterized genes were regulated by changes in light intensity and O\2 tension, similar to the expression of genes known to be required for photosynthetic growth of this bacterium. These uncharacterized genes included RSP4157 to -4159, which appeared to be cotranscribed and map to plasmid P004. A mutant containing a polar insertion in RSP4157, CT01, was able to grow via photosynthesis under autotrophic conditions using H2 as an electron donor and CO2 as a carbon source. However, CT01 was unable to grow photoheterotrophically in a succinate-based medium unless compounds that could be used to recycle reducing power (the external electron acceptor dimethyl sulfoxide (DMSO) or CO2 were provided. This suggests that the insertion in RSP4157 caused a defect in recycling reducing power during photosynthetic growth when a fixed carbon source was present. CT01 had decreased levels of RNA for genes encoding putative glycolate degradation functions. We found that exogenous glycolate also rescued photoheterotrophic growth of CT01, leading us to propose that CO2 produced from glycolate metabolism can be used by the Calvin cycle to recycle reducing power generated in the photosynthetic apparatus. The ability of glycolate, CO2, or DMSO to support photoheterotrophic growth of CT01 suggests that one or more products of RSP4157 to -4159 serve a previously unknown role in recycling reducing power under photosynthetic conditions.
Collapse
Affiliation(s)
- Christine L Tavano
- University of Wisconsin-Madison Department of Bacteriology, 420 Henry Mall, Madison, WI 53711, USA
| | | | | |
Collapse
|
41
|
Selesi D, Schmid M, Hartmann A. Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Environ Microbiol 2005; 71:175-84. [PMID: 15640185 PMCID: PMC544218 DOI: 10.1128/aem.71.1.175-184.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A PCR-based approach was developed to detect ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) form I large-subunit genes (cbbL) as a functional marker of autotrophic bacteria that fix carbon dioxide via the Calvin-Benson-Bassham cycle. We constructed two different primer sets, targeting the green-like and red-like phylogenetic groups of cbbL genes. The diversity of these cbbL genes was analyzed by the use of three differently managed agricultural soils from a long-term field experiment. cbbL gene fragments were amplified from extracted soil DNAs, and PCR products were cloned and screened by restriction fragment length polymorphism analysis. Selected unique cbbL clones were sequenced and analyzed phylogenetically. The green-like cbbL sequences revealed a very low level of diversity, being closely related to the cbbL genes of Nitrobacter winogradskyi and Nitrobacter vulgaris. In contrast, the red-like cbbL gene libraries revealed a high level of diversity in the two fertilized soils and less diversity in unfertilized soil. The majority of environmental red-like cbbL genes were only distantly related to already known cbbL sequences and even formed separate clusters. In order to extend the database of available red-like cbbL sequences, we amplified cbbL sequences from bacterial type culture strains and from bacterial isolates obtained from the investigated soils. Bacterial isolates harboring the cbbL gene were analyzed phylogenetically on the basis of their 16S rRNA gene sequences. These analyses revealed that bacterial genera such as Bacillus, Streptomyces, and Arthrobacter harbor red-like cbbL genes which fall into the cbbL gene clusters retrieved from the investigated soils.
Collapse
Affiliation(s)
- Drazenka Selesi
- Institute of Soil Ecology, GSF-National Research Centre for Environment and Health, Neuherberg/Munich, Germany
| | | | | |
Collapse
|
42
|
Dubbs P, Dubbs JM, Tabita FR. Effector-mediated interaction of CbbRI and CbbRII regulators with target sequences in Rhodobacter capsulatus. J Bacteriol 2004; 186:8026-35. [PMID: 15547275 PMCID: PMC529060 DOI: 10.1128/jb.186.23.8026-8035.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhodobacter capsulatus, genes encoding enzymes of the Calvin-Benson-Bassham reductive pentose phosphate pathway are located in the cbb(I) and cbb(II) operons. Each operon contains a divergently transcribed LysR-type transcriptional activator (CbbR(I) and CbbR(II)) that regulates the expression of its cognate cbb promoter in response to an as yet unidentified effector molecule(s). Both CbbR(I) and CbbR(II) were purified, and the ability of a variety of potential effector molecules to induce changes in their DNA binding properties at their target promoters was assessed. The responses of CbbR(I) and CbbR(II) to potential effectors were not identical. In gel mobility shift assays, the affinity of both CbbR(I) and CbbR(II) for their target promoters was enhanced in the presence of ribulose-1,5-bisphosphate (RuBP), phosphoenolpyruvate, 3-phosphoglycerate, 2-phosphoglycolate. ATP, 2-phosphoglycerate, and KH(2)PO(4) were found to enhance only CbbR(I) binding, while fructose-1,6-bisphosphate enhanced the binding of only CbbR(II). The DNase I footprint of CbbR(I) was reduced in the presence of RuBP, while reductions in the CbbR(II) DNase I footprint were induced by fructose-1,6-bisphosphate, 3-phosphoglycerate, and KH(2)PO(4). The current in vitro results plus recent in vivo studies suggest that CbbR-mediated regulation of cbb transcription is controlled by multiple metabolic signals in R. capsulatus. This control reflects not only intracellular levels of Calvin-Benson-Bassham cycle metabolic intermediates but also the fixed (organic) carbon status and energy charge of the cell.
Collapse
Affiliation(s)
- Padungsri Dubbs
- Department of Microbiology, Mahidol University, Payathai, Thailand
| | | | | |
Collapse
|
43
|
Corredor JE, Wawrik B, Paul JH, Tran H, Kerkhof L, López JM, Dieppa A, Cárdenas O. Geochemical rate-RNA integration study: ribulose-1,5-bisphosphate carboxylase/oxygenase gene transcription and photosynthetic capacity of planktonic photoautotrophs. Appl Environ Microbiol 2004; 70:5459-68. [PMID: 15345433 PMCID: PMC520902 DOI: 10.1128/aem.70.9.5459-5468.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A pilot field experiment to assess the relationship between traditional biogeochemical rate measurements and transcriptional activity of microbial populations was carried out at the LEO 15 site off Tuckerton, N.J. Here, we report the relationship between photosynthetic capacity of autotrophic plankton and transcriptional activity of the large subunit gene (rbcL) for ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme responsible for primary carbon fixation during photosynthesis. Similar diel patterns of carbon fixation and rbcL gene expression were observed in three of four time series, with maxima for photosynthetic capacity (P(max)) and rbcL mRNA occurring between 10 a.m. and 1 p.m. The lowest P(max) and rbcL levels were detected between 6 p.m. and 10:30 p.m. A significant correlation was found between P(max) and form ID rbcL mRNA (R(2) = 0.56) and forms IA and IB (R(2) = 0.41 and 0.47, respectively). The correlation between the abundance of "diatom" rbcL and P(max) mRNA was modest (R(2) = 0.49; n = 12) but improved dramatically (R(2) = 0.97; n = 10) upon removal of two outliers which represented afternoon samples with high P(max) but lower mRNA levels. Clone libraries from reverse transcription-PCR-amplified rbcL mRNA indicated the presence of several chromophytic algae (diatoms, prymnesiophytes, and chrysophytes) and some eukaryotic green flagellates. Analogous results were obtained from amplified small rRNA sequences and secondary pigment analysis. These results suggest that diatoms were a major contributor to carbon fixation at LEO 15 at the time of sampling and that photosynthetic carbon fixation was partially controlled by transcriptional regulation of the RubisCO gene.
Collapse
Affiliation(s)
- Jorge E Corredor
- Department of Marine Sciences, University of Puerto Rico, Lajas, Puerto Rico
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Giri BJ, Bano N, Hollibaugh JT. Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California. Appl Environ Microbiol 2004; 70:3443-8. [PMID: 15184142 PMCID: PMC427752 DOI: 10.1128/aem.70.6.3443-3448.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Partial sequences of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) (EC 4.1.1.39) genes were retrieved from samples taken along a redox gradient in alkaline, hypersaline Mono Lake, Calif. The form I gene (cbbL) was found in all samples, whereas form II (cbbM) was not retrieved from any of the samples. None of the RuBisCO sequences we obtained were closely related (nucleotide similarity, <90%) to sequences in the database. Some could be attributed to organisms isolated from the lake (Cyanobium) or appearing in enrichment cultures. Most (52%) of the sequences fell into in one clade, containing sequences that were identical to sequences retrieved from an enrichment culture grown with nitrate and sulfide, and another clade contained sequences identical to those retrieved from an arsenate-reducing, sulfide-oxidizing enrichment.
Collapse
Affiliation(s)
- Bruno J Giri
- Department of Marine Sciences, University of Georgia, Athens, GA 30602-3636, USA
| | | | | |
Collapse
|
45
|
Gibson JL, Dubbs JM, Tabita FR. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth. J Bacteriol 2002; 184:6654-64. [PMID: 12426354 PMCID: PMC135422 DOI: 10.1128/jb.184.23.6654-6664.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhodobacter sphaeroides, the two cbb operons encoding duplicated Calvin-Benson Bassham (CBB) CO2 fixation reductive pentose phosphate cycle structural genes are differentially controlled. In attempts to define the molecular basis for the differential regulation, the effects of mutations in genes encoding a subunit of Cbb3 cytochrome oxidase, ccoP, and a global response regulator, prrA (regA), were characterized with respect to CO2 fixation (cbb) gene expression by using translational lac fusions to the R. sphaeroides cbb(I) and cbb(II) promoters. Inactivation of the ccoP gene resulted in derepression of both promoters during chemoheterotophic growth, where cbb expression is normally repressed; expression was also enhanced over normal levels during phototrophic growth. The prrA mutation effected reduced expression of cbb(I) and cbb(II) promoters during chemoheterotrophic growth, whereas intermediate levels of expression were observed in a double ccoP prrA mutant. PrrA and ccoP1 prrA strains cannot grow phototrophically, so it is impossible to examine cbb expression in these backgrounds under this growth mode. In this study, however, we found that PrrA mutants of R. sphaeroides were capable of chemoautotrophic growth, allowing, for the first time, an opportunity to directly examine the requirement of PrrA for cbb gene expression in vivo under growth conditions where the CBB cycle and CO2 fixation are required. Expression from the cbb(II) promoter was severely reduced in the PrrA mutants during chemoautotrophic growth, whereas cbb(I) expression was either unaffected or enhanced. Mutations in ccoQ had no effect on expression from either promoter. These observations suggest that the Prr signal transduction pathway is not always directly linked to Cbb3 cytochrome oxidase activity, at least with respect to cbb gene expression. In addition, lac fusions containing various lengths of the cbb(I) promoter demonstrated distinct sequences involved in positive regulation during photoautotrophic versus chemoautotrophic growth, suggesting that different regulatory proteins may be involved. In Rhodobacter capsulatus, ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) expression was not affected by cco mutations during photoheterotrophic growth, suggesting that differences exist in signal transduction pathways regulating cbb genes in the related organisms.
Collapse
Affiliation(s)
- Janet L Gibson
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|
46
|
Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 2002; 66:94-121; table of contents. [PMID: 11875129 PMCID: PMC120779 DOI: 10.1128/mmbr.66.1.94-121.2002] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain filamentous nitrogen-fixing cyanobacteria generate signals that direct their own multicellular development. They also respond to signals from plants that initiate or modulate differentiation, leading to the establishment of a symbiotic association. An objective of this review is to describe the mechanisms by which free-living cyanobacteria regulate their development and then to consider how plants may exploit cyanobacterial physiology to achieve stable symbioses. Cyanobacteria that are capable of forming plant symbioses can differentiate into motile filaments called hormogonia and into specialized nitrogen-fixing cells called heterocysts. Plant signals exert both positive and negative regulatory control on hormogonium differentiation. Heterocyst differentiation is a highly regulated process, resulting in a regularly spaced pattern of heterocysts in the filament. The evidence is most consistent with the pattern arising in two stages. First, nitrogen limitation triggers a nonrandomly spaced cluster of cells (perhaps at a critical stage of their cell cycle) to initiate differentiation. Interactions between an inhibitory peptide exported by the differentiating cells and an activator protein within them causes one cell within each cluster to fully differentiate, yielding a single mature heterocyst. In symbiosis with plants, heterocyst frequencies are increased 3- to 10-fold because, we propose, either differentiation is initiated at an increased number of sites or resolution of differentiating clusters is incomplete. The physiology of symbiotically associated cyanobacteria raises the prospect that heterocyst differentiation proceeds independently of the nitrogen status of a cell and depends instead on signals produced by the plant partner.
Collapse
Affiliation(s)
- John C Meeks
- Section of Microbiology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
47
|
Elsaied H, Naganuma T. Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. Appl Environ Microbiol 2001; 67:1751-65. [PMID: 11282630 PMCID: PMC92794 DOI: 10.1128/aem.67.4.1751-1765.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2000] [Accepted: 02/02/2001] [Indexed: 11/20/2022] Open
Abstract
The phylogenetic diversity of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, E.C. 4.1.1.39) large-subunit genes of deep-sea microorganisms was analyzed. Bulk genomic DNA was isolated from seven samples, including samples from the Mid-Atlantic Ridge and various deep-sea habitats around Japan. The kinds of samples were hydrothermal vent water and chimney fragment; reducing sediments from a bathyal seep, a hadal seep, and a presumed seep; and symbiont-bearing tissues of the vent mussel, Bathymodiolus sp., and the seep vestimentiferan tubeworm, Lamellibrachia sp. The RuBisCO genes that encode both form I and form II large subunits (cbbL and cbbM) were amplified by PCR from the seven deep-sea sample DNA populations, cloned, and sequenced. From each sample, 50 cbbL clones and 50 cbbM clones, if amplified, were recovered and sequenced to group them into operational taxonomic units (OTUs). A total of 29 OTUs were recorded from the 300 total cbbL clones, and a total of 24 OTUs were recorded from the 250 total cbbM clones. All the current OTUs have the characteristic RuBisCO amino acid motif sequences that exist in other RuBisCOs. The recorded OTUs were related to different RuBisCO groups of proteobacteria, cyanobacteria, and eukarya. The diversity of the RuBisCO genes may be correlated with certain characteristics of the microbial habitats. The RuBisCO sequences from the symbiont-bearing tissues showed a phylogenetic relationship with those from the ambient bacteria. Also, the RuBisCO sequences of known species of thiobacilli and those from widely distributed marine habitats were closely related to each other. This suggests that the Thiobacillus-related RuBisCO may be distributed globally and contribute to the primary production in the deep sea.
Collapse
Affiliation(s)
- H Elsaied
- School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima 739-8528, Japan
| | | |
Collapse
|
48
|
Miziorko HM. Phosphoribulokinase: current perspectives on the structure/function basis for regulation and catalysis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2000; 74:95-127. [PMID: 10800594 DOI: 10.1002/9780470123201.ch3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Phosphoribulokinase (PRK), an enzyme unique to the reductive pentose phosphate pathway of CO2 assimilation, exhibits distinctive contrasting properties when the proteins from eukaryotic and prokaryotic sources are compared. The eukaryotic PRKs are typically dimers of -39 kDa subunits while the prokaryotic PRKs are octamers of -32 kDa subunits. The enzymes from these two classes are regulated by different mechanisms. Thioredoxin of mediated thiol-disulfide exchange interconverts eukaryotic PRKs between reduced (active) and oxidized (inactive) forms. Allosteric effectors, including activator NADH and inhibitors AMP and phosphoenolpyruvate, regulate activity of prokaryotic PRK. The effector binding site has been identified in the high resolution structure recently elucidated for prokaryotic PRK and the7 apparatus for transmission of the allosteric stimulus has been identified. Additional contrasts between PRKs include marked differences in primary structure between eukaryotic and prokaryotic PRKs. Alignment of all available deduced PRK sequences indicates that less than 10% of the amino acid residues are invariant. In contrast to these differences, the mechanism for ribulose 1,5-biphosphate synthesis from ATP and ribulose 5-phosphate (Ru5P) appears to be the same for all PRKs. Consensus sequences associated with M++-ATP binding, identified in all PRK proteins, are closely juxtaposed to the residue proposed to function as general base catalyst. Sequence homology and mutagenesis approaches have suggested several residues that may potentially function in Ru5P binding. Not all of these proposed Ru5P binding residues are closely juxtaposed in the structure of unliganded PRK. Mechanistic approaches have been employed to investigate the amino acids which influence K(m Ru5P) and identify those amino acids most directly involved in Ru5P binding. PRK is one member of a family of phospho or sulfo transferase proteins which exhibit a nucleotide monophosphate kinase fold. Structure/function correlations elucidated for PRK suggest analogous assignments for other members of this family of proteins.
Collapse
Affiliation(s)
- H M Miziorko
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA
| |
Collapse
|
49
|
Hayashi NR, Arai H, Kodama T, Igarashi Y. The cbbQ genes, located downstream of the form I and form II RubisCO genes, affect the activity of both RubisCOs. Biochem Biophys Res Commun 1999; 265:177-83. [PMID: 10548510 DOI: 10.1006/bbrc.1999.1103] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogenovibrio marinus strain MH-110, an obligately lithoautotrophic hydrogen-oxidizing bacterium, possesses three sets of the genes for ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO): namely, two form I type (cbbLS-1 and cbbLS-2) and one form II type (cbbM) enzymes. The cbbQ-m gene was located downstream of cbbM, and showed high similarity to other cbbQ genes and nirQ/norQ genes in denitrifying bacteria. Phylogenetic analysis of CbbQ and NirQ/NorQ indicated that CbbQ-m from Hv. marinus closely resembled CbbQ from Thiobacillus intermedius and Thiobacillus neapolitannus and less closely resembled NirQ and NorQ. The cbbQ-m gene has been shown to activate the form II RubisCO in E. coli cells, and the cbbQ-t from Hydrogenophilus thermoluteolus could also activate the form II RubisCO. Both cbbQ genes have also been shown to activate the form I RubisCO from Hp. thermoluteolus in E. coli cells. However, the activation levels of two form I RubisCOs from Hv. marinus were smaller than that of form I RubisCOs from Hp. thermoluteolus. Form II RubisCO activated by CbbQ-m (QM) was purified from E. coli cells. The result of the 8-anilino-1-naphthalenesulfonate binding assay and the circular dichroism spectra indicated that QM was conformationally different from Form II RubisCO that was not activated by CbbQ.
Collapse
Affiliation(s)
- N R Hayashi
- Department of Biotechnology, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | |
Collapse
|
50
|
Maeda N, Kitano K, Fukui T, Ezaki S, Atomi H, Miki K, Imanaka T. Ribulose bisphosphate carboxylase/oxygenase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 is composed solely of large subunits and forms a pentagonal structure. J Mol Biol 1999; 293:57-66. [PMID: 10512715 DOI: 10.1006/jmbi.1999.3145] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported the presence of a highly active, carboxylase-specific ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in a hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. In this study, structural analysis of Pk -Rubisco has been performed. Phylogenetic analysis of Rubiscos indicated that archaeal Rubiscos, including Pk -Rubisco, were distinct from previously reported type I and type II enzymes in terms of primary structure. In order to investigate the existence of small subunits in native Pk -Rubisco, immunoprecipitation and native-PAGE experiments were performed. No specific protein other than the expected large subunit of Pk -Rubisco was detected when the cell-free extracts of P. kodakaraensis KOD1 were immunoprecipitated with polyclonal antibodies against the recombinant enzyme. Furthermore, native and recombinant Pk -Rubiscos exhibited identical mobilities on native-PAGE. These results indicated that native Pk -Rubisco consisted solely of large subunits. Electron micrographs of purified recombinant Pk -Rubisco displayed pentagonal ring-like assemblies of the molecules. Crystals of Pk -Rubisco obtained from ammonium sulfate solutions diffracted X-rays beyond 2.8 A resolution. The self-rotation function of the diffraction data showed the existence of 5-fold and 2-fold axes, which are located perpendicularly to each other. These results, along with the molecular mass of Pk -Rubisco estimated from gel filtration, strongly suggest that Pk -Rubisco is a decamer composed only of large subunits, with pentagonal ring-like structure. This is the first report of a decameric assembly of Rubisco, which is thought to belong to neither type I nor type II Rubiscos.
Collapse
Affiliation(s)
- N Maeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|